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Abstract: Using information-theoretic quantities in practical applications with continuous data is
often hindered by the fact that probability density functions need to be estimated in higher dimensions,
which can become unreliable or even computationally unfeasible. To make these useful quantities
more accessible, alternative approaches such as binned frequencies using histograms and k-nearest
neighbors (k-NN) have been proposed. However, a systematic comparison of the applicability of these
methods has been lacking. We wish to fill this gap by comparing kernel-density-based estimation
(KDE) with these two alternatives in carefully designed synthetic test cases. Specifically, we wish
to estimate the information-theoretic quantities: entropy, Kullback–Leibler divergence, and mutual
information, from sample data. As a reference, the results are compared to closed-form solutions or
numerical integrals. We generate samples from distributions of various shapes in dimensions ranging
from one to ten. We evaluate the estimators’ performance as a function of sample size, distribution
characteristics, and chosen hyperparameters. We further compare the required computation time and
specific implementation challenges. Notably, k-NN estimation tends to outperform other methods,
considering algorithmic implementation, computational efficiency, and estimation accuracy, especially
with sufficient data. This study provides valuable insights into the strengths and limitations of the
different estimation methods for information-theoretic quantities. It also highlights the significance of
considering the characteristics of the data, as well as the targeted information-theoretic quantity when
selecting an appropriate estimation technique. These findings will assist scientists and practitioners
in choosing the most suitable method, considering their specific application and available data. We
have collected the compared estimation methods in a ready-to-use open-source Python 3 toolbox and,
thereby, hope to promote the use of information-theoretic quantities by researchers and practitioners
to evaluate the information in data and models in various disciplines.

Keywords: information theory; non-parametric estimation; entropy; mutual information;
Kullback–Leibler divergence; relative entropy; data; binning; kernel density estimation; k-nearest
neighbors; k-NN

1. Introduction
1.1. The Promise of Information Theory

Entropy, mutual information, and Kullback–Leibler (KL) divergence are fundamental
concepts of information theory [1]. Originally introduced in the field of communica-
tion [2], information theory has now found uses in a diverse set of disciplines, including
artificial intelligence [3], Earth and environmental science [4], experimental design [5], neu-
roscience [6], and finance and economics [7]. Its wide-ranging applications stem from its
solid foundation in probability theory. By analyzing the probability distributions associated
with the variables in a given problem, information theory can determine the nature and
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extent of their relationships. These relationships may exhibit linearity or non-linearity,
depending on the specific system involved [8]. In essence, information theory can unveil
the intricate connections hidden within complex systems.

1.2. Definition of Information-Theoretic Quantities

For the initial definitions and notation, we follow Cover and Thomas [1] and MacKay [3].
In the discrete case, consider x the outcome of a random variable X, which takes on one
of the set of possible values in the alphabet AX = {a1, a2, . . . , an} having probabilities
PX = {p1, p2, . . . , pn} with the probability mass function (PMF) P(X = ai) = pi, pi ≥ 0,
and ∑ai∈AX

P(X = ai) = 1. An example of an alphabet is the 27 characters in a random
English document (letters from a to z and the space character) [3].

The information content of the outcome x is defined as:

h(x) = − log2 P(x), (1)

with the unit of “bit” due to the base two of the logarithm. The entropy H(X) of the
random variable X is defined to be the average information content of every possible
outcome. Therefore:

H(X) = − ∑
x∈AX

P(x) log2 P(x). (2)

The relative entropy or KL divergence DKL between two probability distributions P(x)
and Q(x) that are defined over the same alphabet AX is:

DKL(P || Q) = ∑
x

P(x) log2
P(x)
Q(x)

. (3)

A simple interpretation of the KL divergence is a measure of the inefficiency of
assuming that the distribution is Q when the true distribution is P.

Introducing a second outcome y of a random variable Y from a different alphabet AY,
the joint entropy of the two random variables X and Y is:

H(X, Y) = − ∑
xy∈AXAY

P(x, y) log2 P(x, y). (4)

Entropy is additive only for independent random variables:

H(X, Y) = H(X) + H(Y) ⇐⇒ P(x, y) = P(x)P(y). (5)

From this result, mutual information I(X; Y) can be introduced as the KL divergence
between the joint PMF P(x, y) and the product of the marginal PMFs P(x) and P(y):

I(X; Y) = DKL(P(x, y) || P(x)P(y))

= ∑
x∈AX

∑
y∈AY

P(x, y) log2
P(x, y)

P(x)P(y)
(6)

Mutual information is positive and symmetric, i.e., I(X; Y) = I(Y; X) and I(X; Y) = 0,
only when Equation (5) is true. Using the rules of conditional probabilities, namely
P(x, y) = P(y)P(x | y), one arrives at the more common definition for mutual information:

I(X; Y) = H(X)− H(X|Y)
= H(X) + H(Y)− H(X, Y)

(7)

As per Equation (7), mutual information measures the average reduction in uncertainty
about X that results from the knowledge of Y.
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In his seminal paper, Shannon [2] introduced the concept of differential entropy
specifically for continuous random variables. In this context, consider a random variable X
with values x in Rd space and a probability density function (PDF) p(x) whose support is a
set X . Its differential entropy is given by Equation (8):

H(X) = −
∫
X

p(x) log p(x)dx (8)

In this equation, we have made some changes in the notation to emphasize our interest
in the continuous setting. The alphabet AX becomes the support set X . PMFs denoted as P
become PDFs denoted as p. The log2 is substituted simply by the log, which is understood
to be the natural logarithm, also changing the units in which information is measured from
“bit” to “nat” or the natural unit of information and further differentiating between the
discrete and continuous case. One bit is equivalent to log(2) nats.

Similarly, the equations for mutual information and KL divergence can also be adapted
for continuous applications (Equations (9) and (10), respectively):

DKL(p|| q) =
∫
X

p(x) log
(

p(x)
q(x)

)
dx (9)

I(X; Y) =
∫
Y

∫
X

p(x, y) log
(

p(x, y)
p(x) p(y)

)
dx dy (10)

Note that Equation (9) requires the support of q(x) to be equal to or larger than the
support of p(x) because the integral is over the support of the latter.

As will be described later in Section 1.3, the definition of differential entropy for
continuous variables simply replaces a sum with an integral, but this is not a well-defined
operation. For the cases of KL divergence and mutual information, the issue of discretiza-
tion is partially avoided because the argument in the logarithm is a ratio of probabilities
over the same space [3], but this is not the case for differential entropy.

1.3. The Challenge of Estimating Information-Theoretic Quantities

Beirlant et al. [9] provide a comprehensive review of various common approaches
to estimating differential entropy. In this section, we will follow their classification while
noting that these methods can also be extended to the cases of KL divergence and mu-
tual information.

Generally, estimation methods using sample data can be divided into three categories.
First are plug-in estimates, which can be further divided into resubstitution and integral
estimates. Resubstitution estimates calculate a density for each data point in a sample,
and then, the integration term in Equations (8)–(10) is exchanged for a sum over densities.
Integral estimates use a density representation of the total sample to perform numerical
integration of Equations (8)–(10). Plug-in estimates are often associated with kernel density
estimation and will be explained further in Section 2.1.

Second are estimates based on sample-spacings, or histograms as they are more
commonly known and from this time forward referred to as binning. They share the density
estimation step used in plug-in estimates, but differ in some other aspects, which will be
explored further in Section 2.2.

It becomes obvious that these two categories of estimation methods involve an initial
step of density estimation from samples [10] before computing the desired information-
theoretic quantities. However, density estimation itself poses challenges [11,12], and
common techniques of density estimation often perform poorly on high-dimensional data
(d > 3). Kernel density methods are often used to address high-dimensional problems, but
Joe [13] studied these methods for entropy estimation, concluding that they perform well
only when the number of dimensions of the multivariate data is small.

The third category, namely estimates based on nearest neighbor distances, differ from
the previous two methods in that they do not require an explicit density estimate. Density
can be estimated using distance-based methods [14], but this is not necessary in this case.
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Hence, they promise to be relatively straightforward to implement and robust, which
makes them a good candidate to compare with more traditional density-based estimates.
Nearest neighbor distance-based estimates will be detailed further in Section 2.3.

While the literature for each of the listed methods has been well established [9,15]
and more recent approaches to density estimation have proven to perform well in higher
dimensions [16], in practice, we often find binning to be the most commonly adopted
technique [17–20] without further justification. We hypothesize that this preference for a
single method with known deficiencies, at least in higher dimensions, is due to the lack of a
systematic comparison of methods, and due to a perceived initial hurdle to implementation.

1.4. Contribution and Outline of This Study

In this study, we compare kernel density estimation, binning, and the nearest neighbor
approaches for estimating information-theoretic quantities in a practical setting. In a
comprehensive and systematic effort, we compare these three most widely recognized
non-parametric estimation methods in terms of (1) their theoretical derivation, (2) their
sample size requirements, and (3) their accuracy. While our focus primarily centers on
estimating entropy, KL divergence, and mutual information due to their foundational
significance, it is important to acknowledge that additional measures such as conditional
entropy can be derived from these fundamental quantities. To this end, we have designed
a set of eight synthetic scenarios to test each estimation method on data coming from
different uni- and multi-variate distributions, ranging up to ten dimensions. Usually, when
a method is introduced, there is a comparison of its performance against other methods;
however, typically, this comparison is limited to two particular algorithms [21], and often,
the comparison is performed between algorithms of the same family, e.g., k-NN [22].
Also, the comparison of different methods is typically challenging due to the absence of a
standardized set of practices across cases [23], making it difficult to ensure comparability
between them.

Finally, we provide a free toolbox that collects these methods and test cases, to promote
the use of these concepts in a wide range of scientific and practical applications.

The remainder of this article is structured as follows: In Section 2, we introduce the
non-parametric estimation methods studied in this article, discuss their properties and
hyperparameters, and describe how they are applied for the computation of the information-
theoretic quantities of interest. Section 3 first presents the general design of the test cases in
which the estimators are evaluated. Each test case is then introduced with a description
of the specific probability distribution we sample from, and closed-form solutions to the
quantities of interest, if available. The results are presented and analyzed with the help
of “evaluation matrix plots”, which show the absolute and relative performance of each
estimator across the different quantities. Finally, in Section 4, we summarize our findings
and discuss how they may guide future applications of information theory in domain-
specific workflows.

2. Definition and Theoretical Description of Estimators

This section describes the three non-parametric estimation methods investigated in
this study and discusses specific aspects for each of them.

2.1. Kernel Density Estimation (KDE)

Introduced as the Parzen–Rosenblatt window method [24,25], the KDE method con-
sists of estimating a PDF based on kernels as weights, with the kernel being a non-negative
window function. The density p(x) at a point x is estimated as:

p̂(x) =
1
n

n

∑
i=1

K(u), (11)

where
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u =
(x − xi)

⊺Σ−1(x − xi)

h2 (12)

and n is the total number of samples, K is a multivariate kernel function, xi = [x1,i, x2,i, . . . , xd,i]
⊺

is a d-dimensional vector of samples, Σ is the covariance matrix of the samples, and h is a
smoothing parameter. For the results presented further in this paper, we chose to always
use a multivariate Gaussian kernel function and the Silverman bandwidth estimate, as
suggested by Moon et al. [26].

The multivariate Gaussian kernel takes the form:

K(u) =
1

(2π)d/2hd det (Σ)1/2 e−u/2, (13)

where u was previously defined in Equation (12) and h is Silverman’s bandwidth esti-
mate [11], given by:

h =

(
n(d + 2)

4

)−1/(d+4)
. (14)

Using the density estimate from Equation (11), entropy, mutual information, and KL
divergence can be calculated directly as:

H(X) = − 1
n

n

∑
i=1

log ( p̂(xi)) (15)

DKL( p̂||q̂) = 1
n

n

∑
i=1

log
(

p̂(xi)

q̂(xi)

)
(16)

I(X; Y) =
1
n

n

∑
i=1

log
(

p̂(xi, yi)

p̂(xi) p̂(yi)

)
(17)

In this form, these can be called resubstitution estimates of each quantity. Addition-
ally, if numerical integration using the kernel PDF is used to approximate the result of
Equations (8)–(10), this is known as an integral estimate [9]. For example, Equation (8)
would be written as:

H(X) = −
∫
X

p̂(x) log p̂(x)dx (18)

Both resubstitution and integral estimates are plug-in estimates.

2.2. Binning

The binning method relies on obtaining an estimate of the density using a histogram [27,28].
Given an origin at x0 and a bin width of delta (∆), the bins of the histogram are set to the
intervals [x0 + m∆, x0 + (m + 1)∆] for a set number of positive and negative integers of m.
Then, considering the total number of observations n and the number of observations ci in
the same bin as xi, the frequency estimate at xi in the histogram can be written as:

f̂ (xi) =
ci

n∆
. (19)

In this case, we have chosen to use f instead of p to distinguish between a frequency
count and a probability density estimate. To obtain probabilities from this frequency
estimate, one must account for the specified bin width p(x) = ∆ f (x). In Equation (19), the
parameter ∆ controls the amount of smoothing applied to the frequency estimate, similar
to the bandwidth used in Section 2.1. To ease the readability, we have chosen to show
equations that use a bin spacing that is uniform, but every bin could have a particular size,
independent of the rest (∆i).
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In terms of probability, we follow the notation of Cover and Thomas [1] in which X∆

represents the quantized (binned) version of a random variable. Then, following their
derivation, the entropy of this quantized version can be written as:

H(X∆) = −∑ ∆ f̂ (xi) log f̂ (xi)− ∑ f̂ (xi)∆ log ∆, (20)

where ∑ ∆ f (x) =
∫

p(x) = 1. The second term on the right-hand side of Equation (20) is a
correction factor due to the bin spacing of the chosen quantization of x.

As KL divergence and mutual information evaluate ratios between distributions,
this correction factor cancels out, and then, their expressions can be written similarly to
Equations (16) and (17):

DKL( f̂ ||ĝ) = 1
n

n

∑
i=1

log

(
f̂ (xi)

ĝ(xi)

)
(21)

I(X; Y) =
1
n

n

∑
i=1

log

(
f̂ (xi, yi)

f̂ (xi) f̂ (yi)

)
(22)

Here, the second PDF ĝ(xi) is estimated using the same binning scheme as f̂ (xi).
Even though the correction factor cancels out for the previous two equations, the

final result does depend on the particular binning scheme chosen. A particular choice
of binning controls the trade-off between a resulting histogram that has too much detail
(“undersmoothing”) or a histogram that has too little detail (“oversmoothing”) with respect
to the true distribution. The resulting estimate of the KL divergence or mutual information,
therefore, also depends on the selection of a particular binning scheme. Because of this
reason, several rules-of-thumb have been developed over time for the selection of an
“optimal” bin width or binning scheme.

2.2.1. Rules-of-Thumb for Bin Width Selection

For the purpose of obtaining a good representation of the underlying distribution of the
data, there are several methods to estimate an adequate number of bins or, more specifically,
the bin width ∆ to be used when building a histogram. Some rules-of-thumb exist to
estimate ∆ for one-dimensional data. In the context of multi-dimensional data, methods
for optimal bin width estimation have been proposed, but they often require the use of
combinatorial methods [29] or the solution of an optimization problem [30]. Therefore, we
chose the simpler approach of estimating ∆ independently for each dimension of the data
and built a multi-dimensional histogram based on the estimated ∆s, meaning that binning
is uniform in each dimension, but not across dimensions.

Sturges’ rule: The width of each bin is the base two logarithm of the number of samples
in the data (n), ∆ = log2 (n) + 1. With this estimate of the number of bins, there is an
inherent assumption that the data follows a normal distribution [31].

Scott’s rule: The width of each bin is proportional to the standard deviation (σ)
of the data, and inversely proportional to the cube root of the number of samples (n),
∆ = 3.49 σn−1/3. Although there is still an assumption that the data follow a normal
distribution, this assumption is not as strong as with Sturges’ rule [27].

Freedman and Diaconis’ rule: The width of each bin is proportional to the interquar-
tile range (IQR) of the data, and inversely proportional to the number of samples (n),
∆ = 2 IQR / n1/3. Although this is similar to Scott’s rule, in using the IQR, this estimator
for the bin width is more robust to outliers of non-normal distributions [32].

2.2.2. The Quantile Spacing Approach

Taking a different perspective on optimal binning for estimating entropy from a
sample, Gupta et al. [10] recently introduced the Quantile Spacing (QS) approach for the
case where X is a one-dimensional continuous random variable and the mathematical form
for the distribution of the data-generating process is unknown. The approach is based in
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the assumption that the PDF can be approximated as piecewise constant on the intervals
between quantile locations where the values for the quantiles have been determined from
the sample S.

The method assumes that the PDF can be approximated as piecewise constant on
the intervals between quantiles Z = {z0, z1, z2, . . . , zNZ}, where NZ represents the total
number of quantiles and z0 = xmin and zNZ = xmax. Using the quantiles Z, the PDF can be
approximated as:

p(x) ≈ p̂(x|Z) = pj
j−1 =

K
∆j

for zj−1 ≤ X ≤ zj and j = 1, . . . , NZ, (23)

where ∆j = zj − zj−1 and K = 1
NZ

. From this definition of the quantiles, the entropy
estimate is given by the sum of the individual entropies of each uniform distribution across
quantiles. More specifically, the estimate depends on the logs of the spacings between
quantiles and is defined by the average of these values:

Ĥp̂(X|Z) = 1
NZ

·
NZ

∑
i=1

log (NZ · ∆j) (24)

To determine the empirical quantiles, Nk sample subsets are sampled without re-
placement from the full sample S, each of size NZ − 1. These subsamples are then
sorted to obtain an estimate of the quantile locations, thereby obtaining Nk estimates
of each quantile zj. Finally, the average of the value of the location is taken to obtain
Ẑ = {xmin, ẑ1, ẑ2, . . . , ẑNZ−1, xmax}.

As described, the QS approach has two hyperparameters: NZ and Nk. The choice of
NZ is suggested to be 25% of the total number of points in the sample NS, as it minimizes
the bias in the estimate for the normal, exponential, and log-normal distributions [10]. Nk
is recommended to be a large number as a greater number of subsamples and repetitions
more accurately estimate the correct value for each quantile, with Nk = 500 found to be
optimal [10].

2.3. k-Nearest Neighbors (k-NN)

The k-nearest neighbors (k-NN) algorithm is a non-parametric supervised learning
method originally developed for classification and regression [33]. It aims at local function
approximation by assuming similarity between neighboring sample points. Since the
distance of a sample point to its k-nearest neighbors can be interpreted as a local density
estimate, it is not a surprise that also k-NN-based estimates of information-theoretic quanti-
ties have been proposed. However, the charm of these estimates is precisely that they do
not require an explicit evaluation of a probability density estimate.

The k-NN-based estimator for entropy was introduced by Kozachenko and Leonenko [34]
and serves as the basis for k-NN-based estimations of KL divergence and mutual information:

Ĥ(X) = ψ(N)− ψ(k) + log(c1(d)) +
d
N

N

∑
i=1

log(ρd
k(i)), (25)

where ψ is the digamma function defined as the logarithmic derivative of the gamma
function ( d

dz log (Γ(z))). N is the total number of points in the sample. k is a hyperparameter
specifying the number of nearest neighbors used in the estimate. c1(d) is the volume of
a d-dimensional unit ball with d being the number of dimensions of the sample. ρd

k(i) is
the distance between xi and its kth nearest neighbor. In calculating the distance, the length
between two points (x and y) is given by a p-norm function, where p ≥ 1, as follows:

∥x − y∥p = (|x1 − y1|p + |x2 − y2|p + · · ·+ |xn − yn|p)
1
p , (26)

with a suggested p = 2, i.e., using the Euclidean norm for the entropy estimate [34].
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Kozachenko and Leonenko [34] demonstrated that the suggested estimator has square
consistency for any number of dimensions, meaning that, as the size of the sample increases,
the mean-squared error of the estimate tends to 0:

lim
n→∞

E
{(

Ĥ − H( f )
)2
}
= 0, (27)

where Ĥ is the estimate of H( f ). Additionally, Delattre and Fournier [35] studied the bias
and variance of the k-NN estimator for entropy, suggesting that it is unbiased up to even a
strong form of consistency, but variance increases as the number of dimensions d becomes
higher. Such a type of consistency has also been claimed for the KDE estimator described
in Section 2.1 by Ahmad and Lin [36].

The estimator for KL divergence was proposed by Wang et al. [23]. Considering
p and q as continuous PDFs in Rd, let {X1, . . . , Xn} and {Y1, . . . , Ym} be independent
and identically distributed (i.i.d.) d-dimensional samples drawn from p and q. Then, the
proposed estimator for KL divergence is:

D̂KL n,m(p||q) = d
n

n

∑
i=1

log
(

νk(i)
ρk(i)

)
+ log

(
m

n − 1

)
(28)

where ρk(i) is the distance between Xi and its k-NN in
{

Xj
}

j ̸=i and νk(i) is the distance

between Xi and its k-NN in
{

Yj
}

. The authors also demonstrate the mean-squared consis-
tency of the estimator, as in Equation (27). p = 2 or the Euclidean norm is also suggested to
calculate the distance.

Finally, the estimator for mutual information was proposed by Kraskov et al. [21]:

Î(X; Y) = ψ(k)− 1
N

N

∑
i=1

E
[
ψ(ni,x + 1) + ψ(ni,y + 1)

]
+ ψ(N) (29)

where ni,x and ni,y are the number of neighbors in the X and Y spaces inside a radius given
by the distance up to the kth nearest neighbor in the joint X-Y space. The authors require
that the distance be calculated using p = ∞, i.e., the infinite or maximum norm.

Gao et al. [37] analyzed the properties of the proposed k-NN estimator of mutual
information, finding it consistent, as it was with the previous two estimators. Further, they
determined upper bounds of the rate of convergence in the estimate as a function of the
dimensions of the two random variables involved.

To illustrate the somewhat abstract idea of using k-NN for estimating information-
theoretic quantities, assume we wish to determine the mutual information between two
univariate random variables X and Y. The algorithm for Equation (29) then works as
follows: for each pair (xi, yi) in the data, find its kth nearest neighbor in the joint X-Y space,
then count the number of neighbors inside a radius of distance ρk

i /2 in the X and Y spaces.
Because the maximum norm is used (p = ∞), the neighbors are found strictly inside a
row (X) and a column (Y) of width ρk

i . The sketch in Figure 1 serves to illustrate this
procedure. In the case of multiple dimensions, the rows and columns for X and Y become
hyper-stripes [15].

As the k-NN equations do not require an explicit evaluation of a probability den-
sity estimate, they look nothing like the canonical formulae shown in Equations (8)–(10).
Nevertheless, an estimate of density at a point xi can be calculated using k-NN:

p̂k(xi) =
k

N − 1
· 1

c1(d) · ρd
k(i)

(30)

This k-NN-based density estimation could be used as a plug-in estimate for entropy,
for example, but this is not recommended, as this density estimate has some issues, which
will be explored further in Section 3.4.2.
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Figure 1. Determining ρk
i , nx(i), and ny(i) for a single pair (xi, yi) in the algorithm for Equation (29).

Adapted from Kraskov et al. [21].

3. Comparison of Estimator Performance in Test Cases of Increasing Complexity
3.1. Test Case Design

We investigated the efficiency and accuracy of the different estimators described in
Section 2 on a range of test cases summarized in Table 1. For each test case, we generated a
sample of a fixed size from a given distribution and test the estimators’ ability to quantify
the three information-theoretic measures entropy, KL divergence, and mutual information.

We varied the sample size in order to reveal how data-hungry the different methods are
in producing a reasonably good estimate of the true measure for the underlying distribution.
Note that the difficulty is not only to have a large enough sample for the estimation method
to work reliably, but, by its nature, a limited sample can only represent its corresponding
theoretical distribution to a limited extent. Hence, we expect the estimates based on small
sample sizes to be of mixed quality partly because they are not representative enough of
the true distribution. We repeatedly drew samples of a certain size and report the average
and the confidence interval of the estimates. We expect the performance and the confidence
of the estimators to generally increase with the sample size due to this representation effect;
yet, it remains to be observed how the different estimators behave for the different sample
sizes and how they compare with each other in terms of accuracy and efficiency. The
robustness of an estimator might be increased by bootstrapping; however, this will not
resolve the issue of (non-)representativeness. It is beyond the scope of this study to design
and recommend the best-suited bootstrapping approaches for the individual estimators;
further, initial tests not shown here have confirmed the expectation that the variability
resulting from bootstrapping is dominated by the much larger sampling variability, which
is accounted for in this study, and hence, we neglected the effect of bootstrapping in
this investigation.

The complexity of the test cases increases with respect to dimensionality (ranging
from one to ten) and skewness (ranging from symmetrical to highly skewed) of the
chosen distributions.

For the simplest 1D cases, there is no dependent variable to calculate mutual informa-
tion on; so, in Cases 1 to 3, we only investigated the estimators’ performance in calculating
entropy and KL divergence. We deliberately started our investigation with low dimen-
sions and well-behaved distribution shapes such that we can rely on analytical reference



Entropy 2024, 26, 387 10 of 34

solutions for the information-theoretic quantities. Then, for cases of increased complexity,
analytical equations no longer exist (or only for some quantities of interest), and we have
to switch to computationally heavy numerical integration to serve as a reference for the
true value of the target quantity (Cases 3, 5, and 6).

Table 1. Summary of test cases.

Case ID Distribution No. of Dimensions

1 Uniform 1
2 Normal 1
3 Normal mixture 1
4 Bivariate normal 2
5 Bivariate normal mixture 2
6 Gamma-exponential 2
7 Multivariate normal 4
8 Multivariate normal 10

3.2. Choice of Hyperparameters

Each estimation method needs the tuning of certain hyperparameters or making
methodological choices. In the case of binning, the hyperparameter is the bin size ∆, and
we investigated the differences in performance due to the four different methods to select
the bin size presented in Section 2.2. In histogram-based methods, it is important to clarify
how bins with zero probability, or empty bins, are handled because of the log function in all
quantities of interest. In our specific application, where Equations (20)–(22) are sums, bins
that have zero probability are excluded before the summation operation takes place. The
hyperparameters of the QS approach are fixed to the recommended values of the original
proposal [10] as described in Section 2.2.2.

For KDE, we show the difference between performing a resubstitution estimate as
opposed to an estimate through numerical integration. In both cases, a kernel representation
of the PDF of the data is created using a Gaussian kernel and Silverman’s bandwidth
estimate, as described in Section 2.1. Then, the resubstitution estimate is obtained by
averaging over the kernel PDF evaluated at all available data points in the sample, while
the integration estimate is obtained by taking the expected value. Specifically, for entropy,
Equations (15) and (18) show how these two processes are different.

As for k-NN, we investigated the effect of varying the number of neighbors used, k,
between 1 and 15. The value of k was cut off there because, for larger values (e.g., k = 50),
the results showed very similar behavior to k = 15, but with larger variability in small
sample sizes.

3.3. Implementation

The sample sizes ranged between 100 and 100,000 samples, with the upper limit
being reduced to 5000 in some cases related to the computationally expensive KDE-based
estimator. The test case procedure was repeated across 300 different fixed seeds for random
sampling to show confidence intervals related to the effect of sampling variability on
an estimate.

Numerical integration as a reference when there is no analytical solution was achieved
through the QUADPACK [38] (quad and nquad for higher dimensions) interface in SciPy [39].
For the integration scheme, default settings were used where both the absolute and relative
error tolerances were set to 1.49 × 10−8. Integration limits were set according to the true
support of the underlying distribution.

Each of the estimators was implemented as a Python 3 [40] function. The binned
estimators use the histogram, histogram-dd, and digitize functions from NumPy [41], the
latter two used for multi-dimensional histograms with uneven and even binning widths,
respectively. The KDE and k-NN estimators rely on the Gaussian KDE and the k-d Tree
data structures available in SciPy [39], respectively.
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The code for the setup of the test cases presented here to allow for reproducing our
results and, e.g., future testing of further alternative methods is available at the Data
Repository of the University of Stuttgart (DaRUS). Further, all of the estimation methods
have been collected as part of the open-source UNITE toolbox. The published toolbox itself
contains the functions for the estimators to be applied to any case study of interest.

3.4. Case 1: 1D, Uniform Distribution

To begin our evaluation of the different estimation methods presented in this paper,
we start with the uniform distribution. In the continuous case of the uniform distribution,
the total mass of the distribution lies uniformly between two arbitrary bounds. As such, it is
the maximum entropy distribution for a random variable X under no other constraints [3].
If the bounds of the uniform distribution are a and b, where b > a, then the PDF is:

p(x) =

{
1

b−a for a ≤ x ≤ b
0 for x < a or x > b

(31)

3.4.1. Analytical Reference Solution

The entropy of a uniform distribution p(x) is given by

H(X) = log(b − a). (32)

If q(x) is a second uniform distribution with bounds c and d where (a, b) ⊂ (c, d), the
KL divergence between the two distributions p(x) and q(x) is:

DKL(p || q) = log
(

d − c
b − a

)
. (33)

Figure 2 shows the PDFs of the distributions used to estimate entropy and KL diver-
gence, together with the estimators’ analytical reference value. For KL divergence, the
approximating distribution (q(x) in red) must have greater or equal support for the true
distribution (p(x) in black), which is the case for the example shown.
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Figure 2. Case 1: 1D, uniform distribution. (a) PDF of a uniform distribution with a, b = 0.5, 2.0
and a reference value for entropy H; (b) same as (a) including the PDF of an approximating uniform
distribution (in red) with c, d = 0.0, 2.0 and a reference value for KL divergence DKL.

3.4.2. Density Estimation

For illustrative purposes, we start off by showing the ability of the different estimation
methods to make an estimate of this one-dimensional uniform distribution. Figure 3 shows
the true underlying PDF and the three PDFs derived by each method applied for density
estimation, i.e., Equations (11), (19), and (30). The solid line for each method represents the
mean of the estimated density across 300 random seeds of 10,000 samples of the uniform
distribution, and the density was calculated for 500 evenly spaced points between 0.0 and

https://doi.org/10.18419/darus-4087
https://doi.org/10.18419/darus-4087
https://pypi.org/project/unite-toolbox
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2.5 along the x axis. Additionally, the 2.5th and 97.5th percentile of the density estimated at
each point is shown as the shaded area in the same color as the mean for all methods.

As expected, KDE gives a very accurate density estimation within the limits of the
underlying distribution, but the effect of the Gaussian kernel is apparent close and outside
of the limits. A boxcar-function-based kernel might be most suitable for this particular
example, but said recommendation becomes more difficult when the data are higher
dimensional; therefore, the Gaussian kernel is the default option [11]. Although binning
produces estimates with higher variance than KDE, it seems to be the most suitable method
for this example. The k-NN-based method was not explicitly designed to perform density
estimation, and the example in Figure 3 graphically shows the large variance that the
method has even in a 1D case [35]. The variance is affected by the number of neighbors
used for density estimation; for smaller values of k, the variance is much higher than for
larger values of k. In Figure 3, k = 50 was used. This is a much larger value than what is
typically recommended, as we will see later, but appears adequate for density estimation,
and larger values of k would indeed reduce the variance further. Nevertheless, the uniform
distribution remains challenging due to the steps at the limits of the distribution, where
only density estimation through binning is able to identify the “hard” cutoff limits.

Recall that density estimation is not the primary goal of our comparison; instead, we
are interested in the estimation quality of the three information-theoretic quantities. Only
the KDE and binning methods rely on this initial density estimation step; k-NN skips this
step and is only shown here for a better intuition about the characteristics of this approach.
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True PDF
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Figure 3. Comparison of all estimation methods for density estimation in Case 1 (1D, uniform distri-
bution).

3.4.3. Estimation Results

The estimation results for the case of the uniform distribution are shown in Figure 4.
The estimates of the three methods (columns) for the two quantities entropy and KL
divergence (rows) are shown as absolute values in nats on the left-hand axes, whereas the
relative errors with respect to the reference solution can be read off from the right-hand
axes. Note that the axis scaling is consistent within each row (i.e., between estimates for a
specific quantity), but not necessarily across the rows (i.e., between the different quantities).

This first test case serves as an intuitive starting point for the interpretation of Figure 4,
as the results for all further test cases follow the same template.

The KDE estimator gives a greatly biased result when estimating entropy due to the
effect of using a Gaussian kernel to approximate a uniform PDF (as seen in Figure 3). This
is because the Gaussian kernel widens the true support of the uniform distribution, and
therefore, it leads to an overestimation of entropy. Integration reduces this effect and also
reduces the variance of the estimate in smaller sample sizes.
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Figure 4. Evaluation of all estimation methods (columns) for entropy (top) and KL divergence
(bottom), in Case 1 (1D, uniform distribution).

Binning underestimates entropy for sample sizes up to 1000 and then yields very
accurate and precise estimates. This observation is well in line with the theory, since a too-
small-to-be-representative sample will not be perfectly uniform and, hence, the true entropy
value of the maximum-entropy distribution is approached from below with increasing
sample size. The QS approach typically underestimates entropy when compared to a
histogram-based approach and one of the considered “rules-of-thumb”.

The k-NN estimator for entropy gives a similarly accurate result as binning, but with a
much higher variance. As discussed in the context of density estimation, the k-NN method
does not rely on any smoothing via kernels or bins, and hence, the sampling variability
hits its result hard. As expected, this variability is reduced with increasing number of
neighbors; however, a smaller number of neighbors yields more accurate results for smaller
sample sizes.

Estimating KL divergence directly using the KDE estimator gives a result very close
to the truth even in small sample sizes, with an increase in the number of samples only
reducing the variance. Across different samples, the ratio between the true and the approx-
imating distribution seems to stay consistent, leading to this result. Numerical integration
leads to a worse outcome as the effect of the Gaussian kernel becomes more apparent
(both distributions are first approximated, and then, their ratio is assessed, “doubling” the
smearing effect of the kernel).

For the binning estimator, we see a “reversal effect” in the estimate for KL divergence
where Sturges’ rule initially computes a larger KL divergence, but starts to produce results
that are lower than Scott’s and FD’s rule at 500 samples. The reason is the resulting number
of bins obtained from the different methods described in Section 2.2.1: across larger sample
sizes, Scott’s and FD’s rules result in a very similar number of bins with FD’s estimate being
usually slightly larger, and both being larger than Sturges’ rule. This situation is reversed
in smaller sample sizes, with Sturges’ rule producing the largest number of bins.

The k-NN approach yields the best results for KL divergence with a single neighbor
(k = 1). While, again, the variance is high for small sample sizes, the estimate is highly
accurate across all sample sizes. Obviously, a one-to-one comparison of estimated densities
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is preferable for an accurate estimate of KL divergence, as also seen for KDE (a direct
estimate being much superior to integration). While intermediate numbers of neighbors
perform poorly, the highest number investigated here (k = 15) comes close to the accuracy
of k = 1, but fails to reach it. It is also remarkable that k-NN-based estimation of DKL shows
very little variation across sample sizes, again emphasizing that a local estimate of the ratio
between the two distributions is less affected by unrepresentative sampling or distribution
reconstruction.

3.5. Case 2: 1D, Normal Distribution

The normal or Gaussian distribution is the second of our test cases and also serves
as the basis for the applications in higher dimensions, where the estimators will be tested
on multivariate normal distributions (Sections 3.10 and 3.11). In the most basic one-
dimensional case, the PDF of the normal distribution is:

p(x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )

2

(34)

The normal distribution is often denoted as N (µ, σ2), where µ is the expected value
of the distribution and σ is the standard deviation.

3.5.1. Analytical Reference Solution

Given the PDF in Equation (34), the entropy of the normal distribution is:

H(X) =
1
2

ln
(

2πσ2
)
+

1
2

(35)

Given two normal distributions, where p(x) = N (µp, σ2
p) and q(x) = N (µq, σ2

q ), the
KL divergence between these two distributions is:

DKL(p|| q) =
1
2

{(
σp

σq

)2
+

(
µq − µp

)2

σ2
q

− 1 + ln

(
σ2

q

σ2
p

)}
(36)

Figure 5 shows the distributions used in this application case.
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Figure 5. Case 2: 1D, normal distribution. (a) PDF of a normal distribution N (−2.5, 2.52) and
a reference value for entropy H; (b) same as (a) including the PDF of an approximating normal
distribution (in red) N (0, 3.152) and a reference value for KL divergence DKL.

3.5.2. Estimation Results

The estimation results for the case of the normal distribution are shown in Figure 6.
Estimating the density of a normal distribution with a Gaussian kernel is a prime task
for KDE, so the relative errors in estimating the two information-theoretic quantities
are expected to be small. Across all sample sizes and quantities, a direct evaluation
of the KDE estimator performs better than performing numerical integration over the
kernel representation. The latter gives additional importance to the overall shape of the
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distribution, which is an approximation in both cases, rather than focusing on the specific
points, which support the kernel representation. This can be seen more clearly for KL
divergence, where ratios are considered. Only at large sample sizes, where the overall
representation of the underlying distribution is very close to the true distribution, numerical
integration gives a result that is almost as good as direct estimation.
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Figure 6. Evaluation of all estimation methods (columns) for entropy (top) and KL divergence
(bottom), in Case 2 (1D, normal distribution).

All binning methods, with the exception of Sturges’ rule, give very similar results,
which are highly accurate for large sample sizes. This is expected as the rules-of-thumb
were all derived with more or less strict assumptions on the distribution being Gaussian.
The bin width given by Scott’s works best because it is optimal for random samples of
normally distributed data, in the sense that it minimizes the integrated mean-squared
error of the density estimate [27]. Neither FD’s and Sturges’ estimate follow this same
property and allow for a more flexible representation of the underlying distribution. On
normally distributed data and in large sample sizes, FD’s rule equally matches Scott’s rule,
but Sturges’ rule overestimates entropy and underestimates Kullback–Leibler divergence
because it calculates a larger ∆ and a smaller number of bins. The QS approach does not
assume normally distributed data (and hence, also cannot benefit from that knowledge);
as in the previous case, it tends to slightly underestimate entropy, but its performance is
generally very similar to the other binning methods. Remember that it is only derived for
estimating entropy, not KL divergence or other multivariate quantities.

The results of using k-NN to estimate entropy and KL divergence appear consistent
with those of the previous case: for small sample sizes, the bias decreases with decreasing
k, but the variance increases. However, for sample sizes > 1000, the bias and variance
almost diminish; also, for any choice of hyperparameter and sample size, the relative error
of the entropy estimates is generally small, with the largest relative error being ≈6%. This
demonstrates the effectiveness of this estimation method when applied to normally distributed
data. For KL divergence, again, k = 1 is the best choice of hyperparameter, and given a specific
k, the mean estimates of KL divergence are very consistent across sample sizes.
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3.6. Case 3: 1D, Normal Mixture Distribution

To exploit the statistical properties of normal distributions while making them more
flexible in fitting non-normal real-word data sets, it is common to use weighted mixtures of
normal distributions in approximation tasks. Such a mixture offers the possibility to test
the estimators presented in this paper in a setting where the data come from a distribution
that is not uni-modal and more skewed. Further, the main interest in evaluating a mixture
of normal distributions is that a normal mixture model is a universal approximator of
densities, in the sense that any smooth density can be approximated with any specific
nonzero amount of error by a normal mixture model with enough components [33]. The
PDF of a normal mixture distribution is:

p(x) =
n

∑
i=1

ωi N (µi, σ2
i ), (37)

where ωi is the individual weight of each of the n components of the mixture, with their
individual expected values µi and standard deviations σi, and ∑n

i=1 ωi = 1.

3.6.1. Numerical Reference Solution

Because of the logarithm of a sum of exponential functions, the entropy of a mixture of
normal distributions cannot be calculated [42]. The same applies to KL divergence. Therefore,
numerical integration was used to obtain the reference value presented in the results.

Figure 7a shows the distribution used for this application case. This is an equally
weighted mixture of the two normal distributions N (−2.5, 2.52) and N (2.5, 12).
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Figure 7. Case 3: 1D, normal mixture distribution. (a) PDF of a normal mixture distribution (see the
parameters in the text) and a reference value for entropy H; (b) same as (a) including the PDF of an
approximating normal distribution (in red) N (0, 3.152) and a reference value for KL divergence DKL.

3.6.2. Estimation Results

The estimation results of the mixture of normal distributions are shown in Figure 8
and they are very similar to those of the single normal distribution in the previous case.
KDE again performs well due to the usage of a Gaussian kernel. Given the two peaks
of the distribution as seen in Figure 7a, for a low number of samples, the kernel density
at specific points is underestimated, and therefore, the entropy is overestimated. This is
the opposite as in Case 2 (pure normal distribution), in which small samples tend to over-
represent a narrower high-probability range of the underlying distribution, which leads
to an underestimation of entropy. In both cases, direct estimation gives a very accurate
result for sample sizes larger than 1000; integration struggles much more in the case of the
normal mixture distribution.



Entropy 2024, 26, 387 17 of 34

2
.2

5
2
.3

0
2
.3

5
2
.4

0
2
.4

5
2
.5

0
2
.5

5

E
n
t
r
o
p
y

(
n
a
t
s
)

KDE estimator

direct

integration

102 103 104 105

0
.0

0
.1

0
.2

0
.3

0
.4

D
K
L

(
n
a
t
s
)

binning estimator

scott

fd

sturges

qs

102 103 104 105

sample size

−
6
−

4
−

2
0

2
4

6

R
e
la

t
iv

e
E

r
r
o
r

(
%

)

k-NN estimator

k = 1

k = 3

k = 5

k = 15

−
1
0
0
−

5
0

0
5
0

1
0
0

R
e
la

t
iv

e
E

r
r
o
r

(
%

)

102 103 104 105

Figure 8. Evaluation of all estimation methods (columns) for entropy (top) and KL divergence
(bottom), in Case 3 (1D, normal mixture distribution).

For the binning estimator, the results are also very similar to the previous case: both
Scott’s and FD’s estimate perform very well; the QS approach converges to their result from
below; Sturges’ rule struggles even more than before due to an inadequate number of bins
for both estimating entropy and KL divergence. Scott’s rule appears to be best to calculate
an adequate number of bins, particularly for KL divergence where the estimate based on
said rule appears to consistently match the true value across all sample sizes.

k-NN-based estimation behaves similarly to all previous one-dimensional cases. Here,
once again, values of k = 3 or k = 5 give an estimate of entropy that is very close to the
true value while having a smaller variance than k = 1. k = 15 gives the estimate with the
smallest variance, but largest bias for small sample sizes. For estimating KL divergence,
again, k = 1 performs best and k = 15 approaches this result (but still shows a small bias
even for large sample sizes).

3.7. Case 4: 2D, Normal Distribution

For extending Case 2 to a normal distribution with d dimensions, we use the notation
Nd(µ, Σ), where µ ∈ Rd is a d-dimensional mean vector and Σ ∈ Rd×d is a d × d covariance
matrix, where Σ is positive-definite. For this distribution, the PDF is:

p(x) =
1

(2π)d/2(det (Σ))1/2 exp
(
−1

2
(x − µ)⊺Σ−1(x − µ)

)
(38)

3.7.1. Analytical Reference Solution

The entropy of this multivariate normal distribution is given by [1]:

H(X) =
1
2

ln
(
(2πe)d · det (Σ)

)
(39)

The KL divergence between two d-dimensional normal distributions p(x) = Nd(µp, Σp)
and q(x) = Nd(µq, Σq) [43]:
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DKL(p|| q) =
1
2

[
ln

(
det

(
Σq
)

det
(
Σp
))+ Tr

(
Σ−1

q Σp

)
+
(
µq − µp

)⊺Σ−1
q
(
µq − µp

)
− d

]
(40)

In particular, for d = 2, the parameters for the normal distribution become a 2 × 1
vector for the means and a 2 × 2 matrix for the covariance. These parameters can be
written as:

µ =
[
µ0 µ1

]⊺ Σ =

[
σ2

0 ρ σ0 σ1
ρ σ0 σ1 σ2

1

]
This notation is similar to that of Equation (34) with the addition of ρ being the Pearson

correlation coefficient between X0 and X1. Using this parametrization, the expression for
mutual information for the bi-variate normal distribution becomes:

I(X0, X1) = −1
2

log
(

1 − ρ2
)

(41)

This means that, for a bivariate normal distribution, there is an exact relationship
between the correlation coefficient ρ and mutual information [44].

Figure 9a shows a bivariate normal distribution p(x1, x2) = N2(µp, Σp), and Figure 9b
shows the same, with a second approximating distribution q(x1, x2) = N2(µq, Σq) in red.
The parameters for both distributions are:

µp =
[
−2 0

]⊺
µq =

[
0 0

]⊺
Σp =

[
1 −0.5

−0.5 1

]
Σq =

[
5 0
0 1

]
Additionally, in Σp, the value of ρ is −0.5 and can be directly used in Equation (41).

This result is also shown in Figure 9a.
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Figure 9. Case 4: 2D , normal distribution. (a) PDF of a bivariate normal distribution (see the
parameters in the text) and reference values for entropy H and mutual information I; (b) same as (a)
including the PDF of an approximating bivariate normal distribution (in red; see the parameters in
the text) and a reference value for KL divergence DKL.

3.7.2. Estimation Results

This initial case in two dimensions starts to introduce the challenges of density estima-
tion in higher dimensions. The estimation results are shown in Figure 10. More specifically,
for KDE-based estimation, direct evaluation of a kernel representation of the probability
distribution is very computationally expensive for sample sizes larger than 25,000, and the
waiting time to obtain an estimate becomes unreasonable. Therefore, this method is tested
no further than this number of samples. Computational costs will be discussed further in
Section 3.12. Nevertheless, estimates for entropy, KL divergence, and now, also mutual
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information using this technique are quite accurate with a behavior similar to the one-
dimensional case in Section 3.5. Numerical integration of the KDE density estimate further
increases the computational cost with the procedure becoming unfeasible for a number of
samples larger than 10,000. Further, integration only notably improves performance for
mutual information.

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

2
.8

E
n
t
r
o
p
y

(
n
a
t
s
)

KDE estimator

direct

integration

0
.6

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

D
K
L

(
n
a
t
s
)

102 103 104 105

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

M
u
t
u
a
l

In
fo

r
m

a
t
io

n
(
n
a
t
s
)

binning estimator

scott

fd

sturges

102 103 104 105

sample size

−
2
0

−
1
5

−
1
0

−
5

0
5

R
e
la

t
iv

e
E

r
r
o
r

(
%

)

k-NN estimator

k = 1

k = 3

k = 5

k = 15

−
3
0
−

2
0
−

1
0

0
1
0

2
0

3
0

R
e
la

t
iv

e
E

r
r
o
r

(
%

)

−
1
0
0
−

5
0

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

R
e
la

t
iv

e
E

r
r
o
r

(
%

)

102 103 104 105

Figure 10. Evaluation of all estimation methods (columns) for entropy (top), KL divergence (middle),
and mutual information (bottom), in Case 4 (2D, normal distribution).

Binning-based estimation does not suffer from the increase in computational cost
as much as KDE-based estimation, but there is a small increase (see Section 3.12). As
opposed to the one-dimensional cases investigated so far, binning yields large relative
errors when estimating entropy even for larger sample sizes. The main drawback of the
different binning rules is their inability to account for the multiple dimensions of the data,
making the method less effective for dimensions higher than one. Here, Sturges’ rule is
superior to the other methods, as it yields relatively accurate estimates for entropy and
mutual information for samples of size 1000 or larger. For KL divergence, Scott’s and FD’s
rules seem more effective. It appears that, for entropy and mutual information, a smoother
histogram created using a larger ∆ is more favorable, while for KL divergence, a more
detailed histogram with a finer ∆ is preferred. Recall that the QS approach has not been
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extended to higher dimensions yet and, hence, cannot be analyzed in this and the following
multi-dimensional test cases.

Finally, for k-NN estimation, the findings from the previous one-dimensional cases
seem to hold, at least for two dimensions. Namely, estimation performs best for smaller
values of k both for entropy and KL divergence. This is not true for mutual information,
where a large value for k = 15 gives better estimates across all sample sizes. Importantly, for
certain cases, particularly in Figure 10 shown for small sample sizes and k = 1, the second
term in Equation (29) becomes larger than all other terms, resulting in an estimation of
negative mutual information. As mutual information cannot be negative per its definition
(Equation (7)), the estimator reports 0.0 as the result. Hence, the k-NN estimate converges
to the true mutual information systematically from below.

3.8. Case 5: 2D, Normal Mixture Distribution

To increase the level of complexity while exploiting the fact that two dimensions still
allow for visualization, we again tested on a mixture of now bivariate normal distributions
using the scheme in Equation (37).

3.8.1. Numerical Reference Solution

As in Case 3, analytical expressions for entropy, KL divergence, or mutual information
do not exist for this type of distribution. We, therefore, relied on numerical integration to
obtain the reference values presented in the results. Figure 11a shows an equally weighted
mixture of N2(µ0, Σ0) and N2(µ1, Σ1).

−4 −2 0 2 4

X1

−2

−1

0

1

2

X
2

(a)H(X1, X2) = 2.694 nats

I(X1;X2) = 0.144 nats

−4 −2 0 2 4

X1

(b)DKL(p||q) = 0.949 nats

0
.0

0
0

0
.0

1
5

0
.0

3
0

0
.0

4
5

0
.0

6
0

0
.0

7
5

0
.0

9
0

0
.1

0
5

Figure 11. Case 5: 2D, normal mixture distribution. (a) PDF of a bivariate normal mixture distribution
(see the parameters in the text) and reference values for entropy H and mutual information I; (b)
same as (a) including the PDF of an approximating bivariate normal distribution (in red; see the
parameters in the text) and a reference value for KL divergence DKL.

The parameters of the mixture are:

µ0 =
[
−2 0

]⊺
µ1 =

[
2 0

]⊺
Σ0 =

[
1 −0.5

−0.5 1

]
Σ1 =

[
1 0.5

0.5 1

]
Figure 11b shows an approximating bivariate normal distribution N2(µ2, Σ2). The

parameters of this distribution come from making the incorrect assumption that the x0, x1
pairs shown in Figure 11a are independent.

µ2 =
[
0 0

]⊺ Σ2 =

[
5 0
0 1

]
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3.8.2. Estimation Results

The results of this test case are found to be very similar to the previous case of a
bivariate normal distribution, with the most notable difference being that KDE seems to
struggle more when moving away from a pure normal distribution, meaning that the
performance is overall worse in this case.

Note that, for estimating mutual information with the k-NN method, further tests
were conducted using k = 50, but there were no noticeable differences between this value
of k and the maximum shown in Figure 12 of k = 15.
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Figure 12. Evaluation of all estimation methods (columns) for entropy (top), KL divergence (middle),
and mutual information (bottom), in Case 5 (2D, normal mixture distribution).

3.9. Case 6: 2D, Gamma-Exponential Distribution

An example of a skewed distribution in two dimensions is the gamma-exponential
distribution, which has the following PDF [21], defined for x1, x2 > 0:

p(x1, x2) =
xθ

1e−x1−x1·x2

Γ(θ)
(42)

where θ is the scaling parameter of the distribution >0 and Γ is the gamma function.
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3.9.1. Analytical and Numerical Reference Solutions

Darbellay and Vajda [45] presented a list of multivariate differential entropies and mutual
information. According to them, the (joint) entropy of the gamma-exponential distribution is:

H(X1, X2) = 1 + θ − θ · ψ(θ) + ln Γ(θ)− ln(1) (43)

where ψ is the digamma function or d
dθ ln Γ(θ). The mutual information is:

I(X1, X2) = ψ(θ)− ln(θ) +
1
θ

(44)

For calculating entropy and mutual information in this case, the scaling parameter
was set to θ = 3. For determining KL divergence, the parameter of the approximating
distribution was set to θ = 4. Because no reference in the literature was found to provide
a theoretical result of relative entropy between two gamma-exponential distributions,
numerical integration was used to obtain the true value of DKL presented in the results.
Figure 13 shows a plot of the two PDFs used in this test case.
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Figure 13. Case 6: 2D, gamma-exponential distribution. (a) PDF of the gamma-exponential distri-
bution, where θ = 3, and reference values for entropy H and mutual information I; (b) same as (a)
including the PDF of an approximating function (in red), where θ = 4, and a reference value for KL
divergence DKL.

3.9.2. Estimation Results

The estimation results for the case of the gamma-exponential distribution are shown
in Figure 14. Here, we have the case of a distribution that has a different shape than the
normal distribution; therefore, the limitations of the usage of a Gaussian kernel in the KDE-
based estimator become more apparent. The KDE-based entropy estimate only achieves
an accurate result for large sample sizes and using numerical integration. This seems to
contradict the previous cases, but this can be explained by how numerical integration is
implemented on the KDE estimator. Numerical integration requires a set of limits, and
as implemented, the limits were chosen as the maximum and minimum values available
in the sample for each dimension, plus and minus the specific bandwidth calculated
for the Gaussian kernel. Therefore, these limits constrain the region where numerical
integration happens, even though the kernel-based representation of the distribution has
support everywhere due to the usage of the Gaussian kernel. This effect also applies
to KL divergence and mutual information, but is more apparent in the latter. Both of
these estimates remain biased to a significant degree even with the largest sample sizes
tested here.

Binning estimates applying Scott’s rule give the best results, while the FD rule drasti-
cally underestimates entropy and overestimates mutual information. Sturges’ rule shows
the opposite behavior. As previously commented on, this is due to the FD rule calculating
a smaller ∆ and forcing a greater number of bins than Sturges’. This overestimation on
the required number of bins causes the representation of the joint distribution p(x, y) to
be sparser and to have a larger number of empty bins, leading to a smaller variability in
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the representation of p(x, y). Generally, estimating entropy with bins using Scott’s rule
leads to small relative errors for practically all considered sample sizes, whereas the mutual
information estimate using this same rule still contains quite high relative errors even for
the largest sample size of 100,000. Because KL divergence compares the ratios of p(x) and
q(x), very similar results are obtained across the binning hyperparameters as the absolute
bin size does not matter as much as the fact that equal binning schemes are defined for p(x)
and q(x).
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Figure 14. Evaluation of all estimation methods (columns) for entropy (top), KL divergence (middle),
and mutual information (bottom), in Case 6 (2D, gamma-exponential distribution).

As with the other cases, k-NN-based estimates improve in accuracy with increasing
sample size, and k = 1 performs best for entropy and KL divergence. In the case of entropy,
larger k leads to a worse approximation, while still, all investigated values of k produce
very small errors with large sample sizes. For KL divergence, however, the results become
more mixed with larger sample sizes, where the highest considered k of 15 approaches
the highly accurate result of k = 1, while the smaller k values in between seem to stabilize
at large relative errors, underestimating the true KL divergence significantly. In the case
of mutual information, larger k is favorable for all sample sizes, but all k larger than one
achieve acceptable relative errors for sample sizes larger than 1000.
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3.10. Case 7: 4D, Multivariate Normal Distribution

For higher dimensions, we tested the estimators’ ability to quantify the entropy, KL
divergence, and mutual information of a four-dimensional normal distribution, since
analytical solutions are available. We adopted the experiments by Wang et al. [23] and
replicated their results, while going further with their experiment by quantifying the
sampling uncertainty of their results, as well as investigating additional estimation methods.
For entropy and mutual information, data were sampled from N4(µ0, Σ0), and for KL
divergence, data were also sampled from N4(µ1, Σ1).

µ0 =
[
0.1 0.3 0.6 0.9

]⊺
µ1 =

[
0 0 0 0

]⊺

Σ0 =


1 0.5 0.5 0.5

0.5 1 0.5 0.5
0.5 0.5 1 0.5
0.5 0.5 0.5 1

 Σ1 =


1 0.1 0.1 0.1

0.1 1 0.1 0.1
0.1 0.1 1 0.1
0.1 0.1 0.1 1


3.10.1. Analytical Reference Solution

In this case, we can use Equations (39) and (40) as analytical expressions for entropy
and KL divergence, respectively.

For mutual information, Arellano-Valle et al. [46] suggested breaking down the distri-
bution into marginal distributions with n and m dimensions, where d = n + m and:(

X
Y

)
∼ Nn+m

((
µX
µY

)
,
(

ΣXX ΣXY
ΣYX ΣYY

))
(45)

In this form, using the expression for mutual information in the first row of Equation (7)
and considering the expression for entropy obtained in Equation (39), mutual information
can be written as:

I(X, Y) =
1
2

ln
(

det (ΣXX)det (ΣYY)

det (Σ)

)
= −1

2
ln
(

det
(

In − Σ−1
XXΣXY · Σ−1

YYΣYX

))
(46)

As we cannot present plots of the PDF of the distributions used in this application
case, we show here the reference true values:

H(X) = 5.09 nats DKL(p||q) = 0.90 nats I(X; Y) = 0.24 nats

The reference solution for mutual information comes from applying Equation (45) to
the distribution N4(µ0, Σ0). The distribution is split so that the distribution of X contains
the first three dimensions of the original distribution; therefore n = 3; the distribution
of Y has dimensions of the highest order (d = 4) and m = 1. More succinctly, mutual
information is calculated as: I([x1, x2, x3]; x4).

3.10.2. Estimation Results

The estimation results for the case of the 4D normal distribution are shown in Figure 15.
In higher dimensions than those of the previous cases, the main drawbacks of some of the
estimation methods start to become apparent. To begin, numerical integration of a KDE-
based probability distribution becomes too computationally expensive, so this method was
not considered in this experiment. Further, as was also the case for some of the previous
cases, the evaluation of a KDE-based representation also becomes too expensive for larger
sample sizes; therefore, the KDE-based direct resubstitution estimate was only calculated
up to 25,000 samples. For entropy and mutual information, it seems that the estimator
would converge for a larger number of samples, with the estimates having very little
variance after 1000 samples. The estimate for KL divergence, however, is extremely stable
with a highly biased result (40% relative error).
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Figure 15. Evaluation of all estimation methods (columns) for entropy (top), KL divergence (middle),
and mutual information (bottom), in Case 7 (4D, normal distribution).

Binning-based estimation performs acceptably well only when using Sturges’ rule.
Sturges’ rule typically results in the largest bin width, with Scott’s and FD’s rules giving
smaller bin widths and, therefore, a larger amount of bins in the histogram-based represen-
tation of the PDF. In the case of entropy, for smaller bins, the contribution of each bin to the
computation of entropy is very small and the correction factor described in Section 2.2 and
Equation (20) dominates the calculation, typically underestimating entropy and resulting
in values that are not shown in the limits of the plot in Figure 15. Only Sturges’ rule with
its larger bin sizes converges to the true value with the highest investigated sample size,
however, approaching the true value very steeply, meaning that all smaller sample sizes
exhibit large relative errors. The same is true for mutual information, but this quantity is
usually overestimated with smaller sample sizes. Finally, also for KL divergence, Sturges’ is
the only rule that shows a reasonable convergence behavior. The other rules result in many
more bins, making it difficult for samples to match the same bin as those that are evaluated
for the computation of KL divergence between the histogram of p̂(x) and q̂(x). Contrary to
the previous case, in higher dimensions, not only equal binning schemes matter, but also
the quality of the estimate depends on the size of the bin. As the data are sparser in higher
dimensions, samples that are close together should be accounted for in the same bin, and
this becomes difficult when the number of bins is too large.
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k-NN-based estimation performs best among all investigated methods and quantities
with similar behavior as in the previous lower-dimensional cases, where, again, k = 1
is the best hyperparameter for entropy and KL divergence, while k = 15 seems best for
mutual information. For mutual information, it can also be noted that k = 1 is not an
adequate parameter for estimation, especially for small sample sizes, as the estimator
typically reports a value of 0.0.

3.11. Case 8: 10D, Multivariate Normal Distribution

Following the experiments by Wang et al. [23] and, therefore, using a similar nota-
tion as the previous case, for entropy and mutual information, data were sampled from
N10(µ0, Σ0), and for KL divergence, data were sampled from N10(µ1, Σ1). In this case,
both distributions are centered at 0, and we write the covariance matrices using the no-
tation i for rows and j for columns, then Σi,i

0 = 1, Σi,j
0 = 0.9 and Σi,i

1 = 1, Σi,j
1 = 0.1, for

i and j = 1, . . . , 10.

3.11.1. Analytical Reference Solution

We can again use Equations (39), (40), and (46). Similar to the previous case, to
calculate mutual information, Equation (45) is applied to the distribution N10(µ0, Σ0),
and once again, the dimensions are separated so that n = 9 and m = 1, where m is the
dimension of the highest order; then, mutual information is calculated as I([x1, . . . , x9]; x10).
The following solutions are obtained as reference values:

H(X) = 4.93 nats DKL(p||q) = 7.00 nats I(X; Y) = 1.10 nats

3.11.2. Estimation Results

KDE-based estimation performs poorly for all quantities. For estimating entropy, the
kernel-based representation of the PDF seems to not be as smooth as the true distribution,
resulting in a lower estimation of entropy. Nevertheless, the representation does improve
with additional samples, and it would be expected that, given enough samples, the KDE
PDF would resemble the true distribution and the estimator would converge. Then,
again, more samples would mean added computational cost in evaluating the kernel
representation of the PDF, and this procedure becomes a limiting factor. As with the
previous case, the maximum number of samples for entropy and KL divergence has
been limited to 25,000. For KL divergence, the mean estimates across sample sizes are very
consistent, but the kernel-based representation of both the true p(x) and approximating q(x)
distributions do not resemble the distributions from which the data were sampled; therefore,
a biased result is obtained. Finally, mutual information is consistently overestimated across
all sample sizes, with added computational cost, as three kernel-based approximations of
the true distribution have to be evaluated: p(x, y), p(x), and p(y).

Considering binning methods, similar to the previous case, only Sturges’ rule is able to
capture an adequate representation of the underlying distribution with its larger bin widths.
For entropy, as the sample size increases, the estimate made by Sturges moves toward the
true value. But, even for the largest sample size of 100,000, the estimate made using this rule
underestimates the true value of entropy by approximately 20%. Furthermore, when using
rules with smaller bin widths, bin occupations and, hence, densities become even lower,
resulting in the estimated entropy being typically negative. This can be seen in Figure 16
as the trajectory that Scott’s rule follows, and this was true also for the previous case in
Section 3.10. Further, for KL divergence, not even the large bins produced by Sturges’ rule
prevent the mismatch between the bin occupations for high-dimensional data, making the
result of estimating KL divergence equivalent to infinity and not shown in Figure 16. Finally,
in the case of mutual information, once again, only Sturges’ rule produces an estimate that
follows the expected behavior of improving as the sample size is increased. Both Scott’s
and FD’s rule produce more bins, which typically have higher estimated densities in the
joint distribution of X and Y than the product of both marginal distributions X and Y. As
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mutual information measures the distance between a joint distribution and the product of
its marginals, as described in Equation (6), mutual information increases with the sample
size, as can be seen in Figure 16, and said increase is not compensated by dividing by the
size of the sample, as Equation (22) indicates.
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Figure 16. Evaluation of all estimation methods (columns) for entropy (top), KL divergence (middle),
and mutual information (bottom), in Case 8 (10D, normal distribution).

k-NN-based estimation continues to perform well, but the challenges of estimation
in higher dimensions also affect the results based on this method. Here, the number of
samples was also limited from the typical 100,000 as the maximum evaluated to 50,000.
Although not as markedly as with other methods, the computational cost increased from
seconds to minutes in comparison to the previous four-dimensional case, even considering
that the number of available samples was restricted. Notably, the estimator gives a much
more accurate result for entropy across all sample sizes than KDE or binning for the largest
implemented sample size, using the k-NN hyperparameter k = 1. For KL divergence and
mutual information, the performance is not as accurate, even when considering an optimal
choice of hyperparameters. For KL divergence, estimates using k = 1 show a downward
trend, which would suggest that the estimator will eventually converge, but at a much
higher number of available samples. The same is true for mutual information using k = 15.
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However, the relative errors of both quantities are much smaller than those produced by
KDE or binning and remarkably similar in order of magnitude to all lower-dimensional
test cases.

3.12. Computational Cost

A desirable property of an estimator is a low computational time. With such a property,
the estimator would lend itself to practical purposes and processes that require a result to
be estimated many times such as Monte Carlo methods or bootstrapping [10].

To assess the computational cost of the different estimation methods, we chose to
evaluate the computation time required for each test case for a set number of samples and
one hyperparameter of each specific method. Given the results presented above, we chose
to use 10,000 samples to evaluate computation time because, in most cases, at this sample
size, each estimator has (almost) converged to the true result. In terms of hyperparameters,
for the binned estimator, we chose to use Scott’s method to calculate an appropriate bin
width (see Section 2.2), Silverman’s bandwidth for the KDE estimator (Equation (14)), and
k = 1 for the k-NN estimator to calculate entropy and KL divergence, while for mutual
information, we chose k = 15. The results in Table 2 show the mean, maximum, and
minimum computation time (in seconds) for each experiment. All results were obtained on
a single thread of an Intel(R) Xeon(R) CPU E5-26280 v2 with a clock speed of 2.80 GHz.

Across the board, Table 2 shows that binning- and k-NN-based methods have the
lowest required computational time with a single estimate taking less than a second in
most cases. This makes them ideal for tasks that require repeating calculations for different
samples of data or using different hyperparameters.

For the binning estimator, the process of creating, filling, and applying a specific equa-
tion as described in Section 2.2.1 typically takes milliseconds with an increase depending on
the number of dimensions of the data. While, for lower dimensions, the required histogram
is calculated, for the 4- and 10-dimensional cases, we employed a procedure in which
every point in the sample is replaced by the specific bin it occupies, greatly limiting the
amount of memory and computational time required for estimation. Interestingly, there is a
decrease in the time required to estimate KL divergence between the 4- and 10-dimensional
cases. This is the product of having to find the matching and occupied bins given by Scott’s
rule-of-thumb for estimating bin size. As the bins are smaller, they are more sparsely
populated in the 10-dimensional case, resulting in less matching bins that are also occupied.
Having to calculate the estimate of KL divergence for less bins makes this process faster in
the 10-dimensional case when compared against the 4-dimensional case.

As introduced by Gupta et al. [10], the QS estimator uses bootstrapping twice. From
a single sample, it uses bootstrapping to determine the theoretical quantiles that best
approximate the true distribution, and then, it uses bootstrapping again to estimate the
bootstrapped confidence intervals of the estimate. Because the experiments wanted to
address the effect of sampling variability on the estimators, the second step of the QS
estimator was not performed and bootstrapping was only performed to determine the
quantiles. This is reflected in the computational times shown in Table 2 as the QS estimator
takes longer than histogram-based methods using rules-of-thumb to determine the bin
width. As described in Section 2.2.2, bootstrapping was performed Nk = 500 times to
determine the ideal quantiles.

KDE-based estimation provides the estimates with the highest computation time out
of all the estimation methods evaluated. Calculating a direct resubstitution estimate for
all quantities is one or two orders of magnitude slower than using any of the previously
discussed methods. This becomes even worse when numerical integration is used to
calculate an estimate. For a resubstitution estimate, each data point in the sample has to be
evaluated once in the KDE-based representation of the PDF. This is opposed to performing
numerical integration where the number of evaluations is unknown and they continue until
a certain tolerance for error in the method is met. This is apparent as, for lower-dimensional
cases, the number of required evaluations for the numerical integration estimate is low,
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making this method faster than evaluating all available samples in the kernel-based PDF for
a resubstitution estimate. Nevertheless, due to its high computation time, the KDE-based
estimator does not seem suitable for multiple evaluations.

Finally, k-NN estimation requires about 10-times the computational effort of binning
in low dimensions, but it’s faster than direct KDE evaluation by about a factor of 1000. In
high-dimensional cases, the effort of k-NN increases, but still is well below the effort of the
direct evaluation of KDE.

Table 2. Comparison of computational time between cases and methods (time in seconds).

Quantity Case
Bins KDE

k-NNScott QS Direct Integration

En
tr

op
y

Uniform 0.0010.012
0.001 0.2630.556

0.137 3.4084.078
1.643 0.1220.290

0.091 0.0180.046
0.014

Normal 0.0010.014
0.001 0.2780.455

0.210 3.4674.058
2.652 0.2860.672

0.197 0.0180.043
0.014

Normal Mixture 0.0010.001
0.001 0.2850.505

0.225 3.4864.196
2.795 0.2450.604

0.156 0.0180.040
0.014

2D Normal 0.0030.012
0.002 - 3.5134.176

2.861 80.09112.1
56.75 0.0230.077

0.017

2D Normal Mixture 0.0020.014
0.002 - 3.5254.048

2.667 37.2349.74
21.06 0.0220.056

0.018

Gamma-Exponential 0.0030.005
0.002 - 3.5484.012

3.338 279.2633.6
76.25 0.0230.064

0.012

4D Normal 0.0080.015
0.006 - 4.0524.896

2.825 - 0.0430.115
0.034

10D Normal 0.0160.039
0.010 - 5.1936.357

4.120 - 0.5970.937
0.442

D
K

L

Uniform 0.0020.011
0.001 - 4.7124.755

4.668 0.5240.952
0.365 0.0340.087

0.027

Normal 0.0020.011
0.001 - 4.7154.783

4.596 0.8371.395
0.554 0.0330.083

0.027

Normal Mixture 0.0020.002
0.001 - 4.7134.782

4.597 0.5811.087
0.365 0.0330.074

0.017

2D Normal 0.0040.014
0.002 - 4.8774.921

4.767 250.5373.3
187.3 0.0440.135

0.023

2D Normal Mixture 0.0040.016
0.004 - 4.8754.930

4.756 168.4238.4
122.5 0.0420.084

0.034

Gamma-Exponential 0.0050.014
0.003 - 4.9424.985

4.907 381.4494.7
228.4 0.0430.094

0.023

4D Normal 0.1920.412
0.128 - 5.3635.409

5.304 - 0.0930.179
0.067

10D Normal 0.0570.132
0.044 - 6.9606.994

6.900 - 1.0121.077
0.949

M
ut

ua
l

In
fo

rm
at

io
n

2D Normal 0.0110.035
0.006 - 10.4011.43

7.998 224.6361.8
133.9 0.1750.342

0.082

2D Normal Mixture 0.0120.044
0.008 - 10.2711.31

9.553 165.2362.3
94.73 0.1700.236

0.082

Gamma-Exponential 0.0160.035
0.006 - 10.1911.59

9.919 938.93271.
244.7 0.1770.256

0.141

4D Normal 0.0170.025
0.015 - 8.34712.02

5.171 - 0.6011.060
0.466

10D Normal 0.0250.040
0.024 - 6.2326.260

6.213 - 3.2183.959
2.473

3.13. Synthesis of Findings from Test Cases

Histogram-based estimation or binning is the most common approach for calculating
entropy, KL divergence, or mutual information. In this study, we found that it is an accurate
method especially for data in one dimension and using Scott’s rule-of-thumb to determine
an adequate binning scheme for the data. Nevertheless, the method loses accuracy for
data in higher dimensions, where there are no established good practices for selecting
a particular bin size, and the rules-of-thumb extrapolate poorly to higher dimensions.
Only Sturges’ rule, which calculates the largest bin widths, seems to generalize to higher
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dimensions, as the available data for estimation are sparser and less bins are able to capture
an adequate number of points in a particular bin.

As an alternative, KDE-based estimation uses a kernel to create a smooth repre-
sentation of a probability density function for each point in the available sample. The
performance of this method is good when compared to the other estimation methods, but it
might not be practical due to its high computational cost and the fact that, as implemented
in this study, it used a Gaussian kernel and it was applied to data sampled from normal
distributions (multivariate normal distributions in higher dimensions). Extrapolating from
the lower-dimensional test cases, we reckon that, for high-dimensional distributions with
different shapes, this estimation method might not perform as well.

Across all of the experiments, k-NN-based estimation was among the top-scoring
methods, independent of the shape and dimensionality of the distribution sampled from,
and the given sample size. We found a very consistent best-performing choice of the
hyperparameter k, i.e., the number of neighbors to consider in the formulation of the
estimator. Notably, the optimal choice of k depends on the specific quantity to be estimated:
for entropy and KL divergence, k = 1 performed best, while for mutual information, a high
number of k = 15 was shown to be optimal. Higher values of k were tested, but did not
show significant improvement, while using k = 1 for mutual information is generally not
recommended. These findings suggest that a direct estimation in the immediate vicinity of
each sample point is beneficial for estimating entropy (thereby, not smearing out the sample
distribution too much) and KL divergence (where the ratios of probabilities are estimated
per sampling point, thereby not accumulating approximation errors before calculating the
ratios). For mutual information, a more aggregated view of the sample is required, favoring
a higher number of neighbors to consider.

Moreover, the computational cost is relatively low, as described in Section 3.12. Hence,
k-NN-based estimation is readily implementable in practical applications and lends itself
to repeated sampling such as in Monte Carlo or bootstrapping analyses.

We found that KDE and binning both performed well in some cases, but by far not
as consistently as k-NN and with varying methods (e.g., direct estimation vs. integration
for KDE and Scott’s rule vs. Sturges’ and FD’s rule for binning). Hence, the clear recom-
mendation on how to set the value of k-NN’s hyperparameter is a further advantage of
this method.

4. Summary, Conclusions, and Outlook

Estimating information-theoretic quantities from sample data, possibly in higher di-
mensions, poses a challenge. Most methods rely on an initial density estimation step, but
density estimation itself is known to be computationally demanding or even prohibitive,
and to produce unreliable results with unknown accuracy and precision in practical set-
tings. Further, most methods assume a certain shape of distribution that the sample stems
from, with an unknown impact on the estimator’s performance if the true distribution
deviates from that assumption. As an alternative, nearest-neighbor-based methods to
directly estimate specific information-theoretic quantities have been proposed, skipping
the initial density estimation step altogether. Hence, they show promise to also perform
well for higher dimensions and arbitrary distributions, but have never been systematically
compared to density-based methods such as kernel density estimation (KDE) or binning
(histogram-based schemes). In fact, most users in science and practice seem to favor binning
for its straightforward implementation, but with no further justification. We hypothesize
that this is due to a lack of systematic evaluation and guidance on which method to choose
in what settings. With this investigation, we aimed to close this research gap.

Typically, a new method was introduced individually without systematic compar-
ative analysis in regard to other methods. In some cases, a brief comparison was made
against another method that uses the same basic principle, such as histograms or k-NN. In
response, we presented and discussed three of the most widely used non-parametric esti-
mation methods for information-theoretic quantities, namely binning, KDE, and k-nearest
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neighbors (k-NN). To evaluate the estimators’ performance, we designed test cases that
used data samples from distributions with different shapes and with different numbers of
dimensions to quantify the information-theoretic quantities entropy, KL divergence, and
mutual information. Depending on the level of complexity of each case, analytical solutions
existed, or were approximated with a high-quality numerical reference solution. We tested
the estimation methods on each case and reported the performance in a chart that serves
for intercomparing all methods for all target quantities as a function of sample size. The
true distributions used to generate the data for our experiments ranged from simple 1D
uniform or normal distributions over more skewed or bimodal shapes up to multivariate
distributions in 4 and 10 dimensions. Sample sizes ranged from 100 to 100,000, with a
reduction of the maximum sample size in cases where computational effort exploded. As
described, this is a very practical and easy-to-understand basis for our study. We also
accounted for sampling variability as each experiment was repeated with 300 random
seeds for the data-generating sampling procedure. Further, we considered different choices
of hyperparameters for each estimation method. Finally, we assessed and compared the
computation time required to obtain an estimate for a sample size of 10,000, which pro-
duced a well-converged estimate for most estimation methods. All methods showed larger
relative errors for sample sizes typically below 1000, pointing to the fact that samples
of such a small size are not representative enough of the underlying true distribution,
and hence, any estimation method necessarily fails in reliably quantifying the underlying
distribution’s particular property. For larger sample sizes, however, estimation results
typically converged to a more or less biased estimate, with distinct differences between
the methods.

For binning, the most important parameter is the bin width or ∆ used to build the
histogram because it controls the trade-off between oversmoothing and undersmoothing
the data with respect to the true distribution. Typical rules-of-thumb were implemented
and tested in this study (namely Scott’s, Sturges’, and FD’s rule), as well as the Quantile
Spacing method by Gupta et al. [10], but alternative methods using piecewise constant
approximations for density [47], as well as methods that calculate an estimate of ∆ based on
the minimization of the mean-integrated-squared error (MISE) should be explored as well
in the future. These latter methods aim to reduce the error between the true distribution
f (x) and the histogram-based distribution f̂ (x|∆) [48].

Our KDE-based estimator used a Gaussian kernel as a typical choice; however, the
choice of kernel is a hyperparameter that was not analyzed in this study, and it is expected
that the performance of the estimator would vary depending on the choice of kernel
used. A boxcar kernel, for example, would improve estimation in cases where the true
distribution has distinct bounds such as a uniform distribution in one dimension, or a
gamma-exponential distribution in two dimensions. However, such improvement would
be accompanied by the known high computational cost of kernel-based methods, and
as such, if only the particular information-theoretic quantity is of interest and no other
property related to the kernel-based representation of the PDF, other more efficient methods
seem better suited.

Finally, the evaluation of the k-NN-based estimator proved its performance and served
as a showcase for its computational efficiency. The speed of the estimator comes from the
usage of the k-d Tree data structure, which is in charge of the look-up operation required
to identify nearest neighbors. While we found that, in its original form, the estimator
performs well in the diverse set of experiments we tested it on, recent variations have
been proposed to further improve the estimation of entropy by combining k-NN with
normalizing flows [49] and the estimation of mutual information by combining k-NN with
KDE [22] or using neural networks [50].

In general, across all test cases, k-NN produced among the lowest relative errors in
estimating entropy, KL divergence, and mutual information, independent of the sample size
and shape and dimensionality of the distribution sampled from. Also, a clear identification
of the best-performing value of the hyperparameter k, i.e., the number of neighbors to
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be considered in the vicinity of a sampling point, was possible; interestingly, the optimal
choice of k depends on the specific quantity to be estimated. For entropy and KL divergence,
k = 1 performed best, while for mutual information, a more integral approximation with a
high number of k = 15 was shown to be optimal (even higher values were tested, but did
not show significant further improvement).

All tested methods might benefit from a specifically tailored bootstrapping approach
to increase the stability of the estimator for large samples that are (sufficiently) repre-
sentative of the true underlying distribution; this is recommended for further analysis.
For small sample sizes, however, our study has confirmed the dominant impact of non-
representativeness.

Based on our evaluation of the performance, ease of implementation, and computa-
tional effort, we recommend k-NN-based estimation for estimating information-theoretic
quantities from sample data, especially in higher dimensions, due to its clear advantages.
However, the significance of this work extends beyond a theoretical comparison and practi-
cal performance assessment: we have also collected these methods in a publicly available
Python 3 toolbox, ensuring transparency and accessibility for the wider research commu-
nity. This toolbox shall serve as a valuable resource, enabling researchers and practitioners
to integrate information-theoretic concepts into their data analysis and modeling work-
flows. Specifically, this study in combination with the toolbox shall enable them to make a
well-informed decision on the choice of estimation method.
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