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Abstract: The common geometrical (symplectic) structures of classical mechanics, quantum mechan-
ics, and classical thermodynamics are unveiled with three pictures. These cardinal theories, mainly at
the non-relativistic approximation, are the cornerstones for studying chemical dynamics and chemical
kinetics. Working in extended phase spaces, we show that the physical states of integrable dynamical
systems are depicted by Lagrangian submanifolds embedded in phase space. Observable quantities
are calculated by properly transforming the extended phase space onto a reduced space, and trajecto-
ries are integrated by solving Hamilton’s equations of motion. After defining a Riemannian metric,
we can also estimate the length between two states. Local constants of motion are investigated by
integrating Jacobi fields and solving the variational linear equations. Diagonalizing the symplectic
fundamental matrix, eigenvalues equal to one reveal the number of constants of motion. For conser-
vative systems, geometrical quantum mechanics has proved that solving the Schrödinger equation
in extended Hilbert space, which incorporates the quantum phase, is equivalent to solving Hamil-
ton’s equations in the projective Hilbert space. In classical thermodynamics, we take entropy and
energy as canonical variables to construct the extended phase space and to represent the Lagrangian
submanifold. Hamilton’s and variational equations are written and solved in the same fashion as in
classical mechanics. Solvers based on high-order finite differences for numerically solving Hamilton’s,
variational, and Schrödinger equations are described. Employing the Hénon–Heiles two-dimensional
nonlinear model, representative results for time-dependent, quantum, and dissipative macroscopic
systems are shown to illustrate concepts and methods. High-order finite-difference algorithms,
despite their accuracy in low-dimensional systems, require substantial computer resources when they
are applied to systems with many degrees of freedom, such as polyatomic molecules. We discuss
recent research progress in employing Hamiltonian neural networks for solving Hamilton’s equations.
It turns out that Hamiltonian geometry, shared with all physical theories, yields the necessary and
sufficient conditions for the mutual assistance of humans and machines in deep-learning processes.

Keywords: Hamiltonian classical mechanics; geometrical quantum mechanics; Hamiltonian
thermodynamics; chemical kinetics; differential geometry

1. Introduction

Chemistry is now deeply rooted in the two fundamental physical theories, quantum
and classical mechanics. Quantum chemistry and molecular dynamics computer programs
are indispensable devices in almost all kinds of chemical research. Thermodynamics, also a
vital theory for chemistry that lacked a genuine mathematical foundation for years, has
acquired the necessary mathematical framework in the last two decades, which brings it to
the same level as classical and quantum mechanics. On the other hand, the advancements
in mathematics that occurred in the 20th century in the fields of differential geometry and
topology have revealed common geometrical structures in all physical theories. These
discoveries provide a deeper understanding of the physical theories per se and pave the
way for their application in other scientific fields, such as chemistry.
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The purpose of this article is to render an introductory and graphical presentation of
common geometrical structures of the principal physical theories and the consequences
they may have in chemistry, especially via their numerical applications. Specifically, after
almost two centuries of evolution of Hamiltonian theory, a modern geometrical description
emerged, and significant theorems and techniques for locating invariant structures in phase
space, and thus constants of motion, have been found [1–3]. Chemical dynamics and
spectroscopy have tremendously benefited from applying these methods to comprehend
the behaviors of highly excited molecules [4,5].

It is essential to underline that the stage of action for molecular dynamics, within a
classical mechanical approach, is the phase space and its tangent bundle, which means that
both generalized coordinates and conjugate momenta should be taken into account. We
also emphasize that in the 1980s, it was found that quantum and classical mechanics share
some common geometrical properties, which explain similarities as well as differences. It
was shown that instead of the usual algebraic linear quantum theory formulated either in
the Schrödinger or Heisenberg picture, we can take the quantum analog of phase space to
be the projective Hilbert space of the extended Hilbert space [6–8].

Earlier, in the 1970s, it was recognized that the mathematical framework for ther-
modynamics is the contact geometry [9,10] of the physical states embedded in an odd-
dimensional state space [11–17]. However, at the beginning of the twenty-first century,
Balian and Valentin [18] made a significant contribution by publishing a Hamiltonian
theory of thermodynamics in an extended phase space. Based on Callen’s [19] formulation
of thermodynamics, they produced a Hamiltonian theory for reversible and irreversible
processes equivalent to classical mechanics. They studied homogeneous Hamiltonians
with generalized coordinates, the complete set of extensive properties (i.e., entropy, internal
energy, volume, particle numbers, etc.) and conjugate momenta proportional to intensive
properties (i.e., temperature, pressure, chemical potential, etc.), either in the entropy or en-
ergy representation. Gibbs’s fundamental equation was employed to describe the physical
state manifold. This work triggered numerous studies, the results of which have revealed
several geometrical properties common to classical and quantum mechanics [20–24].

It turns out that the mathematical abstraction and generalization of geometrical Hamil-
tonian theory in extended phase space lead to a common computational platform for
working in both microscopic and macroscopic worlds. The aim of the present article is
to highlight that Hamiltonian theories share some common geometrical properties in ex-
tended phase space with classical mechanics, quantum mechanics, and thermodynamics,
which manifest the foundations for formulating and comprehending chemical dynamics
and chemical kinetics.

In Section 2, we present, with the help of two pictures, the Hamiltonian theories of
classical and quantum mechanics. Similarly, in Section 3, we discuss Hamiltonian thermo-
dynamics in contemporary mathematical language that unveils the geometrical properties
of this theory. In Section 4, we describe numerical algorithms for solving Hamilton’s
equations of motion and variational equations, common to the three principal theories. We
mainly focus on high-order finite-difference (FD) methods and their relation to pseudospec-
tral methods (PS) [25]. Furthermore, to illustrate the mathematical concepts introduced
in the previous sections, we have performed numerical calculations with a rather simple
two-dimensional nonlinear model, that of Hénon–Heiles [26]. We deduce that high-order
finite-difference methods based on the Lagrangian interpolation polynomials are appro-
priate for solving initial value problems, as well as partial differential equations, such
as the Schrödinger equation, necessary in chemical theories. Finally, the conclusions are
summarized in Section 5, where recent research on Hamiltonian neural networks (HNN) is
discussed. Proofs for some equations, tables that summarize results in Hamiltonian thermo-
dynamics, and an example of formulating a chemical kinetic model with thermodynamic
Hamiltonian theory are presented in Appendix A.
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2. Geometrical Structures in Chemical Dynamics

Molecules are sets of Nn nuclei and Ne electrons interacting with Coulomb forces. Usu-
ally, their quantum mechanical treatment is obtained by solving the Schrödinger equation
in the Born–Oppenheimer approximation [27] that separates the electronic from the nuclear
motion. The electronic energies are calculated by freezing the nuclei at specific configura-
tions, which produces the adiabatic potential energy surface for each electronic state.

These molecular potentials, named also Potential Energy Surfaces, are employed to
solve the nuclear equations of motion either in quantum mechanics or in classical mechanics.
It is, thus, important to investigate common geometrical structures in the foundations of
the two basic theories of physics, which in turn may assist in the numerical solutions of
the corresponding equations of motion. In the following two subsections, we examine the
topological and geometrical properties of classical and quantum mechanics, whereas in
Section 3, the relatively new Hamiltonian formulation of thermodynamics is reviewed, all
of them in extended phase spaces and at the non-relativistic approximation.

2.1. Canonical Classical Mechanics
2.1.1. Manifolds and Maps

We introduce the basic geometrical concepts of classical mechanics for time-dependent
systems by elucidating the graphics of Figure 1. Starting from the bottom and moving
upwards, we denote the set of configurations of the system with n–degrees of freedom
(DOF) with the column vector (The symbol (T) denotes the transpose of a matrix. Thus, a
row vector becomes a column vector, and vice versa, a column vector is converted into a
row vector.), q = (q1, . . . , qn)T , and the parameter (time) with q0. Capital letters designate
the set of n+ 1 coordinates as a column vector, Q = (q0, q)T . These coordinates parametrize
the Extended Configuration Manifold, Qn+1. Generally, this is a smooth (differentiable)
nonlinear manifold.

Manifolds generalize the geometrical objects of curves and surfaces in three-dimensional
Euclidean space into N–dimensional (N > 3) spaces. It took more than two centuries to
develop the current mathematical definition of a manifold since it required the parallel
development of various other branches of Mathematics, such as topology, geometry, and
algebra [28].

The extended configuration space Qn+1 can be described locally by a coordinate
system (chart) Q, i.e., a homeomorphism

ϕ : U ⊂ Qn+1 → ϕ(U) ⊂ Rn+1, (1)

of an open set U of Qn+1 onto an open set ϕ(U) of a Euclidean space Rn+1 of dimension
n + 1.

In Euclidean space, we understand the definition of a coordinate system in Rn+1 as

qi = πi ◦ ϕ or ϕ(s) = (q0(s), q1(s), q2(s), . . . , qn(s))T ∈ Rn+1, (2)

for every point s ∈ U, and πi are the canonical projections taken to be differentiable
functions. Transition maps provide the transformation from one coordinate system to
another for points that belong to the intersection of two different open subsets.

The tangent space of Qn+1 at a point s ∈ Qn+1(TsQn+1) is a vector space, and the
union of all tangent spaces for all points s of Qn+1 form the tangent bundle (TQn+1) with
the extended configuration space Qn+1 to be the base space

TQn+1 =
⋃

s∈Qn+1

TsQn+1. (3)
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The tangent bundle contains both the configuration manifold Qn+1 and its tangent spaces
TsQn+1 called the fibers, and it is a smooth manifold of dimension 2(n + 1). Since TQn+1 is
also a smooth manifold, a chart is defined by the diffeomorphism

Tϕ : TU → ϕ(U)×Rn+1 ⊂ Rn+1 ×Rn+1. (4)

Legendre Transform(FLe)
(q0,q,q0,q)        (q0,q,p0,p)
Inter. Pr. <Q|Q>=P Q

 Rn+1 x Rn+1(q0,q,p0,p)Rn+1 x Rn+1(q0,q,q0,q)

He=H(q0,q,p)+p0 q0=0

Tangent Bundle
(TQ n+1)

Tangent Bundle
of Extended Phase 

Space (TT*Q n+1)

Extended 
Configuration

Manifold (Q n+1)

Cotangent Bundle 
(Phase Space)

(T*Q n+1)

 

R2n+2 x R2n+2(q0,q,p0,p,q0,q,p0,p) 

R

..
        

πT*Q n+1

*π Q n+1πQ n+1

V(q0,q).

Rn+1(q0,q)

(T* , T*U)φ(T , TU)φ

( ,U)φ

EXTENDED CLASSICAL  MECHANICS

..

.

.

. .

.

. .

 P = ∂L /  ∂Q
 q0 = 1 

Le He

.

Interior Product
iXHe  = (ω ω XHe ,•) = dHe(•)
Hamilton Equations
x = J ∂He (x)
Poisson Brackets
Ox  = {O, He}x

.
.

Variational Equations
d(  δ xi)/dt = ∑j (d xi/d xj)x(t)  δ xj

= ∑jJ( ∂2He / ∂xi∂xj)  δ xj

.

OptB utton

Figure 1. Manifolds and functions which determine the geometrical structures of a classical system
with n + 1 coordinates. q0 denotes a parameter and, specifically, the time for time-dependent systems.
q = (q1, . . . , qn) are the n coordinates that define the configurations of the system and p = (p1, . . . , pn)

their canonical conjugate momenta. Details are given in the text.

Each coordinate system (ϕ, U) from the atlas of Qn+1 induces a coordinate system
(ϕ, TU) for TQn+1. This chart is said to be the bundle chart associated with (ϕ, U). The
velocities (q̇i = dqi/dt) live in this space.

The potential function, V(Q), is a function on the configuration manifold to real
numbers. The Lagrangian, Le(Q, Q̇), is a function on the tangent bundle to real numbers.

The dual space of TQn+1 (the set of all linear maps on tangent bundle to real numbers)
is the cotangent bundle (M = T∗Qn+1), also named phase space. The phase space is a
differentiable manifold of 2(n + 1)−dimension for which the tangent bundle can also be
defined with charts described by the generalized coordinates (qi), the conjugate momenta
(Notice that we use superscripts for coordinates and subscripts for momenta.) (pj), and
their velocities, where

pj = ∂Le/∂q̇j, j = 0, . . . , n. (5)

The Extended Hamiltonian, He(Q, P), is a function on the phase space to real numbers,
He : T∗Qn+1 7→ R, obtained by a Legendre transformation (FLe ) of the Lagrangian. We
may consider that the Legendre transformation generates a differentiable map between
the tangent and cotangent bundles of Qn+1, FLe : TQn+1 → T∗Qn+1. πQn+1 and π∗

Qn+1

are canonical projections to extended configuration manifold of tangent and cotangent
bundles, respectively. The tangent bundle of phase space is denoted by TT∗Qn+1 and
πT∗Qn+1 is the canonical projection to phase space.
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For a system of particles with n–DOF, we define the Lagrangian as the difference
between kinetic energy K and potential energy

Le(Q, q̇) = K− V =
1
2

n

∑
i,j=1

q̇igij(q, m)q̇j − V(Q), (6)

with gij(q, m) to be the kinetic metric tensor, written as a function of coordinates q and the
particle masses m. The metric is the non-degenerate, symmetric, covariant tensor rank-2
that defines the kinetic energy. The momentum pi is the covector of the velocity q̇i,

pi =
∂K
∂q̇i =

n

∑
j=1

gij q̇j, i = 1, . . . , n, (7)

which is a map from the tangent bundle (TQn) to the cotangent bundle (T∗Qn). Obviously,
for a diagonal unit metric, gij = δij, momenta are equal to velocities.

The velocities q̇i can also be extracted from the momenta by the inverse tensor gij

q̇i = ∑
j

gij pj, (8)

where ∑l gil gl j = δ
j
i (The components of Kronecker delta tensor, δ

j
i , are equal to 1 for i = j

and 0 for i ̸= j.).
Momenta may also be considered to be 1−forms which act on the tangent bundle to

real numbers, p : TQn 7→ R, by taking the interior product (contraction) of 1−forms with
vector fields. Employing Dirac’s notation, we write

< q̇|q̇ >=
n

∑
i=1

pi(q̇i) =
n

∑
i=1

pi q̇i =
n

∑
i,j=1

q̇igij q̇j = 2K. (9)

If H(q0, q, p) = K(p) + V(Q) is the Hamiltonian of a system of particles with n–DOF, then
the extended Hamiltonian, (He), is defined with the Legendre transformation (Notice
that in chemical thermodynamics the Legendre transformation is defined as the difference
between the function and the sum of products of conjugate variables.)

He = PQ̇ −Le = p0q̇0 + 2K−K+ V = p0q̇0 +H(q0, q, p). (10)

The physical states are obtained by imposing the two constraints

He = 0, q̇0 = 1, (11)

which result in
p0 = −H(q0, q, p). (12)

Hence, the time-extended system is a conservative system with Hamiltonian He.

2.1.2. Equations of Motion

We collect the generalized coordinates Q = (q0, q1, . . . , qn)T and their conjugate mo-
menta P = (p0, p1, . . . , pn) to a single column vector x = (Q, PT)T of 2k−dimension, where
we use k = n + 1. Hamilton’s principle of stationary action leads to Hamilton’s equations
of motion. Then, Hamilton’s equations with a Hamiltonian He(x) are written in the form

ẋ = (Q̇, ṖT)T =

(
∂He(x)

∂P
,−∂He(x)

∂Q

)T
, (13)

or
ẋ(t) = J∂He(x(t)), (14)
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where ∂He(x) is the gradient of Hamiltonian function, and J the symplectic matrix. J is the
map on the tangent bundle of phase space M

J : TM → TM, J =
(

0k Ik
−Ik 0k

)
. (15)

0k and Ik are the zero and unit k × k matrices, respectively. It is proved that J satisfies
the relations,

J−1 = −J = JT and J2 = −I2k. (16)

Thus, the Hamiltonian vector field is

XHe =

(
∂He(x)

∂P
,−∂He(x)

∂Q

)T
, (17)

or using the coordinate base in the tangent bundle of phase space (Q, P, ∂
∂Q , ∂

∂P ), we write

XHe =

(
∂He(x)

∂P

)
∂

∂Q
−
(

∂He(x)
∂Q

)
∂

∂P
, (18)

that lives in the tangent space of phase space.
In a more general approach, we can extract the Hamiltonian vector field as follows.

In the cotangent space of extended coordinate manifold, let us denote with θe the 1−form
acting on the phase space manifold M = T∗Qk

θe : M → T∗M : m ∈ M → θem ∈ T∗
m M, (19)

and with α the 1−forms on the configuration manifold Qk

α : Q → M : r ∈ Qk → αr ∈ M. (20)

Since α is a linear map from Qk to M and θe an 1−form on M we can pull-back θe to Qk

to produce the 1−form α∗θe, which lives on the base manifold Qk. Then, the canonical
Poincaré 1−form satisfies the relation (tautological 1−form)

α∗θe = α forall α. (21)

Hence, we can expand θe as
θe = ∑

i
pidqi. (22)

θe is invariant under coordinate transformations

Fi = Fi(q0, q1, . . . , qn), i = 0, . . . , n, (23)

which we assume to be invertible

qj = qj(F0, . . . , Fn), j = 0, . . . , n. (24)

This is proved by arguing as follows. The velocities are given by

q̇j = ∑
i

(
∂qj

∂Fi

)
Ḟi. (25)
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The new momenta are

PFi =
∂Le

∂Ḟi = ∑
j

(
∂Le

∂q̇j

)(
∂q̇j

∂Ḟi

)

= ∑
j

pj

(
∂qj

∂Fi

)
. (26)

Hence,

θe = ∑
i

pidqi = ∑
i

pi

(
∑

j

∂qi

∂Fj dFj

)

= ∑
j

(
∑

i
pi

∂qi

∂Fj

)
dFj = ∑

j
PFjdFj. (27)

The canonical Symplectic 2−form is extracted by taking the exterior derivative (Notice
the negative sign in our formulation.) of θe

ωe = −dθe. (28)

This is a non-degenerate, skew-symmetric, closed 2−form (dωe = −d ◦ dθe = 0). In local
coordinates (q, p), ωe is expressed by the wedge products

ωe = ∑
i

dqi ∧ dpi. (29)

If we introduce dx = (dx1, . . . , dx2k) = (dq0, . . . , dqn, dp0, . . . , dpn), the symplectic 2−form
(Equation (29)) is written

ωe =
k

∑
i=1

dxi ∧ dxk+i. (30)

A pair (M, ωe), i.e., the phase space with the symplectic 2−form, is said to be a
symplectic manifold. Those local coordinates which satisfy, ωe = ∑k

i=1 dxi ∧ dxk+i, are said
to be canonical and symplectic. In the following, we shall see that Hamiltonian mechanics
and its geometrical properties can be formulated by ωe.

Let (M, ωe) be a symplectic manifold of dimension 2k with ωe a canonical symplectic
2−form. The Hamiltonian function He is a smooth function on the phase space. The
Hamiltonian vector field, XHe , (Equations (17) and (18)) is then defined via the relationship

iXHe
ωe = ωe(XHe , •) = dHe(•). (31)

iXHe
ωe symbolizes interior product (contraction) and the triple (M, ωe, XHe) is a Hamilto-

nian system. In particular, for the variable q0 we extract the equation

ṗ0 = −∂H(q0, q, p)
∂q0 . (32)

We can see that with this formulation of time-dependent systems and taking into account
the constraints Equations (11) and (12), the trajectories are described at each time t in the
physical phase space of the system of 2n−dimension. With xq = (q1, . . . , qn, p1, . . . , pn)T

Hamilton’s equations of motion with the time-dependent Hamiltonian are written

ẋq(t) = J∂H(t, xq). (33)



Entropy 2024, 26, 399 8 of 45

For a smooth function O(x) on phase space, the Poisson bracket is defined as

{O,He} = −{He,O} = ωe(XO , XHe) = −dHe(XO). (34)

Since

XO =

(
∂O(x)

∂p
,−∂O(x)

∂q

)T
(35)

XHe =

(
∂He(x)

∂p
,−∂He(x)

∂q

)T
, (36)

or employing the coordinate base in the tangent space of phase space

XO =
n

∑
i=0

[
∂O
∂pi

∂

∂qi
− ∂O

∂qi

∂

∂pi

]
(37)

XHe =
n

∑
i=0

[
∂He

∂pi

∂

∂qi
− ∂He

∂qi

∂

∂pi

]
(38)

we write the Poisson brackets in a coordinate system as

{O,He} = −dHe(XO) = − < dHe|XO >

= −
(

∂He

∂q
dq +

∂He

∂p
dp
)(

∂O
∂p

∂

∂q
− ∂O

∂q
∂

∂p

)
=

n

∑
i=0

[
∂O
∂qi

∂He

∂pi
− ∂O

∂pi

∂He

∂qi

]
. (39)

We have used

dxi

(
∂

∂xj

)
= δ

j
i , (i, j) = 1, . . . , 2k. (40)

where δ is the Kronecker’s delta tensor.
The Lie derivative of a dynamical quantity O(x(t)) with respect to the Hamiltonian

vector field XHe is defined as the directional derivative of O along the vector XHe

LXHe
O = XHe(O) = dO(XHe) = ωe(XO , XHe) = {O,He}. (41)

So,

Ȯ = LXHe
O = XHe(O), (42)

Ȯ = {O,He}. (43)

From the above equation, we infer that for conserved quantities, Ȯ = 0, the Poisson’s
bracket commutes, i.e., {O,He} = 0.

Applying the above equation to coordinates and conjugate momenta, (Q, P), we
extract Hamilton’s equations

Q̇ = {Q,He} =
∂He

∂P
(44)

Ṗ = {P,He} = −∂He

∂Q
. (45)

Poisson brackets defined on a set of smooth functions F (M) on M satisfy the proper-
ties; For ( f , g, h) ∈ F (M), then

• { f , g} is bilinear,
• { f , g} = −{g, f } antisymmetric,
• { f , f } = 0, and
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• { f , {g, h}}+ {h, { f , g}}+ {g, {h, f }} = 0 (Jacobi identity).

2.1.3. Integrable Hamiltonian Systems

In classical mechanics, a finite 2n−dimensional Hamiltonian system, (M2n, ω, XH)
is completely integrable if it admits n independent constants of motion whose Poisson
brackets are in involution, i.e., pairwise commute.

Let the integrals of motion are F1 = H, . . . , Fn and are assigned to values c = (c1, . . . , cn).
Then, the corresponding level set, F−1(c) is a Lagrangian submanifold.

In a more formal wording, for an even-dimensional phase space, M, the symplectic
2−form ω, which satisfies the condition (volume form)

(dθ)n ̸= 0,

the condition ω = 0 determines the nD−Lagrangian submanifold Ln
p ∈ M.

For compact phase spaces, the Lagrangian submanifolds have the structure of a
n–torus, Tn. Moreover, in a neighborhood of every such invariant torus, one can find
angle-action coordinates (ϕ, I),

yi = yi(ϕ; I), ϕi,∈ [0, 2π), Ij =
1

2π

∮
pjdqj, i, j = 1, . . . , n. (46)

In such a coordinate system, the Hamiltonian function depends only on Ij, i.e., H(I), and
Hamilton’s equations give

ϕ̇i =
∂H
∂Ii = wi, ϕi(t) = ϕi

0 + wit

İi = −∂H
∂ϕi = 0. (47)

wi are the normal frequencies, and the action variables are constants. The Poisson brackets
of the action coordinates, I, pairwise commute, {Ii, Ij} = 0, and also satisfy {ϕi, Ij} = δi

j.

2.1.4. Complexification of Classical Hamilton’s Equations

Hamilton’s equations in classical mechanics can also be cast in a complex manifold by
complexification of phase space, i.e., by introducing the complex transformation

zl =
1√
2
(ql + ıpl)

z∗l =
1√
2
(ql − ıpl) (48)

ı =
√
−1. (49)

Similarly, in Section 2.2.3 by realification of the quantum Hilbert space, we bring the
Schrödinger equation into the form of Hamilton’s equations.

To make the complex transformation canonical, we define the complex variables

Ql = zl , Pl = ız∗l . (50)

The inverse transformation gives the real functions

ql =
1√
2
(zl + z∗l ) =

1√
2
(Ql − ıPl)

pl =
−ı√

2
(zl − z∗l ) =

1√
2
(Pl − ıQl). (51)
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Because of the symmetry of Hamiltonians under the unitary group U(1) ∼= C, i.e., the
Hamiltonian H should be invariant with a unitary transformation. We write the canonical
Poincaré 1−form as

θc = ∑
l

1
2
(pldql − qldpl) = ∑

l

ı
2
(z∗l dzl − zldz∗l ) (52)

= ∑
l

1
2
(PldQl − QldPl). (53)

and thus, the canonical symplectic 2−form becomes

ωc = −dθc = ∑
l

dql ∧ dpl = ∑
l

ıdzl ∧ dz∗l = ∑
l

dQl ∧ dPl . (54)

For example, a harmonic oscillator in scaled normal coordinates and introducing these
canonical complex coordinates results in

H =
1
2

w(q2 + p2) (55)

=
1
2

w
[

1
2

(
z2 + z∗2 + 2zz∗

)
− 1

2

(
z2 + z∗2 − 2zz∗

)]
= wzz∗ = −ıwQP = PQ̇. (56)

Since the transformation to complex coordinates and conjugate momenta is symplectic,
Hamilton’s equations are also written as

Q̇ = ∂H′(Q,P)
∂P = −ıwQ

Ṗ = − ∂H′(Q,P)
∂Q = ıwP, (57)

where H′(Q, P) = H[q(Q, P), p(Q, P)] is the Hamiltonian in complex coordinates.

2.1.5. Jacobi Fields and Variational Equations

Geodesic curves are obtained by searching for the critical points of the length func-
tional, i.e., by requiring

δ
∫ tmax

0

∣∣∣∣dq(t)
dt

∣∣∣∣dt = δ
∫ lmax

0
ds = 0. (58)

ds is the infinitesimal length of the curve given by the norm of the velocity vector.
The same critical points are obtained by varying the integrand |dq/dt|2 instead

δ
∫ tmax

0

∣∣∣∣dq(t)
dt

∣∣∣∣2dt = δ
∫ lmax

0
(ds)2 = 0. (59)

It is worth noting that the above integral depends on the parameter t. This integral is
related to the action or the energy of a physical system. Indeed, Hamilton’s principle of
stationary action results in Hamilton’s equations, the solutions of which are geodesics on
the phase space manifold.
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Let C be a trajectory in phase space with kinetic metric g

g(q̇, q̇) =
n

∑
i,j=1

gijdqi ⊗ dqj(q̇, q̇) =
n

∑
i,j=1

gijdqi(q̇)dqj(q̇)

=
n

∑
i,j=1

gij q̇i q̇j =
n

∑
i=1

q̇i

(
n

∑
j=1

gij q̇j

)

=
n

∑
i=1

pi q̇i = ⟨q̇|q̇⟩. (60)

From the above equations, we deduce that the coefficients gij result from the action of the
metric on the base coordinates of the tangent space

gij = g
(

∂

∂qi ,
∂

∂qj

)
. (61)

The length of a trajectory starting from the point t = 0 and finishing at the point
t = tmax is calculated as the line integral

L(C) =
∫ tmax

0
|q̇|dt =

∫ tmax

0

√
g(q̇, q̇) dt =

∫ tmax

0

√
n

∑
i=1

pi q̇i dt. (62)

In case we want to investigate the behavior of neighboring trajectories Cx+δx to a
reference one Cx in phase space, we examine the time evolution of the variation vector
Yx(t) = δx(t), (Figure 2). The time derivative of the vector field Yx(t) with respect to the
vector field Xx (Lie derivative) is equal to

Ẏi
x =

d(δxi)

dt
=

(
ẋi +

d(δxi)

dt

)
− ẋi = Xi

x+δx − Xi
x

= ∑
j

(
∂ẋi

∂xj

)∣∣∣
x(t)

δxj(t) + h.o.t.

= ∑
j

J
(

∂2He

∂xi∂xj

)∣∣∣∣∣
x(t)

δxj(t) + h.o.t.. (63)

J is the symplectic matrix (Equation (15)). The higher order term (h.o.t.) is a function of
the displacement δx at time t, which contains all the terms in the Taylor expansion larger
than the first order. The derivatives are computed at the reference trajectory with initial
conditions x0. Yx = δx is a Jacobi field and the equations

dYi
x

dt
= ∑

j

(
∂Xi

∂xj

)∣∣∣
x(t)

Y j, (64)

the variational equations.
The fundamental matrix Z(t, t0) satisfies the variational equations with initial con-

dition Z(t0, t0) = I. It is a symplectic matrix, and therefore, the following equations are
valid [3]

det(Z) = 1, ZT JZ = J. (65)

It is proved that if σ is an eigenvalue of a real symplectic matrix, so are σ−1, σ∗ and (σ∗)−1.
σ∗ are complex conjugate numbers. Also, for every constant of motion, two eigenvalues of
the fundamental matrix are equal to one. For proofs and applications see references [4,5]
and [29,30].
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Figure 2. The description of the variation vector field, Yx, with respect to a reference trajectory with
vector field Xx and initial condition x0. Φx0 (t) denotes the Hamiltonian flow.

2.2. Geometrical Quantum Mechanics
2.2.1. Manifolds and Maps

Moving to the quantum world, the states of a system are described by complex
vectors, |ψ(s, t) >, with s to be the configuration coordinates and t the time instead of
the real coordinates and momenta (or velocities) in classical mechanics. The square of
the norm of state vectors is interpreted as a probability density, with ||ψ(s, t) > |2ds to be
the probability of finding the system in the coordinate intervals [s, s + ds] at time t. The
observable quantities, which are real-valued functions on phase space in classical mechanics,
are replaced by operators that designate linear transformations on the complex state vector
space, named Hilbert space of dimension n (Hn ∼= Cn) (Figure 3). Infinite-dimensional
Hilbert spaces for quantum systems also exist.

The time evolution of the quantum states is given by Schrödinger’s equation

∂

∂t
|ψ >= |ψ̇ >= − ı

ℏ Ĥ|ψ >= XĤ|ψ >, (66)

where ı =
√
−1, ℏ the reduced Heisenberg constant, Ĥ is the Hamiltonian operator of the

system that corresponds to its energy, and XĤ = − ı
ℏ Ĥ is the Hamiltonian–Schrödinger

vector field. To any observable O, we assign the operator Ô and the Schrödinger vector
field XÔ = − ı

ℏ Ô. Hence, we may consider the vectors |ψ > as vector fields, and thus, the
Hilbert space Hn to be also the tangent space T|ψ>Hn at the state |ψ >∈ Hn.

The cotangent space of the Hilbert space, T∗
|ψ>H

n, at state |ψ > is H∗n, with covectors
to be the complex conjugate functionals < ϕ| ∈ T∗

|ψ>H
n, and < ϕ|ψ > 7→ C.

< ϕ|ψ > (We use Dirac’s (bra, ket) notation.) denotes the Hermitian inner product,
(< ϕ|ψ >=< ψ|ϕ >∗).

Separating the real and imaginary parts of the Hermitian inner product, we write

< ϕ|ψ > = < ϕr − ıϕi|ψr + ıψi >

= [(ϕr, ψr) + (ϕi, ψi)] + ı[(ϕr, ψi)− (ϕi, ψr)]

=
n

∑
k=1

(ϕk
r ψk

r + ϕk
i ψk

i ) + ı
n

∑
k=1

(ϕk
r ψk

i − ϕk
i ψk

r )

= G(|ϕ >, |ψ >) + Ω(|ϕ >, |ψ >). (67)
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(ϕk
r , ψk

r ) are the real and (ϕk
i , ψk

i ) the imaginary components, respectively, of the kth compo-
nent of the complex vectors. G is a Riemannian metric, i.e., it is real, positive definite, and
strongly non-degenerate

G(|ϕ >, |ψ >) =

(
∑
k
(ϕk

r ψk
r + ϕk

i ψk
i )

)
. (68)

Ω is a symplectic (antisymmetric) closed 2−form, and strongly non-degenerate

Ω(|ϕ >, |ψ >) =

(
∑
k
(ϕk

r ψk
i − ϕk

i ψk
r )

)
. (69)

Both G, Ω act on the tangent bundle THn.

Inclusion Phase: λ
Hermitian Inner Pr.
(| >,| >)      < | >φ ψ φ ψ  
     

Tangent Bundle
(H nx H n )

Tangent Projective 
Hilbert  Space 

T₱ n(H  n+1)

Complex 
Hilbert Space 

(H n)

Extended Hilbert  
Space 

(H n+1  χ H * n+1) 

  

 
 

 

      

      

  

 

 
π|ψ₱>

π*| >ψπ| >ψ

  

C n(| (s,t)>)ψ

C n(| >,| >)ψ ψ   C n+1({  λ >}, {< |ψ φ λ*})

C n ( |ψ₱(s,t)>) 

GEOMETRIC  QUANTUM   MECHANICS

 h = (2ħ) -1 (qT,p)[hkl](q,pT)T
   = exp(iλ φ0)
< | > = ψ ψ 1

.

Interior Product
ixh ω = (ω Xh ,•) = dh(•)
Hamilton Equations
x = J ∂h (x)
Poisson Brackets
Ox  = ∂Ox/ ∂t + {O, h}x

.

.

Variational Equations
d(  δ xi)/dt = ∑j (d xi/d xj)x(t)  δ xj

                   = ∑jJ( ∂2h / ∂xi∂xj)  δ xj

.

.| > = -i/ψ ħ Ĥ| >ψ

< |= i/φ ħ <φ|Ĥ .

Figure 3. Manifolds and functions which determine the geometrical structures of a quantum system.
The states of the quantum system are the elements of a n–dimensional complex vector space (Hilbert
space Hn ∼= Cn) that includes the vectors |ψ >, their complex conjugate < ψ|, and linear transforma-
tions |ψ̇ >. Hermitian inner products, < ϕ|ψ >, are employed for Hilbert spaces. The tangent bundle
(Hn ×Hn) is mapped to the Extended Hilbert Space (Hn+1 ×Hn+1) by the inclusion of a complex
phase λ, the elements of the unitary group U(1), that produces the rays {|ψ >} := {λ|ψ >}. The
canonical projection, π|ψP>, projects the rays in Hn+1 onto the Projective Hilbert Space Pn(Hn+1),
the space where the physical states of the system live. Details are given in the text.

Since the physical interpretation of a quantum state is probabilistic, i.e., for a pure
state |ψ > (the states of an isolated system), the following normalization condition should
be satisfied

< ψ|ψ >= ||ψ > |2 = 1. (70)
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The observables, or measurable quantities of the system, O, are represented by self-
adjoint linear operators, Ô = Ô†, on Hn, and are thus vector fields. The expectation value
of an observable with operator Ô at the state |ψ > is the real-valued function

O =
< ψ(s, t)|Ô|ψ(s, t) >

< ψ|ψ >
=< ψ(s, t)|Ô|ψ(s, t) >=

1
2ℏG(|ψ >, Ô|ψ >). (71)

In particular, for the Hamiltonian operator of the system, we write

H =
< ψ|Ĥ|ψ >

< ψ|ψ >
=< ψ|Ĥ|ψ >=

1
2ℏG(|ψ >, Ĥ|ψ >). (72)

2.2.2. Projective Hilbert Space

For any nonzero factor λ ∈ U(1) ∼= C, such as λ = exp (ıϕ0), λ|ψ > yields the same
expectation value for the observable O as does |ψ >. λ are the elements of the unitary Lie
group, U(1). Thus, the inclusion of these phases to the initial Hilbert space results in the
extended Hilbert space of (n + 1)−dimension, Hn+1, which is isomorphic to Cn+1 with a
Hermitian inner product.

The set of vectors obtained by multiplying the state |ψ > with λ consists of a
1−dimensional subspace of Hn+1, called ray, which we symbolize as {|ψ >} ≡ {λ|ψ >}.
A ray is an equivalence class of vectors in Hn+1: two vectors are equivalent if and only if
one is a nonzero complex scalar multiple of the other. Also, adopting normalized vectors
(Equation (70)), the physical quantum states are elements of the complex Projective Hilbert
space, Pn(Hn+1) of n–dimension obtained by the canonical projection map π|ψP>

of the
extended Hilbert space Hn+1.

Hence, a quantum system may be described with what mathematicians call princi-
pal bundle

U(1) ∼= C ↪→ (Hn − {0})
π|ψP>−→ Pn(Hn+1), (73)

with state vectors the rays {|ψ >} in Hn+1, and physical states |ψP > in Pn(Hn+1) obtained
by the projection map π|ψP>

. The inverse projection is

π−1
|ψP>

=
{ eıϕ0 |ψ >

< ψ|ψ >

}
= {eıϕ0 |ψ >}. (74)

To recapitulate, the inclusion of the unitary group U(1) extends the n–dimensional
Hilbert space Hn to the Hn+1 extended Hilbert space. For normalized state vectors, the
extended Hilbert space is mapped to the unit sphere S2n+1 of dimension (2n+ 1) embedded
in the real Euclidean R2n+2 space. Finally, by the projection π|ψP>

we produce the Projective
Hilbert space isomorphic to the complex space Cn or to real of 2n−dimensional space, R2n,

U(1) ↪→ S2n+1
π|ψP>−→ Pn(Hn+1) ∼= Cn, S2n+1 : {|ψ >} ∈ Hn+1, < ψ|ψ >= 1. (75)

The tangent space of the projective space at point |ψP >, T|ψP>
(Pn(Hn+1)), is isomor-

phic to the kernel of the ray, {|ψ >}⊥, i.e.,

{|ψ >}⊥ = {|ϕ >∈ Hn+1; < ϕ|ψ >= 0}, (76)

and the push-forward of the projection map, π⊥
∗ ({|ψ >}), is a complex conjugate linear

isomorphism onto T|ψP>
(Pn(Hn+1))

π⊥
∗ : {|ψ >}⊥ → T|ψP>

(Pn(Hn+1)). (77)

An illustrative figure is shown in the article of Dorje C. Brody and Lane P. Hughston [7].
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For a normalized ray and its kernel, one can argue that [6–8]

< π⊥
∗ ϕ1|π⊥

∗ ϕ2 >T|ψP>(P
n(Hn+1))=< ϕ1|ϕ2 >Hn+1 , (|ϕ1 >, |ϕ2 >) ∈ {|ψ >}⊥, (78)

which gives a well-defined Hermitian inner product on T|ψP>
(Pn(Hn+1)). Moreover, we

deduce that the equation

ω|ψP>
(π⊥

∗ |ϕ1 >, π⊥
∗ |ϕ2 >) = ℑ < ϕ1|ϕ2 >= Ω{|ψ>}⊥(|ϕ1 >, |ϕ2 >), (79)

provides a strong symplectic form on Pn(Hn+1), and the equation

g|ψP>
(π⊥

∗ |ϕ1 >, π⊥
∗ |ϕ2 >) = ℜ < ϕ1|ϕ2 >= G{|ψ>}⊥(|ϕ1 >, |ϕ2 >), (80)

defines a strong Riemannian metric on Pn(Hn+1) called the Fubini–Study metric. ℜ and
ℑ are the real and imaginary parts of the Hermitian inner product, respectively, in the
extended complex Hilbert space Hn+1. Both ω|ψP>

and g|ψP>
are invariant under all

transformations U(1), for all unitary operators Û on Hn+1.

2.2.3. Realification of Hilbert Space and Kähler Manifolds

Expanding the vectors of Hilbert space in a n–dimensional basis, as well as its dual
basis, we write the n–coefficients ψk with the real (ψk

r ) and imaginary (ψk
i ) components.

Similarly, the covectors are written as (ψkr) for the real and (ψki) for the imaginary compo-
nents. Thus, working with the real vectors (ψr, ψi)

T we can describe quantum states in a
real vector space H2n

r
∼= Rn ×Rn ≡ R2n.

An almost complex structure is introduced in H2n
r by replacing the imaginary number

ı =
√
−1 with the symplectic matrix −J, Equation (15). We also derive

G(|ϕ >, |ψ >) = G(J|ϕ >, J|ψ >) (81)

Ω(|ϕ >, |ψ >) = Ω(J|ϕ >, J|ψ >) (82)

G(|ϕ >, |ψ >) = Ω(J|ϕ >, |ψ >) = −Ω(|ϕ >, J|ψ >) (83)

Ω(|ϕ >, |ψ >) = G(|ϕ >, J|ψ >). (84)

The triple (J, G, Ω) attributes a Kähler structure, and thus, H2n
r is a Kähler manifold [2].

By realification of the Hilbert space, we may express the Hamiltonian–Schrödinger
vector field as

XĤ =
J
ℏ Ĥ. (85)

Also, for an observable, O, the corresponding Schrödinger vector field is

XÔ |ψ >=
J
ℏ Ô|ψ > . (86)

For a time-independent Hamiltonian, Ĥ, we solve the Schrödinger equation by em-
ploying the unitary propagator Û (t) = exp(−ıĤt/ℏ), and write the Hamiltonian flow as

|ψ(s, t) >= Û (t)|ψ0 >= exp
[
− ı
ℏ tĤ

]
|ψ0 > . (87)

Û generates a one-parameter group of transformations on H2n
r , which preserve the metric

G and the symplectic 2−form Ω.
The triple (H2n

r , Ω, XĤ) is a Hamiltonian system with Hamiltonian function the Ex-
pectation value of Ĥ at the state |ψ >

H(t) =
< ψ(s, t)|Ĥ|ψ(s, t) >

< ψ|ψ >
=

1
2ℏ G(|ψ >, Ĥ|ψ >). (88)
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We can prove (see Appendix A.1) that for an observable Ô and normalized states
< ψ|ψ >= 1, the differential 1−form of the expectation value of Ô is the interior product of
the symplectic 2−form Ω(XÔ , |ϕ >) with the Schrödinger vector field XÔ (Equation (86))

dO(|ϕ >) = iXÔ
Ω(|ϕ >), (89)

where |ϕ > ∈ {|ψ >}⊥. The above equation is in accordance with Equation (31) of
classical mechanics. Hence, Hermitian operators Ô give rise to quadratic real-valued
functions O(|ψ >). The vector field XÔ generated by the expectation value function of the
operator Ô is a Schrödinger (Hamiltonian) field.

If (O1,O2) are the expectation value functions of two observables, the Poisson bracket
(Equation (39)) is defined by the equation (see Appendix A.2)

{O1,O2} = Ω(XÔ1
, XÔ2

) =< ψ| − ı
ℏ
[
Ô1, Ô2

]
|ψ > . (90)

[
Ô1, Ô2

]
is the commutator of the two operators (Ô1, Ô2).

The uncertainty (dispersion) of a quantum observable Ô in a normalized state |ψ >∈ Hn

is defined as [8,31]

(∆O)2(|ψ >) =< ψ|Ô2|ψ > −(< ψ|Ô|ψ >)2 =< ψ|Ô2|ψ > − O2. (91)

If |ψ > is an eigenvalue of the observable Ô, then, (∆Ô)(|ψ >) = 0.
For two quantum observables (Ô1, Ô2) on Hn the product of the uncertainties of

the expectation value functions (O1,O2) 7→ R, O1 =< ψ|Ô1|ψ >, O2 =< ψ|Ô2|ψ > is
written as

(∆O1)
2(∆O2)

2 =
[
< ψ|Ô2

1 |ψ > −(< ψ|Ô1|ψ >)2
][
< ψ|Ô2

2 |ψ > −(< ψ|Ô2|ψ >)2
]

=
[
< ψ|Ô2

1 |ψ > − O2
1

][
< ψ|Ô2

2 |ψ > − O2
2

]
, (92)

and the covariance or correlation function is expressed as

C(O1,O2) =
1
2
(
< ψ|(Ô1Ô2 + Ô2Ô1)|ψ >

)
−O1O2

=
1
2
(
< ψ|[Ô1, Ô2]+|ψ >

)
−O1O2

=
ℏ
2

G(XÔ1
, XÔ2

)−O1O2, (93)

where the anticommutator is denoted by [Ô1, Ô2]+ = (Ô1Ô2 + Ô2Ô1). It is proved that

< ψ|[Ô1, Ô2]+)|ψ >= ℏG(XÔ1
, XÔ2

). (94)

The Schrödinger vector fields are expressed as usually

XÔ1
=

∂O1

∂p
∂

∂q
− ∂O1

∂q
∂

∂p

XÔ2
=

∂O2

∂p
∂

∂q
− ∂O2

∂q
∂

∂p
. (95)

If we use Equation (90), then we can express the commutator

< ψ|[Ô1, Ô2]|ψ >= ıℏΩ(XÔ1
, XÔ2

). (96)



Entropy 2024, 26, 399 17 of 45

Schwartz inequality implies

(∆O1)
2(∆O2)

2 ≥
[
< ψ|(Ô1|ψ > −O1)(< ψ|Ô2|ψ > −O2)

]2
=

∣∣∣∣12 < ψ|
[
(Ô1 −O1), (Ô2 −O2)

]
|ψ >

∣∣∣∣2 +∣∣∣∣12 < ψ|[(Ô1 −O1), (Ô2 −O2)+|ψ >

∣∣∣∣2. (97)

Since

< ψ|
[
(Ô1 −O1), (Ô2 −O2)

]
|ψ >=< ψ|[Ô1, Ô2]|ψ >= ıℏΩ(XÔ1

, XÔ2
),

and

< ψ|[Ô1 −O1), Ô2 −O2]+|ψ > = < ψ|[Ô1, Ô2]+|ψ > −2O1O2

= ℏG(XÔ1
, XÔ2

)− 2O1O2, (98)

the Robertson-Schrödinger uncertainty relation is written as (Notice that to be consistent
with the literature in discussing the covariance of two observables, we introduce the factor
1/2 in the commutator and anticommutator.)

(∆O1)
2(∆O2)

2 ≥ [C(O1,O2)]
2 +

∣∣∣∣ 1
2ı

< ψ|[Ô1, Ô2]|ψ >]

∣∣∣∣2 (99)

=

[
ℏ
2

G(XÔ1
, XÔ2

)−O1O2

]2

+

[
ℏ
2

Ω(XÔ1
, XÔ2

)

]2
. (100)

2.2.4. Equations of Motion

We have seen that in the Extended Hilbert space, the vector states are the rays {|ψ >},
which for simplicity we symbolize as |ψ >. The projection of the Extended Hilbert space
on the n–dimensional tangent Projective Hilbert phase makes the solutions of the time-
dependent Schrödinger equation to be equivalent to the solutions of Hamilton’s equations
in the Projective Hilbert space, with the expectation value of the Hamiltonian operator
playing the role of Hamiltonian function. Furthermore, the phase space is a Kähler manifold,
both in the extended Hilbert space as well as in the Projective Hilbert space.

If we use as basis set the coordinate basis |s > the representation of the state |ψ > is

|ψ >=
∫ ∞

−∞
ψ(s)|s > ds. (101)

The coefficient ψ(s) is called wavefunction and it is a complex function, ψ(s) ∈ Cn, which
we assume normalized to one

< ψ|ψ >=< ψ|
(∫ ∞

−∞
|s >< s|ds

)
|ψ >=

∫ ∞

−∞
ψ(s)∗ψ(s)ds =

∫ ∞

−∞
|ψ(s)|2ds = 1. (102)

With an orthonormal coordinate basis, the completeness relation is written as∫ ∞

−∞
|s >< s|ds = Î. (103)
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In the following, we adopt the coordinate representation of the state vectors using
wavefunctions in the Schrödinger picture, ψ(s, t). We expand |ψ(s, t) > of a dynamical
system in an arbitrary orthonormal basis set, |χk(s) >, k = 1, . . . , n

|ψ(s, t) >=
n

∑
k=1

ck(t)|χk(s) > . (104)

In this expansion, the basis functions |χk > are time-independent, whereas the coefficients
ck depend on time. |ψ > are solutions of the Schrödinger equation evolving in the extended
Hilbert space

ıℏ∂|ψ(s, t) >
∂t

= Ĥ|ψ(s, t) >, (105)

and their complex conjugate solutions of the equation

−ıℏ∂ < ψ(s, t)|
∂t

=< ψ(s, t)|Ĥ. (106)

We assume |ψ > to be normalized, < ψ(s, t)|ψ(s, t) >= 1, at any time. Then, by substituting
Equation (104) in the expectation value of the Hamiltonian, H, we obtain

H =< ψ|Ĥ|ψ > =
∫ ∞

−∞
ψ∗Ĥψds

= ∑
k

∑
l

c∗k cl

∫ ∞

−∞
χ∗

kĤχlds. (107)

The Schrödinger equation in the extended Hilbert space is mapped into Hamilton’s
equations in the Projective Hilbert space Pn(Hn+1) with Hamiltonian function the expecta-
tion value of the Hamiltonian operator Ĥ. For simplicity, we again denote the quantum
states |ψP > in the Projective Hilbert space with |ψ >. Then, we differentiate Equation (107)
with respect to c∗k

∂H
∂c∗k

= ∑
l

cl < χk|Ĥ|χl >

= < χk|Ĥ|ψ >

= ıℏdck
dt

, k = 1, . . . , n. (108)

Similarly, we take

∂H
∂cl

= ∑
k

c∗k < χk|Ĥ|χl >

= < ψ|Ĥ|χl >

= −ıℏ
dc∗l
dt

, l = 1, . . . , n. (109)

We define the complex variables (Qk, Pk) by introducing the real functions qk(t) and
pk(t) to correspond to real and imaginary parts of the complex variables, respectively,

Qk(t) = ck(t) =
1√
2

[
qk(t) + ıpk(t)

]
Pk(t) = ıℏc∗k (t) =

ıℏ√
2

[
qk(t)− ıpk(t)

]
=

ℏ√
2

[
pk(t) + ıqk(t)

]
. (110)
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Equations (108) and (109) are the quantum equivalent of Hamilton’s equations of motion

Q̇k =
∂H(Q, P)

∂Pk

Ṗk = −∂H(Q, P)
∂Qk

(111)

H(Q, P) = − ı
ℏ

[
∑
k

∑
l

Pk

(∫ ∞

−∞
χ∗

kĤχldx
)

Ql

]

= − ı
ℏ ∑

k
∑

l
PkhklQl =

(
−ı ∑

k
∑

l
PkwklQl

)
= − ı

ℏ ∑
k

PkQ̇k. (112)

Hence,
H(Q, P) = − ı

ℏPQ̇. (113)

wkl = hkl/ℏ are the transition frequencies. It is also worth noting that the quantum
Hamiltonian is similar to that of a harmonic oscillator after complexification (Equation (56)).

We can take the inverse of Equations (110) and write the real functions q(t) and p(t) as

qk(t) =
1√
2
[ck(t) + c∗k (t)] =

1√
2
[Qk(t) +

1
ıℏPk(t)]

pk(t) =
−ı√

2
[ck(t)− c∗k (t)] =

−ı√
2
[Qk(t)−

1
ıℏPk(t)]

=
1√
2

[
1
ℏPk(t)− ıQk(t)

]
. (114)

Adopting the realification of the complex Projective Hilbert space, we may transform
Hamilton’s equations to

h(q, p) =
1

2ℏ ∑
k

∑
l
(qk, pk)hkl

(
ql

pl

)
(115)

q̇k =
1
ℏ

∂h(q, p)
∂pk

ṗk = − 1
ℏ

∂h(q, p)
∂qk , k = 1, . . . , n. (116)

or (
q̇
ṗ

)
=

J
ℏ

 ∂h(q,p)
∂q

∂h(q,p)
∂p

. (117)

hkl is the representation of Hamiltonian operator in the basis set |χ(s) >, and thus, a
Hermitian matrix (The Hamiltonian operator is Hermitian, and its representation in a basis
results in a Hermitian matrix, hkl = h∗lk).

The Hamiltonian vector field is extracted from an equation similar to that of classical
mechanics (Equation (31)). Hence, in the realified phase space with coordinates (q, p) the
canonical Poincaré 1−form

θh =
1

2ℏ ∑
k
(pkdqk − qkdpk), (118)



Entropy 2024, 26, 399 20 of 45

provides the symplectic 2−form

ωh = −dθh =
1
ℏ ∑

k
(dqk ∧ dpk). (119)

Then, the interior product (contraction) of ωh gives

iXh ωh = ωh(Xh, •) = dh(•) (120)

and the Hamiltonian vector field is extracted as

Xh =
1
ℏ ∑

k

[(
∂h
∂pk

)
∂

∂qk −
(

∂h
∂qk

)
∂

∂pk

]
. (121)

We define the length of a curve C in the Projective Hilbert space by introducing the
Riemannian metric g(|ψ̇ >, |ψ̇ >) as

L(C) =
∫ tmax

0

√
g(|ψ̇ >, |ψ̇ >) dt =

∫ tmax

0

√
< ψ̇|ψ̇ > dt

=
∫ tmax

0

√
∑
k

ċ∗k ċk dt =
∫ tmax

0

√√√√ 1
ıℏ

(
∑
k

ṖkQ̇k

)
dt

=
1
2

∫ tmax

0

√
∑
k
[(q̇k)2 + ( ṗk)2] dt

=
1
2

∫ tmax

0

√
∑
k
(dqk ⊗ dqk + dpk ⊗ dpk)(|ψ̇ >, |ψ̇ >) dt. (122)

For real wavefunction, the length is the Euclidean distance

L(C) = 1
2

∫ tmax

0

√
∑
k
(q̇k)2 dt. (123)

2.2.5. Quantum Systems as Totally Integrable Hamiltonian Systems

It has been shown that geometrical quantum mechanics naturally describes a com-
pletely integrable system, as follows. Let Hn+1 be a complex separable Hilbert space
of dimension n + 1, and view the triple (Pn(Hn+1), ωh, Xh) as a Hamiltonian dynamical
system on the phase space Pn(Hn+1), equipped with the symplectic 2−form ωh. Let Ĥ be
the self-adjoint Hamiltonian operator for the system, and assume that each eigenspace of
Ĥ is one-dimensional (non-degenerate). Choose an orthonormal basis |χ0 >, · · · , |χn > for
Hn+1 consisting of eigenvectors of Ĥ. Define the projection operators P̂0, P̂1, · · · , P̂n by

P̂k = |χk >< χk|, P̂k(|ψ >) =< χk|ψ > |χk >= ψk|χk >, (124)

where we have used Equation (104).
Without loss of generality, we set the lowest eigenvalue (w0) to be 0 so that we can

expand the Hamiltonian operator as

Ĥ =
n

∑
k=1

wkP̂k. (125)
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Observe that the projectors {P̂k} form a mutually commuting set of n operators on Hn+1,
and we can define the corresponding expectation value functions {Pk} in the Projective
Hilbert space Pn(Hn+1) as

Pk : Pn(H) → R, Pk({|ψ >}) = < ψ|P̂k|ψ >

< ψ|ψ >
=< ψ|P̂k|ψ >= |ψk|2. (126)

Hence,

< ψ|Ĥn+1|ψ >=
n

∑
k=1

wk|ψk|2 =
n

∑
k=1

wk(qk2 + p2
k). (127)

(qk, pk) are the real and imaginary parts of the wavefunction. Thus, the Hamiltonian in
the projective Hilbert space resembles that of a sum of n harmonic oscillators in scaled
canonical coordinates (Equation (55)).

Therefore, we may conclude that there are n constants of motion, Pk, and the trajecto-
ries lie on n–dimensional tori (Lagrangian tori).

3. Hamiltonian Chemical Thermodynamics
3.1. Manifolds and Maps

To establish an analogous theoretical framework for classical thermodynamics to
that of Hamiltonian classical mechanics, we consider the macroscopic properties of the
system to consist of the configuration manifold (Figure 4). For a typical chemical sys-
tem we usually take the extensive physical properties of entropy (S), internal energy
(U), volume (V), and the number of molecules (or moles) (N1, . . . , NM) of M chemi-
cal species to consist of the coordinates of the extended configuration manifold Qn+1,
where n = 2 + M. If we attribute entropy to be a homogeneous first-degree function of
q = (q1, q2, . . . , qn)T ≡ (U, V, N1, . . . , NM)T ∈ Qn+1, then according to Euler’s theorem for
homogeneous functions we can write

S(U, V, N) =

(
∂S
∂U

)
V,N

U +

(
∂S
∂V

)
U,N

V +
M

∑
i=1

(
∂S

∂Ni

)
U,V,N j ̸=i

Ni, j = 1, . . . , M

=
1
T

U +
P
T

V −
M

∑
i=1

µi
T

Ni = γ1U + γ2V +
n

∑
k=3

γk Nk−2, (128)

where we have introduced the conjugate intensive variables {γi} as the partial derivatives
of entropy

γ1 =
∂S
∂U

=
1
T

, γ2 =
∂S
∂V

=
P
T

, γk =
∂S

∂Nk−2 = −µk−2
T

, k = 3, . . . , n.

T is the absolute temperature, P the pressure, and µ1, . . . , µM the chemical potentials of M
compounds.

(q, γ) and entropy comprise of a (2n + 1)D−coordinate system for the contact man-
ifold (C2n+1), where the physical states of the system live. The extended configuration
manifold and the contact manifold are generally nonlinear, and the maps (ϕQ, UQ) and
(ϕC, UC) determine local coordinate systems in Euclidean space.

The total differential of S is Gibbs’s fundamental equation that describes the physical
thermodynamic submanifold (PTS) of a thermodynamic system

dS =
1
T

dU +
P
T

dV −
M

∑
i=1

µi
T

dNi. (129)
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If we assign the entropy S to coordinate q0, we can also write

dq0 =
n

∑
k=1

γk(q)dqk. (130)

From Equations (129) and (130) we deduce that the 1−form θc satisfies

θc = dS − 1
T

dU − P
T

dV +
M

∑
i=1

µi
T

dNi = dq0 −
n

∑
k=1

γk(q)dqk = 0. (131)

This equation expresses the physical state submanifold of a thermodynamic system, named
Legendrian submanifold, and it is what we represent with the equation of states [32].

Inclusion gauge: PS

 π -1:(S,q, )     (S,q,γ PS, p)
:π  T*Q n+1        ₱(T*Q n+1)

 

He = p q + PS S = 0
R2n+2 x R2n+2(S,q,PS,p,S,q,PS,p)

Rn+1 x Rn(S,q,γ)

Contact Space
(C2n+1 ~  ₱(T*Qn+1))

 = γ ∂S/ ∂q

   
Tangent Bundle of  
   Extended Phase
   Space (TT*Q n+1)

Extended 
Configuration

Manifold (Q n+1)

Extended Phase 
Space 

(T*Q n+1 )

 
 

 

R

        

πT*Q 
n+1

π*Q 
n+1ΠQ n+1

S(q)
 Rn+1x Rn+1(S,q,PS,p)

Rn+1(S,q)

( *,U*)φ(φC, UC)

(φQ,UQ)

NON-EQUILIBRIUM   THERMODYNAMICS

   p  = - PS γ
   He = He(Q  , λ P)λ
   PS = -1

Interior Product
iXHe  = (ω ω XHe ,•) = dHe(•)
Hamilton Equations
x = J ∂He (x)
Poisson Brackets
Ox  = ∂Ox/ ∂t + {O, He}x

.

.
. . .

.

. .

Variational Equations
d(  δ xi)/dt = ∑j (d xi/d xj)x(t)  δ xj

.
Option Button

Figure 4. Manifolds and functions which determine the geometrical structures of a thermodynamical
system with n + 1 coordinates. S denotes the entropy and q = (q1, . . . , qn)T are the coordinates of
n–extensive properties. γ are the partial derivatives of entropy that correspond to the intensive
properties of the system. With the inclusion of gauge PS, the conjugate momenta p are defined with
respect to which homogeneous Hamiltonians, He, of first-degree are determined. Details are given in
the text.

In a more formal wording, in the contact space C2n+1 the locally defined 1−form θc
that satisfies the condition, i.e., there is the volume form

θc ∧ (dθc)
n ̸= 0,

ascertains the nD−Legendrian submanifold Ln
c of C2n+1 by requiring θc = 0. In other

words, the kernel of θc provides the maximal dimension hyperplanes tangent to Ln
c .

To construct a Hamiltonian system, we need to define the canonical conjugate mo-
menta. Following Balian and Valentine [18], we denote the conjugate momentum of entropy
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with PS, and we take it as a non-vanishing free parameter or a gauge variable. Then, the
canonical conjugate momenta to the other coordinates of Qn+1 are defined as

p1 = −PSγ1, p2 = −PSγ2, p3 = −PSγ3, · · · , pn = −PSγn. (132)

Hence, {pi} act as new variables, which replace the physical intensive variables {γi}. We
write PS = p0 and Equation (131) determines the Poincaré 1−form

θe = p0dq0 +
n

∑
k=1

pkdqk =
n

∑
k=0

pkdqk = 0, (133)

which produces the symplectic 2−form

ωe = −dθe =
n

∑
k=0

dqk ∧ dpk = 0. (134)

This equation sets the Thermodynamic Extended Physical State Submanifold (TEPSS) in
the extended phase space, T∗Qn+1 ≡ P2n+2, named Lagrangian submanifold.

In a more formal wording, for an even-dimensional phase space, P2n+2, the symplectic
2−form ωe (see also Equation (29)), which satisfies the condition (volume form)

(dθe)
n+1 ̸= 0,

determines the (n + 1)D−Lagrangian submanifold Ln+1
p in P2n+2 by requiring ωe = 0.

The thermodynamic contact space C2n+1 is the projective space of thermodynamic
extended phase space P2n+2 (see Appendix A.4.1)

π : T∗Qn+1 → P2n+1(T∗Qn+1), (135)

where π is the projection map.
It is proved that the submanifold Ln

c ⊂ P2n+1(T∗Qn+1) is a Legendrian submanifold,
if and only if

Ln+1
p := π−1(Ln

c ) ⊂ T∗Qn+1

is a homogeneous in momenta Lagrangian submanifold (see Table A1). This means that
(dθe = 0) as well as

(Q, P) ∈ Ln+1
p =⇒ (Q, λP) ∈ Ln+1

p , for every λ ̸= 0. (136)

We say that all Q = (q0, q), P = (p0, p), which satisfy Equation (136), belong to the
ray {Q, P}. Then, it is valid θe = 0 for every vector field tangent to Ln+1

p . Also, every
homogeneous Lagrangian submanifold originates from a Legendrian submanifold of the
form π−1(Ln

c ). We can also state that a submanifold is homogeneous if its generating
function is homogeneous.

In the entropy representation, the n extensive independent variables (q1, . . . , qn) to-
gether with the p0 parameterize the Lagrangian submanifold. If the entropy S(q1, . . . , qn)
is the generating function of the Legendrian submanifold, then for the Lagrangian sub-
manifold the generating function is −p0S(q1, . . . , qn). This is a property of homogeneous
functions of first-degree. Similarly, in energy representation we take −p1U(q0, q2, . . . , qn)
as generating function for the Lagrangian submanifold [29]. With the generating function
in the entropy representation, we extract the remaining n + 1 variables as

q0 = S(q1, . . . , qn), pi = −p0
∂S
∂qi = −p0γi, i = 1, . . . , n. (137)

The extended Hamiltonian He is a function on phase space to real numbers, whereas
the tangent bundle of phase space, TT∗Qn+1, is described by coordinates and momenta,
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x = (Q, PT)T , as well as their time derivatives. The extended Hamiltonian is a homoge-
neous function of first-degree in momenta, i.e.,

λHe = He(Q, λP). (138)

πT∗Qn+1 is the projection map of the tangent bundle of phase space to phase space.
In Appendix A.4, we summarize in Tables A2 and A3 several formulae of Hamiltonian

thermodynamics in entropy- and energy-representations, respectively.

3.2. Equations of Motion

The Hamiltonian function He(Q, P) acting in the extended phase space is a homo-
geneous function of first-degree in momenta [18] and according to Euler’s theorem for
homogeneous functions of first-degree, we can write

He =
n

∑
i=0

pi
∂He

∂pi
. (139)

For a simple thermodynamic system, the extended Hamiltonian is He = pq̇ + PSṠ. To
extract the physical states, we impose the constrain PS = −1, which implies He = 0 on
thermodynamic extended physical state submanifold, also written as [29]

He =
n

∑
i=1

(
pi + p0

∂S
∂qi

)
q̇i = pq̇ + PSṠ = 0. (140)

We point out that a Hamiltonian system is the triple (P2n+2, ωe, XHe), where XHe is
the Hamiltonian vector field defined on the tangent bundle of phase space, and ωe a skew-
symmetric, non-degenerate, closed differential 2−form. Then, we can use the machinery of
geometrical classical mechanics as was developed in Section 2.1 to write down equations
for equilibrium and non-equilibrium processes. Thus, the Hamiltonian vector field can be
extracted from the equation

iXHe
ωe(XHe , •) = dHe(•), (141)

given the Hamiltonian function He on the phase space P2n+2. This equation provides the
Hamiltonian vector field XHe

XHe =
n

∑
k=0

(
∂He

∂pk

∂

∂qk − ∂He

∂qk
∂

∂pk

)T
. (142)

From the definition of the extended Poincaré 1−form (Equation (133)) we prove that

θe(XHe) = He, (143)

for homogeneous in momenta of first-degree Hamiltonian functions.
Hence, Hamilton’s equations take their usual form (Equation (33))

q̇i =
∂He

∂pi
, ṗi = −∂He

∂qi , i = 0, . . . , n. (144)

Moreover, (Q, P) is a canonical coordinate system in the corresponding phase space,
and thus, satisfy the Poisson brackets Equation (34)

{qi, qj} = {pi, pj} = 0, (145)

{qi, pj} = δi
j, (146)

q̇i = {qi,He}, ṗj = {pj,He}. (147)
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3.2.1. Contact Equations of Motion

Since the Poisson bracket (Equation (34)) is invariant under gauge (canonical) transfor-
mations, we obtain

He(q0, q1, . . . , qn, p0, p1, . . . , pn) = −p0F(q0, q1, . . . , qn, γ1, . . . , γn), (148)

where F is a generating function and

γi = − pi
p0

, i = 1, . . . , n, (149)

we extract the contact vector field (see Appendix A.3)

q̇0 = X0
c = −F +

n

∑
i=1

γi
∂F
∂γi

(150)

q̇i = Xi
c =

∂F
∂γi

, i = 1, . . . , n (151)

γ̇i = Xi
c = −

(
∂F
∂qi + γi

∂F
∂q0

)
, i = 1, . . . , n. (152)

For a generating function F, which is independent of q0 variable, as well as a homogeneous
function of first-degree in momenta, the contact equations of motion are reduced to those
of Hamilton’s equations in P2n phase space, i.e.,

q̇0 = 0, q̇i =
∂F
∂γi

, γ̇i = − ∂F
∂qi , i = 1, . . . , n. (153)

3.2.2. Riemannian Metric on Lagrangian Submanifold

We can define a Riemannian metric [28] on a Lagrangian (n + 1)D−submanifold,
Ln+1

p ⊂ P2n+2, with generating function −p0S(q1, . . . , qn). In canonical coordinates (q, p) it
takes the form (see Table A2)

RS(q, p) =
1
p0

n

∑
i=0

dqidpi = −
n

∑
i=1

dqidγi = −
n

∑
i=1

n

∑
j=1

∂2S
∂qi∂qj dqidqj. (154)

RS is the metric introduced by Ruppeiner [33,34] and it is usually called Ruppeiner metric.
Weinhold [35,36] has extracted a metric, RU , in the energy representation of thermo-

dynamics with generating function −p1U(q0, q2, . . . , qn) [29] (see Table A3).

3.3. Embedding Systems in Homogeneous Media

We examine the case of a simple system with internal energy U and constant volume
and number of particles. The embedded mechanical system is described by the Hamiltonian
Hd(σ, π). Here, we consider the augmented system, system plus environment, isolated
with total energy E constant, Ė = 0

E = U + Hd(σ, π). (155)

The entropy of the thermodynamic system is given by the equation

SU = SU(U) = SU(E − Hd(σ, π)) = S(E, σ, π), (156)

i.e., a function of n = 2w + 1 independent variables. In the extended thermodynamic phase
space, we include entropy as an independent variable as well

q0 = S, q1 = E, q2 = σ1, . . . , qw+1 = σw, qw+2 = π1, . . . , q2w+1 = πw.
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The canonical conjugate momenta are p0 = pS, p1 = pE and pi = pσi−1 , i = 2, . . . , w+1,
pj = pπj−(w+1) , j = w + 2, . . . , 2w + 1. Hence, the dimension of thermodynamic extended
phase space is (2n + 2 = 4w + 4)D.

In the entropy representation, we take as the generating function of the Legendrian
submanifold in the thermodynamic contact space the entropy S(q1, . . . , qn). Hence, the
generating function of the corresponding Lagrangian submanifold in the extended phase
space is −p0S(q1, . . . , qn). For p0 = −1 the canonical momenta become

pi =
∂S
∂qi = γi, i = 1, . . . , n. (157)

Therefore, we have attained the important conclusion that the thermodynamic ex-
tended state manifold in thermodynamic extended phase space is the Lagrangian submani-
fold, Ln+1

p ,

Ln+1
p =

{
x =

(
q, pT

)T
∈ P2n+2

}
q0 = S(q1, q2, . . . , qn) = S(E, σ1, . . . , σw, π1, . . . , πw) (158)

p1 = −p0γ1 = −p0
∂S
∂E

(159)

pk = −p0γk = −p0
∂S

∂σk−1 , k = 2, . . . , w + 1 (160)

pl = −p0γl = −p0
∂S

∂πl−(w+1)
, l = w + 2, . . . , 2w + 1. (161)

From Equation (140) the Hamiltonian function in the extended phase space is written as

He =
n

∑
i=1

(
pi + p0

∂S
∂qi

)
q̇i =

(
p1 + p0

∂S
∂E

)
Ė

+

(
p2 + p0

∂S
∂σ1

)
σ̇1 + · · ·+

(
pw+1 + p0

∂S
∂σw

)
σ̇w

+

(
pw+2 + p0

∂S
∂π1

)
π̇1 + · · ·+

(
p2w+1 + p0

∂S
∂πw

)
π̇w (162)

Hamilton’s equations are then determined

q̇0 =
∂He

∂p0
=

n

∑
i=1

(
∂S
∂qi

)
q̇i (163)

q̇1 =
∂He

∂p1
= Ė = 0 (164)

q̇j =
∂He

∂pj
= ẋj−1

d , j = 2, . . . , n, (165)

ṗ0 = −∂He

∂q0 = 0 (166)

ṗ1 = −∂He

∂q1 = −
n

∑
i=1

p0

(
∂2S

∂q1∂qi

)
q̇i −

n

∑
i=1

(
pi + p0

∂S
∂qi

)
∂q̇i

∂q1 (167)

ṗj = −∂He

∂qj = −
n

∑
i=1

p0

(
∂2S

∂qj∂qi

)
q̇i −

n

∑
i=1

(
pi + p0

∂S
∂qi

)
∂q̇i

∂qj , j = 2, . . . , n, (168)

where the velocities ẋj−1
d are determined from the definition of the embedded system.
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3.4. Chemical Kinetics

The kinetics of chemical reaction networks can also be formulated using a geometric
Hamiltonian theory as an embedded system. However, classical chemical kinetics is
better studied by introducing temperature, pressure, and the elementary chemical reaction
coordinates (ξ) as the independent variables.

3.4.1. Thermodynamics of Chemical Reactions

A general chemical reaction with r−reactant compounds and p−product compounds
can be expressed by the formula

0 =
M

∑
j=1

νj Jj, (169)

where M = r + p. The stoichiometric integers νj, j = 1, . . . , r are negative for the reactant
molecules

{
Jj
}
= (A1, . . . , Ar) and positive νj, j = r + 1, . . . , M, for the product molecules,{

Jj
}
= (B1, . . . , Bp).
For K elementary chemical reactions, we must employ K independent reaction coor-

dinates ξ1, . . . , ξK. Then, the time variation of the number of molecules is related to the
velocities of reactions by the equation

Ṅ1

Ṅ2

. . .
ṄM

 =


ν11 ν12 . . . ν1K
ν21 ν22 . . . ν2K
. . . . . . . . . . . .

νM1 νM2 . . . νMK




ξ̇1

ξ̇2

. . .
ξ̇K

, (170)

or simply as
Ṅ = Cξ̇, (171)

where N = (N1, . . . , NM)T ≡ (NA1 , . . . , NAr , NB1 , . . . , NBp)
T and C = [νjk], j = 1, . . . , M,

k = 1, . . . , K, being the stoichiometric matrix for the K elementary reactions.
The reaction Gibbs free energy ∆rG is defined by introducing the chemical potentials

of the
{

Jj
}

compounds

µj =

(
∂G
∂N j

)
T,P,Ni ̸=j

, i, j = 1, . . . , M, (172)

where G(T, P, N1, . . . , NM) is Gibbs free energy, T the temperature and P the pressure.
From Gibbs’s fundamental equation

dG(T, P, N) = −SdT + VdP +
M

∑
j=1

µjdN j, (173)

and for a general chemical reaction at constant temperature and pressure, Equation (169),
we have

dG =
M

∑
j=1

µj(T, P)dN j =
M

∑
j=1

µj(T, P)
(
νjdξ

)
. (174)

Therefore, the above equation becomes(
dG
dξ

)
=

M

∑
j=1

νjµj(T, P). (175)

Usually, the derivative of Gibbs free energy with the reaction coordinate is denoted as
∆rGm = ∑M

j=1 νjµj(T, P) and is called molar reaction Gibbs free energy.
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For K elementary reactions, we write

ξ̇k = R f k − Rbk, k = 1, . . . , K, (176)

employing the rates of forward (R f k) and backward (Rbk) reactions, as expressed by the
law of Mass Action [37–40].

Also, for an elementary chemical reaction De Donder [41,42] introduced the quantity
of Affinity

A = −∆rGm = −
M

∑
j=1

νjµj, (177)

which can be written as [30]

Aξk = RT ln

(
R f k(ξ

k)

Rbk(ξk)

)
. (178)

3.4.2. Thermodynamic Hamiltonian in Massieu-Gibbs Representation

Chemical reactions are better studied at constant temperature and pressure. Hence, we
first transform the entropy from a function of the internal energy and volume to a function
in temperature and pressure by a Legendre transformation

L : (S, U, V, N)T → (S, T, P, N)T , (179)

LS
[

1
T

,
P
T

]
≡ S = S − 1

T
U − P

T
V = −G(T, P, N)

T
. (180)

S is Massieu function related to Gibbs free energy G(T, P, N) = U − TS + PV [19].
The above Legendre transformation is a diffeomorphism on the Legendrian and

Lagrangian submanifolds. This means that we can define Affinity with the chemical
potentials µj of M chemical compounds (reactants and products) given by Gibbs free energy

µj =

(
∂G
∂N j

)
T,P,Ni ̸=j

, i, j = 1, . . . , M. (181)

The rate of entropy production for the kth-irreversible reaction is written with the molar
reaction Gibbs free energy (∆rGm,k)

dSk
dt

= −
∆rGm,k

T
dξk
dt

=
Aξk

T
ξ̇k, (182)

where Aξk is the Affinity of kth-reaction and ξk is the reaction coordinate that describes the
progress (extent) of the reaction. The total entropy rate for K reactions becomes

dS
dt

=
K

∑
k=1

Aξk

T
dξk

dt
≥ 0, (183)

or employing Equations (176) and (178), as

dS
dt

= R
K

∑
k=1

[
R f k(t)− Rbk(t)

]
ln

(
R f k(t)
Rbk(t)

)
, (184)

where R is the ideal gas constant. Obviously, for reactions at equilibrium in a closed
thermodynamic system, we have R f k = Rbk, which means that dS

dt = 0, and thus, the
total entropy is conserved. The inequality in Equation (183), which is consistent with the
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second thermodynamic law, holds because ln is a monotonous function in the domain of
its definition.

The thermodynamic extended state manifold in thermodynamic extended phase space
is a Lagrangian submanifold, Ln+1

p embedding in P2n+2 phase space with n = 2 + M. The
generating function is −p0S = p0G(T, P, N)/T

Ln+1
p =

{
(q, p)T ∈ P2n+2

}
(185)

q0 = S(T, P, N1, . . . , NM) (186)

p1 = −p0
∂S
∂T

p2 = −p0
∂S
∂P

pk = −p0
∂S

∂Nk−2 , k = 3, . . . , n. (187)

p0 is the conjugate momentum of S.
The Hamiltonian function in the extended cotangent bundle (phase space) is written as

HS
e =

〈(
p + p0

∂S
∂q

)∣∣∣∣∣q̇
〉

n

=
n

∑
i=1

(
pi + p0

∂S
∂qi

)
q̇i

=

(
p1 + p0

∂S
∂T

)
Ṫ +

(
p2 + p0

∂S
∂P

)
Ṗ +(

p3 − p0
µ1

T

)
Ṅ1 + · · ·+

(
pn − p0

µM
T

)
ṄM. (188)

At constant temperature and pressure and using concentrations instead of the num-
ber of molecules for reactants and products, (x1, . . . , xM)T with conjugate momenta also
denoted by (p1, . . . , pM), we take

HS
e =

(
p1 − p0

µ1

T

)
ẋ1 + · · ·+

(
pM − p0

µM
T

)
ẋM. (189)

For K elementary reactions in the reaction coordinate space, ξ = (ξ1, . . . , ξK)T , and
under the transformation of stoichiometric matrix C : ξ → x we have

ẋ = Cξ̇, pξ = pC, Aξ = µC, (190)

and the Hamiltonian (Equation (189)) becomes

HS
ξ =

K

∑
k=1

(
pξk +

p0

T
Aξk

)
ξ̇k. (191)

Then, Hamilton’s equations are written

Ṡ =
∂HS

ξ

∂p0
=

K

∑
k=1

Aξk

T
ξ̇k = R

K

∑
k=1

[
R f k(ξ)− Rbk(ξ)

]
ln

(
R f k(ξ)

Rbk(ξ)

)

ξ̇k =
∂HS

ξ

∂pξk
= R f k(ξ)− Rbk(ξ), k = 1, . . . , K

ṗ0 = −
∂HS

ξ

∂S = 0

ṗξ i = −
∂HS

ξ

∂ξ i = − p0

T

K

∑
k=1

(
∂Aξk

∂ξ i

)
ξ̇k −

K

∑
k=1

(
pξk +

p0

T
Aξk

)∂ξ̇k

∂ξ i , i = 1, . . . , K. (192)
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We can also define a metric on the Lagrangian submanifold in Massieu-Gibbs repre-
sentation, and this is given as

dl2 =
1
p0

K

∑
i=1

dpξ i dξ i = −
K

∑
i=1

K

∑
k=1

∂2S
∂ξ i∂ξk dξ idξk =

1
T

K

∑
i=1

K

∑
k=1

∂2G
∂ξ i∂ξk dξ idξk. (193)

Therefore, to measure the distance between initial and equilibrium states, we compute
the length of a path on the thermodynamic extended state manifold

L(tmax) =
∫ tmax

0

√√√√−
K

∑
i=1

ṗξ i ξ̇ i dt, (194)

with tmax to be the maximum integration time and substituting p0 = −1. The distance
of two states has been utilized to define a better low bound of the entropy production or
dissipated work (availability) than zero for finite time irreversible processes [43,44].

In Appendix A.5, an example of two elementary consecutive chemical reactions is
presented and described in detail.

4. Numerical Implementations
4.1. High-Order Finite-Difference and Pseudospectral Methods

High-order finite-difference methods are widespread for solving the differential equa-
tions encountered in classical and quantum mechanics. They are based on polynomial
approximations to the solution functions, and thus, finite-difference methods (FD) are
suited for problems that can be solved by expanding the unknown functions to Taylor se-
ries [25,45]. In the past, we developed and tested high-order multivariable finite-difference
methods in configuration space and time (herein they are denoted with x), formulated by
Lagrange interpolating polynomials [46,47]. Given that variable order finite-difference
algorithms are among the most suitable for modern high-performance computing, the
computer technology to which computational chemistry is mainly addressed, as well as
their programming simplicity, finite-difference methods emerge as one of the best choices
for studying chemical dynamics.

There is a huge literature concerning finite-difference approximations to initial value
problems (Notice that Hamilton’s equations, Jacobi fields, and Poisson brackets can be writ-
ten as initial value problems, and thus, ordinary differential equations can simultaneously
be integrated.), such as Hamilton’s and variational equations [45], as well as calculating the
action of Hamiltonian operator on wavefunctions in quantum mechanics [25].

For ordinary differential equations (ODEs) and partial differential equations, we
approximate the solution functions by expanding them in an appropriate basis set {χj(x)}

ψ(x) ≈ ψN(x) =
N

∑
j=1

ajχj(x). (195)

Different global basis functions produce different pseudospectral methods. From such
so-called finite basis representation, we can transform to a cardinal set of basis functions,
{uj(x)}, also called discrete variable representation, by choosing N grid points, {xi}, at
which the function is calculated. The cardinal functions obey the δ−Kronecker property

uj(xk) = δkj, (196)

so that the wavefunction is expressed by the set of grid points

ψN(x) =
N

∑
j=1

ψ(xj)uj(x). (197)
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The transformation from χj(x) to the cardinal basis set is unitary, and the new basis is given
in terms of the old one by the equation

< χi|uj >=
N

∑
k=1

wkχ∗
i (xk)uj(xk) = wjχ

∗
i (xj), (198)

where the grid points xk and the corresponding weights wk depend on the chosen quadra-
ture rule.

The mth-derivative of the approximate solution is written as

dmψN(x)
dxm

∣∣∣∣
x=xk

=
N

∑
j=1

b(m)
k,j ψ(xj) = DmT, (199)

where

b(m)
k,j =

dmuj(x)
dxm

∣∣∣∣∣
x=xk

. (200)

The differentiation matrix Dm contains the coefficients necessary for calculating the mth-
derivative at the collocation points, and T is the column vector of dimension N containing
the basis functions.

Usually, the functions are interpolated by Lagrange cardinal basis set of order k − 1

ψ(x) ≈ PN−1(x) =
N

∑
j=1

ψ(xj)Lj(x), (201)

where

Lk, j(x) =
k

∏
l=1

′

(x − xl)/
k

∏
l=1

′

(xj − xl), j = 1, ..., k, (′) means l ̸= j. (202)

It is proved that by increasing the order of Lagrange polynomials, the series converges
to the corresponding pseudospectral limits. For uniform equidistant grids, xj = j∆x, and
N = 2M + 1, it is shown that the pseudospectral limit is a sinc−function

lim
M→∞

Lj(x) =
∞

∏
k=1

(
1 −

(x − xj)
2

k2

)
=

sin[π(x − xj)]

π(x − xj)
= sinc[π(x − xj)]. (203)

Also, for periodic functions, Fourier series are associated with the cardinal functions

χj(x) = ei2π jx/L −→ uj(x) =
sin[N(x − xj)/2]
N sin[(x − xj)/2]

. (204)

A relation of Fourier cardinal functions and sinc functions can be seen by the formula

sin[N(x − xj)/2]
N sin[(x − xj)/2]

=
k=∞

∑
k=−∞

sinc[(x − xj + 2πk)/∆x]. (205)

Since sinc functions are the infinite order limit of an equispaced FD (Equation (203)), the
correspondence now is that periodically repeated FD stencils will tend to the PS limit of
Fourier functions as the number of grid points in the stencil approaches the total number
of grid points in one period. Also, because equispaced FD can be considered to be a
robust sum acceleration scheme of a sinc function series, we expect the same convergence
properties of the FD approximation to the Fourier series as the one we find for radial
variables [46].

To solve Hamilton’s and variational differential equations [5], we use methods for
solving ordinary differential equations, such as those described in the book of Shampine and
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Gordon [45]. The algorithms are based on predictor-corrector methods with variable order
finite-difference approximations, as well as variable time step and backward difference
formulae. The accuracy of solutions is controlled by prespecified values.

The action of the Hamiltonian operator on a wavefunction can also be approximated
by high-order finite-difference schemes or pseudospectral methods. We have demonstrated
that the algorithm developed by Fornberg [25] to construct Lagrange interpolating polyno-
mials for solving the Schrödinger equation is robust and fast. Applications can be found in
references [46,47].

4.2. The Hénon–Heiles Model

In this section, we show results that demonstrate the effectiveness of solving the
Hamiltonian ODEs encountered in the three principal theories: classical, quantum, and
thermodynamic. We use a test model that of Hénon–Heiles [26] and mainly the software
POMULT [48]. The Hénon–Heiles potential was initially proposed as a model for studying
the dynamics of a galaxy. The potential function introduces cubic nonlinearities, and soon,
it became the model of choice for numerically investigating the nonlinear behavior of two
degrees of freedom systems.

Numerous articles have been published that explore the phase space structures of this
nonlinear dynamical system in detail [49]. The Hamiltonian function for a Hénon–Heiles
system is written as

Hd(σ
1, σ2, π1, π2) =

1
2

(
π2

1 + π2
2

)
+

1
2

[
(σ1)

2
+ (σ2)

2
]
+

[
(σ1)

2
σ2 − 1

3
(σ2)

3
]

. (206)

(σ1, σ2) denote the coordinates and (π1, π2) the canonical conjugate momenta. In Figure 5,
we present 3D graphs and isocontours from the projections of the potential in the coordinate
plane. The potential has one minimum at (σ1, σ2) = (0, 0) and three saddles at the energy
of D = 1/6. Trajectories with energy above D may escape to infinity from the three exit
channels. The harmonic normal mode frequencies are w1 = w2 = 1, and thus, the system
shows a 1:1 resonance. Notice that the spatial symmetry of the Hénon–Heiles potential is
D3, the same symmetry as triatomic molecules with the same atom.

Figure 5. Potential energy surface of the Hénon–Heiles model and isocontours in the configura-
tion plane.

4.2.1. A Classical Time-Dependent Hénon–Heiles System

A time-dependent Hénon–Heiles system is produced by adding the q0−term coupled
to σ1−coordinate (see Figure 1)

H(q0, σ1, σ2, π1, π2) = Hd(σ
1, σ2, π1, π2) +A f σ1 sin(w f q0), (207)

with q0 = t, and canonical conjugate momentum, p0 = −H. We solve Hamilton’s equations
as given by Equations (14), and with the extended Hamiltonian, He = p0q̇0 +H = 0.
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In Figure 6, we depict a dissociating trajectory with parameters of the time-dependent
term, A f = −0.01 and w f = 1. The initial conditions are selected from the stable periodic
orbit of the principal family along the σ2 coordinate and at energy 0.1575. The red thick
line in Figure 6b is the projection of this periodic orbit on the coordinate plane. The 3D
plot in Figure 6a shows the evolution of the system with the absorbed energy that leads
to dissociation.

(a) (b)

Figure 6. (a) A dissociating trajectory of a time-dependent Hénon–Heiles potential. (b) The trajectory
is initialized from a periodic orbit (red thick line) and with energy Hd = 0.1575.

4.2.2. The Quantum Hénon–Heiles System

We solve the time-dependent Schrödinger equation with an initial Gaussian wavepacket
centered at the minimum of the Hénon–Heiles potential, and widths ∆σ1 = 0.024 and
∆σ2 = 0.044. The average energy is 0.124.

The autocorrelation function is the overlap integral of the initial Gaussian with the
evolving wavepacket

C(t) =< ψ0|ψ(t) > . (208)

The Fourier transformation of the autocorrelation function depicts the power spectrum
from which one can extract eigenenergies and eigenfunctions. Numerical technologies of
accurately calculating the energy levels, as well as the corresponding eigenfunctions, have
extensively been investigated [50].

The outputs of a typical run are depicted in Figures 7 and 8.

(a) (b)

Figure 7. (a) The initial wavepacket centered at the minimum of the potential well. (b) The evolved
wavepacket after 2000 time units.
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(a) (b)

Figure 8. (a) The autocorrelation function for the initial Gaussian wavepacket. (b) The power
spectrum was obtained by taking the Fourier transformation of the autocorrelation function.

4.2.3. Energy Dissipation of Hénon–Heiles System in Homogeneous Media

For a simple thermodynamic system, such as that of an inert atomic gas with constant
volume and particle number (1 mole), the entropy function is given by the equation

∆S(U) = cV ln
(

U
U0

)
, (209)

with reference the energy U0 at T = 300K and cV = 3
2 NAkB to be the specific heat. kB

denotes the Boltzmann constant and NA the Avogadro constant.
We assume a diagonal friction parameter matrix [bkl ] that couples the Hénon–Heiles

nonlinear oscillator with the homogeneous environment. We assign the nonzero elements
(b11, b22) to the values, (b11, b22) = (0.3, 0.001). This is an example of loosely coupling one
DOF of the dynamical system to the environment, and we investigate the effect it may have
on the entropy production and length of the path [29].

For zero frictions, the dynamical system remains uncoupled to the environment
and thus, is a conserved Hamiltonian system. When the friction parameters are turned
on, energy dissipates from the dynamical system to the environment. In the extended
thermodynamic space, the number of DOF is 6 with coordinates the entropy, S, the total
energy, E, and the four variables of the dynamical system, (σ1, σ2, π1, π2). Hence, the
dimension of the extended phase space is 12.

The extended Hamiltonian He (Equation (162)) is equal to zero on the Lagrangian
thermodynamic extended state manifold. We integrate trajectories up to 50 time units with
a precision in the value of extended Hamiltonian to about 10−15.

In Figures 9 and 10, the results for two trajectories are depicted by treating the
Hénon–Heiles as a dissipating system. We plot the produced entropy (Equation (163)) and
the lengths of trajectories, computed via the Ruppeiner metric (Rlength), Equation (154),
and with initial energy of the dynamical system Hd = 0.125.

Since one DOF of the dynamical system is weakly coupled to the environment, we
find that for the integration times, trajectories are trapped around reduced tori related to
the approximately decoupled mode. The thermodynamic length provides an estimate of
how close the initial state is to the physical equilibrium state. Hence, we expect trapped
trajectories in the approximately decoupled modes to have large lengths and to produce
low entropies [29].
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(a) (b)

Figure 9. Projections of two representative trajectories in the Hénon–Heiles phase space are shown
with friction parameters b11 = 0.3 and b22 = 0.001; (a) in the (σ1, σ2, π1) space and (b) in the
(σ1, σ2, π2) space.

(a) (b)

Figure 10. Panel (a) is the time evolution of the entropy production and (b) the trajectory length
calculated with the Ruppeiner metric for the two trajectories shown in Figure 9.

5. Conclusions

All cardinal physical theories have acquired a Lagrangian or Hamiltonian formalism.
The advantages of employing a Hamiltonian framework stem from the fact that global
and local constants of motion that dictate the dynamics of the system are respected by
solving Hamilton’s equations. In particular, the geometrical structures of Hamiltonian
theory were mainly investigated in the second half of the twentieth century with the
development of contemporary differential geometry. The purpose of this article is to in-
troduce and unveil common geometrical structures of the three most frequently applied
theories in computational chemistry, those of classical mechanics, quantum mechanics,
and classical thermodynamics, all of them at the non-relativistic approximation. We have
shown that working in extended phase space, the physical states of the system in the three
theories are described by Lagrangian submanifolds. Observables are calculated by canon-
ically projecting the extended phase space in a reduced dimensional space. In classical
mechanics, integrable systems guarantee the existence of n + 1 constants of motion, and
thus (n + 1)−dimensional Lagrangian submanifolds embedded into 2(n+ 1)−dimensional
phase space. Quantum systems can also be considered to be integrable systems in the
projective Hilbert space. Finally, classical thermodynamics have also been given a Hamilto-
nian formalism in an extended phase space, similar to classical mechanics, and capable of
formulating irreversible processes. We can obtain representations of Lagrangian manifolds
when we use Hamiltonians in action-angle variables in classical mechanics and Gibbs’s
fundamental equation in classical thermodynamics.

Noether’s theorem [51] proves that constants of motion are associated with symme-
tries of the system, which leave the Hamiltonian function invariant. Global continuous
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symmetries, such as time-reversal, translational, and rotational transformations, are theo-
rized by Lie groups and their associated Lie algebras. Advanced methods to extract the
constants of motion related to symmetries and to reduce the dimensionality of the problem
have been developed in recent decades [2].

Here, we have not explored the important role of symmetry in dynamical systems.
However, we have emphasized the importance of approximating local constants of motion
by solving the variational equations of a Hamiltonian system, such as around equilibria
and stable periodic orbits. This requires the diagonalization of the fundamental matrix (see
Section 2.1.5). It is proved that each constant of motion corresponds to a pair of eigenvalues
equal to one.

Numerically solving the equations of motion (classical, quantum, thermodynamic) is
the main task of computational chemistry. Finite-difference methods have been broadly
adopted for finding solutions of ordinary differential equations, as well as partial dif-
ferential equations, such as the Schrödinger equation. Nevertheless, in spite of their
many successes, they are restricted to low-dimensional systems since they require sub-
stantial computational resources for many degrees of freedom systems. Furthermore,
non-symplectic integrators for Hamiltonian ODEs inevitably introduce numerical instabil-
ity in long time integrations.

Molecules are generally complex systems with many degrees of freedom. Their phase
space is entangled with regular and chaotic regions. Therefore, it is not a surprise that
computational chemistry has always tried to exploit new computer advances, such as
parallel computing (including grid and cloud), as well as GPU technology. As far as the
integration of the trajectories of large molecules for a long time is concerned, the good
performance of several symplectic integrators has been recognized. Among the most
popular ones are the simple low-order symplectic algorithms, such as the leapfrog or
velocity Verlet algorithms [52].

Presently, AI (artificial intelligence) methods, particularly machine-learning tech-
niques, are under exploration. In the last few years, an intense interest has been directed at
finding algorithms that incorporate physics knowledge into neural networks. Hamiltonian
neural networks label techniques that try to solve Hamilton’s equations with deep neural
networks [53–55]. Solving the Schrödinger equation has also attracted the interest of re-
searchers in this field [56]. However, we must note that at present, physics neural networks
(PNN) algorithms are tested with low-dimensional systems, and their extension to systems
with many degrees of freedom remains to be proved.

Irrespective of the final result of this endeavor, what is worth pursuing is developing
computational methods that take into account multiscale physical theories that cover
extended temporal/spatial scales. What we have shown in this review is that Hamiltonian
(symplectic) geometry is the foundation of principal physical theories. This should be
taken into account in building PNN algorithms [57], and it signals the need for new
projects. Hamiltonian geometry yields the necessary and sufficient conditions for the
mutual assistance of humans and machines in deep-learning processes.
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TEPS Thermodynamic Extended Phase Space
TEPSS Thermodynamic Extended Physical State Submanifold
TCS Thermodynamic Contact Space
PTS Physical Thermodynamic Submanifold
ODEs Ordinary Differential Equations
HNN Hamiltonian neural networks
PNN Physics neural networks
nD n–dimensional

Appendix A

Appendix A.1. Proof of Equation (89)

For an observable Ô and normalized states, < ψ|ψ >= 1, its expectation value is
the function

O : H2n
r 7→ R,

and
O =< ψ|Ô|ψ >=

1
2ℏG(|ψ >, Ô|ψ >).

We can prove that the differential 1−form of the expectation value in the real projective
Hilbert space is given by

dO(|ϕ >) = iXÔ
Ω(|ϕ >) = Ω(XÔ , |ϕ >), (A1)

where |ϕ > ∈ T|ψP>
Pn(Hn+1) and normalized states < ψ|ψ >= 1.

Indeed,

dO(|ϕ >) = LXÔ
|ϕ >=

∂

∂η
< ψ + ηϕ|Ô|ψ + ηϕ > |η=0

= < ϕ|Ô|ψ > + < ψ|Ô|ϕ >=< ϕ|Ô|ψ > + < ϕ|Ô†|ψ >

= 2 < ϕ|Ô|ψ >

=
1
ℏG(|ϕ >, Ô|ψ >) = − 1

ℏΩ(|ϕ >, JÔ|ψ >)(Equation (83))

= Ω
(
|ϕ >,

(
− J
ℏ Ô
)
|ψ >

)
= Ω

(
|ϕ >,

( ı
ℏ Ô
)
|ψ >

)
= Ω(|ϕ >,−XÔ|ψ >) = Ω(XÔ|ψ >, |ϕ >)

= iXÔ
Ω(|ϕ >). (A2)

According to Equation (15) we have replaced −J with ı.

Appendix A.2. Proof of Equation (90)

If (O1,O2) are the expectation value functions of two observables, the Poisson bracket
is defined by the equation

{O1,O2} = Ω(XÔ1
, XÔ2

) =< ψ| − ı
ℏ
[
Ô1, Ô2

]
|ψ > . (A3)
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[
Ô1, Ô2

]
is the commutator of the two operators (Ô1, Ô2). Indeed, the Poisson bracket of

the expectation functions (O1,O2) at state |ψ > is developed as follows

{O1,O2} = Ω(XÔ1
, XÔ2

)|ψ >

= XÔ1
|ψ > XÔ2

|ψ > −XÔ2
|ψ > XÔ1

|ψ >

= < ψ|XÔ1
XÔ2

|ψ > − < ψ|XÔ2
|XÔ1

|ψ >

= < ψ|−ı
ℏ
(
Ô1Ô2 − Ô2Ô1

)
|ψ >)

= < ψ|−ı
ℏ
[
Ô1, Ô2

]
|ψ > . (A4)

Appendix A.3. Proof of Equation (152)

For a thermodynamic system the Hamiltonian in the extended phase space is written as,
He(q0, q1, . . . , qn, p0, p1, . . . , pn) = −p0F(q0, q1, . . . , qn, γ1, . . . , γn), whereγi = − pi

p0
. Then, the

time derivative of an observable function O(q, p) is given by the Poisson brackets as

Ȯ = {O,He}

=
n

∑
i=0

[
∂O
∂qi

∂He

∂pi
− ∂O

∂pi

∂He

∂qi

]
=

(
∂O
∂q0

∂He

∂p0
− ∂O

∂p0

∂He

∂q0

)
+

n

∑
i=1

[
∂O
∂qi

∂He

∂pi
− ∂O

∂pi

∂He

∂qi

]
=

(
∂O
∂q0 q̇0 +

∂O
∂p0

ṗ0

)
+

n

∑
i=1

[
∂O
∂qi q̇i +

∂O
∂pi

ṗi

]
. (A5)

The partial derivatives are

∂O
∂p0

=
n

∑
i=1

∂O
∂γi

(
pi

p2
0

)
= − 1

p0

n

∑
i=1

∂O
∂γi

γi

∂O
∂pi

=
∂O
∂γi

(
− 1

p0

)
= − 1

p0

∂O
∂γi

, i = 1, . . . , n

∂He

∂p0
= −F − p0

n

∑
i=1

∂F
∂γi

(
pi

p2
0

)
= −F +

n

∑
i=1

∂F
∂γi

γi

∂He

∂pi
= −p0

∂F
∂γi

(
− 1

p0

)
=

∂F
∂γi

, i = 1, . . . , n

∂He

∂q0 = −p0
∂F
∂q0

∂He

∂qi = −p0
∂F
∂qi , i = 1, . . . , n,

that result in

Ȯ =
∂O
∂q0

(
−F +

n

∑
i=1

γi
∂F
∂γi

)
−

n

∑
i=1

∂O
∂γi

γi
∂F
∂q0 +

n

∑
i=1

[
∂O
∂qi

∂F
∂γi

−
(
− 1

p0

∂O
∂γi

)(
−p0

∂F
∂qi

)]

=
∂O
∂q0

(
−F +

n

∑
i=1

γi
∂F
∂γi

)
−

n

∑
i=1

∂O
∂γi

γi
∂F
∂q0 +

n

∑
i=1

∂O
∂qi

∂F
∂γi

−
n

∑
i=1

∂O
∂γi

∂F
∂qi

=
∂O
∂q0

(
−F +

n

∑
i=1

γi
∂F
∂γi

)
+

n

∑
i=1

∂O
∂qi

∂F
∂γi

−
n

∑
i=1

∂O
∂γi

(
∂F
∂qi + γi

∂F
∂q0

)
.
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Hence, the thermodynamic contact vector field is

q̇0 = X0
c = −F +

n

∑
i=1

γi
∂F
∂γi

(A6)

q̇i = Xi
c =

∂F
∂γi

, i = 1, . . . , n (A7)

γ̇i = Xi
c = −

(
∂F
∂qi + γi

∂F
∂q0

)
, i = 1, . . . , n. (A8)

Appendix A.4. Tables

Appendix A.4.1. Projection Maps between Thermodynamic Extended Phase Space and
Thermodynamic Contact Space

Table A1. Projection maps (π) between thermodynamic extended phase space (TEPS) and thermo-
dynamic contact space (TCS). π−1 denotes the inverse map, π∗ the push-forward of vector fields
operation and π∗ the pull-back of functions (0−forms). P2n+2 is the extended phase space, C2n+1

the contact state space, Ln+1
p the Lagrangian submanifold in TEPS, which describes the thermody-

namic extended physical state submanifold (TEPSS), Ln
c the Legendrian submanifold in TCS, which

describes the physical thermodynamic submanifold (PTS), He the extended Hamiltonian, XHe the
extended Hamiltonian vector field, Hc the contact Hamiltonian and XHc the contact Hamiltonian
vector field.

(TEPS) P2n+2 = T∗Qn+1 He XHe Ln+1
p (TEPSS)yπ

xπ∗
yπ∗

xπ−1

(TCS) C2n+1 = P(T∗Qn+1) Hc XHc Ln
c (PTS)

Appendix A.4.2. Thermodynamic Manifolds in Entropy Representation

Table A2. Thermodynamic Manifolds in Entropy Representation.

Manifold P2n ≡ T∗Qn C2n+1 ≡ P(T∗Qn+1) P2n+2 ≡ T∗Qn+1

Coordinates
n = 2 + r q1 = U, q2 = V, q0 = S, q1 = U, q0 = S, q1 = U,

qk = Nk−2 q2 = V, qk = Nk−2 q2 = V, qk = Nk−2

Momenta
p0 = −1 γ1 = 1

T γ1 = 1
T p1 = −p0γ1

γ2 = P
T γ2 = P

T p2 = −p0γ2

γk = − µk−2
T γk = − µk−2

T pk = −p0γk

1−form
θ = ∑n

i=1 γidqi θc = dq0 − ∑n
i=1 γidqi θe = ∑n

i=0 pidqi

2−form
ω = −dθ ω = ∑n

i=1 dqi ∧ dγi ωe = ∑n
i=0 dqi ∧ dpi

PTS Ln
p Ln

c Ln+1
p (TEPSS)

ω = 0, H = S θc = 0, F = S θe = 0, ωe = 0

He = 0, LXHe
θe = 0

Metric dl2 = −∑n
i=1 dqi ⊗ dγi dl2 = −∑n

i=1 dqi ⊗ dγi dl2 = −∑n
i=1 dqi ⊗ dγi
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Appendix A.4.3. Thermodynamic Manifolds in Energy Representation

Table A3. Thermodynamic Manifolds in Energy Representation.

Manifold P2n ≡ T∗Qn C2n+1 ≡ P(T∗Qn+1) P2n+2 ≡ T∗Qn+1

Coordinates
n = 2 + r q0 = S, q2 = V q0 = S, q1 = U q0 = S, q1 = U

qk = Nk−2 q2 = V, qk = Nk−2 q2 = V, qk = Nk−2

Momenta
p1 = −1 β0 = T β0 = T p0 = −p1β0

β2 = −P β2 = −P p2 = −p1β2

βk = µk−2 βk = µk−2 pk = −p1βk

1−form
θ = β0dq0 + ∑n

i=2 βidqi θc = dq1 − β0dq0− θe = ∑n
i=0 pidqi

∑n
i=2 βidqi

2−form
ω = −dθ ω = dq0 ∧ dβ0 + ∑n

i=2 dqi ∧ dβi ωe = ∑n
i=0 dqi ∧ dpi

PTS Ln
p Ln

c Ln+1
p (TEPSS)

ω = 0, H = U θc = 0, F = U θe = 0, ωe = 0

He = 0, LXHe
θe = 0

Metric dl2 = dq0 ⊗ dβ0+ dl2 = dq0 ⊗ dβ0+ dl2 = dq0 ⊗ dβ0+

∑n
i=2 dqi ⊗ dβi ∑n

i=2 dqi ⊗ dβi ∑n
i=2 dqi ⊗ dβi

Appendix A.5. Hamiltonian Chemical Kinetics: A Simple Chemical Kinetic Example: Consecutive
First-Order Elementary Reactions

Here, we present how a classical kinetic network can be cast into Hamiltonian formal-
ism. As an example, we take two consecutive elementary chemical reactions and dress
them with a Hamiltonian mantle [30]. Our generalized coordinates now, instead of dis-
tances and angles to define the positions of the atoms in the molecule, as a microscopic
description requires, are the macroscopic extensive properties, such as internal energy,
volume, and the number of moles (or molecules). The conjugate momenta to these thermo-
dynamic coordinates are related to the intensive properties of temperature, pressure, and
chemical potentials, respectively. By treating the macroscopic system in phase space and
integrating Hamilton’s equations, we can define measures for classifying the trajectories
and investigate alternative kinetic models.

The chemical equations are

Q1

k f 1
⇌
kb1

Q2

Q2

k f 2
⇌
kb2

P,

where (k f 1, k f 2) are the rate constants for the forward reactions and (kb1, kb2) the rate
constants for the backward reactions. Q1, Q2 and P are the constituent compounds
with concentrations

x1 = [Q1], x2 = [Q2], x3 = [P]. (A9)
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The reaction coordinates (extension or progress of the reactions) are denoted by ξ = (ξ1, ξ2)T.
Then, the time variation of concentrations is written as ẋ1

ẋ2
ẋ3

 = Cξ̇(t) =

 −1 0
1 −1
0 1

( ξ̇1

ξ̇2

)
. (A10)

C is the stoichiometric matrix.
We consider the reactive system as a closed thermodynamic system, i.e., it exchanges

energy with the environment, but not mass. If the initial concentrations of the three sub-
stances Q1, Q2 and P are x1(0) = x10, x2(0) = x20 and x3(0) = x30, respectively, and
assuming ξ = 0 at t = 0, then the solution of Equations (A10) is

x1(t) = x10 − ξ1(t)

x2(t) = x20 + ξ1(t)− ξ2(t)

x3(t) = x30 + ξ2(t). (A11)

According to the law of mass action [37–40] the reaction rates are written as

R f 1 = k f 1x1

Rb1 = kb1x2

R f 2 = k f 2x2

Rb2 = kb2x3,

where (R f 1, R f 2) are the rates of the forward reactions and (Rb1, Rb2) the rates of the
backward reactions, respectively. Then, the rates of reaction coordinates are

ξ̇1 = R f 1 − Rb1 = k f 1x1 − kb1x2

= k f 1(x10 − ξ1)− kb1(x20 + ξ1 − ξ2)

ξ̇2 = R f 2 − Rb2 = k f 2x2 − kb2x3

= k f 2(x20 + ξ1 − ξ2)− kb2(x30 + ξ2). (A12)

The analytical solutions of the above differential equations for the case kb1 = kb2 = 0, as
well as x20 = x30 = 0 are

x1(t) = x10 exp(−k f 1t)

x2(t) = x10

(
k f 1

k f 2 − k f 1

)[
exp(−k f 1t)− exp(−k f 2t)

]
x3(t) = x10

(
1

k f 2 − k f 1

)[
k f 2

(
1 − exp(−k f 1t)

)
− k f 1

(
1 − exp(−k f 2t

)]
,

with limits at equilibrium (t → ∞)

xeq
1 = xeq

2 = 0 xeq
3 = x10.

As discussed in Section 3, the extended phase space is obtained by adding the entropy
to the set of generalized coordinates and p0 as a conjugate momentum. Then, the momenta
of thermodynamic coordinates are defined as p = p0µ.

We study chemical reactions under isothermal and isobaric conditions. In this case, we
take p0 to denote the conjugate momentum of the entropy expressed by the Massieu-Gibbs
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function, S = −G/T, with G to be the Gibbs thermodynamic potential. The Affinities of
the reactions, Aξk , are then written as

Aξk = RT ln

(
R f k(ξ)

Rbk(ξ)

)
, k = 1, 2. (A13)

Following the theory described in Section 3.4.2, the above kinetic scheme is put in a
Hamiltonian framework by first writing the Hamiltonian in reaction coordinates

HS
ξ =

2

∑
k=1

(
pξk +

p0

T
Aξk

)
ξ̇k, (A14)

where (pξ1 , pξ2) denote the conjugate momenta of (ξ1, ξ2)T . The reaction affinities are
written as

Aξ1 = RT ln

(
k f 1(x10 − ξ1)

kb1(x20 + ξ1 − ξ2)

)
. (A15)

Aξ2 = RT ln

(
k f 2(x20 + ξ1 − ξ2)

kb2(x30 + ξ2)

)
. (A16)

Hence, Hamilton’s equations take the form (Equation (192))

Ṡ =
∂HS

ξ

∂p0
=

Aξ1

T
ξ̇1 +

Aξ2

T
ξ̇2 (A17)

ξ̇1 =
∂HS

ξ

∂pξ1
= k f 1(x10 − ξ1)− kb1(x20 + ξ1 − ξ2) (A18)

ξ̇2 =
∂HS

ξ

∂pξ2
= k f 2(x20 + ξ1 − ξ2)− kb2(x30 + ξ2) (A19)

ṗ0 = −
∂HS

ξ

∂S = 0 (A20)

ṗξ1 = −
∂HS

ξ

∂ξ1 = − p0

T

2

∑
i=1

(
∂Aξ i

∂ξ1

)
ξ̇ i −

2

∑
i=1

(
pξ i +

p0

T
Aξ i

) ∂ξ̇ i

∂ξ1 (A21)

ṗξ2 = −
∂HS

ξ

∂ξ2 = − p0

T

2

∑
i=1

(
∂Aξ i

∂ξ2

)
ξ̇ i −

2

∑
i=1

(
pξ i +

p0

T
Aξ i

) ∂ξ̇ i

∂ξ2 . (A22)

Appendix A.5.1. Discussion

We make the following remarks. Integrating Equation (A17), we calculate the entropy
production for the selected reaction pathway. It also provides the time variation of Gibbs
free energy (Ġ = −TṠ). Equations (A18) and (A19) are the fluxes of chemical reactions
given as the difference of the rates of forward and backward reactions. Usually, reaction
rates are obtained by phenomenological kinetic models, such as those provided by the
Mass Action kinetics (MAK) [37,38].

Equation (A20) designates the conservation of the gauge momentum p0 with an initial
value equal to −1.

The terms in the second summation of the RHS of Equations (A21) and (A22) are
zero on the thermodynamic extended state manifold (Lagrangian submanifold), and they
can be ignored during the integration of Hamilton’s equations. However, in solving the
variational equations, we must keep all the terms.

By studying the kinetics of chemical reactions in phase space, we can adopt measures
for classifying reaction paths in phase space. For example, we define a metric on the
Lagrangian submanifold in Massieu-Gibbs representation as
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dl2 =
1
p0

2

∑
i=1

dpξ i dξ i = −
2

∑
i=1

2

∑
k=1

∂2S
∂ξ i∂ξk dξ idξk =

1
T

2

∑
i=1

2

∑
k=1

∂2G
∂ξ i∂ξk dξ idξk, (A23)

and calculate the distance between the initial and equilibrium states

L(tmax) =
∫ tmax

0

√√√√−
2

∑
i=1

ṗξ i ξ̇ i dt, (A24)

with tmax to be the maximum integration time and substituting p0 = −1. The distance
of two states has been utilized to define a better low bound of the entropy production or
dissipated work (availability) than zero for finite time irreversible processes [43,44].

For the chosen example, we have numerically solved Hamilton’s equations for several
combinations of rate constants and initial concentrations [30]. A representative trajectory
is shown in Figure A1 with parameter values given in the caption of the figure. For all
trajectories run with double precision arithmetic, the extended Hamiltonian HS

ξ is conserved
approximately to zero with an accuracy ≈ 10−15. The symplectic fundamental matrix is
obtained by solving the variational equations [29,48] for a time interval of 5 t.u. (time
units). Diagonalizing this matrix, we find three pairs of eigenvalues. One pair is always
equal to one as a result of the conservation of the Hamiltonian function, whereas the other
two come in combinations of two real positive numbers

(
σi, 1

σi

)
. For the present trajectory,

these are (0.18478 × 106, 0.54117 × 10−5) and (61.74712, 0.016195). All panels in Figure A1
demonstrate that for this highly unstable trajectory, equilibrium is reached in 4 t.u., with
the momenta to approach zero.

(a) (b)

(c) (d)

Figure A1. (a) Concentrations of the constituent chemical species as functions of time, (b) reaction
metric, (c) reaction coordinates (ξ1, ξ2), (d) conjugate momenta (pξ1 , pξ2 ) to reaction coordinates.
The quantities have been calculated from a trajectory run with initial concentrations, [Q1] = 1.5,
[Q2] = 0.03, [P] = 0.001. The rate constants for the forward reactions are taken equal to k f 1 = 1.5,
k f 2 = 1.0, and the backward reactions kb1 = 0.5, kb2 = 0.25.
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