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Abstract: In brain imaging segmentation, precise tumor delineation is crucial for diagnosis and
treatment planning. Traditional approaches include convolutional neural networks (CNNs), which
struggle with processing sequential data, and transformer models that face limitations in maintaining
computational efficiency with large-scale data. This study introduces MambaBTS: a model that
synergizes the strengths of CNNs and transformers, is inspired by the Mamba architecture, and
integrates cascade residual multi-scale convolutional kernels. The model employs a mixed loss
function that blends dice loss with cross-entropy to refine segmentation accuracy effectively. This
novel approach reduces computational complexity, enhances the receptive field, and demonstrates
superior performance for accurately segmenting brain tumors in MRI images. Experiments on the
MICCAI BraTS 2019 dataset show that MambaBTS achieves dice coefficients of 0.8450 for the whole
tumor (WT), 0.8606 for the tumor core (TC), and 0.7796 for the enhancing tumor (ET) and outperforms
existing models in terms of accuracy, computational efficiency, and parameter efficiency. These results
underscore the model’s potential to offer a balanced, efficient, and effective segmentation method,
overcoming the constraints of existing models and promising significant improvements in clinical
diagnostics and planning.

Keywords: brain imaging segmentation; multi-scale convolutional kernels; Mamba architecture; dice
loss and cross-entropy; computational complexity; MambaBTS

1. Introduction

Brain tumors present a significant threat to patients, not only due to low survival
rates but also because they severely diminish quality of life. Symptoms like headaches,
seizures, cognitive impairment, and emotional changes are expected and severely affect
daily activities and social functions. Additionally, the prognosis for malignant brain tumors
is generally poor, with limited treatment efficacy, highlighting the critical need for more
research and the development of new treatments. Specifically, there is an urgent need for
precise brain tumor segmentation technologies to target and treat tumors better, thereby
improving therapeutic outcomes and patient quality of life [1–3]. The heterogeneity of these
psychological effects depends on the type and location of the tumor. In the field of brain
tumor segmentation, machine learning technologies have been increasingly utilized and
involve various methods such as hidden Markov random fields, expectation maximization
algorithms [4], morphological operations, clustering techniques [5], and the integration
of conditional random fields with support vector machines to model spatial relationships
effectively [6].
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Deep learning technologies are progressing rapidly, especially for leveraging con-
volutional neural networks (CNNs) to achieve pixel-level image segmentation through
comprehensive methodologies. As a result, these developments have garnered widespread
attention [7]. An essential advancement in this area is the integration of convolutional
neural networks (CNNs) with manually designed features [8], which introduce novel
approaches for brain tumor segmentation. This combination of advanced deep learn-
ing techniques with manually designed features represents a significant leap forward for
enhancing the accuracy of segmentation methods.

Moreover, U-Net [9], along with its variations, stands out in medical image segmen-
tation for its balanced network structure, creative skip connections [10], deep learning
supervision techniques [11], and 3D imaging capabilities [12]. Additionally, cascaded
anisotropic CNN techniques have notably enhanced segmentation effectiveness by lever-
aging multi-scale data [13]. The use of deep learning in brain tumor studies is growing,
with notable contributions such as that of Zhang et al. [14], who introduced a multifaceted
approach for brain tumor segmentation using multi-modal MR images. This approach
includes brain mapping, a combined 3D + 2D training method, and model ensembling to
increase segmentation precision. Qi et al. [15] proposed a novel knowledge distillation
strategy for brain tumor segmentation, concentrating on a coordination distillation method
that merges channel and spatial details to boost accuracy. Avesta et al. [16] introduced a
capsule network adept at segmenting brain images that is especially effective for images
that are poorly represented in training sets. MCA-ResUNet [17] refines MRI brain tumor
segmentation by integrating cascade residual multi-scale contextual attention with deep
residual networks. Jeong et al. [18] applied the 3D mask region-based convolutional neural
network (R-CNN) technique for automated brain tumor segmentation in DSCE MRI per-
fusion images. Another innovative framework [19] utilizes mutual enhancing networks,
retina U-Net, a classification localization map (CLM) module, and a segmentation module
for precise brain tumor subregion segmentation. HAG-NET [20], a cutting-edge GAN
framework that advances data security through robust watermarking and adversarial
attacks, set new standards in image-based confidentiality and integrity. Despite the im-
pressive capabilities of traditional CNNs in feature depiction, their limited ability to grasp
long-range image dependencies poses a considerable hurdle.

Following the remarkable achievements of transformer architectures in natural lan-
guage processing (NLP), their exceptional ability to model long-range dependencies has
quickly found application in computer vision [21]. TransUNet [22] merges the transformer
and UNet models to capture global relationships and detailed local information effectively.
The Swin transformer [23] introduces a self-attention module within localized windows.
Transfuse [24] offers a parallel architecture that simultaneously leverages transformer and
CNN models to integrate broad and specific details. TransBTS [25] successfully combines
the transformer structure with 3D CNNs to improve MRI brain tumor segmentation. DE-
Uformer [26] utilizes dual encoders and features a nested encoder-aware feature fusion
(NEaFF) module for efficient multi-dimensional information integration. While transform-
ers excel over traditional CNNs for modeling extensive dependencies, their computational
load increases quadratically with the length of the sequence, which has led to significant
research efforts aimed at optimizing their efficiency [27–33].

Leveraging state space equations, the Mamba [34] structure, initially developed for
analyzing temporal sequences in natural language processing (NLP), has been success-
fully transitioned to the visual domain. Innovations such as Vision Mamba [35] enhance
high-resolution image processing through advanced visual representation techniques.
VMamba [36] boosts computational efficiency with its cross-scan module (CSM) for tackling
dimensionality conversion challenges. VM-UNet [37] establishes new standards in medical
image segmentation with its visual state space (VSS) blocks. U-Mamba [38] adeptly captures
long-range dependencies using a hybrid CNN-SSM module. Swin-UMamba [39] elevates
medical image segmentation performance with ImageNet pretraining. SegMamba [40] is tai-
lored for 3D medical image segmentation and efficiently handles long-range dependencies
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in volumetric data. Mamba-ND [41] expands the Mamba framework to multi-dimensional
datasets and demonstrates robust performance across multi-dimensional benchmarks. P-
Mamba [42] integrates Perona–Malik diffusion with Mamba layers to achieve efficient
and accurate pediatric cardiac image segmentation, showcasing the Mamba architecture’s
significant contribution to improving the efficiency and accuracy of visual data processing.

Inspired by the innovative Mamba architecture, this study introduces MambaBTS, a
novel UNet-based network designed for brain tumor segmentation that employs a cascade
residual multi-scale convolution strategy. This approach is further enriched by integrating
dilated convolutions, as highlighted in the works of Ding et al. [43,44], enhancing the
model’s efficiency and interpretative capabilities. MambaBTS leverages the combined
strengths of cascade residual multi-scale convolutions and sophisticated state-space model-
ing provided by the Mamba module, thereby facilitating precise segmentation of tumors of
various shapes and sizes.

Our research evaluates the effectiveness of the MambaBTS model at segmenting
high-grade gliomas (HGGs) and low-grade gliomas (LGGs) within the highly regarded
MICCAI BraTS 2019 dataset. This detailed evaluation considers the specific hardware
setups and model training techniques outlined in Section 3. The study focuses on assessing
the accuracy of MambaBTS in delineating distinct tumor regions and aims to set a new
benchmark in the domain of brain tumor segmentation. Specifically, the definitions of
the tumor segmentation components are as follows: The whole tumor (WT) includes all
tumor-related regions and is represented by the equation WT = ED (peritumoral edema)
+ ET (enhancing tumor) + NET (non-enhancing tumor). The tumor core (TC) consists of
the enhancing and non-enhancing portions of the tumor while excluding the edema and is
defined as TC = ET + NET. These definitions help clarify the segmentation challenges and
enhance understanding of tumor component analysis within the study dataset. Figure 1
visually demonstrates the segmentation into edema, enhancing, and non-enhancing tumor
regions. Our contributions are as follows:

1. Developing the MambaBTS network, which uses cascade residual multi-scale con-
volutions for feature extraction from multi-modal brain tumor images followed by
modeling with the Mamba module for enhanced segmentation accuracy;

2. The verification of MambaBTS’s efficiency and performance on widely recognized
datasets, underscoring notable enhancements in segmentation outcomes and consis-
tency over existing methodologies;

3. The introduction of innovative concepts and methodologies to boost segmentation
precision and efficiency in brain tumor analysis, demonstrating the Mamba archi-
tecture’s potential for processing visual data and providing insightful directions for
future investigations.

Edema/Invasion Enhancing Non-Enhancing

Figure 1. Green represents peritumoral edema (ED), yellow denotes enhancing tumor (ET), red
signifies non-enhancing tumor (NET), and the background is depicted in black.
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2. Materials and Methods

The proposed MambaBTS, as depicted in Figure 2, is an integrated deep learning
framework designed specifically for segmenting brain tumors from MRI data. The architec-
ture is systematically constructed, with four distinct layers dedicated to downsampling
and advanced feature extraction. Each layer in the downsampling phase is equipped with
a UDMblock, which is pivotal for capturing sophisticated features from MRI images. The
UDMblock is a composite structure that consists of three main components: a ResUDM
unit that enhances the deep network architecture by incorporating two EncMSBlocks con-
nected via residual connections to facilitate effective feature transfer and gradient flow
across the network; a MambaLayer, which fine-tunes the feature extraction process using a
selective spatial state module (SSM) that optimizes extraction and reduces computational
overhead by managing spatial state equations; and a MaxPooling layer that follows the
MambaLayer and condenses the spatial dimensions of the feature maps to simplify the
data structure and reduce computational demands. The UDMblocks are intricately linked
to the upsampling stages through skip connections, which are crucial for merging feature
maps from downsampling and upsampling paths to enhance the detail and accuracy of
the segmentation output. The MambaBTS model processes input MRI images sequentially
through these layers starting from the initial input, where the image data are progressively
condensed and enriched through the UDMblock in the downsampling phase. The enriched
feature maps are then meticulously reconstructed in the upsampling phase, where the skip
connections reintegrate the previously extracted features, ensuring comprehensive feature
synthesis. The process generates segmented images that accurately delineate tumor regions
derived from the complex interplay of features extracted and refined at each network stage.

MambaLayer

UDMBlock

MaxPooling

ResUDM

MambaLayer

UDMBlock

MaxPooling

ResUDM
EncMSBlock

ResUDM

EncMSBlock

EncMSBlock

ResUDM

EncMSBlock

UDMBlock

UDMBlock

UDMBlock

UDMBlock

SepConv SepConv

UDMBlockUDMBlock

UDMBlockUDMBlock

UDMBlockUDMBlock

UDMBlockUDMBlock
Residual Block

DownSampling

UpSampling

Skip Connectin

Addition

Residual Block

DownSampling

UpSampling

Skip Connectin

Addition

Figure 2. The overall architecture of the proposed MambaBTS.

2.1. UDMblock

The UDMblock is the core module in the downsampling section. This module effec-
tively facilitates the fusion of feature information and enhances gradient propagation by
utilizing skip connections to concatenate with corresponding layers during the upsampling
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phase. This integration ensures the retention of critical features at various levels, which is
crucial for detailed feature analysis and reconstruction in the network.

2.2. ResUDM

The ResUDM module, which is composed of two EncMSBlocks connected sequentially
and employing residual connections, is tailored to enhance feature extraction capabilities.
The architecture’s design is instrumental for capturing nuanced variations within MRI
scans, facilitating precise segmentation of salient tumor regions such as whole tumor
(WT), enhancing tumor (ET), and tumor core (TC), which is critical for accurate tumor
characterization in clinical diagnostics.

2.3. EncMSBlock

The EncMSBlock, as depicted in Figure 3, is a building block for processing multi-scale
features within a neural network architecture. The design of EncMSBlock aims to capture
features at various scales and resolutions, thus enriching the network’s representational
capacity. The EncMSBlock comprises MSBlock followed by batch normalization, which a
technique to stabilize and speed up the training of deep neural networks by normalizing
the input layer by re-centering and re-scaling. The design applies the CBAM [45] after the
MSBlock, which enhances the network’s feature representation capability through inte-
grated channel and spatial attention mechanisms. The EncMSBlock also includes pointwise
convolutional layers (PWConvV1 and PWConvV2), which are crucial for adapting data
formats for hardware efficiency, expanding and projecting feature dimensions for enhanced
model capacity, and normalizing outputs to stabilize training and ensure consistency across
distributed systems. In the proposed architecture, the output from PWConvV1 is processed
through a GELU activation function, recalibrated by a GRN [46], and fed into PWConvV2.

EncMSBlock

BatchNorm

(B,C,H,W)

7×7 

ConvBN

3×3 

ConvBN

3×3 

ConvBN

BatchNorm

CBAM

Linear

NCHW→NHWCPWConvV1

GELU+GRN

Linear

NHWC→NCHW (B,C,H,W)

(B,H,W,C)

5×5 

ConvBN

3×3 

ConvBN

MSConvX

(B,C,H,W)

PWConvV2

... ...

... ...

(B,C,H,W)

addition

CRCR

CRCR cascade residual operation

Figure 3. The architecture of EncMSBlock.

2.4. MSConvX

This study examines the performance of a traditional UNet architecture for brain
tumor segmentation tasks. While medical image segmentation widely celebrates UNet
for its distinctive encoder–decoder structure and skip connections, its singular-scale con-
volutional kernels have limitations in capturing multi-scale image features. Particularly
for targets such as brain tumors, which exhibit high heterogeneity in size, shape, and
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texture, traditional UNet’s single-scale convolutional kernels struggle to effectively grasp a
comprehensive range of features from minute details to macro structures.

To overcome this drawback, the strategy employed here draws inspiration from the
ideas of Ding et al. regarding structural re-parameterization convolution. This study inte-
grates cascade residual multi-scale convolution within the UNet architecture, enhancing the
model’s ability to capture features across different scales. Expressly, cascade residual multi-
scale convolution modules are incorporated into the encoder and decoder sections of UNet,
improving the model’s perception of details surrounding brain tumors and enhancing its
understanding of global image information. Such improvements significantly elevate the
accuracy and robustness for brain tumor segmentation, showcasing the immense potential
of multi-scale convolutional kernels for enhancing performance in complex medical image
segmentation tasks.

In the MambaBTS network architecture, as illustrated in Figure 4, the MSConvX layer
ensemble uses multi-scale convolutional kernels—3 × 3, 5 × 5, and 7 × 7—to adeptly extract
features from multi-modal brain MRI images, with each kernel size targeting different
spatial hierarchies for well-rounded feature extraction. Specifically, the 3 × 3 kernels are
more effective at focusing on fine details than the larger 5 × 5 and 7 × 7 kernels, the 5 ×
5 kernels achieve greater precision in capturing mid-level features compared to both the
smaller 3 × 3 and larger 7 × 7 kernels, and the 7 × 7 kernels are superior at encapsulating
broader contextual regions than their smaller 3 × 3 and 5 × 5 counterparts, making
feature extraction more comprehensive across scales. This cascade residual multi-scale
approach enriches the network’s capability to discern intricate details and broader patterns
within the brain, which is crucial for precise tumor segmentation. The implementation
of MSConvX significantly trims the computational load compared to singular large-scale
kernels, fostering efficient yet robust feature extraction, as articulated by Equation (1), which
formalizes the integration of these varied scales into a cohesive analytical framework.

y(1)7×7 = F7×7(x) + x,

...

y(a)
7×7 = F7×7(y

(a−1)
7×7 ) + y(n−1)

7×7 ,

y(1)5×5 = F5×5(y
(a)
7×7) + y(a)

7×7,

...

y(b)5×5 = F5×5(y
(b−1)
5×5 ) + y(b−1)

5×5 ,

y(1)3×3 = F3×3(y
(b)
5×5) + y(b)5×5,

...

y(c)3×3 = F3×3(y
(c−1)
3×3 ) + y(c−1)

3×3 ,

youtput = F3×3(y
(c)
3×3) + y(c)3×3

(1)

CR

(B,C,H,W)

7×7 

ConvBN

3×3

ConvBN

3×3 

ConvBN

5×5

ConvBN

3×3 

ConvBN

(B,C,H,W)

addition

CR

(B,C,H,W)

7×7 

ConvBN

3×3

ConvBN

3×3 

ConvBN

5×5

ConvBN

3×3 

ConvBN

(B,C,H,W)

addition

...

Figure 4. Sequential multi-scale ConvBN layers with residual connections in the CR, showcasing the
flow from 7 × 7 to 5 × 5 to multiple 3 × 3 convolutions.

In Equation (1), x represents an input feature map with dimensions (B, C, H, W). The
convolutional batch normalization function Fk×k performs operations with a kernel size of
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k × k, and yn
k×k denotes the output feature maps at each layer, where k specifies the kernel

size, and n is the iteration number within the sequence of convolutions for that kernel size.
The output of each layer feeds into the subsequent convolution of the same kernel size,
except for the output of the last layer, which feeds into the next size down. The sequences
culminate in youtput, the final output feature map, after the last 3 × 3 convolution. The
configuration specifies a = 1, indicating only one iteration of the 7 × 7 ConvBN; b = 1,
indicating a single 5 × 5 ConvBN operation; and c = 3, signifying three successive 3 × 3
ConvBN operations.

Figure 5 illustrates a series of EncMSBlock configurations: designated as MSConvV1
to MSConvV4 and each employing convolutional kernels of various sizes for enhanced
feature extraction in medical image segmentation. These configurations range from large
9 × 9 kernels to smaller 3 × 3 kernels that are sequentially arranged to capture spatial
features at multiple scales. The study explicitly utilizes the MSConvV3 architecture, which
combines 7 × 7 and 5 × 5 kernels for intermediate feature extraction and augments this
with a sequence of 3 × 3 kernels that focus on detailed textural information critical for
segmenting complex anatomical structures. Each EncMSBlock is preceded by a batch
normalization layer, which normalizes the inputs to facilitate consistent processing. The
culmination of multi-scale feature extraction within MSConvV3 significantly advances the
network’s capability for accurate segmentation of brain tumors in MRI imaging, ensuring
both the granularity and the breadth of analysis necessary for clinical application.
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Figure 5. Four types of multi-scale convolutions.

2.5. CBAM

We are expanding upon the work of Ding et al., who applied an SEBlock [47] after
multi-scale feature extraction. While SEBlock effectively modulates the feature channels to
amplify significant characteristics, it inherently lacks a mechanism to discern and exploit
the critical spatial details within the MRI images. This limitation is particularly pivotal in
brain tumor segmentation tasks, for which the accurate identification and delineation of
tumor boundaries is contingent on channel-wise feature importance and relies heavily on
spatial cues and context.

To further refine the feature representation capability of sequences processed by the
MambaLayer, this study strategically integrates the CBAM to model the inter-relationships
among feature channels effectively. CBAM dynamically empowers the network to em-
phasize important channels through channel attention; concurrently, its spatial attention
mechanism intensifies the focus on salient spatial regions within the images. This dual-
faceted attention approach substantially elevates the network’s ability to discriminate and
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represent critical features within the brain MRI data, which is a fundamental step for
precisely segmenting brain tumors.

For a given x ∈ RC×1×1, H, W, and C denote the height, width, and number of
channels, respectively. To break down the mathematical formulations for CBAM, we can
identify two main parts:

Channel attention (CA):

Mc = σ(MLP[AvgPool(X)] + MLP[MaxPool(X)]) (2)

Spatial attention (SA):

Ms = σ( f 7×7[AvgPool(X); MaxPool(X)]) (3)

In Equations (2) and (3), Mc, Ms ∈ RC×1×1 are the channel attention map and spatial
attention, respectively, σ denotes the sigmoid function, MLP represents a multi-layer
perceptron, and Avgpool, Maxpool are global average pooling and global max pooling
operations, respectively. The term f 7×7 represents a convolution operation using a filter of
the specified 7 × 7 size.

2.6. PWConvV1, PWConvV2

The PWConvV1 module reconfigures the input feature map format from NCHW
(batch size, channels, height, and width) to NHWC, aligning it with the prerequisites of
downstream operations. Following this reformatting, it employs a linear layer to augment
the feature map’s dimensions, scaling up the features at each spatial coordinate from
their original channel count to a broader dimension. Conversely, the PWConvV2 module
undertakes the inverse operation, condensing the enlarged feature dimensions back from
the expanded state to the original number of channels via a linear transformation. This step
may also integrate batch normalization to bolster model generalization and to ensure more
stable training outcomes, as shown in Equation (4):

XNHWC = Wpw1XNCHW + bpw1

Xact = GRN(GELU(XNHWC))

X
′
NCHW = Wpw2Xact + bpw2

Xout = BN(X
′
NCHW)

(4)

XNHWC is the input tensor and has B, H, W, and C dimensions. Wpw1 and bpw1 are the
weight and bias tensors, respectively. Xact is the activated tensor processed by GELU. GRN
is global response normalization. X

′
NCHW is the transposed input tensor. Wpw2 and bpw2 are

other weight and bias tensors, respectively, applied to Xact. Xout is the output tensor, which
is subjected to batch normalization (BN) for improved training and model robustness.

2.7. MambaLayer

MAMBA’s design relies on understanding the linear relationship between processing
speed and sequence length. It explicitly expresses the dynamic relationship between the
current state x(t) ∈ R, input u(t) ∈ R, and output y(t) ∈ R equations. The model’s
projection parameters are the state transition A ∈ RN×1, input, and observation matrices
C ∈ R1×N . Equation (5) describe the model:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(5)

High memory requirements and a greater propensity for gradients to vanish often
constrain traditional state space models (SSMs). The S4 model introduces a method of
structured parameterization alongside efficient computational techniques. It innovatively
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parameterizes the state transition matrix A by decomposing it into a low-rank compo-
nent plus a regular term. This approach facilitates the stable diagonalization of matrix
A, significantly diminishing computational complexity and bolstering numerical stabil-
ity. Meanwhile, the Mamba model employs a discerning approach to input information
processing, effectively filtering out or disregarding specific inputs to minimize irrelevant
feature representations. Drawing inspiration from the S5 model, the characterization of
Mamba comes from its hardware-accommodating computational features, which are re-
alized through repetitive calculation and scanning methods. By amalgamating SSM with
multi-layer perceptron (MLP) modules, Mamba unfolds a novel architecture with the innate
capability to autonomously select optimal state space configurations.

The Mamba model, conceptualized as an enhanced version of a recurrent neural
network (RNN), excels in general computational tasks and demonstrates significant ad-
vancements in specialized applications such as brain tumor segmentation. Unlike standard
RNNs, the Mamba model can be convoluted and trained in parallel, significantly boosting
computational efficiency. This convolutional approach accelerates training times and ad-
dresses common issues associated with RNNs such as input alteration, random sequence
order, and the vanishing gradient problem. Compared to the widely used transformer
models, which require substantial computational resources, especially for lengthy data
sequences, the Mamba model offers lower computational complexity while maintaining
robust long-sequence relational capabilities. This efficiency is crucial in medical imaging
tasks, where the processing speed and accuracy can directly impact diagnostic outcomes.
Specifically, in the domain of brain tumor segmentation, the Mamba model leverages its
enhanced processing capabilities to accurately delineate complex tumor regions—whole
tumor (WT), tumor core (TC), and enhancing tumor (ET)—with greater precision. Its
ability to handle long sequences effectively allows it to preserve crucial spatial relationships
within medical images, which is vital for accurate tumor classification and segmentation.
The Mamba model’s performance in brain tumor segmentation sets a new benchmark
and offers substantial improvements over existing methodologies, including transformers.
By reducing computational demands while enhancing relational capabilities, the Mamba
model provides a potent tool for medical researchers and professionals and facilitates
quicker and more reliable tumor segmentation that can aid with better patient diagnosis
and treatment planning.

As shown in Figure 6, given X ∈ (C, H, W), the model initially compresses the spatial
dimensions (H, W) into a sequence length for the given features, altering the dimensions
to (B, L, C), where L = H × W . Subsequently, a one-dimensional convolution operation
further compresses the features, and finally, the system feeds the processed features into
the SSM module for in-depth analysis. This process highlights the model’s capability to
efficiently manipulate and analyze spatial data by leveraging sequence transformation and
deep learning techniques.

SiLU

SiLU

MambaLayer

(B,C,H,W)

(B,L,C)

(B,C,H,W)

Flatten Layer Norm

Linear

Linear

1D Conv SSM

Linear

Reshape

Nonlinearity

(activation or 

muitiplication)

Figure 6. Schematic of MambaLayer with linear transformation.
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2.8. Decoder

Building on previous work, we extract features from the UDMblock then upsample
and merge them with corresponding feature maps from the encoder, thereby generating
high-resolution feature maps. A U-shaped structure utilizes deep convolution before the
decoder network, replacing traditional convolution to reduce the computational load. Such
an approach significantly enhances the model’s efficiency and effectiveness, optimizing the
quality of the generated feature maps and reducing the processing time required.

Figure 7 illustrates the overall architecture flowchart, encompassing the training and
testing processes. During the training phase, data preprocessing begins, which involves
normalization, denoising, and cropping procedures to prepare the input data. Subsequently,
the model progresses through training stages, including initialization, data input, and
optimization of the loss function. After completing the training regimen, the refined
model is utilized for image segmentation. In the testing phase, a similar sequence unfolds,
with data preprocessing at the start, followed by model testing to segment new images
and generate segmentation results. Segmentation outcomes are evaluated to validate the
model’s performance, facilitating its application in clinical diagnoses.

2D Slices

Data 

Preprocessing
Concatenate

Four Modal DataBrain MRI

MambaBTS

Masks

Data Preprocessing

Clinical Diagnosis

Training

Testing

Figure 7. Comprehensive architecture flowchart for training and testing processes in brain tumor
segmentation.

3. Implementation Details

Hardware setup: The experiment is conducted on an Ubuntu 22.04 LTS operating
system, utilizing an NVIDIA RTX 4090 graphics card for computational acceleration. The
choice of PyTorch 2.1 as the deep learning framework is strategic and is aimed at maximiz-
ing the computational prowess of the RTX 4090 to facilitate efficient model training and
experimentation.

Dataset: This research employs the MICCAI BraTS 2019 dataset [48], which is a
publicly accessible multi-modal MRI brain tumor image collection. Featuring scans from
various institutions, it includes four MRI modalities: T1, T1ce (T1-contrast enhanced), T2,
and FLAIR (fluid-attenuated inversion recovery). This dataset provides a comprehensive
resource for segmenting tumors and their sub-regions and offers a rich dataset for advanced
analysis and model validation.

Training: The training regimen consists of 400 epochs with a batch size of 48 and
utilizes an Adam optimizer with an initial learning rate of 1 × 10−3. In this study, the
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ExponentialLR scheduler is chosen to optimize learning and reduces the learning rate
by a decay factor of 0.99 at the end of each epoch. This strategy aims to refine model
performance incrementally while managing computational efficiency. The experimental
section will show more details of the training.

Loss Function: The composite loss function, BceDiceLoss, which combines binary
cross-entropy loss (BCELoss) and dice loss, enhances medical image segmentation by
leveraging the strengths of both. BCELoss is effective for pixel-wise classification and
provides a probabilistic assessment of each pixel’s prediction, but it can underperform in
scenarios with class imbalances or small regions of interest. On the other hand, dice loss
excels at quantifying spatial overlap between the predicted segmentation and the ground
truth, which is crucial for accuracy for small or irregularly shaped targets. Comparative
analysis against models using either loss function independently reveals that BceDiceLoss
consistently outperforms in terms of accuracy and recall, especially in complex scenarios
like tumor segmentation, where precise boundary delineation is critical. This integration
effectively balances the sensitivity towards small tumor fragments and the specificity
required for accurate boundary definition.

In brain tumor segmentation tasks, a comparative analysis between focal loss [49] and
BceDiceLoss reveals distinct characteristics concerning the handling of class imbalance and
the emphasis on boundary precision. Focal loss mitigates the impact of class imbalance by
down-weighting readily classified samples, yet it may excessively prioritize background
pixels at the expense of tumor pixels. Furthermore, its optimization focus on overall pixel
classification may lead to a lack of attention toward boundary precision, potentially result-
ing in blurred or inaccurate tumor boundaries in brain tumor segmentation. In contrast,
BceDiceLoss amalgamates the merits of binary cross-entropy loss and dice loss, effectively
addressing class imbalance concerns while emphasizing the spatial overlap between pre-
dicted and ground truth segmentations, specifically targeting boundary precision. Precisely
defining tumor boundaries is paramount for accurate diagnosis and treatment planning in
brain tumor segmentation tasks, thus rendering BceDiceLoss potentially more suitable for
addressing the demands of this task.

The formula for BCE is given as Equation (6).

BCELoss = − 1
N

N

∑
i=1

[yi · log(pi) + (1 − yi) · log(1 − pi)] (6)

The dice loss is detailed as shown in Equation (7).

DiceLoss = 1 − 2 × ∑N
i=1 pi · yi

∑N
i=1 pi + ∑N

i=1 yi
(7)

Equation (8) describes BceDiceLoss.

BceDiceLoss = α · BCELoss + β · DiceLoss (8)

N is the number of pixels, yi is the label, pi is the predicted probability, α = 0.5, and
β = 1.

Metrics: Five principal metrics were employed to evaluate the segmentation efficacy
of the model across the whole tumor (WT), tumor core (TC), and enhancing tumor (ET)
categories.

The dice coefficient measures the spatial concurrence between the model’s predicted
and accurate segmentations, with values nearing one denoting higher concordance.

Dice =
2 × |Q ∩ U|
|Q|+ |U| (9)
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In Equation (9), Q represents the predicted segmentation mask in these formulas, and
U represents the segmentation mask.

The positive predictive value (PPV) and sensitivity [50] assess the model’s precision in
identifying positive instances and its ability to encompass all positive cases, respectively.

PPV =
TP

TP + FP
(10)

Sensitivity =
TP

TP + FN
(11)

As shown in Equations (10) and (11), TP denotes the number of correctly predicted
positive pixels, FP indicates the number of pixels incorrectly predicted as positive, and FN
represents the number of positive pixels incorrectly predicted as unfavorable.

The model utilizes the Hausdorff distance to gauge the utmost disparity between
the boundaries of predicted and actual segmentations, serving as a critical indicator of
performance under the most challenging conditions.

H(P, T) = max{h(P, T), h(T, P)} (12)

For Equation (12), h(P, T) and h(T, P) are functions that measure the similarity and
dissimilarity, respectively, between the two sets (T and P).

The boundary intersection over union (BIoU) is adopted as the primary metric to
evaluate the precision of brain tumor segmentation models. This metric is crucial for
determining the accuracy with which a model delineates tumor boundaries compared
to the ground truth. It quantifies the overlap between the tumor’s predicted and actual
boundary pixels, providing a direct measure of a model’s ability to identify and replicate
the intricate contours of brain tumors accurately. The BIoU is especially important in
medical imaging, where precise boundary detection can significantly influence treatment
decisions and outcomes. For the mathematical formulation of the BIoU, see Equation (13).

Boundary IoU =
|BoundaryGT ∩ BoundaryPred|
|BoundaryGT ∪ BoundaryPred|

(13)

In Equation (13), BoundaryGT stands for the ground truth boundary, which is extracted
from the actual labels. BoundaryPred refers to the predicted boundary, which is derived
from the output of the segmentation model.

4. Experiments and Results

This research assesses the segmentation capabilities of the proposed model on the
MICCAI BraTS 2019 dataset, which includes both high-grade gliomas (HGGs) and low-
grade gliomas (LGGs). The experimental setup and methodologies are detailed in Section 3;
our focus is on evaluating the model’s precision in segmenting the whole tumor (WT),
tumor core (TC), and enhancing tumor (ET). The goal is to thoroughly examine the model’s
effectiveness at identifying and delineating different grades and areas of gliomas.

Despite the inherent advantages of 3D image processing, such as providing more
comprehensive spatial information, our study opted for 2D image processing techniques.
The non-isotropic resolution of MRI images within the MICCAI BraTS 2019 dataset and the
substantial computational resources required for 3D processing influenced this decision.
The adoption of a 2D approach not only enhanced computational efficiency but also proved
to be more adaptable and consistent for this particular research context given its resilience
against resolution variability.

4.1. Data Preprocessing

Initially, to identify specific cases within the research focus, a comparative analysis
of datasets from different years was conducted. Open-source libraries such as SimpleITK
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and Numpy were employed to process four distinct MRI modal images—FLAIR, T1,
T1ce, and T2—along with their respective tumor mask images for each case. Brightness
boundaries were established to exclude outliers in brightness values, mitigating bias
from data extremes. Furthermore, normalization of non-background pixels was achieved
by subtracting the mean and dividing by the standard deviation, ensuring enhanced
consistency and comparability across the dataset.

To further standardize the dataset according to the model’s input specifications, center
cropping was applied to adjust all images to a uniform size of (160,160). This process
rigorously amalgamated the preprocessed images into a four-dimensional data structure
and defined each data point dimension as (4,160,160). Following these comprehensive
preprocessing measures, a total of 17,216 high-quality image data points were success-
fully curated and judiciously divided into training, validation, and test sets, adhering to
proportions of 66%, 16%, and 18%, respectively.

4.2. Training Details

In this research, a thorough comparison was conducted between the developed
model’s effectiveness and that of existing algorithms in the domain of brain tumor MRI im-
age segmentation. To ensure fairness across all comparisons, the training of each model was
executed on an NVIDIA RTX 4090 GPU within the PyTorch 2.1 framework. The training
protocol was standardized to a batch size of 48 images, and batch normalization was incor-
porated to enhance model generalization. A composite loss function that merged binary
cross entropy with dice loss was employed to address class imbalance issues effectively
and to improve segmentation precision.

The optimization process utilized the Adam optimizer, which was initiated with a
learning rate of 0.001. For further refinement in training adjustments, an ExponentialLR
scheduler was deployed, which reduced the learning rate by a factor of 0.99 after each
training epoch. An early stopping protocol was implemented to mitigate the risk of
overfitting and to ensure training efficiency. This protocol halts training if no significant
improvement is observed in the performance on the validation set for 20 consecutive epochs.

In the comprehensive evaluation of neural network architectures, a paramount focus
is placed on the evolution of training and validation losses, alongside the improvement to
the intersection over union (IoU) metric. As delineated in Figure 8, this study presents a
comparative analysis of the trajectories of training and validation losses across a spectrum
of models, including DeepResNet [51], MambaBTS(OURS), SegMamba, Swin-UNETR [52],
TransUNET, UNET++, and UNETR [53]. Notably, the proposed model distinguishes itself
by achieving the lowest loss on the training and validation datasets coupled with the
highest IoU score among the evaluated models. This graphical representation, plotting the
loss magnitude against the number of epochs, unequivocally demonstrates our model’s
superior efficiency and effectiveness. The depicted results underscore our model’s ability
to capture and generalize the underlying patterns within the data.

4.3. Multi-Modal Thermogram and Characteristic Graph Analysis

This investigation explored the efficacy of the proposed model in segmenting brain
tumors and its adeptness at discerning the intricacies of multi-modal magnetic resonance
imaging (MRI) data. To achieve this objective, heatmaps were generated for each of the
four MRI modalities: FLAIR, T1, T2, and T1ce. These heatmaps, as illustrated in Figure 9,
intricately detail the model’s focus areas during the prediction of tumor regions, showcasing
its consistent capability to pinpoint tumor locations across different imaging modalities.
The arrangement of heatmaps in the top row for the FLAIR, T1, T2, and T1ce modalities
shows that the model keenly concentrates on areas with significant tumor presence across
all modalities despite their distinct imaging characteristics, which underscores the model’s
remarkable skill at amalgamating multi-modal information to localize tumors accurately.
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Figure 8. Comparative IoU and loss metrics across models on training and validation datasets.
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Figure 9. Heatmaps of the brain tumor segmentation model under different MRI modalities. In the
heatmap, hot zones (from red to yellow) represent areas with a high probability of tumor presence per
the model’s prediction. In contrast, cold zones (blue) indicate areas with a lower prediction probability.

Moreover, the study delves into the visualization of feature maps throughout the
network’s training phase, elucidating how the model incrementally hones in on essential
features for tumor segmentation layer by layer. The initial layer images in Figure 10 provide
insight into how the model methodically extracts pertinent features from the input image
as it traverses its depth across four layers. This sequential processing through various
convolutional layers enables the model to gradually zero in on vital tumor characteristics
such as edges and textures. The images near the input layer display finer details of the
original image, whereas the imagery becomes increasingly abstract with added network
depth and concentrates on high-level features critical for segmentation.

The bottom row images illuminate the activation states within the upsampling phase,
which is integral to the UDMamba architecture to enhance image detail and segmentation
precision. These images, progressing from right to left, depict the model’s step-by-step
restoration of more defined image features, increasingly mirroring the final segmentation
output. The concluding image vividly demonstrates the model’s success at accurately
demarcating the tumor region during this reconstruction phase.
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Figure 10. Visualization of feature maps in model’s feature extraction process. Different colors
indicate the model’s focus areas, with deeper colors denoting higher attention weights.

4.4. Model Complexity and Parameter Efficiency Analysis

Table 1 represents the computational requirements for each segmentation algorithm
evaluated in our study. The ’Method’ column lists the algorithms, including UNet++,
DeepResNet, UNETR, TransUNet, Swin-UNETR, SegMamba, and our proposed model
(MambaBTS). The data provided indicate that U-Net++ utilizes 36.63 million parameters
and requires 54 billion floating-point operations per second (FLOPs) for its functionality. On
the other hand, DeepResNet employs a more streamlined architecture, with 31.57 million
parameters and a significantly lower operational demand of 22 billion FLOPs. UNETR
is characterized by its substantial parameter requirement of 95.39 million alongside an
operational cost of 27 billion FLOPs. TransUNet leads in terms of parameter volume
with 105.21 million, yet it excels at computational efficiency, necessitating merely 14 bil-
lion FLOPs.

Table 1. Comparison of method parameters and FLOPs.

Method Parameters FLOPs

UNet++ 36.63 M 54 G
DeepResNet 31.57 M 22 G

UNETR 95.39 M 27 G
TransUNet 105.21 M 14 G

Swin-UNETR 25.14 M 27 G
SegMamba 22.86 M 13 G

Ours 18.09 M 8 G
Note: FLOPs represent the number of floating-point operations. Parameters denote adjustable variables or weights
within a model that were acquired during training to dictate its behavior and efficacy.

Meanwhile, both the Swin-UNETR and SegMamba models strike a commendable
balance between efficiency and performance. Swin-UNETR is equipped with 25.14 million
parameters and incurs an operational demand of 27 billion FLOPs. In contrast, SegMamba
is slightly more compact, with 22.86 million parameters and requiring 13 billion FLOPs for
its operations.

Our model sets a benchmark for computational efficiency, operating with a mere
18.09 million parameters and 8 G of FLOPs. This optimized architecture sustains high
performance and drastically lowers resource demands, rendering it exceptionally well-
suited for implementation in settings with limited computational capabilities without
sacrificing performance quality.

4.5. Main Results

This study undertook a detailed evaluation of several leading brain tumor segmen-
tation algorithms, including U-Net++, DeepResNet, UNETR, TransUNet, Swin-UNETR,
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SegMamba, and an innovative model. To thoroughly examine each model’s segmentation
accuracy and consistency, a comprehensive set of assessment metrics was utilized, such
as the dice coefficient, positive predictive value (PPV), sensitivity, and Hausdorff distance.
Specifically, the dice coefficient and PPV were employed to gauge the precision of seg-
mentation, while sensitivity measured the models’ adeptness at identifying actual tumor
regions. The Hausdorff distance provided insight into the maximum discrepancy between
the segmented and actual tumor boundaries.

A meticulous analysis was conducted that focused on critical metrics such as the dice
coefficient, PPV, sensitivity, and Hausdorff distance, to explore the models’ proficiency
in delineating whole tumor (WT), tumor core (TC), and enhancing tumor (ET) areas,
as detailed in Table 2. Our model exhibited exceptional performance, achieving dice
coefficients of 0.8450 for WT, 0.8606 for TC, and 0.7796 for ET, outperforming SegMamba
and other contenders, thus marking a notable advancement. Additionally, the model
demonstrated marginally reduced positive predictive values (PPVs) exclusively within
whole tumor (WT) regions. The model exhibited superior sensitivity, surpassing competing
approaches and indicating enhanced detection capabilities across tumor zones.

Table 2. Results of various algorithms on the BraTS 2019 validation set in terms of dice, PPV, and
sensitivity metrics.

Method
Dice ↑ PPV ↑ Sensitivity ↑

Average ↑
WT TC ET WT TC ET WT TC ET

UNet++ 0.8348 0.8308 0.7636 0.8498 0.8743 0.7717 0.8620 0.8928 0.8220 0.8335
DeepResNet 0.8372 0.8291 0.7662 0.8653 0.8536 0.7792 0.8539 0.9012 0.8023 0.8320

UNETR 0.7777 0.6988 0.6780 0.8296 0.7912 0.7040 0.7760 0.8057 0.7234 0.7538
TransUNet 0.8285 0.8475 0.7593 0.8612 0.8886 0.7873 0.8336 0.8928 0.7893 0.8320
SwinUNETR 0.8280 0.8332 0.7618 0.8456 0.8651 0.7764 0.8524 0.9030 0.8079 0.8304

SegMamba 0.8124 0.8093 0.7334 0.8269 0.8542 0.7390 0.8334 0.8804 0.7781 0.8075
OURS 0.8450 0.8606 0.7796 0.8597 0.8920 0.7894 0.8716 0.9062 0.8305 0.8483

The MambaBTS’s performance is reflected in the boundary intersection over union
(BIoU) scores, with a BIoU of 0.8645 for whole tumor (WT), suggesting an ability to capture
the extensive area of tumors. For tumor core (TC), the BIoU score of 0.7350 indicates the
method’s potential for identifying central tumor regions, which are critical for targeted
therapies. The enhancing tumor (ET) score of 0.8175 implies precision at segmenting
actively growing tumor areas. An average BIoU score of 0.8057 across these regions
suggests a balanced algorithm performance that can support clinical applications such
as treatment planning and disease monitoring. The detailed performance metrics are
presented in Table 3.

Table 3. Results of various algorithms on the BraTS 2019 validation set in terms of BIoU.

Method
BIoU ↑

Average ↑
WT TC ET

UNet++ 0.8551 0.7268 0.8053 0.7957
DeepResNet 0.8590 0.7238 0.8073 0.7967

UNETR 0.8026 0.6599 0.7364 0.7330
TransUNet 0.8537 0.7273 0.8053 0.7954

SwinUNETR 0.8520 0.7282 0.8050 0.7951

SegMamba 0.8332 0.7092 0.7783 0.7736
OURS 0.8645 0.7350 0.8175 0.8057
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Our model demonstrated the lowest Hausdorff distance across the whole tumor (WT),
enhancing tumor (ET), and tumor core (TC) categories, as evidenced in Table 4, which
indicates its superior boundary delineation accuracy. Visual comparisons of segmentation
outcomes, depicted in Figure 11, further illustrate our model’s edge, especially for rendering
tumor contours and intricate details, which is particularly evident in complex tumor
morphologies and vague boundaries, where our model’s segmentation results are markedly
precise and cohesive, showcasing its significant advantage.

Table 4. Results of various algorithms on the BraTS 2019 validation set in terms of Hausdorff distance.

Method
Hausdorff ↓

Average ↓
WT TC ET

UNet++ 2.6984 1.6660 2.8375 2.4006
DeepResNet 2.6641 1.7364 2.8118 2.4041

UNETR 2.9388 2.2502 3.2500 2.8130
TransUNet 2.6762 1.6302 2.8067 2.3710

SwinUNETR 2.6943 1.6855 2.8292 2.4030

SegMamba 2.7724 1.8312 2.9666 2.5234
OURS 2.6511 1.6086 2.7813 2.3470

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 11. Visual comparison of brain tumor segmentation outcomes. (a) Ground truth, (b) Mam-
baBTS (our model), (c) UNet++, (d) DeepResNet, (e) UNETR, (f) TransUNet, (g) Swin-UNETR, and
(h) SegMamba mark the enhancing tumor (ET) in yellow, the tumor core (TC) in yellow and red, and
the whole tumor (WT) in yellow, red, and green.

5. Ablation

In this research, we delve into the influence of component arrangement—specifically,
the Mamba and ResUDM elements—on the model’s performance and the effect of the
CBAM on experimental outcomes. Our ablation studies compare two distinct configuration
approaches: one with Mamba followed by ResUDM (“Mamba+ResUDM” configuration)
and the other with ResUDM preceding Mamba (“ResUDM+Mamba” configuration) under
the same experimental conditions. According to Table 5, the “ResUDM+Mamba” setup
significantly outperforms the “Mamba+ResUDM” arrangement, evidenced by improved
dice scores for whole tumor (WT), tumor core (TC), and enhancing tumor (ET) of 5%, 2%,
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and 6% respectively, along with a decreases in the Hausdorff distances of 0.25, 0.02, and 0.22,
respectively. Furthermore, Table 6 highlights notable differences in the positive predictive
value (PPV) and sensitivity metrics, reinforcing the critical role of placing effective feature
extraction, as facilitated by ResUDM, at the forefront of the model’s processing sequence to
amplify the effectiveness of the subsequent stages handled by Mamba. The effectiveness of
ResUDM heavily relies on the quality of feature representations generated by its Mamba
component, which highlights the crucial impact of the sequential arrangement of these
components on the model’s overall performance.

Table 5. The impact of component sequence on dice score and Hausdorff distance.

Components Dice ↑ Hausdorff ↓
♣ ♠ ⋆ WT TC ET WT TC ET

✓ ✓ 0.7915 0.8443 0.7145 2.9005 1.6245 3.0058
✓ ✓ 0.8450 0.8606 0.7796 2.6511 1.6086 2.7813

♣ : Mamba + ResUDM ♠ : ResUDM + Mamba ⋆ : CBAM.

Table 6. The impact of component sequence on PPV and sensitivity.

Components PPV ↑ Sensitivity ↑
♣ ♠ ⋆ WT TC ET WT TC ET

✓ ✓ 0.8416 0.9028 0.7521 0.7993 0.8787 0.7494
✓ ✓ 0.8597 0.8920 0.7894 0.8716 0.9062 0.8305

♣ : Mamba + ResUDM ♠ : ResUDM + Mamba ⋆ : CBAM.

Integrating the convolutional block attention module (CBAM) into the ResUDM +
Mamba and Mamba+ ResUDM architectures significantly enhances their segmentation
performance, as evident through improvements to key metrics such as the dice coefficient,
Hausdorff distance, positive predictive value (PPV), and sensitivity. This enhancement
reflects the efficacy of CBAM in refining the segmentation accuracy and precision, which
is critical for detailed tumor delineation. For the ResUDM + Mamba configuration, the
addition of CBAM leads to an incremental improvement in the dice coefficients across
whole tumor (WT), tumor core (TC), and enhancing tumor (ET) regions, as detailed in
Table 7. This enhancement in segmentation accuracy is further corroborated by reductions
in the Hausdorff distance for all tumor regions, indicating a closer alignment between the
predicted and actual tumor boundaries, which is a testament to the precision CBAM offers.

Table 7. Effect of CBAM on dice coefficient and Hausdorff distance in ResUDM+Mamba architecture.

Components Dice ↑ Hausdorff ↓
♠ ⋆ WT TC ET WT TC ET

✓ ✓ 0.8450 0.8606 0.7796 2.6511 1.6086 2.7813
✓ 0.8448 0.8563 0.7766 2.6569 1.6105 2.8090

♠ : ResUDM + Mamba ⋆ : CBAM.

The Mamba+ ResUDM architecture that includes CBAM shows noticeable improve-
ments in dice scores for WT, TC, and ET segments, as highlighted in Table 8. The positive
impact of CBAM extends to the Hausdorff distance measurements, where decreases across
all tumor regions suggest more accurate boundary delineation.
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Table 8. Effect of CBAM on dice coefficient and Hausdorff distance in Mamba+ResUDM architecture.

Components Dice ↑ Hausdorff ↓
♣ ⋆ WT TC ET WT TC ET

✓ ✓ 0.7915 0.8443 0.7145 2.9005 1.6245 3.0058
✓ 0.7823 0.8389 0.7039 2.9435 1.6672 3.0489

♣ : Mamba + ResUDM ⋆ : CBAM.

The effectiveness of CBAM is not limited to accuracy and precision metrics alone. In
the ResUDM + Mamba model, the integration of CBAM enhances both PPV and sensitivity
across all tumor regions, indicating a refined precision–recall balance critical for effective
segmentation. This improvement in diagnostic performance is evidenced in Table 9. The
Mamba + ResUDM model exhibits similar enhancements, with increased PPV and sensitiv-
ity across tumor regions, demonstrating the module’s role in improving the model’s overall
diagnostic capabilities, as shown in Table 10.

Table 9. Effect of CBAM on PPV coefficient and sensitivity in ResUDM+Mamba architecture.

Components PPV ↑ Sensitivity ↑

♠ ⋆ WT TC ET WT TC ET

✓ ✓ 0.8597 0.8920 0.7894 0.8716 0.9062 0.8305
✓ 0.8535 0.8898 0.7765 0.8768 0.9074 0.8393

♠ : ResUDM + Mamba ⋆ : CBAM.

Table 10. Effect of CBAM on PPV coefficient and sensitivity in Mamba+ResUDM architecture.

Components PPV ↑ Sensitivity ↑
♣ ⋆ WT TC ET WT TC ET

✓ ✓ 0.8416 0.9028 0.7521 0.7993 0.8787 0.7494
✓ 0.8326 0.8828 0.7470 0.7908 0.8901 0.7323

♣ : Mamba + ResUDM ⋆ : CBAM.

The consistent improvements across these diverse metrics underscore the pivotal
role of CBAM for advancing the segmentation capabilities of brain tumor models. By
meticulously analyzing the impact of CBAM, it is evident that the module boosts the
models’ accuracy and precision and enhances their ability to accurately segment tumors,
marking a significant advancement in medical imaging.

6. Conclusions

The MambaBTS model, as delineated in this study, amalgamates the robust framework
of CNNs with the avant-garde Mamba structure, heralding a new era in the domain of
brain image segmentation. Central to the ethos of MambaBTS is a dual-strategy design:
the integration of cascade residual multi-scale convolutional kernels, the incorporation of
the Mamba structure for advanced temporal feature handling, and the strategic implemen-
tation of a hybrid loss function that combines dice loss with cross-entropy. This fusion of
methodologies refines the segmentation process and significantly reduces computational
complexity while expanding the receptive field.

Employing cascade residual multi-scale convolutional kernels is instrumental for
refining the segmentation process: it markedly reduces computational complexity while
expanding the receptive field. This method does not merely maintain model efficiency and
segmentation precision; it elevates them. By capturing features across diverse scales in
cascade mode, MambaBTS achieves a nuanced comprehension of the input data, adeptly
identifying intricate details alongside overarching patterns. Further, incorporating the
Mamba structure within MambaBTS significantly augments the model’s proficiency at pro-
cessing temporal features, which is a notable challenge for conventional CNN architectures
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and one that demands considerable computational resources in transformer-based models.
This integration showcases the model’s enhanced capability to navigate the complexities
inherent in temporal data analysis. Supplementary experiments provide a robust testament
to the MambaBTS model’s superior performance. When benchmarked against established
methodologies, MambaBTS demonstrates its efficacy across various evaluation metrics,
affirming its status as a cutting-edge and efficacious approach to brain image segmentation.

Notably, the clinical implications of the MambaBTS model are profound. By signifi-
cantly enhancing the speed and accuracy of brain image segmentation, this model facilitates
earlier and more precise diagnoses, which are critical for managing neurological condi-
tions. The ability to process temporal features with enhanced efficiency holds promise for
monitoring disease progression and evaluating treatment efficacy in real time, offering a
considerable advantage in personalized medicine. Future research endeavors will refine
the model’s architecture to enhance its generalizability and practical utility. Additionally,
assessing the model’s performance across a broader spectrum of medical imaging tasks
constitutes a pivotal area of exploration. The overarching goal is to establish MambaBTS as
a foundational tool for improving the precision and reliability of clinical diagnostics and
treatments, ultimately contributing to tangible advancements in patient care.
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