
Citation: Li, J.; Liu, N.; Kang, W.

Minimizing Computation and

Communication Costs of Two-Sided

Secure Distributed Matrix

Multiplication under Arbitrary

Collusion Pattern. Entropy 2024, 26,

407. https://doi.org/10.3390/

e26050407

Academic Editor: Boris Ryabko

Received: 14 March 2024

Revised: 2 May 2024

Accepted: 3 May 2024

Published: 8 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Minimizing Computation and Communication Costs of
Two-Sided Secure Distributed Matrix Multiplication under
Arbitrary Collusion Pattern
Jin Li 1 , Nan Liu 1 and Wei Kang 2,*

1 National Mobile Communications Research Laboratory, Southeast University, Nanjing 211189, China;
lijin@seu.edu.cn (J.L.); nanliu@seu.edu.cn (N.L.)

2 School of Information Science and Engineering, Southeast University, Nanjing 211189, China
* Correspondence: wkang@seu.edu.cn

Abstract: This paper studies the problem of minimizing the total cost, including computation cost
and communication cost, in the system of two-sided secure distributed matrix multiplication (SDMM)
under an arbitrary collusion pattern. In order to perform SDMM, the two input matrices are split into
some blocks, blocks of random matrices are appended to protect the security of the two input matrices,
and encoded copies of the blocks are distributed to all computing nodes for matrix multiplication
calculation. Our aim is to minimize the total cost, overall matrix splitting factors, number of appended
random matrices, and distribution vector, while satisfying the security constraint of the two input
matrices, the decodability constraint of the desired result of the multiplication, the storage capacity
of the computing nodes, and the delay constraint. First, a strategy of appending zeros to the input
matrices is proposed to overcome the divisibility problem of matrix splitting. Next, the optimization
problem is divided into two subproblems with the aid of alternating optimization (AO), where a
feasible solution can be obtained. In addition, some necessary conditions for the problem to be feasible
are provided. Simulation results demonstrate the superiority of our proposed scheme compared to
the scheme without appending zeros and the scheme with no alternating optimization.

Keywords: secure distributed matrix multiplication; arbitrary collusion pattern; integer linear
programming; integer geometric programming

1. Introduction

With the development of the Internet of Things (IoT), the ubiquitous wireless devices
can generate massive data via environment monitoring or target tracking [1]. However,
due to the limited power or hardware architecture, these wireless devices cannot satisfy
the data processing and computation requirements by themselves. This inspires wireless
devices to seek help from online computing nodes who can assist in computation and
data processing. Furthermore, distributed computing nodes can be employed to further
accelerate the computation and data processing tasks, which means wireless devices can
assign computation tasks to many different computing nodes, e.g., Apache Spark [2] and
MapReduce [3]. On the other hand, if the online computing nodes are untrustworthy, we
should also guarantee data security. Hence, how to perform computation of data with the
aid of distributed computing nodes in a secure fashion is an important problem.

In this paper, we focus on the secure distributed matrix multiplication (SDMM)
problem [4–8]. In [7,8], the trace-mapping framework has been employed to achieve
communication-efficient schemes in the SDMM. The authors of [9] proposed a model of
SDMM from an information-theoretic perspective. The user wishes to compute the prod-
uct of two input matrices A and B with the aid of distributed computing nodes while
guaranteeing the security of the information about the two input matrices. Two cases
are considered: one-sided security and two-sided security. In the first case, the user only

Entropy 2024, 26, 407. https://doi.org/10.3390/e26050407 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26050407
https://doi.org/10.3390/e26050407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-6628-3611
https://orcid.org/0000-0003-4155-0685
https://orcid.org/0000-0003-4408-6419
https://doi.org/10.3390/e26050407
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26050407?type=check_update&version=1

Entropy 2024, 26, 407 2 of 18

wants to protect the information security of matrix A, and B is a public matrix known to all
computing nodes [10]. In the second case, we need to consider the information security of
both matrices A and B [9,11]. The information theft by the distributed computing nodes
can be modeled by the collusion pattern, which has also been studied in problems of
secret sharing [12] and private information retrieval [13,14]. Some of the existing literature
has studied the SDMM problem under homogeneous collusion patterns, where up to l
computing nodes may collude to obtain the information of the two input matrices [9,15–18].
To balance the tradeoff between the uplink and downlink cost, the works proposed two
schemes based on the secure cross subspace alignment [15]. In [9], the authors characterized
the fundamental limits of minimum communication overhead for the SDMM problem
under homogeneous collusion pattern. The work in [16] proposed a scheme based on the
polynomial codes on sub-tasks assigned to computing nodes, which can mitigate the strag-
gling effects efficiently. In [18], the authors have adopted some random matrices to encode
two input matrices for the purpose of meeting the requirement of security. Then, many
encoded copies are sent to different computing nodes for computation. Finally, the user
receives these computation results from computing nodes and recovers the product of the
two input matrices. It has considered two cases: (1) encoding the input matrices without
extra random matrices, i.e., generalized polydot code, and (2) encoding the input matrices
with some random matrices to satisfy the security constraint, i.e., secure the generalized
polydot code. They also show the superiority of the proposed scheme on the recovery
threshold, i.e., the number of computation results that is needed for users to decode the
desired result without error, and the communication load between the user and computing
nodes, i.e., the amount of downloaded information from computing nodes. Recently, rather
than focusing on the homogeneous collusion pattern, ref. [19] studied the SDMM problem
under the arbitrary collusion pattern. Considering the two proposed performance metrics,
i.e., the normalized download cost and normalized upload cost, they provide the optimal
scheme for the one-sided SDMM problem and an achievable scheme for the two-sided
SDMM problem.

Both the private information retrieval and SDMM problem considered in [14,19] deal
with the non-homogeneous collusion pattern scenario. The common approach of these
two problems is assigning different number of copies to different servers. Intuitively
speaking, the servers that collude more will be assigned a lower number of copies. More
specifically, in [14], the authors considered the ratio between the message size and the
amount of downloaded information from the servers. Then, the work of [19] studied the
SDMM problem under the arbitrary collusion pattern for a fixed matrix splitting factor,
and different numbers of copies were distributed to different computing nodes based on
the collusion pattern to minimize the performance of normalized download and upload
costs. However, the heterogeneity of the computing nodes in terms of storage capacity,
communication capability, and computing capability was not taken into consideration.
When full heterogeneity is taken into consideration, the numbers of copies assigned to
different servers will not only depend on its colluding behavior but also on its storage
capacity, communication capability, and computing capability. Furthermore, the fixed
matrix splitting factor may affect the performance of SDMM. Hence, in this work, we
study the problem of two-sided SDMM under an arbitrary collusion pattern with the
flexible matrix splitting factor. Furthermore, in order to measure the communication and
computation performance of the system, a new performance metric called the total cost,
which is composed of the computation cost and communication cost, has been proposed
in our paper. Additionally, the storage capability of the computing nodes and the delay
requirement of the user are also considered. Then, an optimization problem is formulated
by minimizing the total cost, subject to the security constraint of the two input matrices,
the decodability constraint of the desired result of the multiplication, the storage capacity
of the computing nodes, and the delay constraint. In order to overcome the divisibility
problem of matrix splitting, we also propose a strategy of appending zeros to the input
matrices and discuss the feasible set of some matrix splitting factors for the optimality of

Entropy 2024, 26, 407 3 of 18

the problem. Finally, an alternating optimization (AO) algorithm based on some solvers is
adopted to obtain a feasible solution, and some necessary conditions for the feasibility of
problem have been provided.

The contributions of our paper are summarized as follows:

• We propose a new performance metric, the total cost, which includes communication
cost and computation cost, to measure the performance of the SDMM problem under
arbitrary collusion pattern. Our aim is to minimize the total cost, overall matrix
splitting factors, number of appended random matrices, and distribution vector, while
satisfying the security constraint of the two input matrices, the decodability constraint
of the desired result of the multiplication, the storage capacity of the computing nodes,
and the delay constraint.

• To overcome the divisibility problem of matrix splitting, we propose a strategy of
padding zeros to the input matrices, which can split the input matrices into an arbitrary
number of blocks compared to the scheme without appending zeros. Moreover,
the value ranges of some matrix splitting factors are discussed for the optimality of
the problem.

• The formulated optimization problem is solved by an AO algorithm based on some
solvers. More specifically, for the optimization subproblem corresponding to number
of appended random matrices and distribution vector, the relationship between num-
ber of appended random matrices and distribution vector can be found so that the
subproblem is transformed into an integer linear programming over the distribution
vector, which can be solved by the MATLAB function “intlinprog”. Furthermore, we
also provide some necessary conditions to verify the feasibility of this subproblem.
Then, for the optimization subproblem corresponding to all matrix splitting factors,
by relaxing the ceiling function and integer constraints, the subproblem can be trans-
formed into an integer geometric programming problem solved by using “YALMIP”.
Simulation results show that our proposed scheme with padding zeros is superior to
the scheme without appending zeros and the scheme with no alternating optimization.

The rest of this paper is organized as follows: Section 2 introduces the system model of
the two-sided SDMM under arbitrary collusion pattern. Section 3 proposes a zero-padding
strategy, discusses the feasible set of some matrix splitting factors, and formulates an
optimization problem. Section 4 provides the algorithm to solve the problem. Simulation
results and conclusions are shown in Sections 5 and 6, respectively.

Notation 1. In this paper, the following notations are used. [1 : N] denotes the set {1, 2, · · · , N}.
hn represents the n-th column vector of the matrix h. 1N denotes the N × 1 column vector. Positive
integer is represented by Z+, natural number is denoted by N, and the ceiling function is denoted
by ⌈·⌉.

2. System Model

As shown in Figure 1, we consider a user who wants to calculate the multiplication
of two input matrices A ∈ FT×S and B ∈ FS×D. We suppose that T, S and D are all
integers and the finite field F is sufficiently large. Due to its own limited computational
ability, the user wishes to split the two matrices A and B into many blocks and upload
them to N computing nodes for computation. At the same time, both matrices A and B
contain sensitive information, and the user does not want to leak any information to the N
computing nodes.

Entropy 2024, 26, 407 4 of 18

Computing

node 1

User

Computing

node 2

Computing

node N

Figure 1. Two-sided secure distributed matrix multiplication.

We study the case where the computing nodes may collude with others to obtain
information about the two matrices A and B. We represent the colluding behaviors by a
collusion pattern P , which contains M colluding sets, i.e., P = {T1, T2, · · · TM}. Here, Tm ⊆
[1 : N] is the m-th colluding set, which means that computing nodes in Tm may collude to
obtain the information of the two matrices. We make the following two assumptions about
the collusion pattern P :

(1) For ease of presentation, we only include the maximal colluding set in P . For instance,
a colluding set {3, 4, 5, 6} means that computing nodes 3, 4, 5, and 6 collude. This
implies that computing nodes belonging to any subset of {3, 4, 5, 6} also collude.
However, for ease of presentation, we do not include the subsets of {3, 4, 5, 6} in P .

(2) Every computing node must appear in at least one colluding set. This is because we
assume that all computing nodes are curious, and no computing node can be trusted
with the sensitive information of A and B.

A collusion pattern P can be represented by its incidence matrix BP , of size N × M,
i.e., if computing node i in the j-th colluding set of P , the value of the (i, j)-th element in BP
is 1. For example, when P = {{1, 2, 3}, {1, 4}, {2, 4}, {3, 4}, {5}}, its incidence matrix is

BP =

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 1 1 1 0
0 0 0 0 1

. (1)

Due to the need to keep the two matrices secure, the user must encode A, B be-
fore uploading them to the computing nodes for computation. Assume that there are
N1 encoded copies with N1 ≥ N, then these encoding functions are denoted as: f =
(f1, f2, · · · , fN1), g = (g1, g2, · · · , gN1). We use Ãi and B̃i to represent the i-th encoded copy
of matrices A and B, respectively, i ∈ [1 : N1], i.e., Ãi = fi(A), B̃i = gi(B). The user
distributes a subset of the encoded matrices to computing node n, where the indices of this
subset are written as Ln, Ln ⊆ [1 : N1]. This is termed the upload phase.

The computing node n computes the product, i.e., Zi = ÃiB̃i, i ∈ Ln. Then, computing
node n would send the computed results Zi, i ∈ Ln back to the user. This is termed the
download phase.

Entropy 2024, 26, 407 5 of 18

In order to ensure the security of matrices A and B, the following security constraint
must be satisfied,

I
(

A, B;
(

ÃLn , B̃Ln

)
n∈Tm

)
= 0, ∀m ∈ [1 : M]. (2)

which indicates that computing nodes in each colluding set, when putting their received
copies together, can not obtain any information about the two matrices.

In addition, the user must be able to decode the desired product C = AB from the
answers received from all the computing nodes, i.e., the decodability constraint

H(AB|Z1, Z2, · · · , ZN1) = 0 (3)

must be satisfied.

2.1. Matrix Encoding Scheme

We use the secure generalized polydot code (SGPD) in [18] to encode the two input
matrices. First, we split A into t × s blocks, while B can be split into s × d blocks, i.e.,

A =

 A1,1 · · · A1,s
...

. . .
...

At,1 · · · At,s

, B =

 B1,1 · · · B1,d
...

. . .
...

Bs,1 · · · Bs,d

, (4)

where T is divisible by t, S is divisible by s, and D is divisible by d. Then, Ai,j is of size
t0 × s0, and Bi,j is of size s0 × d0, where we have defined

t0 =
T
t

, s0 =
S
s

, d0 =
D
d

. (5)

In view of the security constraint (2), we append some random matrices Ki,j ∈
F(T/t)×(S/s) and K

′
i,j ∈ F(S/s)×(D/d) as

A∗ =

Al,1 · · · A1,s
...

. . .
...

At,1 · · · At,s
K1,1 · · · K1,s

...
. . .

...
Kl∆ ,1 · · · Kl∆ ,s

, (6)

B∗ =

B1,1 · · · B1,d K

′
1,1 · · · K

′
1,l∆

...
. . .

...
...

. . .
...

Bs,1 · · · Bs,d K
′
s,1 · · · K

′
s,l∆

, (7)

where l∆ rows of random matrices are appended to matrix A, and l∆ columns of random ma-
trices are appended to matrix B, where l∆ is a positive integer. Each element of the random
matrices Ki,j and K

′
i,j are generated in an i.i.d. fashion according to the uniform distribution

on F. Note that (6) and (7) are just one way of appending random matrices. The other case
is given by Method 2 in [19]. For simplicity, we only study the case of (6) and (7), and the
other case of appending random matrices can be treated in a similar fashion.

Entropy 2024, 26, 407 6 of 18

In this case, the encoded matrices are generated according to

Ãi =
t

∑
j=1

s

∑
k=1

A∗
j,kxs(j−1)+k−1

i

+
t∗

∑
j=t+1

s

∑
k=1

A∗
j,kxs(j−1)+k−1

i i = 1, · · · , N1, (8)

B̃i =
s

∑
k=1

d

∑
p=1

B∗
k,pxs−k+t∗s(p−1)

i

+
s

∑
k=1

d∗

∑
p=d+1

B∗
k,pxt∗sd+s(p−d)−k

i i = 1, · · · , N1, (9)

where xi, i = 1, 2, · · · , N1 are N1 distinct non-zero elements in F, and we have defined
t∗ = t + l∆, d∗ = d + l∆.

The N1 generated encoded copies of (8) and (9), i.e., (Ãi, B̃i), i ∈ [1 : N1], will be
distributed to the computing nodes, where computing node n will receive ÃLn and B̃Ln ,
where Ln ⊆ [1 : N1] is the index set of the encoded matrices distributed to computing node
n. We assume that Ln, n ∈ [1 : N], form a partition of the set [1 : N1], which means that each
encoded copy will be distributed to one and only one computing node. Upon receiving
ÃLn and B̃Ln , computing node n will calculate Zi = ÃiB̃i, i ∈ Ln, and return ZLn to
the user. We distribute the encoded matrices to the computing nodes in the following
way. Let J =

[
J1 J2 · · · JN

]T be the distribution vector where Jn ∈ [0 : N1] is the
number of distributed encoded matrices given to the n-th computing node. Then, we have
|Ln| = Jn, 1TJ = N1. It has been proved in [19] that when

BT
P J ≤ (l∆s)1M, (10)

the security constraint (2) is satisfied. The physical meaning of (10) is that the number of
encoded matrices for computing nodes in every colluding set must be smaller than the
minimal number of random matrices appended in A∗ or B∗, which is l∆s. Furthermore,
the decodability constraint (3) is guaranteed by the following inequality [19]:

1TJ = N1 ≥ l∆(sd + 2s) + ts(d + 1)− 1. (11)

It means that the encoded copies N1 must be no smaller than l∆(sd + 2s) + ts(d + 1)− 1
for decoding the desired results C = AB without error.

2.2. Storage, Communication and Computing Requirements of Each Computing Node

The amount of storage each encoded copy (Ãi, B̃i) occupies is t0s0 + s0d0. Suppose
computing node n’s storage capacity is Mn, then, if t0s0 + s0d0 + t0d0 > Mn, computing
node n can not even store one encoded copy of (Ãi, B̃i) and its corresponding answer,
i.e., Zi = ÃiB̃i. If

Mn ≥ t0s0 + s0d0 + t0d0, (12)

then the computing node could store one encoded copy (Ãi, B̃i), i ∈ Ln, compute the
multiplication Zi = ÃiB̃i, return the corresponding result and then retrieve another en-
coded copies from the user for further computation. Hence, (12) must be satisfied for all
n ∈ [1 : N]. Written in vector form, we have

(t0s0 + s0d0 + t0d0)1N ≤ M. (13)

Entropy 2024, 26, 407 7 of 18

Suppose computing node n’s computation speed is Vn multiplications per second,
then the time it takes for the user to complete the computation assigned to it, is

QC
n =

Jn

Vn
t0s0d0.

Further suppose that the uplink and downlink capacity between the user and computing
node n are CU

n and CD
n symbols per second, respectively. Then, the amount of upload delay

incurred at computing node n is

QU
n =

Jn

CU
n
(t0s0 + s0d0),

and the amount of download delay incurred at computing node n is

QD
n =

Jn

CD
n

t0d0.

Then the total amount of delay incurred at computing node n when assigned with Jn
number of encoded copies is

Qn = QU
n + QD

n + QC
n , (14)

where we have assumed that the computing nodes can only do one of the three actions at
any time instant: compute or receive upload or send download. This is also in line with the
assumption that the computing nodes may not have enough memory to store all Jn copies
all at once. Rather, it receives one copy, computes, and then sends it back to the user and
then retrieves the next copy and repeats.

Thus, the total delay incurred for this computation is

Q = max
n∈[1:N]

Qn = max
n∈[1:N]

{
Jn

Vn
t0s0d0 +

Jn

CU
n
(t0s0 + s0d0) +

Jn

CD
n

t0d0

}
, (15)

and we require that the total delay is no larger than a given threshold Qth, i.e.,

max
n∈[1:N]

{
Jn

Vn
t0s0d0 +

Jn

CU
n
(t0s0 + s0d0) +

Jn

CD
n

t0d0

}
≤ Qth. (16)

Besides the delay constraint, cost should also be considered for efficient SDMM. More
specifically, the cost we consider is comprised of the computation cost of computing nodes
and the data transmission cost, where the data transmission cost can be can be written twice
divided into the upload and download transmission cost. More specifically, we assume
that the upload and download transmission cost for computing node n is cU

n , and cD
n per

symbol, and the computation cost of each multiplication at computing node n is cC
n , then

the total required cost for the user doing the secure matrix multiplication of matrices A and
B is

U = UU + UD + UC, (17)

where UU is the upload cost, which is given by

UU = (t0s0 + s0d0)
N

∑
n=1

JncU
n ,

Entropy 2024, 26, 407 8 of 18

UD is the download cost, which is given by

UD = t0d0

N

∑
n=1

JncD
n ,

and UC is the computation cost, which is given by

UC = t0s0d0

N

∑
n=1

JncC
n .

2.3. Problem Formulation

In this work, we would like to jointly optimize the distribution vector J, and the
matrix split parameter (t, s, d, l∆) such that the cost of the user, defined in (17), is minimized.
At the same time, the security constraint (10), the decodability constraint (11), the storage
constraint (13), and the delay constraint (16) must be satisfied.

3. The Feasible Set of (T , S, D)

Since we are splitting the two matrices A and B as shown in (4), it is natural to
assume that t, s, and d have to take values such that T, S, and D be divisible by t, s, and d,
respectively. For example, if T = 5, t can only take values in the set {1, 5}, because T = 5 is
not divisible by 2, 3, 4. However, this significantly limit the values that (t, s, d) can take and
may provide a high cost for the user.

In this section, we propose a better and more general way as follows: we allow any
t, s, d values, and to make the matrix splittable, we append zeros to the original matrix,
i.e., append s̄ columns and t̄ rows to the matrix A and append s̄ rows and d̄ columns to
the matrix B, such that (T + t̄)/t, (S + s̄)/s, and (D + d̄)/d are integers. This increases the
dimension of the two matrices but enables us to split them into blocks in a more flexible
way. For example, A ∈ F5×4, i.e., T = 5, S = 4, and we would like to take t = 2, s = 2.
However, T = 5 is not divisible by t = 2. Then, we can append one row of zeros to A so
that the appended matrix has dimension 6 × 4 and thus can be divisible by t = 2, s = 2.

More generally, we propose that for any (t, s, d) with t ∈ [1 : T], s ∈ [1 : S], d ∈ [1 : D],
we may append (T mod t) many rows to the bottom of matrix A and (S mod s) many
columns to the right side of matrix A. Similarly, we append (S mod s) many rows to the
bottom of matrix B and (D mod d) many columns to the right side of matrix B. As a result,
instead of (5), we have

t0 =

⌈
T
t

⌉
, s0 =

⌈
S
s

⌉
, d0 =

⌈
D
d

⌉
. (18)

As can be seen, not padding zeros and only using (t, s, d) that is a divisor of (T, S, D) is a
special case.

Since we are considering padding zeros, it is also possible to have t ∈ {T + 1, T + 2, · · · }
or s ∈ {S + 1, S + 2, · · · } or d ∈ {D + 1, D + 2, · · · }. We show in the next lemma that
this will only increase the cost at the user, defined in (17), for t ∈ {T + 1, T + 2, · · · } and
d ∈ {D + 1, D + 2, · · · }.

Lemma 1. To minimize the cost at the user, i.e., (17), it is sufficient to consider t ∈ [1 : T] and
d ∈ [1 : D].

Proof. For t ∈ {T + 1, T + 2, · · · } and d ∈ {D + 1, D + 2, · · · }, the only decodability con-
straint (11) becomes relaxed, and other constraints are unchanged. In this case, we can
prove that the optimal cost will increase compared to t ∈ [1 : T] and d ∈ [1 : D]. Please
refer to Appendix A for detailed proof.

Entropy 2024, 26, 407 9 of 18

Remark 1. The case of s is different from the cases of t and d. When (l∆, t, d) is fixed, from security
constraint (10) and decodability constraint (11), we see that on one hand, increasing s increases the
number of blocks, but on the other hand, it also relaxes the security constraint. When computing
nodes are heterogeneous, i.e., computing nodes have different computation cost, upload transmission
cost and download transmission cost, the increase in s does not necessarily increase the total cost,
because due to the more relaxed security constraint, we can distribute more blocks to computing
nodes with lower costs. As a result, when we apply the strategy of appending zeros, the optimal s
may not take values in [1 : S].

After the above discussions, the problem described in Section 2.3 can be formally
formulated as

min
J,t,s,d,l∆

JTcU(t0s0 + s0d0) + JTcDt0d0 + JTcCt0s0d0 (19a)

s.t. (10), (11), (19b)

(t0s0 + s0d0 + t0d0)1N ≤ M, (19c)

max
n∈[1:N]

{
Jn

Vn
t0s0d0 +

Jn

CU
n
(t0s0 + s0d0) +

Jn

CD
n

t0d0

}
≤ Qth, (19d)

t0 =

⌈
T
t

⌉
, s0 =

⌈
S
s

⌉
, d0 =

⌈
D
d

⌉
(19e)

1 ≤ t ≤ T, 1 ≤ s, 1 ≤ d ≤ D, l∆ ≥ 1, (19f)

t, s, d, l∆ ∈ Z+, J ∈ NN×1. (19g)

where (19b) provides the security constraint and decodability constraint, (19c) is the storage
constraint with N computing nodes’ storage capacity vector defined as M =

[
M1 · · · MN

]T,
and (19d) is the delay constraint. In the cost function (19a), we have defined the upload
transmission cost vector, the download transmission cost vector and the computation cost
vector of N computing nodes as cU =

[
cU

1 , cU
2 , · · · , cU

N
]T ∈ RN×1, cD =

[
cD

1 , cD
2 , · · · , cD

N
]T ∈

RN×1 and cC =
[
cC

1 , cC
2 , · · · , cC

N
]T ∈ RN×1, respectively. Note that the scheme of appending

zeros makes the dimension of every block in A and B to be t0 × s0 =
⌈

T
t

⌉
×

⌈
S
s

⌉
and

s0 × d0 =
⌈

S
s

⌉
×

⌈
D
d

⌉
, respectively, as indicated by (19e). Furthermore, note that in (19f),

while the values of t and d are limited to [1 : T] and [1 : D], respectively, the value of s does
not have an upper bound due to Remark 1.

4. Algorithm Design

Due to coupling variables, integer constraints and nonlinear constraints and objective
function of the problem in (19) , it is hard to find a global optimal or suboptimal solution.
In the following, we propose an algorithm to obtain a feasible solution.

Coupling variables in Problem (19) inspires us to utilize the alternating optimization
(AO) technique. Then, a feasible solution to Problem (19) can be obtained by solving the
next two subproblems: one is fixing (t, s, d) to optimize (J, l∆), and the other is optimizing
(t, s, d) given (J, l∆).

4.1. Optimization Subproblem of (J, l∆) for a Fixed (T, S, D)

In this subsection, for a fixed (t, s, d), the optimization subproblem of Problem (19)
corresponding to (J, l∆) is given as

Entropy 2024, 26, 407 10 of 18

min
J,l∆

(19a) (20a)

s.t. (10), (11), (20b)

Jn ≤ Qth
1

Vn
t0s0d0 +

1
CU

n
(t0s0 + s0d0) +

1
CD

n
t0d0

, ∀n ∈ [1 : N] (20c)

l∆ ≥ 1, l∆ ∈ Z+, J ∈ NN×1. (20d)

Note that when (t, s, d) is fixed, the corresponding (t0, s0, d0) is also fixed according to (19e).
Further note that when (t, s, d) is fixed, the objective function (20a) is only a function of J,
and not l∆. Due to the fact that Jn, cU

n , cD
n , cC

n ≥ 0, n = 1, ..., N, the inequality of (11) must be
satisfied with the equality when J∗ is optimal. Hence, (11) can be rewritten as follows

1TJ = l∆(sd + 2s) + ts(d + 1)− 1. (21)

With equality (21), l∆ can be expressed as a function of J, i.e., l∆ = 1TJ−ts(d+1)+1
sd+2s . Then,

substituting l∆ in Problem (20) as a the function of J, Problem (20) can be reformulated as

min
J

(19a) (22a)

s.t. (20c), (22b)

BT
P J ≤ (

1TJ − ts(d + 1) + 1
d + 2

)1M, (22c)

1TJ − ts(d + 1) + 1
sd + 2s

≥ 1,
1TJ − ts(d + 1) + 1

sd + 2s
∈ Z+, J ∈ NN×1. (22d)

Problem (22) is an integer linear programming problem with only one optimizing
variable J. This problem can be solved using MATLAB function “intlinprog”. MATLAB’s
built-in “intlinprog” function is based on the branch and bound (BnB) algorithm and the
interior point method [20,21] and is typically used to solve integer linear programming
problems, such as the one in (22).

For certain system parameters and (t, s, d) values, Problem (22) is not feasible. To iden-
tify a necessary condition for the feasibility of Problem (22), we have the following lemma.

Before presenting the lemma, we define a variable p as the smallest number of collud-
ing sets that contain all computing nodes. For example, for the collusion pattern represented
by incidence matrix (1), p is equal to 3, because three colluding sets, i.e., {1, 2, 3}, {1, 4}, {5},
include all computing nodes, and any 2 colluding sets in the collusion pattern can not
include all computing nodes.

Lemma 2. For fixed parameters (t, s, d), if Problem (20) is feasible, the following inequalities must
be satisfied: ⌈

tsd + ts − 1
s(p − d − 2)

⌉
≤ Y − tsd − ts + 1

sd + 2s
and p − d − 2 > 0

where Y is defined as

Y ≜
N

∑
n=1

Qth
1

Vn
t0s0d0 +

1
CU

n
(t0s0 + s0d0) +

1
CD

n
t0d0

, (23)

where (t0, s0, d0) satisfies (19e). Variable p is defined as the smallest number of colluding sets that
contain all computing nodes.

Entropy 2024, 26, 407 11 of 18

Proof. Let us first derive a lower bound of l∆. According to the second assumption made
about the collusion pattern in Section 2, every computing node must appear in at least one
colluding set. So, we have

N

∑
n=1

Jn ≤ ∑
m∈P ′

∑
n∈Tm

Jn (24)

for any P ′ which is a subset of colluding sets in P that include all computing nodes,
i.e., {i} ∈ Tj for some Tj ∈ P ′ for any i = 1, 2, · · · , N. For example, in the collu-
sion pattern represented by the incidence matrix in (1), P ′ may be {{1, 2, 3}, {1, 4}, {5}},
{{1, 2, 3}, {2, 4}, {5}}, {{1, 2, 3}, {3, 4}, {5}}, or {{1, 4}, {2, 4}, {3, 4}, {5}}.

The constraint (10) can be rewritten as

∑
n∈Tm

Jn ≤ l∆s, (25)

where Tm is the m-th colluding set. Inequality (25) shows that the total number of encoded
matrices received by computing nodes in every colluding set can not be more than that of
random matrices. Hence, from (25), we have

∑
m∈P ′

∑
n∈Tm

Jn ≤ ∑
m∈P ′

l∆s ≤ pl∆s (26)

Thus, from (21), (24), and (26), we have

l∆(sd + 2s) + ts(d + 1)− 1 =
N

∑
n=1

Jn ≤ pl∆s.

When p − d − 2 > 0 is satisfied, l∆ must satisfy

l∆ ≥
⌈

tsd + ts − 1
s(p − d − 2)

⌉
. (27)

On the other hand, when p − d − 2 > 0 is not satisfied, there exists no feasible l∆.
Next, we derive an upper bound on l∆. We have

l∆(sd + 2s) + ts(d + 1)− 1 =
N

∑
n=1

Jn (28)

≤
N

∑
n=1

Qth
1

Vn
t0s0d0 +

1
CU

n
(t0s0 + s0d0) +

1
CD

n
t0d0

, (29)

where (28) follows from (21), and (29) follows from (20c). Hence, an upper bound on l∆ is
given by

l∆ ≤ Y − tsd − ts + 1
sd + 2s

, (30)

where Y is as defined in (23).
If Problem (20) is feasible, we must have that p − d − 2 > 0, and the upper bound of

l∆ in (30) must be greater than or equal to the lower bound of l∆ in (27).
Hence, the proof is complete.

Based on Lemma 2, Algorithm 1 is proposed to solve Problem (20), where we check the
necessary conditions of the feasibility of Problem (20) before solving it using the MATLAB
“intlinprog” function.

Entropy 2024, 26, 407 12 of 18

Algorithm 1 Iterative Algorithm for Problem (20)

Input: (t, s, d), and (t0, s0, d0) calculated according to (19e)
Output: J, l∆.

1: if Y−tsd−ts+1
sd+2s ≥

⌈
tsd+ts−1
s(p−d−2)

⌉
and p − d − 2 > 0 then

2: Solve Problem (22) with MATLAB function “intlinprog”.
3: else
4: Problem (20) is infeasible.
5: end if

4.2. Optimization Subproblem of (T, S, D) for a Fixed (J, l∆)

In this subsection, given (J, l∆), the optimization subproblem of Problem (19) corre-
sponding to (t, s, d) is formulated as

min
t,s,d

(19a) (31a)

s.t. (10), (11), (19c), (19d), (19e) (31b)

1 ≤ t ≤ T, 1 ≤ s, 1 ≤ d ≤ D, (31c)

d ≤ p − 3, (31d)

t, s, d ∈ Z+, (31e)

where constraint (31d) is derived from Lemma 2.
Ceiling functions, i.e.,

⌈
T
t

⌉
,
⌈

S
s

⌉
,
⌈

D
d

⌉
in (19e), and integer constraint (31e) make Prob-

lem (31) hard to address. We can solve this subproblem by relaxing the ceiling functions,
i.e., Problem (31) can be recast as

min
t,s,d

JTcU
(

TSt−1s−1 + SDs−1d−1
)
+ JTcDTDt−1d−1 + JTcCTSDt−1s−1d−1 (32a)

s.t.
BT
P J
l∆

s−1 ≤ 1M, (32b)

l∆(sd + 2s) + ts(d + 1)− 1
1TJ

≤ 1, (32c)(
TSt−1s−1 + SDs−1d−1 + TDt−1d−1

)
1N ≤ M, (32d)

Jn

Vn
TSDt−1s−1d−1 +

Jn

CU
n

(
TSt−1s−1 + SDs−1d−1

)
+

Jn

CD
n

TDt−1d−1 ≤ Qth, ∀n ∈ [1 : N] (32e)

(31c), (31d), (31e). (32f)

Problem (32) is an integer geometric programming problem which can be solved using
the Matlab toolbox YALMIP directly. MATLAB’s built-in “YALMIP” function is based on
the interior point method and BnB algorithm [22,23] and is typically used to solve integer
geometric programming problems, such as the one in (32).

4.3. The Proposed Alternating Optimization (AO) Algorithm

Based on the above discussions of the two subproblems, we propose an AO algorithm
as follows: In every AO iteration, for a fixed (t, s, d) = (t(τ), s(τ), d(τ)), and (t0, s0, d0),
which is calculated as (t0, s0, d0) = (

⌈
T

t(τ)

⌉
,
⌈

S
s(τ)

⌉
,
⌈

D
d(τ)

⌉
), we use Algorithm 1 to solve (22).

Then, for the output (J, l∆) of Algorithm 1, we solve Problem (32) with YALMIP directly
and obtain (t(τ+1), s(τ+1), d(τ+1)).

Since Problem (32) is obtained by the relaxation of the ceiling functions, we may
face the problem where even though the (t, s, d) found by YALMIP are integers, which
we call (t̄, s̄, d̄), the corresponding T

t̄ , S
s̄ , and D

d̄ in Problem (32) may not be integers. In
order to overcome this problem, for the converged solution (t∗, s∗, d∗) of the AO, we check
whether constraints (19c) and (19d) in the original problem (19) are satisfied according to
the definition of (19e). If they are, (t∗, s∗, d∗) is taken as the solution to Problem (31), and the

Entropy 2024, 26, 407 13 of 18

corresponding block dimensions (t0, s0, d0) are taken to be
(⌈

T
t∗

⌉
,
⌈

S
s∗

⌉
,
⌈

D
d∗

⌉)
by padding

zeros. If they are not, then we can employ an exhaustive search within a neighborhood
near the converged solution (t∗, s∗, d∗) for a feasible solution or restart the algorithm with
a new random initial point (t(0), s(0), d(0)). In a time-constrained system, we can also
abandon optimizing (t, s, d) and simply use the initial values (t(0), s(0), d(0)) to obtain a
timely solution.

Finally, the proposed AO algorithm to solve Problem (19) is summarized in Algorithm 2.
(The source code can be found in the following link: https://github.com/SendBullet/
SDMM-opt (accessed on 14 March 2024))

Algorithm 2 Alternating Optimization Algorithm for Problem (19)

1: Initialize t(0), s(0), d(0), τ = 0 and the tolerance ϵ, where t(0), s(0), d(0) are chosen from
divisors of (T, S, D) randomly.

2: repeat
3: Given (t, s, d) = (t(τ), s(τ), d(τ)), calculate J(τ+1), l(τ+1)

∆ by Algorithm 1.

4: Given J = J(τ+1), l∆ = l(τ+1)
∆ , calculate (t(τ+1), s(τ+1), d(τ+1)) by solving Problem (32)

with YALMIP directly.
5: Set τ = τ + 1.
6: until The fractional increase of the objective function of Problem (19) is less than ϵ.
7: if Constraints (19c), (19d) and (19e) are satisfied simultaneously then
8: Output J(τ), l(τ)∆ , (t(τ), s(τ), d(τ)) and block dimension (t0, s0, d0) = (

⌈
T

t(τ)

⌉
,
⌈

S
s(τ)

⌉
,
⌈

D
d(τ)

⌉
).

9: else
10: Return to step 1 and restart with a new random initial point.
11: end if

4.4. Complexity Analysis

The complexity of Algorithm 2 per iteration mainly lies in Steps 3 and 4. In Step 3,
the complexity of Algorithm 1 is derived from solving Problem (20) by MATLAB function
“intlinprog” which uses BnB method. By omitting the lower-order terms, the main complex-
ity of Algorithm 1 per iteration is O(2N), where N is the number of computing nodes. In
Step 4, similarly, the main complexity of solving Problem (32) by YALMIP with BnB method
is O(23), where 3 is the dimension of optimizing variables (t, s, d) [24]. Hence, by neglect-
ing the lower-order terms, the approximate computational complexity of Algorithm 2 per
iteration is O(2N) when N ≥ 3, and O(23) when N ≤ 2. As can be seen, the complexity
scales exponentially with the number of computing nodes.

5. Simulation Results

In this section, we provide simulation results to evaluate the performance of the
two-sided SDMM under arbitrary collusion pattern. We consider two collusion pat-
terns. The first one has N = 11 computing nodes with the collusion pattern being
P1 = {{1, 4}, {2, 5}, {1, 2, 6}, {3, 7}, {4, 5, 6, 7}, {8}, {9}, {10}, {11}}, while the second one
consists of N = 20 computing nodes with the collusion pattern being P2 = {{1, 2, 3, 4, 5, 6},
{6, 7, 8, 9, 10, 11}, {12, 13}, {14}, {13, 15}, {16, 17}, {18}, {19}, {20}} So, for these two col-
lusion patterns, the smallest number of colluding sets containing all of the computing
nodes is p = 7 and p = 9, respectively. The stopping criterion in Algorithms 2 is set to
ϵ = 10−8 [25]. Other system parameters are listed in the Table 1.

For simplicity, our proposed scheme in this paper is denoted by “Pro.”. Then, the fol-
lowing two benchmarks are considered to compare with our proposed scheme:

(1) “N/0.”: In this scenario, we do not append zeros to the input matrices. The optimization
subproblem corresponding to (t, s, d) for a fixed (J, l∆) is solved by exhaustive search
in feasible pairs (t̃, s̃, d̃), which are divisors of (T, S, D). Other details are similar to
Algorithm 2. This corresponds to the optimal performance of AO when no zeros
are appended.

https://github.com/SendBullet /SDMM-opt
https://github.com/SendBullet /SDMM-opt

Entropy 2024, 26, 407 14 of 18

(2) “SE.”: First, (t, s, d) is initialized by divisors of (T, S, D) randomly. Then, we solve
Problem (22) to obtain (J, l∆). This is a low complexity algorithm where no zeros are
appended, and also, (t, s, d) are randomly chosen without being optimized. Only
(J, l∆) are optimized for the fixed randomly chosen (t, s, d).

First, we consider the collusion pattern P1 and the number of computing nodes being
11. Figure 2 shows the total cost versus the number of rows of matrix A, i.e., T. Firstly,
with the increase in T, the total cost of all schemes increases, which is caused by the
growth of input matrix dimension. Secondly, our proposed algorithm outperforms the
“N/0.” scheme when T ≥ 2500. This means that when T ≥ 2500, it is better to append
zeros to the matrices to obtain a lower cost. Thirdly, our proposed algorithm always
performs better than the “SE” scheme, which demonstrates the necessity of both appending
zeros and performing AO. Lastly, from the comparison between (S, D) = (2500, 2500) and
(S, D) = (3500, 3500), we can observe that the cost of the proposed scheme increases with
the increase of the size of the matrices.

Table 1. System parameters.

Parameters Values for N = 11 Values for N = 20

Storage capacity M
M1 = M2 = M3 = M4 = 1 × 106,
M5 = M6 = M7 = M8 = 2 × 106,
M9 = M10 = M11 = 3 × 106

M1 = · · · = M7 = 1 × 106,
M8 = · · · = M15 = 2 × 106,
M16 = · · · = M20 = 3 × 106

Computation speed Vn

V1 = V2 = V3 = V4 = 2 × 108,
V5 = V6 = V7 = V8 = 5 × 108,
V9 = V10 = V11 = 8 × 108

V1 = · · · = V7 = 2 × 108,
V8 = · · · = V15 = 5 × 108,
V16 = · · · = V20 = 8 × 108

Uplink Capacity CU
n

CU
1 = CU

2 = CU
3 = CU

4 =

1024 × 104, CU
5 = CU

6 = CU
7 =

CU
8 = 2048 × 104,

CU
9 = CU

10 = CU
11 = 4096 × 104

CU
1 = · · · = CU

7 = 1024 × 104,
CU

8 = · · · = CU
15 = 2048 × 104,

CU
16 = · · · = CU

20 = 4096 × 104

Downlink Capacity CD
n

CD
1 = CD

2 = CD
3 = CD

4 =

1024 × 104, CD
5 = CD

6 = CD
7 =

CD
8 = 2048 × 104,

CD
9 = CD

10 = CD
11 = 4096 × 104

CD
1 = · · · = CD

7 = 1024 × 104,
CD

8 = · · · = CD
15 = 2048 × 104,

CD
16 = · · · = CD

20 = 4096 × 104

Upload cost cU
cU

1 = cU
2 = cU

3 = cU
4 = 3 × 10−8,

cU
5 = cU

6 = cU
7 = cU

8 = 4 × 10−8,
cU

9 = cU
10 = cU

11 = 5 × 10−8

cU
1 = · · · = cU

7 = 3 × 10−8,
cU

8 = · · · = cU
15 = 4 × 10−8,

cU
16 = · · · = cU

20 = 5 × 10−8

Download cost cD
cD

1 = cD
2 = cD

3 = cD
4 = 3 × 10−8,

cD
5 = cD

6 = cD
7 = cD

8 = 4 × 10−8,
cD

9 = cD
10 = cD

11 = 5 × 10−8

cD
1 = · · · = cD

7 = 3 × 10−8,
cD

8 = · · · = cD
15 = 4 × 10−8,

cD
16 = · · · = cD

20 = 5 × 10−8

Computation cost cC
cC

1 = cC
2 = cC

3 = cC
4 = 2 × 10−8,

cC
5 = cC

6 = cC
7 = cC

8 = 6 × 10−8,
cC

9 = cC
10 = cC

11 = 8 × 10−8

cC
1 = · · · = cC

7 = 2 × 10−8,
cC

8 = · · · = cC
15 = 6 × 10−8,

cC
16 = · · · = cC

20 = 8 × 10−8

Delay threshold Qth 1000 1000

Figure 3 plots the total cost versus the number of columns of matrix B, i.e., D. Similar
to Figure 2, the difference between our proposed scheme and the “SE” scheme becomes
larger with the increase in the dimensions of the input matrices. However, the “N/0.”
scheme achieves the same total cost as our proposed algorithm. This shows that, in this
case, there is no need to pad zeros. Though the proposed scheme and the “N/0.” scheme
have the same performance, the proposed scheme has less complexity because it can avoid
the exhaustive search of the “N/0.” scheme.

Figure 4 illustrates the total cost versus the number of columns of matrix A, i.e., S,
which is also the number of rows of the matrix B. Although the total cost of our proposed
scheme is the same as that of the “N/0.” scheme for some S values, the gain of our proposed

Entropy 2024, 26, 407 15 of 18

algorithm over the “N/0.” scheme increases with the increase in S. In fact, the gain is very
significant for large S values, for example, when S = 4000, the total cost incurred by the
proposed scheme is only 55.77% of the “N/0.” scheme when (T, D) = (2500, 2500) and
55.07% when (T, D) = (3500, 3500).

1000 1500 2000 2500 3000 3500 4000

T (rows)

0

0.5

1

1.5

2

2.5

T
o

ta
l
C

o
s
t

104

Pro., S=2500,D=2500

SE., S=2500,D=2500

N/0., S=2500,D=2500

Pro., S=3500,D=3500

SE., S=3500,D=3500

N/0., S=3500,D=3500

Figure 2. Total cost versus T when N = 11.

1000 1500 2000 2500 3000 3500 4000

D (columns)

0

0.5

1

1.5

2

2.5

T
o

ta
l
C

o
s
t

104

Pro., T=2500,S=2500

SE., T=2500,S=2500

N/0., T=2500,S=2500

Pro., T=3500,S=3500

SE., T=3500,S=3500

N/0., T=3500,S=3500

Figure 3. Total cost versus D when N = 11.

1000 1500 2000 2500 3000 3500 4000

S (rows)

0

0.5

1

1.5

2

2.5

T
o

ta
l
C

o
s
t

104

Pro., T=2500,D=2500

SE., T=2500,D=2500

N/0., T=2500,D=2500

Pro., T=3500,D=3500

SE., T=3500,D=3500

N/0., T=3500,D=3500

Figure 4. Total cost versus S when N = 11.

Figures 5, 6 and 7, respectively, depict the total cost with respect to T, S, and D when
the number of computing nodes is 20. Similarly, our proposed scheme strictly outperforms
the other two benchmarks in some cases, which further shows the superiority of the

Entropy 2024, 26, 407 16 of 18

proposed scheme. Comparing Figures 2, 3 and 4 with Figures 5, 6 and 7, respectively, we
see that the total cost decreases significantly with the increase in the number of computing
nodes. Thus, when possible, the user should utilize more computing nodes to reduce the
total cost.

1000 1500 2000 2500 3000 3500 4000

T (rows)

0

2000

4000

6000

8000

10000

12000

14000

T
o

ta
l
C

o
s
t

Pro., S=2500,D=2500

SE., S=2500,D=2500

N/0., S=2500,D=2500

Pro., S=3500,D=3500

SE., S=3500,D=3500

N/0., S=3500,D=3500

Figure 5. Total cost versus T when N = 20.

1000 1500 2000 2500 3000 3500 4000

D (columns)

0

2000

4000

6000

8000

10000

T
o

ta
l
C

o
s
t

Pro., T=2500,S=2500

SE., T=2500,S=2500

N/0., T=2500,S=2500

Pro., T=3500,S=3500

SE., T=3500,S=3500

N/0., T=3500,S=3500

Figure 6. Total cost versus D when N = 20.

1000 1500 2000 2500 3000 3500 4000

S (rows)

0

2000

4000

6000

8000

10000

12000

14000

T
o

ta
l
C

o
s
t

Pro., T=2500,D=2500

SE., T=2500,D=2500

N/0., T=2500,D=2500

Pro., T=3500,D=3500

SE., T=3500,D=3500

N/0., T=3500,D=3500

Figure 7. Total cost versus S when N = 20.

6. Conclusions

In this paper, we investigated the minimization problem of the total cost, comprised
of the computation cost and the communication cost, in the system of two-sided SDMM
under an arbitrary collusion pattern. For realizing SDMM, we split the two input matrices

Entropy 2024, 26, 407 17 of 18

into many blocks and appended some extra blocks of random matrices to guarantee the
security of the two input matrices. Then, the matrix multiplication is calculated based on
the encoded copies in the computing nodes. Our aim is to minimize the total cost, while
ensuring the security constraint of the two input matrices, the decodability constraint of the
desired result of the multiplication, the storage capacity of the computing nodes, and the
delay constraint. The distribution vector, the number of appended random matrices, and all
matrix splitting factors were optimized. In order to overcome divisibility problem of matrix
splitting, we firstly proposed a strategy of appending zeros to the two input matrices and
then discussed the value ranges of some matrix splitting factors for the optimality of the
problem. Next, an AO algorithm was provided to obtain a feasible solution. Furthermore,
to verify the feasibility of the proposed optimization problem, some necessary conditions
were provided. Numerical results demonstrated that our proposed scheme achieves a
lower total cost compared to the scheme without appending zeros and the scheme without
AO optimization.

Author Contributions: Conceptualization, J.L., N.L. and W.K.; methodology, J.L., N.L. and W.K.;
formal analysis, J.L., N.L. and W.K.; writing—original draft preparation, J.L.; writing—review and
editing, J.L., N.L. and W.K.; supervision, N.L. and W.K.; Funding acquisition, N.L. and W.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the National Natural Science Foundation of China under
Grants 62071115, 62361146853, 62371129, and the Research Fund of National Mobile Communications
Research Laboratory, Southeast University (No. 2024A03).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article as no new data were created
or analyzed in this study.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Proof of Lemma 1. First, we consider the case of t for a fixed (l∆, s, d), i.e., appending
A ∈ FT×S with arbitrary rows of zeros.

We prove by contradiction. For a fixed (l∆, s, d), suppose the optimal value of t, i.e., t∗,
takes values in {T + 1, T + 2, · · · }. This means that in the padded matrix, denoted as A1,
there is at least an entire row of blocks, whose values are all 0t0×s0 . We may remove this
entire row of zero blocks and obtain another matrix, denoted as A2. We will show that the
cost at the user is smaller if we use A2 in place of A1. This means that it is suboptimal to
have the padded matrix contain an entire row of zero small blocks. In other words, t∗ can
not take values in {T + 1, T + 2, · · · }.

To see that the optimal cost at the user is smaller, if we use A2 in place of A1, we note
that both A2 and A1 have the same dimension for the blocks, i.e., t0 × s0. The difference
is that A2 has a lower number of blocks, more specifically, t for A2 is less. Any J feasible
for the problem of A1 is feasible for the problem of A2, as the security constraint (10) is the
same for both problems due to the fixed (l∆, s, d), and the storage constraint (13) and the
delay constraint (16) are the same due to both problems having the same dimension for the
blocks, i.e., t0 × s0. The decodability constraint (11) is more stringent for the problem of A1
as t is larger for A1. Hence, any J feasible for the problem of A1 is feasible for the problem
of A2. Furthermore, the same J that are feasible for both problems incur the same cost (17)
due to both problems having the same dimension for the blocks, i.e., t0 × s0. Therefore,
since the feasibility set of the problem for A2 is larger, the optimal cost at the user is smaller.

The same argument can be made for d for a fixed (l∆, s, t).
Hence, the proof is complete.

Entropy 2024, 26, 407 18 of 18

References
1. El-Sayed, H.; Sankar, S.; Prasad, M.; Puthal, D.; Gupta, A.; Mohanty, M.; Lin, C.T. Edge of Things: The Big Picture on the

Integration of Edge, IoT and the Cloud in a Distributed Computing Environment. IEEE Access 2018, 6, 1706–1717. [CrossRef]
2. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets. In Proceedings of

the 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10), Boston, MA, USA, 22–25 June 2010.
3. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. In Proceedings of the 6th Symposium on

Operating Systems Design and Implementation, San Francisco, CA, USA, 6–8 December 2004.
4. D’Oliveira, R.G.; El Rouayheb, S.; Karpuk, D. GASP codes for secure distributed matrix multiplication. IEEE Trans. Inf. Theory

2020, 66, 4038–4050. [CrossRef]
5. D’Oliveira, R.G.; El Rouayheb, S.; Heinlein, D.; Karpuk, D. Degree tables for secure distributed matrix multiplication. IEEE J. Sel.

Areas Inf. Theory 2021, 2, 907–918. [CrossRef]
6. Jia, Z.; Jafar, S.A. On the capacity of secure distributed batch matrix multiplication. IEEE Trans. Inf. Theory 2021, 67, 7420–7437.

[CrossRef]
7. Kiah, H.M.; Kim, W.; Kruglik, S.; Ling, S.; Wang, H. Explicit Low-Bandwidth Evaluation Schemes for Weighted Sums of

Reed-Solomon-Coded Symbols. IEEE Trans. Inf. Theory 2024. [CrossRef]
8. Machado, R.A.; D’Oliveira, R.G.L.; Rouayheb, S.E.; Heinlein, D. Field Trace Polynomial Codes for Secure Distributed Matrix

Multiplication. In Proceedings of the 2021 XVII International Symposium “Problems of Redundancy in Information and Control
Systems” (REDUNDANCY), Moscow, Russia, 25–29 October 2021; pp. 188–193. [CrossRef]

9. Chang, W.T.; Tandon, R. On the capacity of secure distributed matrix multiplication. In Proceedings of the 2018 IEEE Global
Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.

10. Bitar, R.; Parag, P.; El Rouayheb, S. Minimizing latency for secure coded computing using secret sharing via staircase codes. IEEE
Trans. Commun. 2020, 68, 4609–4619. [CrossRef]

11. Ebadifar, S.; Kakar, J.; Sezgin, A. The Need for Alignment in Rate-Efficient Distributed Two-Sided Secure Matrix Computation. In
Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019;
pp. 1–6. [CrossRef]

12. Stinson, D.R. An explication of secret sharing schemes. Des. Codes Cryptogr. 1992, 2, 357–390. [CrossRef]
13. Tajeddine, R.; Gnilke, O.W.; Karpuk, D.; Freij-Hollanti, R.; Hollanti, C.; El Rouayheb, S. Private information retrieval schemes for

coded data with arbitrary collusion patterns. In Proceedings of the 2017 IEEE International Symposium on Information Theory
(ISIT), Aachen, Germany, 25–30 June , 2017; pp. 1908–1912.

14. Yao, X.; Liu, N.; Kang, W. The capacity of private information retrieval under arbitrary collusion patterns for replicated databases.
IEEE Trans. Inf. Theory 2021, 67, 6841–6855. [CrossRef]

15. Kakar, J.; Khristoforov, A.; Ebadifar, S.; Sezgin, A. Uplink-downlink tradeoff in secure distributed matrix multiplication. arXiv
2019, arXiv:1910.13849.

16. Yang, H.; Lee, J. Secure Distributed Computing With Straggling Servers Using Polynomial Codes. IEEE Trans. Inf. Forensics Secur.
2019, 14, 141–150. [CrossRef]

17. Chen, Z.; Jia, Z.; Wang, Z.; Jafar, S.A. GCSA codes with noise alignment for secure coded multi-party batch matrix multiplication.
IEEE J. Sel. Areas Inf. Theory 2021, 2, 306–316. [CrossRef]

18. Aliasgari, M.; Simeone, O.; Kliewer, J. Private and Secure Distributed Matrix Multiplication With Flexible Communication Load.
IEEE Trans. Inf. Forensics Secur. 2020, 15, 2722–2734. [CrossRef]

19. Yao, Y.; Liu, N.; Kang, W.; Li, C. Secure Distributed Matrix Multiplication Under Arbitrary Collusion Pattern. IEEE Trans. Inf.
Forensics Secur. 2023, 18, 85–100. [CrossRef]

20. Van Roy, T.J.; Wolsey, L.A. Integer Programming; Core Discussion Papers Rp; Center for Operations Research and Econometrics:
Ottignies-Louvain-la-Neuve, Belgium, 2009.

21. Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
22. Boyd, S.; Kim, S.J.; Vandenberghe, L.; Hassibi, A. A tutorial on geometric programming. Optim. Eng. 2007, 8, 67–127. [CrossRef]
23. Lofberg, J. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the 2004 IEEE International

Conference on Robotics and Automation (IEEE Cat. No.04CH37508), Taipei, Taiwan, 2–4 September 2004; pp. 284–289. [CrossRef]
24. Wang, Y.; Chen, M.; Li, Z.; Hu, Y. Joint Allocations of Radio and Computational Resource for User Energy Consumption

Minimization Under Latency Constraints in Multi-Cell MEC Systems. IEEE Trans. Veh. Technol. 2023, 72, 3304–3320. [CrossRef]
25. Zhou, G.; Pan, C.; Ren, H.; Wang, K.; Nallanathan, A. Intelligent reflecting surface aided multigroup multicast MISO communica-

tion systems. IEEE Trans. Signal Process. 2020, 68, 3236–3251. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2017.2780087
http://dx.doi.org/10.1109/TIT.2020.2975021
http://dx.doi.org/10.1109/JSAIT.2021.3102882
http://dx.doi.org/10.1109/TIT.2021.3112952
http://dx.doi.org/10.1109/TIT.2024.3366817
http://dx.doi.org/10.1109/REDUNDANCY52534.2021.9606447
http://dx.doi.org/10.1109/TCOMM.2020.2988506
http://dx.doi.org/10.1109/ICC.2019.8761275
http://dx.doi.org/10.1007/BF00125203
http://dx.doi.org/10.1109/TIT.2021.3100476
http://dx.doi.org/10.1109/TIFS.2018.2846601
http://dx.doi.org/10.1109/JSAIT.2021.3052934
http://dx.doi.org/10.1109/TIFS.2020.2972166
http://dx.doi.org/10.1109/TIFS.2022.3217383
http://dx.doi.org/10.1007/s11081-007-9001-7
http://dx.doi.org/10.1109/CACSD.2004.1393890
http://dx.doi.org/10.1109/TVT.2022.3216042
http://dx.doi.org/10.1109/TSP.2020.2990098

	Introduction
	System Model
	Matrix Encoding Scheme
	Storage, Communication and Computing Requirements of Each Computing Node
	Problem Formulation

	The Feasible Set of (T,S,D)
	Algorithm Design
	Optimization Subproblem of (J,l) for a Fixed (T,S,D)
	Optimization Subproblem of (T,S,D) for a Fixed (J,l)
	The Proposed Alternating Optimization (AO) Algorithm
	Complexity Analysis

	Simulation Results
	Conclusions
	Appendix A
	References

