
Citation: Zhang, T.; Mo, H. Towards

Multi-Objective Object Push-Grasp

Policy Based on Maximum Entropy

Deep Reinforcement Learning under

Sparse Rewards. Entropy 2024, 26, 416.

https://doi.org/10.3390/e26050416

Academic Editors: Marcin Sosnowski,

Jaroslaw Krzywanski, Karolina

Grabowska, Dorian Skrobek and

Ghulam Moeen Uddin

Received: 29 March 2024

Revised: 7 May 2024

Accepted: 10 May 2024

Published: 12 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Towards Multi-Objective Object Push-Grasp Policy Based
on Maximum Entropy Deep Reinforcement Learning
under Sparse Rewards
Tengteng Zhang and Hongwei Mo *

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China;
zttdouble@hrbeu.edu.cn
* Correspondence: mhonwei@163.com

Abstract: In unstructured environments, robots need to deal with a wide variety of objects with
diverse shapes, and often, the instances of these objects are unknown. Traditional methods rely on
training with large-scale labeled data, but in environments with continuous and high-dimensional
state spaces, the data become sparse, leading to weak generalization ability of the trained models
when transferred to real-world applications. To address this challenge, we present an innovative
maximum entropy Deep Q-Network (ME-DQN), which leverages an attention mechanism. The
framework solves complex and sparse reward tasks through probabilistic reasoning while eliminating
the trouble of adjusting hyper-parameters. This approach aims to merge the robust feature extraction
capabilities of Fully Convolutional Networks (FCNs) with the efficient feature selection of the
attention mechanism across diverse task scenarios. By integrating an advantage function with the
reasoning and decision-making of deep reinforcement learning, ME-DQN propels the frontier of
robotic grasping and expands the boundaries of intelligent perception and grasping decision-making
in unstructured environments. Our simulations demonstrate a remarkable grasping success rate of
91.6%, while maintaining excellent generalization performance in the real world.

Keywords: maximum entropy deep reinforcement learning; full convolutional network; sparse
rewards; grasping decision-making

1. Introduction

Most traditional robotic grasping techniques heavily depend on object labels [1,2] and
are data-driven [3,4]. However, when confronted with unknown objects in unstructured
and complex environments, the capabilities of autonomous learning, active adaptation,
and generalization become essential for achieving skillful manipulation. The scenarios
of robotic grasping in everyday life are wide-ranging, covering both single-target and
multi-target grasping. Among these, the greatest challenge lies in successfully grasping
unstructured and unknown objects. The progressive development of computer vision
technology has paved the way for significant advancements in robotic manipulation skills,
particularly through the application of deep reinforcement learning methods [5]. These
advancements have laid a strong theoretical foundation for intelligent robotic manipulation
in various complex tasks.

Nonprehensile manipulation refers to the interaction between a robot and an object
without a specific grasping task. This form of manipulation encompasses a range of actions,
including pushing, poking, hitting, hooking, rotating, flipping, throwing, squeezing, and
twisting. Robotic manipulation can be classified into two categories: stabilizing the object
through grasping and performing unconstrained manipulation when grasping is not
possible. However, nonprehensile manipulation not only involves the relationship between
the manipulator, the object, or the tool but also requires complex dynamic models of the
object and the environment [6,7]. This entails developing intricate mathematical models to

Entropy 2024, 26, 416. https://doi.org/10.3390/e26050416 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26050416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e26050416
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26050416?type=check_update&version=3

Entropy 2024, 26, 416 2 of 20

capture dynamic factors such as sliding friction, gravity, inertia, and motion planning for
moving objects. Additionally, utilizing known object shapes, poses, materials, and desired
trajectories for computation purposes can be expensive and challenging to adapt to new
objects and environments [8].

Ideal robotic grasp technology must meet certain requirements. Firstly, flexibility is
necessary for model-free unknown objects. Secondly, it must ensure high reliability in
selecting objects from dense, cluttered, or obstacle-rich environments. Thus, this paper
proposes a maximum entropy deep reinforcement learning for dexterous grasping, which
combines fully convolutional networks (FCNs) and attention mechanisms to achieve higher
feature extraction efficiency in different task scenarios. The key contributions can be
outlined as follows:

(1) Design a maximum entropy deep reinforcement learning grasping method based on
an attention mechanism to address complex and sparse reward tasks while eliminating
the trouble of adjusting hyper-parameters in unstructured grasping environments.

(2) Design an experience replay mechanism to reduce data correlation and combine
advantage functions to enhance reasoning and decision-making abilities in com-
plex environments.

(3) Design object affordance perception based on space-channel attention to make robots
more flexible in dealing with various complex grasping tasks.

(4) Our proposed method has generalization ability from simulation to real world. For
cluttered situations, the experimental results indicate the grasping rate of unknown
objects is up to 100% and 91.6% for single-object and multi-object, respectively.

The remainder of this paper is organized as follows. Section 2 briefly presents the
preliminaries and problem formulation. Section 3 introduces push-grasp policy design,
and Section 4 presents the experimental results and learning process. Finally, Section 5
concludes this work.

2. Related Work

Previous research primarily focused on geometric variations such as object grasp
position and shape [9,10]. Zeng et al. [11] used Q-learning to choose discrete actions in a
pixelwise manner and map the pixel coordinates to a real-world location. However, sparse
rewards made it difficult to find a reward signal while performing a grasping operation;
thus, it did not learn how to execute a given task. The objects were often pushed out of
the workspace, and even when it was not necessary, pushing actions were taken, leading
to a series of grasping and pushing actions. In [12], the pushing action was executed
only when no object is graspable judging by a grasp detect algorithm. The robot only
focused on grasping objects that were aligned with the bin wall or boundary, resulting
in poor success rates. Separately, in order to grasp the objects placed in well-organized
shapes, Chen et al. [13] employed a Deep Q-Network (DQN) to guide the robot in actively
exploring the environment of the objects placed around highly randomly until a suitable
grasp affordance map was generated. This data-driven deep reinforcement learning method
results in improper selection of many grasping points due to insufficient training cases,
with time-consuming training iterations and low grasping efficiency and success rates.
Generally, the manipulators cannot recognize objects accurately in cluster scenes from a
single viewpoint and cannot make the environment better for grasping.

Gang et al. [14] combined the pushing and grasping actions by an improved deep Q-
network algorithm with an RGB-D camera to obtain the information of objects’ RGB images
and point clouds from two viewpoints, which solved the problem of lack of information
missing. To reduce the complexity of strategy learning, Chen et al. [15] made use of the twin
delayed deep deterministic policy gradient to train policy that determines where to start
pushing and pushing direction according to current image. They proposed a framework
for robots to pick up the cluttered objects based on deep reinforcement learning and a
rule-based method. Similar to [14,15], a double experience replay was set up to increase
the search to learn efficient push and grasp policy in a tote box. However, only depth

Entropy 2024, 26, 416 3 of 20

image was considered in their work, and so the test results for novel unknown objects
was not perfect. More recent research makes it possible to train robot to learn synergies
between pushing and grasping in dense clutter [16–19]. These methods utilize visual
observations for end-to-end decision-making without using object-specific knowledge.
Their test scenarios in the randomly cluttered challenge did not indicate the level of clutter,
and the push performance was not evaluated with the arranged object challenge.

Although Lu et al. [19] proposed an attention module that includes target saliency
detection and density-based occlusion area inference, the sparse reward leads to low robot
motion efficiency, and inefficient pushing exploration actions also impact the success
rate. Effectively grasping objects in a cluttered environment can be achieved through
a novel approach that combines prehensile and non-prehensile manipulation policies.
Kalashnikov et al. [20] introduce a scalable vision-based reinforcement learning framework
named QT-Opt, which enables robots to learn how to pick up objects and execute non-
prehensile pre-grasp actions. Kiatos et al. [18] designed an experiment to learn a direct
correlation between visual observations and actions, and it is trained in a comprehensive
end-to-end manner. Without assuming a segmentation of the scene, the grasping policy
accomplishes robust power grasps in cluttered environments. Yuan et al. [21] trained
policy end-to-end using a CNN-based deep Q-learning algorithm that maps raw pixels to
state-action values, which are then transferred to the real world with supervised examples.
Arneqvist et al. [22] emphasized the issue of transferring knowledge within a similar family.
To address this, the variational policy embedding learning for adaptive master policy across
similar Markov Decision Processes (MDPs) was proposed. Thus, this enables policy transfer
even without pre-trained datasets. Meanwhile, the CNNs based on Monte Carlo tree search
were used to train cup placement strategies [23]. The aim is to optimize enhanced strategies
for simulation-to-real transfer and achieve domain-agnostic policy learning.

More closely related to our work is that of Zeng et al. [11]. Our method combines the
depth information of objects with reinforcement learning to obtain adaptive strategy to
enable a robot to learn pushes actively and purposefully and achieve better grasps. The
grasping skills for novel objects have been well generalized in the real world. Compared
with the previous works, the proposed method has stronger consistency and robustness.
Learning expressive energy policy from Soft Q-Learning and combining non-strategic
updates with Soft Actor-Critic is conducted to maximize expected returns and entropy in
random situations. The prioritized experience replay is meant to reduce data correlation,
and the advantage function improves the reasoning and decision-making ability of deep
reinforcement learning in complex manipulation tasks. Finally, it is important to break
through the possibility boundaries of autonomous intelligent perception and operations in
unstructured environments.

3. Preliminaries and Problem Formulation
3.1. Model Description

Deep learning, a branch of machine learning, typically involves multiple layers of
nonlinear operational units that utilize the output of the previous layer as input, automati-
cally extracting deep feature from vast amounts of training data. It has achieved significant
success in areas such as image processing, speech recognition, natural language processing,
and robot control. Compared to traditional multilayer neural network algorithms, deep
learning effectively mitigates gradient dispersion and local optima, alleviating the curse of
dimensionality associated with high-dimensional data. Representative structures of deep
learning include deep belief networks, stacked autoencoders, recurrent neural networks,
and convolutional neural networks (CNNs) [24,25]. Reinforcement learning enables agents
or robots to learn decision-making through millions of interactions across diverse domains
and environments. Therefore, integrating the perceptual capabilities of deep learning with
the decision-making abilities of reinforcement learning represents an intelligent approach
that more closely resembles human thinking, achieving direct control from raw input to
output through end-to-end learning. Especially in unstructured and complex scenarios,

Entropy 2024, 26, 416 4 of 20

deep reinforcement learning plays a pivotal role in enhancing the efficiency, success rate,
and robustness of robot grasping.

The process of deep reinforcement learning can be defined as follows: an agent
interacts with environment, collecting experiences in the form of state-action-reward se-
quences. These experiences are then used to train a deep neural network, which learns
to approximate either a value function or a policy function. The value function estimates
the expected future reward for a given state or state-action pair, while the policy function
directly maps states to actions. Through iterative optimization, the agent continuously
improves decision-making strategy, aiming to maximize the cumulative reward over time.
This end-to-end learning process allows the agent to directly learn control strategies from
raw input data, enabling it to adapt to complex and unstructured environments with high
efficiency, success rate, and robustness. Deep reinforcement learning algorithms can be cat-
egorized into three types: value-based reinforcement learning, policy-based reinforcement
learning, and model-based reinforcement learning [26]. DQN improves upon traditional
learning methods based on experience replay mechanisms, primarily in three aspects:
(1) approximating the value function using a deep CNN; (2) reducing data correlation
during training; and (3) independently establishing a target network to handle TD errors
(temporal difference errors).

L(θ) = Es,a∼ρ(·)[(TargetQ − Q(s, a; θ))2] (1)

TargetQ = Es′∼S[r + γmaxa′Q(s′, a′; θ′)
∣∣s, a] (2)

∇θ L(θ) = Es,a∼ρ(·);s′∼S[θt + α(r + γmaxa′Q(s′, a′; θ′)− Q(s, a; θ)∇Q(s, a; θ)] (3)

where L(θ) and TargetQ represent the loss function and objective function, respectively.
ρ(·) denotes the probability distribution of choosing action a in a given environment s.
At the iterative time step t + 1, the network weight parameters ∇θ L(θ) are updated by
two identical networks, namely the value network and the target network. To address the
overestimation issue in Q-learning, a greedy strategy based on the deep double Q-network,
which combines DQN with online network evaluation, is employed instead of using the
target network for value estimation. The parameters are updated by Equation (4).

YDDQN
t = rt+1 + γQ(st+1, argmax

a
Q(st+1, a; θt)) (4)

3.2. Prioritized Experience Replay

The key to the prioritized experience replay mechanism lies in determining whether a
sample is valuable or contributes to a larger TD-error (temporal difference error) [27]. The
value of a sample increases as the error between the estimated value and the target value
grows. Assuming the TD-error at sample i is defined as σi, the sampling probability can be
defined as follows:

Ci =
Cj

i

∑m Cj
m

(5)

The TD-error of each sample is represented by Ci during calculation, and the signifi-
cance of its error is modified by j. When j = 1, the error value is used immediately; when
j < 1, the influence of samples with high TD-errors can be reduced, while the influence of
samples with low errors is appropriately increased. There are two different ways to define
Ci: priority proportion Ci = |θi|+ ε and priority-based sorting method Ci = 1/rank(i),
with rank(i) obtained through sorting |θi|. When using the probability distribution of pri-
oritized replay, the samples are drawn with unequal probabilities. Since the distributions
of samples and action value functions are not identical, the model updates are biased. To
correct this bias, the important sampling weights ω are used, as shown in Equation (6).

ωα =

(
1

N·P(α)

)β

(6)

Entropy 2024, 26, 416 5 of 20

Here, N represents the number of samples stored in the experience replay buffer, and
β denotes the correction factor. A weighted ωα is added before each learning sample to
ensure unbiased updates. Different samples in the experience replay buffer have varying
impacts on backpropagation due to different TD-errors. A larger TD-error results in a
greater impact on backpropagation, while samples with smaller TD-errors have minimal
influence on the calculation of the backward gradient. In the Q-network, the TD-error
refers to the gap between the Q-values calculated by the target Q-network and the current
Q-network, respectively. Therefore, based on the absolute value of the TD-error |δt| for
each sample, the priority of that sample is proportional to |δt|.

The SumTree binary tree structure is employed to store samples in the prioritized
experience replay buffer [28]. The samples with larger absolute TD-errors are more likely to
be sampled, leading to faster convergence of the algorithm. All experience replay samples
are stored only in the lowest-level leaf nodes, with each node containing one sample, and
the internal nodes do not store sample data. In addition to storing data, the leaf nodes also
maintain the priority of each sample. The internal nodes, on the other hand, store the sum
of the priority values of their child nodes, as illustrated by the numbers displayed on the
internal nodes in Figure 1.

Entropy 2024, 26, 416 5 of 20

=

m
j
m

j
i

i C
CC (5)

The TD-error of each sample is represented by iC during calculation, and the
significance of its error is modified by j . When 1=j , the error value is used immediately;
when 1<j , the influence of samples with high TD-errors can be reduced, while the
influence of samples with low errors is appropriately increased. There are two different
ways to define iC : priority proportion εθ += iiC and priority-based sorting method

)(/1 irankCi = , with)(irank obtained through sorting iθ . When using the probability
distribution of prioritized replay, the samples are drawn with unequal probabilities. Since
the distributions of samples and action value functions are not identical, the model
updates are biased. To correct this bias, the important sampling weights ω are used, as
shown in Equation (6).

β

α α
ω

⋅

=
)(

1
PN

 (6)

Here, N represents the number of samples stored in the experience replay buffer, and
β denotes the correction factor. A weighted αω is added before each learning sample

to ensure unbiased updates. Different samples in the experience replay buffer have
varying impacts on backpropagation due to different TD-errors. A larger TD-error results
in a greater impact on backpropagation, while samples with smaller TD-errors have
minimal influence on the calculation of the backward gradient. In the Q-network, the TD-
error refers to the gap between the Q-values calculated by the target Q-network and the
current Q-network, respectively. Therefore, based on the absolute value of the TD-error
tδ for each sample, the priority of that sample is proportional to tδ .

The SumTree binary tree structure is employed to store samples in the prioritized
experience replay buffer [28]. The samples with larger absolute TD-errors are more likely
to be sampled, leading to faster convergence of the algorithm. All experience replay
samples are stored only in the lowest-level leaf nodes, with each node containing one
sample, and the internal nodes do not store sample data. In addition to storing data, the
leaf nodes also maintain the priority of each sample. The internal nodes, on the other hand,
store the sum of the priority values of their child nodes, as illustrated by the numbers
displayed on the internal nodes in Figure 1.

Figure 1. Priority sampling and storage based on SumTree structure.

3.3. Reward Reshaping
Sparse reward signals are a series of rewards generated through the interaction

between robot and environment, where most of the rewards obtained are non-positive,

Figure 1. Priority sampling and storage based on SumTree structure.

3.3. Reward Reshaping

Sparse reward signals are a series of rewards generated through the interaction be-
tween robot and environment, where most of the rewards obtained are non-positive,
making it difficult for learning algorithms to associate a long series of actions with future
rewards. Thus, the robot may never find a reward signal while performing a grasping
operation, thus not learning how to execute a given task. It is assumed that a grasping
operation will receive a higher reward value, such as 10, when the allowable error between
the position of the end-effector and the target position reaches a certain value. During this
process, only a small reward, such as -0.01, will be received at each step when the desired
goal is not achieved. The determination of rewards is related to the adaptive size of the
target, which can be expressed as:

rt =

{
10

∥∥Xθt − XT
∥∥ ≤ ρ(e)

−0.01
∥∥Xθt − XT

∥∥ > ρ(e)
(7)

However, it is difficult to fully train the learning policy due to the scarcity of target
rewards. When the end-effector and the target point are separated by a specific distance,
the rewards are modified and intermediate rewards are adjusted. The reward setting is
shown in Equation (8).

rst =

∥∥Xθt−1 − XT
∥∥− ∥∥Xθt − XT

∥∥∥∥Xθt − XT
∥∥ (8)

Entropy 2024, 26, 416 6 of 20

In this context, rst must remain stable within the range of [−0.08, 0.08], as it represents
the reward determined by the reward modification at step t in the above equation. If
the magnitude of the intermediate reward is too large, it can affect the stability of the
training process.

4. Push-Grasp Policy Design

This section designs a dexterous push-grasp combination strategy based on the visual
attention mechanism in the case of sparse environmental rewards. The policy framework is
visually illustrated in Figure 2.

Entropy 2024, 26, 416 6 of 20

making it difficult for learning algorithms to associate a long series of actions with future
rewards. Thus, the robot may never find a reward signal while performing a grasping
operation, thus not learning how to execute a given task. It is assumed that a grasping
operation will receive a higher reward value, such as 10, when the allowable error between
the position of the end-effector and the target position reaches a certain value. During this
process, only a small reward, such as -0.01, will be received at each step when the desired
goal is not achieved. The determination of rewards is related to the adaptive size of the
target, which can be expressed as:

>−−

≤−
=

)(01.0

)(10

eXX

eXX
r

T

T

t
t

t

ρ

ρ

θ

θ (7)

However, it is difficult to fully train the learning policy due to the scarcity of target
rewards. When the end-effector and the target point are separated by a specific distance,
the rewards are modified and intermediate rewards are adjusted. The reward setting is
shown in Equation (8).

T

TT

st
XX

XXXX
r

t

tt

−

−−−
= −

θ

θθ 1 (8)

In this context, str must remain stable within the range of [−0.08, 0.08], as it
represents the reward determined by the reward modification at step t in the above
equation. If the magnitude of the intermediate reward is too large, it can affect the stability
of the training process.

4. Push-Grasp Policy Design
This section designs a dexterous push-grasp combination strategy based on the

visual attention mechanism in the case of sparse environmental rewards. The policy
framework is visually illustrated in Figure 2.

Figure 2. The policy framework of robot dexterous grasping.

4.1. Affordance Perception

Firstly, given an intermediate feature map WHCRF ××∈ as input, the convolutional
block attention module (CBAM) sequentially infers a one-dimensional channel attention
map 11××∈ C

c RM and a two-dimensional spatial attention map WH
s RM ××∈ 1 . As shown

in Figure 3, this module consists of two sequential sub-modules: the channel attention
module and the spatial attention module [29]. The intermediate feature map is adaptively
extracted through CBAM for each convolutional block of the deep network.

Figure 2. The policy framework of robot dexterous grasping.

4.1. Affordance Perception

Firstly, given an intermediate feature map F ∈ RC×H×W as input, the convolutional
block attention module (CBAM) sequentially infers a one-dimensional channel attention
map Mc ∈ RC×1×1 and a two-dimensional spatial attention map Ms ∈ R1×H×W . As shown
in Figure 3, this module consists of two sequential sub-modules: the channel attention
module and the spatial attention module [29]. The intermediate feature map is adaptively
extracted through CBAM for each convolutional block of the deep network.

Entropy 2024, 26, 416 7 of 20

Figure 3. Convolutional attention mechanism block.

The entire attention mechanism process can be summarized as Equation (9).

''''

'

)(

)(

FFMF

FFMF

s

c

⊗=

⊗=
 (9)

where ⊗ represents the element-wise multiplication. During the multiplication process,
the attention values are propagated or replicated accordingly: the channel attention values
are propagated along the spatial dimension, and vice versa. ''F is the output of the final
feature extraction. The calculation process of the channel and spatial attention maps is
shown in Figure 4. The channel attention submodule utilizes the outputs of both max
pooling and average pooling from a shared network, while the spatial attention
submodule utilizes two similar outputs pooled along the channel axis and passes them
through a convolutional layer. The channel attention map is generated by leveraging the
inter-channel relationships of the features. Since each channel of the feature map is treated
as a feature detector, channel attention focuses on the given input image. To effectively
compute channel attention, the spatial dimensions of the input feature map are
compressed, and spatial information is aggregated using average pooling. Max pooling
collects important information about different object features, enabling the inference of
more fine-grained channel attention. Therefore, the simultaneous use of average pooling
and max pooling features greatly enhances the representational capacity of the network.

Figure 4. The schematic diagram of channel attention module and spatial attention module.

In the channel attention module, spatial information of the feature map is first
aggregated using average pooling and max pooling to generate two different spatial
context descriptors: c

avgF and cFmax , representing the average-pooled features and max-
pooled features, respectively. Then, the two descriptors are input into a shared network
to produce the channel attention map 11××∈ C

c RM . The shared network consists of a
multi-layer perceptron (MLP) with one hidden layer. To reduce parameter, the hidden

Figure 3. Convolutional attention mechanism block.

The entire attention mechanism process can be summarized as Equation (9).

F′ = Mc(F)⊗ F
F′′ = Ms(F′)⊗ F′ (9)

where ⊗ represents the element-wise multiplication. During the multiplication process, the
attention values are propagated or replicated accordingly: the channel attention values are
propagated along the spatial dimension, and vice versa. F′′ is the output of the final feature
extraction. The calculation process of the channel and spatial attention maps is shown in
Figure 4. The channel attention submodule utilizes the outputs of both max pooling and
average pooling from a shared network, while the spatial attention submodule utilizes two
similar outputs pooled along the channel axis and passes them through a convolutional
layer. The channel attention map is generated by leveraging the inter-channel relationships

Entropy 2024, 26, 416 7 of 20

of the features. Since each channel of the feature map is treated as a feature detector, channel
attention focuses on the given input image. To effectively compute channel attention, the
spatial dimensions of the input feature map are compressed, and spatial information is
aggregated using average pooling. Max pooling collects important information about
different object features, enabling the inference of more fine-grained channel attention.
Therefore, the simultaneous use of average pooling and max pooling features greatly
enhances the representational capacity of the network.

Entropy 2024, 26, 416 7 of 20

Figure 3. Convolutional attention mechanism block.

The entire attention mechanism process can be summarized as Equation (9).

''''

'

)(

)(

FFMF

FFMF

s

c

⊗=

⊗=
 (9)

where ⊗ represents the element-wise multiplication. During the multiplication process,
the attention values are propagated or replicated accordingly: the channel attention values
are propagated along the spatial dimension, and vice versa. ''F is the output of the final
feature extraction. The calculation process of the channel and spatial attention maps is
shown in Figure 4. The channel attention submodule utilizes the outputs of both max
pooling and average pooling from a shared network, while the spatial attention
submodule utilizes two similar outputs pooled along the channel axis and passes them
through a convolutional layer. The channel attention map is generated by leveraging the
inter-channel relationships of the features. Since each channel of the feature map is treated
as a feature detector, channel attention focuses on the given input image. To effectively
compute channel attention, the spatial dimensions of the input feature map are
compressed, and spatial information is aggregated using average pooling. Max pooling
collects important information about different object features, enabling the inference of
more fine-grained channel attention. Therefore, the simultaneous use of average pooling
and max pooling features greatly enhances the representational capacity of the network.

Figure 4. The schematic diagram of channel attention module and spatial attention module.

In the channel attention module, spatial information of the feature map is first
aggregated using average pooling and max pooling to generate two different spatial
context descriptors: c

avgF and cFmax , representing the average-pooled features and max-
pooled features, respectively. Then, the two descriptors are input into a shared network
to produce the channel attention map 11××∈ C

c RM . The shared network consists of a
multi-layer perceptron (MLP) with one hidden layer. To reduce parameter, the hidden

Figure 4. The schematic diagram of channel attention module and spatial attention module.

In the channel attention module, spatial information of the feature map is first aggre-
gated using average pooling and max pooling to generate two different spatial context
descriptors: Fc

avg and Fc
max, representing the average-pooled features and max-pooled fea-

tures, respectively. Then, the two descriptors are input into a shared network to produce
the channel attention map Mc ∈ RC×1×1. The shared network consists of a multi-layer
perceptron (MLP) with one hidden layer. To reduce parameter, the hidden activation size is
set to RC/r×1×1, where r is the compression ratio. After applying the shared network to
each descriptor, the output feature vectors are merged using element-wise summation. In
summary, the computation of channel attention is shown in Equation (10).

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ(W1(W0(Fc

avg)) + W1(W0(Fc
max)))

(10)

where σ represents the sigmoid activation function, W0 ∈ RC/r×C, and W1 ∈ RC×C/r. The
MLP weight coefficients W0 and W1 are shared between the two inputs, and W0 follows
the ReLU activation function. The choice of the ReLU activation function is due to its
nonlinear nature, which maps any input value to a non-negative output, thereby enhancing
the expressive capacity of the neural network. Moreover, the sparsity and fast computation
speed of the ReLU activation function make it particularly effective when processing
large-scale image data. It can effectively prevent the problem of gradient vanishing.

The spatial attention module generates a spatial attention map based on the spatial
relationships between features. Unlike the channel attention module, spatial attention
focuses on identifying the effective information regions, complementing the channel at-
tention. To compute spatial attention, average pooling and max pooling operations are
first applied along the channel axis, and the feature descriptors are concatenated to create
an effective feature representation. Applying pooling operations along the channel axis
has been proven effective in highlighting informative regions [30]. On the concatenated
feature descriptor, a convolutional layer is utilized to generate the spatial attention map

Entropy 2024, 26, 416 8 of 20

Ms(F) ∈ RH×W , which encodes the locations to emphasize or suppress. By aggregating
the channel information of the feature map using two pooling operations, two 2D maps,
Fs

avg ∈ R1×H×W and Fs
max ∈ R1×H×W , are generated, representing the average-pooled and

max-pooled features across channels, respectively. These are then concatenated and passed
through a standard convolutional layer to produce the 2D spatial attention map. The
computation of spatial attention is shown in Equation (11).

Ms(F) = σ(f 7×7([AvgPool(F); MaxPool(F)]))
= σ(f 7×7([Fs

avg; Fs
max]))

(11)

where f 7×7 denotes the convolution operation with a 7 × 7 kernel.
The parameters of the visual attention network structure constructed in this section

are shown in Table 1. The attention architecture (CBAMNet) in this paper is a convolutional
block attention module, primarily based on the deep residual network (DenseNet-121).
This network includes a convolutional layer and four attention blocks. The spatial attention
and channel attention are employed in the residual cascade within the attention blocks.
On one hand, a channel attention map is generated to direct attention towards global
information; on the other hand, separate attention is paid to spatial feature maps of both the
attention space and the target space. The two modules calculate complementary attention
independently of each other and are combined sequentially to enhance attention to the
position and feature information of objects in the workspace.

Table 1. The parameters of the visual attention network.

Layer Name Output Size Kernel Size/Number Output Feature Maps

Conv 112 × 112 64

Pooling 56 × 56 64

Attention block_1 56 × 56
[

1 × 1 conv
3 × 3 conv

]
× 6 256

Transition layer_1
56 × 56 1 × 1 × 128 conv 128

28 × 28 125

Attention block_2 28 × 28
[

1 × 1 conv
3 × 3 conv

]
× 12 512

Transition layer_2
28 × 28 1 × 1 × 256 conv 256

14 × 14 256

Attention block_3 14 × 14
[

1 × 1 conv
3 × 3 conv

]
× 24 1024

Transition layer_3
14 × 14 1 × 1 × 512 conv 512

7 × 7 512

Attention block_4 7 × 7
[

1 × 1 conv
3 × 3 conv

]
× 16 1024

4.2. Maximum Entropy DQN

Assuming the action strategy is π, given N actions and corresponding reward vectors
χ, the entropy regularization strategy optimization problem is defined as follows:

max{πχ + ηE(π)} (12)

The degree of exploration is controlled by η, and η ≥ 0.
The most important issue in reinforcement learning is exploration-exploitation. En-

tropy of policy is defined as follows:

Entropy 2024, 26, 416 9 of 20

E(π) = − ∑
π′∈π

π′ log(π′) (13)

The entropy of deterministic policy is relatively low, and the entropy of random policy
is relatively high. The optimal solution for the maximum entropy objective is obtained
through the Soft Bellman equation, as shown in Formula (14).

Q(st, at) = E[rt + γso f tmaxaQ(st+1, a)] (14)

so f tmaxa f (a) = log
∫

exp f (a)da (15)

Combining the Formula (12), the larger η, the more entropy becomes dominant and
tends towards a random strategy (exploration); when η is smaller, the reward is dominant
and tends towards deterministic strategies (exploitation). By mapping a reward vector
into an uncertain strategy, the component of the vector χ is the probability of selecting
that action.

The input of the DQN network is the state vector φ(s) corresponding to the state s,
and the output is the action-value function Q for all actions under that state. Two neural
networks with identical structures are constructed: the MainNet, which continuously
updates the current neural network parameters, and the TargetNet, which is used to update
the Q-value. The objective function is defined as:

TargetQ = r + γmaxa′Q(s′, a′; θ) (16)

The loss function of the DQN network is defined as:

L(θ) = E[(TargetQ − Q(s, a; θ))2] (17)

where θ represents the neural network parameter. Gradient descent is employed to ap-
proximate the current Q-values to the target Q-values. The gradient update as shown in
Formula (18).

θt+1 = θt + α[r + γmax
a′

Q(s′, a′; θ)− Q(s, a; θ)]∇Q(s, a; θ) (18)

To reduce data correlation, the neural network approximates the value function by
calculating the TD target network represented as θ−, and the network used for approximat-
ing the value function is represented as θ. The network for approximating the action-value
function is updated at each step, and the update process is as follows:

θt+1 = θt + α[r + γmax
a′

Q(s′, a′; θ−)− Q(s, a; θ)]∇Q(s, a; θ) (19)

By combining a random policy with the DQN network, and integrating a visual
attention feature extraction network model with an action network model, the action Q-
values is predicted. The priority sampling is conducted based on the prioritized experience
replay mechanism. The loss function is defined as:

1
m

m

∑
j=1

ωj(yi − Q(φ(Sj), Aj, ω))2 (20)

where ωj represents the priority weight of the j-th sample, which is normalized from the
TD error |δt|. After gradient updating the parameters of the Q-network, the TD error needs
to be recalculated and updated on the SumTree. The gap between them is the entropy of
the policy. When η → 0 , the entropy regularized policy optimization problem becomes the
standard expected reward objective, where the optimal solution is the hard-max policy.

Entropy 2024, 26, 416 10 of 20

The output features are fused and fed into the ME-DQN network (as shown in Figure 5)
to generate affordance maps for grasping actions. A greedy strategy is employed to obtain
pixel-wise predicted Q-values and action probabilities. The self-supervised training is aim
to achieve a superior target value, as described in Formula (21).

Qi+1(st, at) = Rt+1(st, st+1) + γmaxaQ(st+1, a; θt+1) (21)

where Qt+1 represents the predicted value of executing an action, Rt+1(st, at) is the reward
value obtained after executing action at, and θt+1 denotes the network parameters at time
t + 1. The maximum predicted Q-value is achieved by selecting the optimal action, and the
Q-function in the network indicates the degree of advantage or disadvantage for the robot
to execute an action in state s. The prioritized experience replay improves the decision-
making process, with the advantage function representing the behavioral performance of
the robot. The ME-DQN divides the Q-network into two parts: the first part is only related
to the state s and is independent of the specific action a, defined as the value function
V(s, w, α); the second part is related to both the state and the action, with the advantage
function defined as A(s, a, w, β). The state-action value function is derived from this, as
shown in Equation (22).

Q(s, a, w, α, β) = V(s, w, α) + A(s, a, w, β) (22)

where w represents the network parameters, α denotes the network parameters for the
value function, and β represents the advantage function parameter. The advantage function
determines whether the current action yields a higher reward value compared to other
actions, and the priority sorting gets rid of unimportant experience sequences. Meanwhile,
the trouble of adjusting hyper-parameters is eliminated.

Entropy 2024, 26, 416 11 of 20

Figure 5. The schematic diagram of maximum entropy DQN network.

5. Experiment Analysis
In this section, a comparative analysis is conducted on the grasping performance of

single target objects and multi-objective unknown objects. The effectiveness and
generalization ability of the algorithm are verified through simulation and real
experiments.

5.1. Experimental Setup
To reduce robot wear and tear, similar to the simulation environment of Zeng et al.

[11], a simulation experiment platform was built based on V-REP [31], with its internal
inverse kinematics module used for robot motion planning and Bullet Physics for
dynamics. The simulation environment incorporates a UR5 robotic arm and a two-finger
parallel gripper (RobotIQ 2F-85), with the adjustable range of the gripper being 0–85 mm.
The deep camera selected is the RealSense D435i, with a resolution of 1280 × 720. The
graphics card model is NVIDIA RTX 2080 Ti, and the operating hardware consists of a 3.2
GHz CPU and 64G of memory. The operating system is Ubuntu16.04, and the
programming language is Python. The libraries used include OpenCV, Numpy, Pandas,
and others. The physical experiments in this section are based on the JAKA Zu 7 six-axis
robotic arm, with the two-finger gripper being the WHEELTEC.

5.2. Training
The heightmap is constructed by capturing visual 3D data from an RGB-D camera

statically mounted at the end of the robotic arm and orthogonally projecting it onto the
RGB-D heightmap. The heightmap is rotated in 16 directions to enhance data utilization.
A spatial-channel attention is to improve the expression of objects and extract workspace
features. After the completion of the action network, an affordance map of the object is
generated to further enhance its expressiveness. Combined with the dense pixel maps
predicted by a fully convolutional network based on DenseNet-121, several optional
locations are identified. The decision system determines the optimal grasp point based on
the magnitude of the Q-value, with 5.0<Q indicating unsuitability for grasping in the
experiments. To avoid local optimal solutions, an ε-greedy strategy is employed to
randomly execute grasping actions for exploration.

There are several objects randomly being placed on a workspace scenario measuring
0.8 m × 0.65 m in training. The iterative training is conducted for 10,000 epochs, with a
maximum of 10 operations performed in each scenario. The exploration rate discount
factor is set to 0.99, and the momentum coefficient is set to 0.95. Network parameters are
updated based on stochastic gradient descent. Due to insufficient sample data, training
begins once the number of sequential samples stored in the replay buffer reaches 5000.
The maximum memory capacity is set to 580,000. The ReLU activation function, batch
normalization, and dropout (ranging from 0.2 to 0.4) are added after each layer. The
optimizer is Adam, with a learning rate of 10−4.

Figure 5. The schematic diagram of maximum entropy DQN network.

5. Experiment Analysis

In this section, a comparative analysis is conducted on the grasping performance of sin-
gle target objects and multi-objective unknown objects. The effectiveness and generalization
ability of the algorithm are verified through simulation and real experiments.

5.1. Experimental Setup

To reduce robot wear and tear, similar to the simulation environment of Zeng et al. [11],
a simulation experiment platform was built based on V-REP [31], with its internal inverse
kinematics module used for robot motion planning and Bullet Physics for dynamics. The
simulation environment incorporates a UR5 robotic arm and a two-finger parallel gripper
(RobotIQ 2F-85), with the adjustable range of the gripper being 0–85 mm. The deep camera
selected is the RealSense D435i, with a resolution of 1280 × 720. The graphics card model
is NVIDIA RTX 2080 Ti, and the operating hardware consists of a 3.2 GHz CPU and 64G of
memory. The operating system is Ubuntu16.04, and the programming language is Python.
The libraries used include OpenCV, Numpy, Pandas, and others. The physical experiments

Entropy 2024, 26, 416 11 of 20

in this section are based on the JAKA Zu 7 six-axis robotic arm, with the two-finger gripper
being the WHEELTEC.

5.2. Training

The heightmap is constructed by capturing visual 3D data from an RGB-D camera
statically mounted at the end of the robotic arm and orthogonally projecting it onto the
RGB-D heightmap. The heightmap is rotated in 16 directions to enhance data utilization.
A spatial-channel attention is to improve the expression of objects and extract workspace
features. After the completion of the action network, an affordance map of the object is
generated to further enhance its expressiveness. Combined with the dense pixel maps
predicted by a fully convolutional network based on DenseNet-121, several optional lo-
cations are identified. The decision system determines the optimal grasp point based
on the magnitude of the Q-value, with Q < 0.5 indicating unsuitability for grasping in
the experiments. To avoid local optimal solutions, an ε-greedy strategy is employed to
randomly execute grasping actions for exploration.

There are several objects randomly being placed on a workspace scenario measuring
0.8 m × 0.65 m in training. The iterative training is conducted for 10,000 epochs, with a
maximum of 10 operations performed in each scenario. The exploration rate discount factor
is set to 0.99, and the momentum coefficient is set to 0.95. Network parameters are updated
based on stochastic gradient descent. Due to insufficient sample data, training begins once
the number of sequential samples stored in the replay buffer reaches 5000. The maximum
memory capacity is set to 580,000. The ReLU activation function, batch normalization, and
dropout (ranging from 0.2 to 0.4) are added after each layer. The optimizer is Adam, with a
learning rate of 10−4.

At the initial stage of training, the ε-greedy strategy is employed for continuous
exploration and exploitation, aiming to find the optimal policy to guide the robot to execute
the best actions. As shown in the grasping reward curve depicted in Figure 6, the initial
stage exhibits low values for both the current state grasping reward and the average reward
due to the limited number of data tuples in the experience replay buffer. As the training
proceeds, the prioritized experience replay is utilized to reduce data correlation. This
involves pixel-by-pixel prediction of the value function V(s, w, α) and the action execution
probabilities. The mean squared error loss function based on sample priority is then used to
update all parameters w of the Q-network through gradient backpropagation in the neural
network. Combined with the advantage function, the optimal state-action value function
Q(s, a, w, α, β) is obtained. The reward function gradually converges after 8000 iterations.
It indicates that the model has stabilized. This ensures that the robot can reliably execute
optimal grasping actions based on the learned representations and policies.

Entropy 2024, 26, 416 12 of 20

At the initial stage of training, the ε-greedy strategy is employed for continuous
exploration and exploitation, aiming to find the optimal policy to guide the robot to
execute the best actions. As shown in the grasping reward curve depicted in Figure 6, the
initial stage exhibits low values for both the current state grasping reward and the average
reward due to the limited number of data tuples in the experience replay buffer. As the
training proceeds, the prioritized experience replay is utilized to reduce data correlation.
This involves pixel-by-pixel prediction of the value function),,(αwsV and the action
execution probabilities. The mean squared error loss function based on sample priority is
then used to update all parameters w of the Q-network through gradient backpropagation
in the neural network. Combined with the advantage function, the optimal state-action
value function),,,,(βαwasQ is obtained. The reward function gradually converges after
8000 iterations. It indicates that the model has stabilized. This ensures that the robot can
reliably execute optimal grasping actions based on the learned representations and
policies.

Figure 6. The reward value curve for grasping actions.

5.3. Object Grasping Simulation Experiments
The experiment is conducted in a same experimental environment for the ME-DQN

network using three different backbones (DenseNet-121, DenseNet-169, and DenseNet-
201). In the vrep simulation environment, a single object was dropped in each iteration,
and a total of 50 unknown objects with various structural types, including cubes (cub),
cylinders (cy) and others, were set up for grasping operations (see Figure 7). The number
of grasping attempts in each scenario was limited to no more than three. Among testing,
the architecture based on DenseNet-121 exhibited the most prominent performance in
terms of grasping success rate (GS), grasping efficiency (GE), and the time required to
grasp each object (GT). Specifically, the DenseNet-121-based model achieved a 100%
grasping success rate.

Figure 7. The schematic diagram of ME-DQN network.

Figure 6. The reward value curve for grasping actions.

Entropy 2024, 26, 416 12 of 20

5.3. Object Grasping Simulation Experiments

The experiment is conducted in a same experimental environment for the ME-DQN
network using three different backbones (DenseNet-121, DenseNet-169, and DenseNet-
201). In the vrep simulation environment, a single object was dropped in each iteration,
and a total of 50 unknown objects with various structural types, including cubes (cub),
cylinders (cy) and others, were set up for grasping operations (see Figure 7). The number of
grasping attempts in each scenario was limited to no more than three. Among testing, the
architecture based on DenseNet-121 exhibited the most prominent performance in terms
of grasping success rate (GS), grasping efficiency (GE), and the time required to grasp
each object (GT). Specifically, the DenseNet-121-based model achieved a 100% grasping
success rate.

Entropy 2024, 26, 416 12 of 20

At the initial stage of training, the ε-greedy strategy is employed for continuous
exploration and exploitation, aiming to find the optimal policy to guide the robot to
execute the best actions. As shown in the grasping reward curve depicted in Figure 6, the
initial stage exhibits low values for both the current state grasping reward and the average
reward due to the limited number of data tuples in the experience replay buffer. As the
training proceeds, the prioritized experience replay is utilized to reduce data correlation.
This involves pixel-by-pixel prediction of the value function),,(αwsV and the action
execution probabilities. The mean squared error loss function based on sample priority is
then used to update all parameters w of the Q-network through gradient backpropagation
in the neural network. Combined with the advantage function, the optimal state-action
value function),,,,(βαwasQ is obtained. The reward function gradually converges after
8000 iterations. It indicates that the model has stabilized. This ensures that the robot can
reliably execute optimal grasping actions based on the learned representations and
policies.

Figure 6. The reward value curve for grasping actions.

5.3. Object Grasping Simulation Experiments
The experiment is conducted in a same experimental environment for the ME-DQN

network using three different backbones (DenseNet-121, DenseNet-169, and DenseNet-
201). In the vrep simulation environment, a single object was dropped in each iteration,
and a total of 50 unknown objects with various structural types, including cubes (cub),
cylinders (cy) and others, were set up for grasping operations (see Figure 7). The number
of grasping attempts in each scenario was limited to no more than three. Among testing,
the architecture based on DenseNet-121 exhibited the most prominent performance in
terms of grasping success rate (GS), grasping efficiency (GE), and the time required to
grasp each object (GT). Specifically, the DenseNet-121-based model achieved a 100%
grasping success rate.

Figure 7. The schematic diagram of ME-DQN network. Figure 7. The schematic diagram of ME-DQN network.

Evaluation was conducted by comparing three metrics as summarized in Table 2. The
results indicate that the DenseNet-121 backbone is particularly suitable for the task of
object grasping in the given simulation environment, offering high accuracy and efficiency.
This may be attributed to the ability of DenseNet-121 to extract rich and discriminative
features from input data, enabling the network to effectively identify and locate objects for
successful grasping.

Table 2. The grasping evaluation of single object based on different backbone.

GS(%) GE (Number per Hour) GT (s)

Module cub cy o cub cy o cub cy o

DenseNet-201 78.5 75.1 68.5 800 642 590 4.5 5.6 6.1
DenseNet-169 89.2 85.7 80.3 947 734 679 3.8 4.9 5.3

DenseNet-
121(Ours) 100 100 100 972 782 750 3.7 4.6 4.8

The dense object grasping experimental scenarios are categorized into two types:
identical structure and different structure, as shown in Figures 8 and 9. In simulation
environment, 10 objects are randomly generated in each round of the experiment, and
the number of grasping attempts per task is limited to less than 30. A reward value of
10 is obtained when the end-effector is successful grasping. Only a small reward of −2
is received for each step if not. To avoid local optimal solutions, an ε-greedy exploration
strategy is adopted, which attempts to take random actions with a certain probability
to explore better policy instead of blindly selecting the action with the best value based
on the current policy. We initialize ε as 0.99 and gradually reduce it to 0.01 during the
training process.

Entropy 2024, 26, 416 13 of 20

Entropy 2024, 26, 416 13 of 20

Evaluation was conducted by comparing three metrics as summarized in Table 2. The
results indicate that the DenseNet-121 backbone is particularly suitable for the task of
object grasping in the given simulation environment, offering high accuracy and
efficiency. This may be attributed to the ability of DenseNet-121 to extract rich and
discriminative features from input data, enabling the network to effectively identify and
locate objects for successful grasping.

Table 2. The grasping evaluation of single object based on different backbone.

 GS(%) GE (Number per Hour) GT (s)
Module cub cy o cub cy o cub cy o

DenseNet-201 78.5 75.1 68.5 800 642 590 4.5 5.6 6.1
DenseNet-169 89.2 85.7 80.3 947 734 679 3.8 4.9 5.3

DenseNet-121(Ours) 100 100 100 972 782 750 3.7 4.6 4.8

The dense object grasping experimental scenarios are categorized into two types:
identical structure and different structure, as shown in Figures 8 and 9. In simulation
environment, 10 objects are randomly generated in each round of the experiment, and the
number of grasping attempts per task is limited to less than 30. A reward value of 10 is
obtained when the end-effector is successful grasping. Only a small reward of −2 is
received for each step if not. To avoid local optimal solutions, an ε -greedy exploration
strategy is adopted, which attempts to take random actions with a certain probability to
explore better policy instead of blindly selecting the action with the best value based on
the current policy. We initialize ε as 0.99 and gradually reduce it to 0.01 during the
training process.

Figure 8. The same structure. Figure 8. The same structure.

Entropy 2024, 26, 416 14 of 20

Figure 9. The different structure.

The training results of multi-object grasping based on different backbones with
various structures are presented in Figure 10. The grasping success rate curve of the active
Deep Q-Network model based on the DenseNet-201 architecture rapidly rises in the initial
stage but reaches saturation early on. The other two algorithms show a slower increase at
the beginning but present stable performance later on. After 2000 iterations, the grasping
success rates of the three algorithms are 52% (red), 38% (green), and 40% (blue),
respectively. All three algorithms converge with average grasping success rates reaching
51% (red), 67% (green), and 92% (blue) conducting 4000 iterations. Although the
DenseNet-201-based achieves the fastest speed and the DenseNet-169-based
demonstrates a better balance in the later stage, the method (DenseNet-121-based)
proposed in this paper exhibits a higher grasping success rate in the long run. This is
mainly due to the fact that the DenseNet-121 network has fewer parameters and depth,
which alleviates the issue of gradient vanishing while enhancing the information
transmission of feature maps.

Figure 10. The training results for a multi-object with different structures based on different
backbones.

Figure 9. The different structure.

The training results of multi-object grasping based on different backbones with various
structures are presented in Figure 10. The grasping success rate curve of the active Deep
Q-Network model based on the DenseNet-201 architecture rapidly rises in the initial stage
but reaches saturation early on. The other two algorithms show a slower increase at
the beginning but present stable performance later on. After 2000 iterations, the grasping
success rates of the three algorithms are 52% (red), 38% (green), and 40% (blue), respectively.
All three algorithms converge with average grasping success rates reaching 51% (red), 67%
(green), and 92% (blue) conducting 4000 iterations. Although the DenseNet-201-based
achieves the fastest speed and the DenseNet-169-based demonstrates a better balance in
the later stage, the method (DenseNet-121-based) proposed in this paper exhibits a higher
grasping success rate in the long run. This is mainly due to the fact that the DenseNet-121
network has fewer parameters and depth, which alleviates the issue of gradient vanishing
while enhancing the information transmission of feature maps.

Entropy 2024, 26, 416 14 of 20

Entropy 2024, 26, 416 14 of 20

Figure 9. The different structure.

The training results of multi-object grasping based on different backbones with
various structures are presented in Figure 10. The grasping success rate curve of the active
Deep Q-Network model based on the DenseNet-201 architecture rapidly rises in the initial
stage but reaches saturation early on. The other two algorithms show a slower increase at
the beginning but present stable performance later on. After 2000 iterations, the grasping
success rates of the three algorithms are 52% (red), 38% (green), and 40% (blue),
respectively. All three algorithms converge with average grasping success rates reaching
51% (red), 67% (green), and 92% (blue) conducting 4000 iterations. Although the
DenseNet-201-based achieves the fastest speed and the DenseNet-169-based
demonstrates a better balance in the later stage, the method (DenseNet-121-based)
proposed in this paper exhibits a higher grasping success rate in the long run. This is
mainly due to the fact that the DenseNet-121 network has fewer parameters and depth,
which alleviates the issue of gradient vanishing while enhancing the information
transmission of feature maps.

Figure 10. The training results for a multi-object with different structures based on different
backbones.
Figure 10. The training results for a multi-object with different structures based on different backbones.

A deep analysis of the grasping performance in two types of scenarios is presented
in Table 3. The proposed method in this paper exhibits a significant decrease in grasping
efficiency for objects with different structures, while the change in success rate is relatively
insignificant. This is primarily due to the fact that objects with different structures lack
specific contour features and contain less semantic feature information. Consequently, the
action network requires greedy exploration and exploitation during the object grasping
process. The action network must extensively explore various grasping policy to identify
the optimal grasping approach for each unique object structure, leading to a decrease
in overall grasping efficiency. However, the success rate remains relatively stable as the
model is able to adapt and learn effective grasping skills for a wide range of object shapes
and sizes.

Table 3. The comparison of grasping performance between two types of scenes.

GS (%) GE (Number per Hour) GT (s)

Same structure 93.1 702 ± 3 7.9
Different structure 92.4 519 ± 3 10.8

For all benchmarks, we conducted 4000 iterations of training to demonstrate that
the overall performance of our proposed method outperforms others. The simulations
incorporate the utilization of 10 different 3D toy blocks, wherein their shapes and colors are
randomly selected during the experiments. As illustrated in Figure 11, after approximately
2500 iterations of training, the grasping success rate of ME-DQN stands at around 80%.
Following further training, the performance after 4000 iterations reaches approximately
93%. In the early stages, the training performance of Dual viewpoint [14] and VPG [11] is
higher than ME-DQN, mainly due to the fact that ME-DQN incorporates pushing actions
into its training from the beginning, increasing the exploration of complex environments,
thus resulting in lower performance initially. In contrast, the Rule-based [15] and VPG-only
depth [30] employs a greedy strategy in the early stages, selecting the maximum predicted
Q-value. During this phase, the grasping prediction value is slightly higher than the
pushing prediction value, and the impact of environmental noise is minimal, leading to a
higher grasping success rate. However, as the environmental noise increases significantly
in the later stages, after 3000 iterations, the success rate of Rule-based and VPG-only depth
falls below 75%, while ME-DQN maintains a success rate of around 93%.

Entropy 2024, 26, 416 15 of 20

Entropy 2024, 26, 416 15 of 20

A deep analysis of the grasping performance in two types of scenarios is presented
in Table 3. The proposed method in this paper exhibits a significant decrease in grasping
efficiency for objects with different structures, while the change in success rate is relatively
insignificant. This is primarily due to the fact that objects with different structures lack
specific contour features and contain less semantic feature information. Consequently, the
action network requires greedy exploration and exploitation during the object grasping
process. The action network must extensively explore various grasping policy to identify
the optimal grasping approach for each unique object structure, leading to a decrease in
overall grasping efficiency. However, the success rate remains relatively stable as the
model is able to adapt and learn effective grasping skills for a wide range of object shapes
and sizes.

Table 3. The comparison of grasping performance between two types of scenes.

 GS (%) GE (Number per Hour) GT (s)
Same structure 93.1 702 ± 3 7.9

Different structure 92.4 519 ± 3 10.8

For all benchmarks, we conducted 4000 iterations of training to demonstrate that the
overall performance of our proposed method outperforms others. The simulations
incorporate the utilization of 10 different 3D toy blocks, wherein their shapes and colors
are randomly selected during the experiments. As illustrated in Figure 11, after
approximately 2500 iterations of training, the grasping success rate of ME-DQN stands at
around 80%. Following further training, the performance after 4000 iterations reaches
approximately 93%. In the early stages, the training performance of Dual viewpoint [14]
and VPG [11] is higher than ME-DQN, mainly due to the fact that ME-DQN incorporates
pushing actions into its training from the beginning, increasing the exploration of complex
environments, thus resulting in lower performance initially. In contrast, the Rule-based
[15] and VPG-only depth [30] employs a greedy strategy in the early stages, selecting the
maximum predicted Q-value. During this phase, the grasping prediction value is slightly
higher than the pushing prediction value, and the impact of environmental noise is
minimal, leading to a higher grasping success rate. However, as the environmental noise
increases significantly in the later stages, after 3000 iterations, the success rate of Rule-
based and VPG-only depth falls below 75%, while ME-DQN maintains a success rate of
around 93%.

Figure 11. The comparison of training for novel unknown objects with benchmarks in simulation.

We conducted 20 separate trials for unknown objects, with each trial capped at a
maximum of 30 action attempts. As shown in Table 4 and Figure 12, the test results

Figure 11. The comparison of training for novel unknown objects with benchmarks in simulation.

We conducted 20 separate trials for unknown objects, with each trial capped at a
maximum of 30 action attempts. As shown in Table 4 and Figure 12, the test results
indicated significant variations in success rates and action efficiency among the different
algorithms. We found that VPG-only depth [30] and VPG [11] tends to push objects towards
the edges or even corners, a behavior that diminishes grasping success rate. In contrast, a
dual viewpoint [14] ensures that the entire grasping process is more suited to the random
environment with unknown objects. However, the arrangement structure of unknown
objects differs from that of the objects found in the training set, which occasionally results
in exploring consumption or failed pushing attempts. The rule-based method [15] heavily
relies on find the best grasp rectangle based on image and is more possible to treat multiple
objects as single object. Therefore, the grasping success rate performs the worst among all
baseline methods. Specifically, our method demonstrated a consistently high success rate
and completion across a wide range of object shapes, while others performed poorly in
common scenarios.

Table 4. Test results for unknown objects.

Evaluation Metrics (Mean %)

Methods Completion GS (%)

Dual viewpoint [14] 92 83.2
Rule-based method [15] 90 72.8

VPG-only depth [30] 96 74.6
VPG [11] 90 86.9

Ours 98 92.4

Entropy 2024, 26, 416 16 of 20

indicated significant variations in success rates and action efficiency among the different
algorithms. We found that VPG-only depth [30] and VPG [11] tends to push objects
towards the edges or even corners, a behavior that diminishes grasping success rate. In
contrast, a dual viewpoint [14] ensures that the entire grasping process is more suited to
the random environment with unknown objects. However, the arrangement structure of
unknown objects differs from that of the objects found in the training set, which
occasionally results in exploring consumption or failed pushing attempts. The rule-based
method [15] heavily relies on find the best grasp rectangle based on image and is more
possible to treat multiple objects as single object. Therefore, the grasping success rate
performs the worst among all baseline methods. Specifically, our method demonstrated a
consistently high success rate and completion across a wide range of object shapes, while
others performed poorly in common scenarios.

Table 4. Test results for unknown objects.

 Evaluation Metrics (Mean %)
Methods Completion GS (%)

Dual viewpoint [14] 92 83.2
Rule-based method [15] 90 72.8

VPG-only depth [30] 96 74.6
VPG [11] 90 86.9

Ours 98 92.4

Figure 12. The evaluation of mean action efficiency.

5.4. Ablation Experiment
As shown in Table 5, a statistical analysis was conducted on the training iterations

required for the multi unknown object grasping success rates to reach 60%, 70%, 80%, and
90% in the ablation experiment. Without the advantage function and attention-based
object affordance perception network, the grasping success rate of the DQN
(DenseNet121) was below 80%. Lacking maximum entropy regularization, it relied more
on existing data and policy, and seldom attempted unknown actions during the
interaction with different grasping actions and the environment. The ME-DQN-noAF
model without the advantage function increased the variance during the learning process.
In the case of multi-object with limited resources, it required more time to distinguish the
effects of different actions. If the state space and action space were large, the number of
active exploration steps would increase significantly, making it difficult for the algorithm
to learn the optimal policy in a short time. Ignoring the attention mechanism, the ME-
DQN-noattention model was unable to focus on the important parts of the input
information, resulting in reduced efficiency and decision-making accuracy during the
learning process, as well as decreased generalization ability. Finally, the ME-DQN model
proposed in this paper reduced the interference of irrelevant information, enabling the

Figure 12. The evaluation of mean action efficiency.

Entropy 2024, 26, 416 16 of 20

5.4. Ablation Experiment

As shown in Table 5, a statistical analysis was conducted on the training iterations
required for the multi unknown object grasping success rates to reach 60%, 70%, 80%,
and 90% in the ablation experiment. Without the advantage function and attention-based
object affordance perception network, the grasping success rate of the DQN (DenseNet121)
was below 80%. Lacking maximum entropy regularization, it relied more on existing data
and policy, and seldom attempted unknown actions during the interaction with different
grasping actions and the environment. The ME-DQN-noAF model without the advantage
function increased the variance during the learning process. In the case of multi-object with
limited resources, it required more time to distinguish the effects of different actions. If
the state space and action space were large, the number of active exploration steps would
increase significantly, making it difficult for the algorithm to learn the optimal policy in a
short time. Ignoring the attention mechanism, the ME-DQN-noattention model was unable
to focus on the important parts of the input information, resulting in reduced efficiency and
decision-making accuracy during the learning process, as well as decreased generalization
ability. Finally, the ME-DQN model proposed in this paper reduced the interference of
irrelevant information, enabling the model to focus more on the most important factors for
the current task. As a result, a high grasping success rate of 91.6% could be achieved after
711 attempts.

Table 5. The ablation experiments on multiple unknown objects.

Module 60% 70% 80% 90%

DQN (DenseNet121) 185 525 - -
ME-DQN-noAF 269 337 402 -

ME-DQN-noattention 213 286 592 -
ME-DQN (ours) 287 368 435 711

5.5. Physical Experiment

The simulation experiments provide a controllable and safe environment for testing
and adjusting grasping algorithms, while real-world scenarios possess higher complexity
and unpredictability. Transferring simulation experiments to real-world settings can assist
robots to learn how to cope with these challenges, such as lighting conditions, physical
disturbances, and complex backgrounds, as shown in Figure 13.

In each grasping attempt, the network receives visual signals from the depth cam-
era. Figure 13a,d,g,j are original states. Figure 13b,e,h,k represent pushing actions. Fig-
ure 13c,f,i,l are successful grasping, with each scene executing no more than twice as many
actions as the object to be grasped. To validate the effectiveness of the proposed algo-
rithm in real world scenarios, three types of unknown object grasping experiments were
conducted with 10, 20, and 30 objects, respectively. As shown in Table 6, the algorithm
proposed in this paper achieved an average grasping success rate of approximately 91.6%
with 511 grasping attempts, significantly outperforming the other three methods. This
demonstrates its potential for generalization to grasping operations of unknown objects in
cluttered environments. Even when grasping operations were performed on a larger num-
ber of new objects (30 objects), a grasping success rate of 87.2% could still be achieved. The
attention mechanisms and prioritized experience replay reduced the number of random
predicted grasps, significantly improving grasping efficiency. It is difficult to obtain exter-
nal environmental parameters such as friction coefficient, centroid, and spring coefficient
in the simulation environment. Besides, the motor control in the real-world experiments
has certain precision errors. The main reason for the difference in success rate is that the
dynamic model of robot in the real environment is difficult to be as accurate and stable as
that in simulation. In addition, objects are randomly placed in the simulation environment,
while objects are closely arranged in real-world, leading to the increase of interference

Entropy 2024, 26, 416 17 of 20

factors and the difficulty of reasoning decision-making. Overall, the grasping success rate
in real world experiments is generally lower than that in simulation experiments.

Entropy 2024, 26, 416 17 of 20

model to focus more on the most important factors for the current task. As a result, a high
grasping success rate of 91.6% could be achieved after 711 attempts.

Table 5. The ablation experiments on multiple unknown objects.

Module 60% 70% 80% 90%
DQN (DenseNet121) 185 525 - -

ME-DQN-noAF 269 337 402 -
ME-DQN-noattention 213 286 592 -

ME-DQN (ours) 287 368 435 711

5.5. Physical Experiment
The simulation experiments provide a controllable and safe environment for testing

and adjusting grasping algorithms, while real-world scenarios possess higher complexity
and unpredictability. Transferring simulation experiments to real-world settings can
assist robots to learn how to cope with these challenges, such as lighting conditions,
physical disturbances, and complex backgrounds, as shown in Figure 13.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 13. The grasping experiments of multiple unknown objects in real world. Figure 13. The grasping experiments of multiple unknown objects in real world.

Table 6. The comparative experiments on real unstructured complex stacking scenes.

Methods Attempts Average Successful
Rate/Individual Object Time

Successful Rate of Empty Workplace

10 Objects 20 Objects 30 Objects

UCB [32] 523 82% (15.8 s) 89% 83% 75%
3DCNN [33] 471 87% (12.7 s) 92.5% 89.5% 79%

Coordinator [34] 509 85% (17.3 s) 94.5% 81% 79.5%
VPG [11] 497 82.9% (10.9 s) 94.8% 83.6% 70.3%

Ours 511 91.6% (8.9 s) 96% 88% 87.2%

Entropy 2024, 26, 416 18 of 20

6. Conclusions

This paper proposes a maximum entropy Deep Q-Network for dexterous grasping
of multiple unknown objects based on the attention mechanism. In unstructured scenes,
the robot grasping operations are modeled using Markov decision processes. The object
affordance perception based on spatial-channel attention allows the robot to dynamically
adjust the focus to adapt to environmental changes and learn more generalized feature
representations, especially with strong generalization ability when facing diverse and
unknow objects. A prioritized experience replay mechanism is designed to deal with the
high-dimensional perceptual inputs and complex decision tasks, reducing reliance on a
large amount of similar and low-value repetitive redundant data. Two neural networks
with the same structure are constructed. In the environments with sparse rewards, re-
ward reshaping during the exploration phase guides the robot to conduct more efficient
exploration, especially accelerating the learning process when approaching the object. The
effectiveness of the method is validated through quantitative experiments and comparative
analysis on single-object and multi-object grasping in unstructured environments. The
simulation environment is also transferred to real world for experiments to more accurately
evaluate the performance of robot grasping. As a future research direction, this study can
be extended to explore grasping in scenes with multiple unknown objects such as adhesion
and stacking.

Author Contributions: Conceptualization, T.Z. and H.M.; methodology, T.Z.; software, T.Z.; valida-
tion, T.Z.; formal analysis, H.M.; investigation, T.Z.; resources, H.M.; data curation, T.Z.; writing—
original draft preparation, T.Z.; writing—review and editing, H.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhang, H.; Lan, X.; Bai, S.; Zhou, X.; Tian, Z.; Zheng, N. ROI-based Robotic Grasp Detection for Object Overlapping Scenes.

In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 4768–4775. [CrossRef]

2. Zhou, X.; Lan, X.; Zhang, H.; Tian, Z.; Zhang, Y.; Zheng, N. Fully Convolutional Grasp Detection Network with Oriented Anchor
Box. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 7223–7230. [CrossRef]

3. Chen, T.; Shenoy, A.; Kolinko, A.; Shah, S.; Sun, Y. Multi-Object Grasping—Estimating the Number of Objects in a Robotic Grasp.
In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,
7 September–1 October 2021; pp. 4995–5001. [CrossRef]

4. Liu, S.; Wang, L.; Vincent Wang, X. Multimodal Data-Driven Robot Control for Human–Robot Collaborative Assembly. ASME. J.
Manuf. Sci. Eng. May 2022, 144, 051012. [CrossRef]

5. Valencia, D.; Jia, J.; Hayashi, A.; Lecchi, M.; Terezakis, R.; Gee, T.; Liarokapis, M.; MacDonald, B.A.; Williams, H. Comparison of
Model-Based and Model-Free Reinforcement Learning for Real-World Dexterous Robotic Manipulation Tasks. In Proceedings of
the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 871–878.
[CrossRef]

6. Yu, K.-T.; Bauza, M.; Fazeli, N.; Rodriguez, A. More than a million ways to be pushed. A high-fidelity experimental dataset
of planar pushing. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Daejeon, Republic of Korea, 9–14 October 2016; pp. 30–37. [CrossRef]

7. Bauza, M.; Rodriguez, A. A probabilistic data-driven model for planar pushing. In Proceedings of the 2017 IEEE International
Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3008–3015. [CrossRef]

8. Palleschi, A.; Angelini, F.; Gabellieri, C.; Park, D.W.; Pallottino, L.; Bicchi, A.; Garabini, M. Grasp It Like a Pro 2.0: A Data-Driven
Approach Exploiting Basic Shape Decomposition and Human Data for Grasping Unknown Objects. IEEE Trans. Robot. 2023, 39,
4016–4036. [CrossRef]

https://doi.org/10.1109/IROS40897.2019.8967869
https://doi.org/10.1109/IROS.2018.8594116
https://doi.org/10.1109/IROS51168.2021.9636777
https://doi.org/10.1115/1.4053806
https://doi.org/10.1109/ICRA48891.2023.10160983
https://doi.org/10.1109/IROS.2016.7758091
https://doi.org/10.1109/ICRA.2017.7989345
https://doi.org/10.1109/TRO.2023.3286115

Entropy 2024, 26, 416 19 of 20

9. Lee, M.A.; Zhu, Y.; Srinivasan, K.; Shah, P.; Savarese, S.; Fei-Fei, L.; Garg, A.; Bohg, J. Making Sense of Vision and Touch:
Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks. In Proceedings of the 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8943–8950. [CrossRef]

10. Takahashi, K.; Ko, W.; Ummadisingu, A.; Maeda, S.-I. Uncertainty-aware Self-supervised Target-mass Grasping of Granular
Foods. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5
June 2021; pp. 2620–2626. [CrossRef]

11. Zeng, A.; Song, S.; Welker, S.; Lee, J.; Rodriguez, A.; Funkhouser, T. Learning Synergies Between Pushing and Grasping with
Self-Supervised Deep Reinforcement Learning. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4238–4245. [CrossRef]

12. Berscheid, L.; Meißner, P.; Kröger, T. Robot Learning of Shifting Objects for Grasping in Cluttered Environments. In Proceedings
of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp.
612–618. [CrossRef]

13. Liu, H.; Yuan, Y.; Deng, Y.; Guo, X.; Wei, Y.; Lu, K.; Fang, B.; Guo, D. Active Affordance Exploration for Robot Grasping. In
Intelligent Robotics and Applications. ICIRA 2019; Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D., Eds.; Lecture Notes in Computer
Science; Springer: Cham, Switzerland, 2019; Volume 11744, pp. 426–438. [CrossRef]

14. Peng, G.; Liao, J.; Guan, S.; Yang, J.; Li, X. A pushing-grasping collaborative method based on deep Q-network algorithm in dual
viewpoints. Sci. Rep. 2022, 12, 3927. [CrossRef] [PubMed]

15. Chen, Y.; Ju, Z.; Yang, C. Combining Reinforcement Learning and Rule-based Method to Manipulate Objects in Clutter. In
Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24July 2020; pp. 1–6.
[CrossRef]

16. Mohammed, M.Q.; Kwek, L.C.; Chua, S.C.; Aljaloud, A.S.; Al-Dhaqm, A.; Al-Mekhlafi, Z.G.; Mohammed, B.A. Deep Reinforce-
ment Learning-Based Robotic Gras** in Clutter and Occlusion. Sustainability 2021, 13, 13686. [CrossRef]

17. Lu, N.; Lu, T.; Cai, Y.; Wang, S. Active Pushing for Better Grasping in Dense Clutter with Deep Reinforcement Learning. In
Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 1657–1663. [CrossRef]

18. Kiatos, M.; Sarantopoulos, I.; Koutras, L.; Malassiotis, S.; Doulgeri, Z. Learning Push-Grasping in Dense Clutter. IEEE Robot.
Autom. Lett. 2022, 7, 8783–8790. [CrossRef]

19. Lu, N.; Cai, Y.; Lu, T.; Cao, X.; Guo, W.; Wang, S. Picking out the Impurities: Attention-based Push-Grasping in Dense Clutter.
Robotica 2023, 41, 470–485. [CrossRef]

20. Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.; Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Vanhoucke, V.; et al.
Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation. arXiv 2018, arXiv:1806.10293.

21. Yuan, W.; Hang, K.; Song, H.; Kragic, D.; Wang, M.Y.; Stork, J.A. Reinforcement Learning in Topology-based Representation for
Human Body Movement with Whole Arm Manipulation. In Proceedings of the 2019 International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2153–2160. [CrossRef]

22. Yu, W.; Tan, J.; Liu, C.K.; Turk, G. Preparing for the unknown: Learning a universal policy with online system identification. arXiv
2017, arXiv:1702.02453. [CrossRef]

23. Andrychowicz, M.; Baker, B.; Chociej, M.; Józefowicz, R.; McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.; Powell, G.; Ray, A.;
et al. Learning dexterous in-hand manipulation. Int. J. Robot. Res. 2020, 39, 3–20. [CrossRef]

24. Hossain, D.; Capi, G.; Jindai, M.; Kaneko, S.-I. Pick-place of dynamic objects by robot manipulator based on deep learning and
easy user interface teaching systems. Ind. Robot. 2017, 44, 11–20. [CrossRef]

25. Hossain, D.; Capi, G. Multiobjective evolution for deep learning and its robotic applications. In Proceedings of the 8th International
Conference on Information, Intelligence, Systems & Applications (IISA), Larnaca, Cyprus, 27–30 August 2017; pp. 1–6. [CrossRef]

26. Zhang, T.; Mo, H. Reinforcement learning for robot research: A comprehensive review and open issues. Int. J. Adv. Robot. Syst.
2021, 18. [CrossRef]

27. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
28. Jin, Y.; Liu, Q.; Shen, L.; Zhu, L. Deep Deterministic Policy Gradient Algorithm Based on Convolutional Block Attention for

Autonomous Driving. Symmetry 2021, 13, 1061. [CrossRef]
29. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Cham, Switzerland, 2018; pp. 3–19.
30. Ni, P.; Zhang, W.; Zhang, H.; Cao, Q. Learning efficient push and grasp policy in a totebox from simulation. Adv. Robot. 2020, 34,

873–887. [CrossRef]
31. Rohmer, E.; Singh, S.P.N.; Freese, M. V-REP: A versatile and scalable robot simulation framework. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1321–1326. [CrossRef]
32. Tang, Z.; Shi, Y.; Xu, X. CSGP: Closed-Loop Safe Grasp Planning via Attention-Based Deep Reinforcement Learning from

Demonstrations. IEEE Robot. Autom. Lett. 2023, 8, 3158–3165. [CrossRef]

https://doi.org/10.1109/ICRA.2019.8793485
https://doi.org/10.1109/ICRA48506.2021.9561728
https://doi.org/10.1109/IROS.2018.8593986
https://doi.org/10.1109/IROS40897.2019.8968042
https://doi.org/10.1007/978-3-030-27541-9_35
https://doi.org/10.1038/s41598-022-07900-2
https://www.ncbi.nlm.nih.gov/pubmed/35273281
https://doi.org/10.1109/IJCNN48605.2020.9207153
https://doi.org/10.3390/su132413686
https://doi.org/10.1109/CAC51589.2020.9327270
https://doi.org/10.1109/LRA.2022.3188437
https://doi.org/10.1017/S0263574722000297
https://doi.org/10.1109/ICRA.2019.8794160
https://doi.org/10.48550/arXiv.1702.02453
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1108/IR-05-2016-0140
https://doi.org/10.1109/IISA.2017.8316404
https://doi.org/10.1177/17298814211007305
https://doi.org/10.3390/sym13061061
https://doi.org/10.1080/01691864.2020.1757504
https://doi.org/10.1109/IROS.2013.6696520
https://doi.org/10.1109/LRA.2023.3253023

Entropy 2024, 26, 416 20 of 20

33. Mosbach, M.; Behnke, S. Efficient Representations of Object Geometry for Reinforcement Learning of Interactive Grasping Policies.
In Proceedings of the 2022 Sixth IEEE International Conference on Robotic Computing (IRC), Rome, Italy, 5–7 December 2022;
pp. 156–163. [CrossRef]

34. Sarantopoulos, I.; Kiatos, M.; Doulgeri, Z.; Malassiotis, S. Split Deep Q-Learning for Robust Object Singulation. In Proceedings of
the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 6225–6231.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/IRC55401.2022.00034
https://doi.org/10.1109/ICRA40945.2020.9196647

	Introduction
	Related Work
	Preliminaries and Problem Formulation
	Model Description
	Prioritized Experience Replay
	Reward Reshaping

	Push-Grasp Policy Design
	Affordance Perception
	Maximum Entropy DQN

	Experiment Analysis
	Experimental Setup
	Training
	Object Grasping Simulation Experiments
	Ablation Experiment
	Physical Experiment

	Conclusions
	References

