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Abstract: We investigate the zero-error coding for computing problems with encoder side infor-
mation. An encoder provides access to a source X and is furnished with side information g(Y). It
communicates with a decoder that possesses side information Y and aims to retrieve f (X, Y) with
zero probability of error, where f and g are assumed to be deterministic functions. In previous work,
we determined a condition that yields an analytic expression for the optimal rate R∗(g); in particular,
it covers the case where PX,Y is full support. In this article, we review this result and study the side
information design problem, which consists of finding the best trade-offs between the quality of
the encoder’s side information g(Y) and R∗(g). We construct two greedy algorithms that give an
achievable set of points in the side information design problem, based on partition refining and
coarsening. One of them runs in polynomial time.

Keywords: zero-error information theory; source coding; graph theory

1. Introduction
1.1. Zero-Error Coding for Computing

The problem of Figure 1 is a zero-error setting that relates to Orlitsky and Roche’s coding
for computing problems from [1]. This coding problem appears in video compression [2,3],
where Xn models a set of images known at the encoder. The decoder does not always
want to retrieve each whole image. Instead, the decoder receives, for each image Xt, t ≤ n,
a request Yt to retrieve information f (Xt, Yt). This information can, for instance, be a
detection: cat, dog, car, bike; or a scene recognition: street/city/mountain, etc. The encoder
does not know the decoder’s exact request but has prior information about it (e.g., type
of request), which is modeled by (g(Yt))t≤n. This problem also relates to the zero-error
Slepian–Wolf open problem, which corresponds to the special case, where g is constant and
f (X, Y) = X.

Encoder Decoder(
g(Yt)

)
t≤n Yn

(
f (Xt, Yt)

)
t≤nXn ⧸

R

Figure 1. Zero-error coding for computing with side information at the encoder.

Similar schemes to the one depicted in Figure 1 have already been studied, but
they differ from the one we are studying in two ways. First, they consider that no side
information is available to the encoder. Second, and more importantly, they consider
different coding constraints: the lossless case is studied by Orlitsky and Roche in [1], the
lossy case by Yamamoto in [4], and the zero-error “unrestricted inputs” case by Shayevitz
in [5]. The latter results can be used as bounds for our problem depicted in Figure 1, but do
not exactly characterize its optimal rate.
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Numerous extensions of the problem depicted in Figure 1 have been studied recently.
The distributed context, for instance, has an additional encoder that encodes Y before
transmitting it to the decoder. Achievability schemes have been proposed for this setting by
Krithivasan and Pradhan in [6] using abelian groups; by Basu et al. in [7] using hypergraphs
for the case with maximum distortion criterion; and by Malak and Médard in [8] using
hyperplane separations for the continuous lossless case.

Another related context is the network setting, where the function of source random
variables from source nodes has to be retrieved at the sink node of a given network. For tree
networks, the feasible rate region is characterized by Feizi and Médard in [9] for networks of
depth one, and by Sefidgaran and Tchamkerten in [10] under a Markov source distribution
hypothesis. In [11], Ravi and Dey consider a bidirectional relay with zero-error “unrestricted
inputs” and characterize the rate region for a specific class of functions. In [12], Guang et al.
study zero-error function computation on acyclic networks with limited capacities, and give
an inner bound based on network cut-sets. For both distributed and network settings, the
zero-error coding for computing problems with encoder side information remains open.

In a previous work [13], we determined a condition that we called “pairwise shared
side information” such that, if satisfied, the optimal rate R∗(g) has a single-letter expression.
This covers many cases of interest, in particular the case where PX,Y is full support for
any functions f , g. For the sake of completeness, we review this result. Moreover, we
propose an alternative and more interpretable expression for this pairwise shared side
information. More precisely, we show that the instances where the “pairwise shared side
information” condition is satisfied correspond to the worst possible optimal rates in an
auxiliary zero-error Slepian–Wolf problem.

1.2. Encoder’s Side Information Design

In the zero-error coding for computing problems with encoder side information, it
can be observed that a “coarse” encoder side information (e.g., if g constant) yields a high
optimal rate R∗(g), whereas a “fine” encoder side information (e.g., g = Id) yields a low
optimal rate R∗(g). The side information design problem consists of determining the best
trade-offs between the optimal rate R∗(g) and the quality of the encoder’s side information,
which is measured by its entropy H(g(Y)). This expression describes the optimal rate of
a zero-error code that transmits the quantized version of Y via the g function. The best
trade-offs correspond to the Pareto front of the achievable set, i.e., whose corner-points
cannot be obtained by a time sharing between other coding strategies. In short, we aim at
determining the Pareto front of the convex hull of the achievable pairs

(
H(g(Y)), R∗(g)

)
.

In this article, we propose a greedy algorithm that gives an achievable set of points in
the side information design problem, when PX,Y is full support. Studying our problem with
the latter hypothesis is interesting because, unlike the case of the Slepian–Wolf problem,
it does not necessarily correspond to a worst-case scenario. Recall indeed, that, when
PX,Y is full support, the Slepian–Wolf encoder does not benefit from the side information
available at the decoder and needs to send X. In our problem instead, if the retrieval
function f (X, Y) = Y, since the decoder already has access to Y, no information needs to
be sent by the encoder and the optimal rate is 0. Finally, the proposed algorithm relies on
our results with “pairwise shared side information”, which gives the optimal rate for all
functions g and performs a greedy partition coarsening when choosing the next achievable
point. Moreover, it runs in polynomial time.

This paper is organized as follows. In Section 2, we formally present the zero-error
coding for computing problems and the encoder’s side information design problem. In
Section 3, we give our theoretic results on the zero-error coding for computing problems,
including the “pairwise shared side information” condition. In Section 4, we present our
greedy algorithms for the encoder’s side information design problem.
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2. Formal Presentation of the Problem

We denote sequences by xn = (x1, . . . , xn). The set of probability distributions over
X is denoted by ∆(X ). The distribution of X is denoted by PX ∈ ∆(X ) and its support is
denoted by supp PX . Given the sequence length n ∈ N⋆, we denote by ∆n(X ) ⊂ ∆(X ) the
set of empirical distributions of sequences from X n. We denote by {0, 1}∗ the set of binary
words. The collection of subsets of a set Y is denoted by P(Y).

Definition 1. The zero-error source-coding problem of Figure 1 is described by the following:

- Four finite sets U , X , Y , Z and a source distribution PX,Y ∈ ∆(X ×Y).
- For all n ∈ N⋆, (Xn, Yn) is the random sequence of n copies of (X, Y), drawn in an i.i.d.

fashion using PX,Y.
- Two deterministic functions

f : X ×Y → U , (1)

g : Y → Z . (2)

- An encoder that knows Xn and
(

g(Yt)
)

t≤n sends binary strings over a noiseless channel to a
decoder that knows Yn and that wants to retrieve

(
f (Xt, Yt)

)
t≤n without error.

A coding scheme in this setting is described by:

- A time horizon n ∈ N⋆ and an encoding function ϕe : X n ×Zn → {0, 1}∗ such that Im ϕe
is prefix-free.

- A decoding function ϕd : Yn × {0, 1}∗ → Un.
- The rate is the average length of the codeword per source symbol,

i.e., R .
= 1

nE
[
ℓ ◦ ϕe

(
Xn, (g(Yt))t≤n

)]
, where ℓ denotes the codeword length function.

- n, ϕe, ϕd must satisfy the zero-error property:

P
(

ϕd

(
Yn, ϕe

(
Xn, (g(Yt))t≤n

))
̸=
(

f (Xt, Yt)
)

t≤n

)
= 0. (3)

The minimal rate under the zero-error constraint is defined by

R∗(g) .
= inf

n,ϕe ,ϕd
zero-error

1
n
E
[
ℓ ◦ ϕe

(
Xn, (g(Yt))t≤n

)]
. (4)

The definition of the Pareto front that we give below is adapted to the encoder’s side
information design problem and allows us to describe the best trade-off between the quality
of the encoder side information and the rate to compute the function f (X, Y) at the decoder.
In other works, the definition of a Pareto front may differ depending on the minimiza-
tion/maximization problem considered and on the number of variables to be optimized.

Definition 2 (Pareto front). Let S ⊂ R2
+ be a set, the Pareto front of S is defined by

Par(S) .
=
{

x ∈ S
∣∣∣ ∀x′ ∈ S \ {x}, x′1 > x1 or x′2 > x2

}
. (5)

Definition 3. The side information design problem in Figure 1 consists of determining the Pareto
front of the achievable pairs (H(g(Y)), R∗(g)):

F .
= Par

(
Conv

{(
H(g(Y)), R∗(g)

) ∣∣∣ g : Y → Z
})

, (6)

where Conv denotes the convex hull.
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In our zero-error setup, all alphabets are finite. Therefore, the Pareto front of the
convex hull in (6) is computed on a finite set of points, which correspond to the best
trade-offs for the encoder’s side information.

3. Theoretic Results

Determining the optimal rate in the zero-error coding for computing problems, with or
without encoder side information, is an open problem. In a previous contribution [13], we
determined a condition that, when satisfied, yields an analytic expression for the optimal
rate. Interestingly, this condition is general as it does not depend on the function f to be
retrieved at the decoder.

3.1. General Case

We first build the characteristic graph G[n], which is a probabilistic graph that captures
the zero-error encoding constraints on a given number n of source uses. It differs from the
graphs used in [5], as we do not need a cartesian representation of these graphs to study the
optimal rates. Furthermore, it has a vertex for each possible realization of

(
Xn,

(
g(Yt)

)
t≤n

)
known at the encoder, instead of X n as in the zero-error Slepian–Wolf problem [14].

Definition 4 (Characteristic graph G[n]). The characteristic graph G[n] is defined by the following:

- X n ×Zn as a set of vertices with distribution Pn
X,g(Y).

- (xn, zn)(x′n, z′n) are adjacent if zn = z′n and there exists yn ∈ g−1(zn) such that

∀t ≤ n, PX,Y(xt, yt)PX,Y(x′t, yt) > 0, (7)

and ∃t ≤ n, f (xt, yt) ̸= f (x′t, yt); (8)

where g−1(zn) =
{

yn ∈ Yn
∣∣ (g(yt)

)
t≤n = zn}.

The characteristic graph G[n] is designed with the same core idea as in [15]: (xn, zn)
and (x′n, z′n) are adjacent if there exists a side information symbol yn compatible with the
observation of the encoder (i.e., zn = z′n and yn ∈ g−1(zn)), such that f (xn, yn) ̸= f (x′n, yn).
In order to prevent erroneous decodings, the encoder must map adjacent pairs of sequences
to different codewords; hence the use of graph colorings, defined below.

Definition 5 (Coloring, independent subset). Let G = (V , E , PV) be a probabilistic graph. A
subset S ⊆ V is independent if xx′ /∈ E for all x, x′ ∈ S . Let C be a finite set (the set of colors), a
mapping c : V → C is a coloring if c−1(i) is an independent subset for all i ∈ C.

The chromatic entropy of G[n] gives the best rate of n-shot zero-error encoding func-
tions, as in [14].

Definition 6 (Chromatic entropy Hχ). The chromatic entropy of a probabilistic graph G = (V,E , PV)
is defined by

Hχ(G) = inf
{

H
(
c(V)

) ∣∣ c is a coloring of G
}

. (9)

Theorem 1 (Optimal rate). The optimal rate is written as follows:

R∗(g) = lim
n→∞

1
n

Hχ(G[n]). (10)
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Proof. By construction, the following holds: for all encoding functions ϕe, ϕe is a coloring
of G[n] if and only if there exists a decoding function ϕd such that (n, ϕe, ϕd) satisfies the
zero-error property. Thus, the best achievable rate is written as follows:

R∗(g) = inf
n

inf
ϕe coloring of G[n]

H
(

ϕe

(
Xn,

(
g(Yt)

)
t≤n

))
(11)

= lim
n→∞

1
n

Hχ(G[n]). (12)

where (12) comes from Fekete’s Lemma and from the definition of Hχ.

A general single-letter expression for R∗(g) is missing due to the lack of the intrinsic
structure of G[n]. In Section 3.2, we introduce a hypothesis that gives structure to G[n] and
allows us to derive a single-letter expression for R∗(g).

3.2. Pairwise Shared Side Information

Definition 7. The distribution PX,Y and the function g satisfy the “pairwise shared side information”
condition if

∀z ∈ Z , ∀x, x′ ∈ X , ∃y ∈ g−1(z), PXY(x, y)PXY(x′, y) > 0, (13)

where Im(g) is the image of the function g. This means that for all z output of g, every pair (x, x′)
“shares” at least one side information symbol y ∈ g−1(z).

Note that any full-support distribution PX,Y satisfies the “pairwise shared side informa-
tion” hypothesis. In Theorem 2, we give an interpretation of the “pairwise shared side informa-
tion” condition in terms of the optimal rate in an auxiliary zero-error Slepian–Wolf problem.

Theorem 2. The tuple (PX,Y, g) satisfies the condition “pairwise shared side information” (13)
⇐⇒ R∗(g) = H(X|g(Y)) in the case f (X, Y) = X, and for all z ∈ Z , PX|g(Y)=z is full

support.

The proof of Theorem 2 is given in Appendix A.1.

Definition 8 (AND, OR product). Let G1 = (V1, E1, PV1), G2 = (V2, E2, PV2) be two proba-
bilistic graphs; their AND (resp. OR) product denoted by G1 ∧ G2 (resp. G1 ∨ G2) is defined by
the following: V1 × V2 as a set of vertices, PV1 PV2 as probability distribution on the vertices, and
(v1v2), (v′1v′2) are adjacent if

v1v′1 ∈ E1 AND v2v′2 ∈ E2, (14)

resp. (v1v′1 ∈ E1 and v1 ̸= v′1) OR (v2v′2 ∈ E2 and v2 ̸= v′2);

with the convention that all vertices are self-adjacent. We denote by G∧n
1 (resp. G∨n

1 ) the n-th AND
(resp. OR) power.

AND and OR powers significantly differ in terms of existing single-letter expression
for the associated asymptotic chromatic entropy. Indeed, in the zero-error Slepian–Wolf
problem in [14], the optimal rate limn→∞

1
n Hχ(G∧n), which relies on an AND power, does

not have a single-letter expression. Instead, closed-form expressions for OR powers of
graphs exist. More precisely, as recalled in Proposition 1, limn→∞

1
n Hχ(G∨n) admits a

single-letter expression called the Körner graph entropy, introduced in [16], and defined
below. This observation is key for us to derive a single-letter expression for our problem.
More precisely, by using a convex combination of Körner graph entropies, we provide a
single-letter expression in Theorem 3 for the optimal rate R∗(g).



Entropy 2024, 26, 338 6 of 18

Definition 9 (Körner graph entropy Hκ). For all G = (V , E , PV), let Γ(G) be the collection of
independent sets of vertices in G. The Körner graph entropy of G is defined by

Hκ(G) = min
V∈W∈Γ(G)

I(W; V), (15)

where the minimum is taken over all distributions PW|V ∈ ∆(W)V , with W = Γ(G) and the
constraint that the random vertex V belongs to the random set W with probability one.

Below, we recall that the limit of the normalized chromatic entropy of the OR product
of graphs admits a closed-form expression given by the Körner graph entropy Hκ . Moreover,
the Körner graph entropy of OR products of graphs is simply the sum of the individual
Körner graph entropies.

Proposition 1 (Properties of Hκ). Theorem 5 in [14] for all probabilistic graphs G and G′,

Hκ(G) = lim
n→∞

1
n

Hχ(G∨n), (16)

Hκ(G ∨ G′) = Hκ(G) + Hκ(G′). (17)

Definition 10 (Auxiliary graph G f
z ). For all z ∈ Z , we define the auxiliary graph G f

z by

- X as set of vertices with distribution PX|g(Y)=z;
- xx′ are adjacent if f (x, y) ̸= f (x′, y) for some y ∈ g−1(z) ∩ supp PY|X=x ∩ supp PY|X=x′ .

Theorem 3 (Pairwise shared side information). If PX,Y and g satisfy (13), the optimal rate is
written as follows:

R∗(g) = ∑
z∈Z

Pg(Y)(z)Hκ(G
f
z ). (18)

The proof is in Appendix A.2, the keypoint is the particular structure of G[n]: a
disjointed union of OR products.

Remark 1. The “pairwise shared side information” assumption (13) implies that the adjacency
condition (7) is satisfied, which makes G[n] a disjoint union of OR products. Moreover, Körner
graph entropies appear in the final expression for R∗(g), even if G[n] is not an n-th OR power.

Now, consider the case where PX,Y is full support. This is a sufficient condition to have
(13). The optimal rate in this setting is derived from Theorem 3, which leads to the analytic
expression in Theorem 4.

Theorem 4 (Optimal rate when PX,Y is full support). When PX,Y is full support, the optimal
rate is written as follows:

R∗(g) = H
(

j(X, g(Y))
∣∣g(Y)), (19)

where the function j returns a word in U ∗, defined by

j :X ×Z → U ∗ (20)

(x, z) 7→
(

f (x, y′)
)

y′∈g−1(z).

Proof. By Theorem 3, R∗(g) = ∑z∈Z Pg(Y)(z)Hκ(G
f
z ). It can be shown that G f

z is complete mul-

tipartite for all z as PX,Y is full support; and it satisfies Hκ(G
f
z ) = H

(
j(X, g(Y))

∣∣g(Y) = z
)
.
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3.3. Example

In this example, the “pairwise shared side information” assumption is satisfied and
R∗(g) is strictly less than a conditional Huffman coding of X knowing g(Y); and also
strictly less than the optimal rate without exploiting g(Y) at the encoder.

Consider the probability distribution and function outcomes depicted in Figure 2,
with U = {a, b, c}, X = {0, . . . , 3}, Y = {0, . . . , 7}, and Z = {0, 1}. Let us show that the
“pairwise shared side information” assumption is satisfied. The source symbols 0, 1, 2 ∈ X
share the side information symbol 0 (resp. 5) when g(Y) = 0 (resp. g(Y) = 1). The source
symbol 3 ∈ X shares the side information symbols 1, 2, 3 with the source symbols 0, 1, 2,
respectively, when g(Y) = 0, and the source symbol 3 shares the side information symbol 5
with all other source symbols when g(Y) = 1.

PX,Y
Y

X

0 1 2 3 4 5 6 7

0

1

2

3

0.1 0.05 ∗ ∗
0.1 ∗ 0.05 ∗
0.1 ∗ ∗ 0.05
∗ 0.05 0.05 0.05

0.05 0.05 ∗ ∗
0.05 0.05 0.05 ∗
∗ 0.05 ∗ ∗
∗ 0.05 ∗ 0.05

g(Y) = 0 g(Y) = 1

f (·, ·) Y

X

0 1 2 3 4 5 6 7

0

1

2

3

a b ∗ ∗
a ∗ b ∗
b ∗ ∗ c

∗ c c c

b a ∗ ∗
a a b ∗
∗ b ∗ ∗
∗ c ∗ c

g(Y) = 0 g(Y) = 1

Figure 2. An example of PX,Y and g that satisfies (13), along with the outcomes f (X, Y). The elements
outside supp PX,Y are denoted by ∗.

Since the “pairwise shared side information” assumption is satisfied, we can use
Theorem 3; the optimal rate is written as follows:

R∗(g) = Pg(Y)(0)Hκ(G
f
0 ) + Pg(Y)(1)Hκ(G

f
1 ). (21)

First, we need to determine the probabilistic graphs G f
0 and G f

1 . In G f
0 , the vertex 0 is

adjacent to 2 and 3, as f (0, 0) ̸= f (2, 0) and f (0, 1) ̸= f (3, 1). The vertex 1 is also adjacent to
2 and 3 as f (1, 0) ̸= f (2, 0) and f (1, 2) ̸= f (3, 2). Furthermore PX|g(Y)=0 is uniform, hence

G f
0 = (C4, Unif(X )) where C4 is the cycle graph with 4 vertices.

In G f
1 , the vertices 1, 2, 3 are pairwise adjacent as f (1, 5), f (2, 5) and f (3, 5) are pairwise

different; and 0 is adjacent to 1, 2, and 3 because of the different function outputs generated
by Y = 4 and Y = 5. Thus, G f

1 = (K4, PX|g(Y)=1) with PX|g(Y)=1 = ( 1
4 , 3

8 , 1
8 , 1

4 ), and K4 is the
complete graph with 4 vertices.

Now, let us determine Hκ(G
f
0 ) and Hκ(G

f
1 ). On the one hand,

Hκ(G
f
0 ) = H(V0)− max

V0∈W∈Γ(G f
0 )

H(V0|W) (22)

= 2− 1 = 1, (23)

with V0 ∼ PX|g(Y)=0 = Unif(X ); and where H(V0|W) in (22) is maximized by taking
W = {0, 1} when V ∈ {0, 1}, and W = {2, 3} otherwise.
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On the other hand,

Hκ(G
f
1 ) = min

V1∈W∈Γ(G f
1 )

I(W; V1) (24)

= H(V1) ≈ 1.906, (25)

with V1 ∼ PX|g(Y)=1; where (25) follows from Γ(G f
1 ) = {{0}, . . . , {3}}, as G f

1 is complete.
Hence, R∗(g) ≈ 1.362.

The rate that we would obtain by transmitting X knowing g(Y) at both encoder and
decoder with a conditional Huffman algorithm is written as RHuff = H(X|g(Y)) ≈ 1.962.

The rate that we would obtain without exploiting g(Y) at the encoder is RNo g =
H(X) ≈ 1.985 because of the different function outputs generated by Y = 4 and Y = 5.

Finally, H( f (X, Y)|Y) ≈ 0.875.
In this example, we have

H(X) = RNo g > RHuff > R∗(g) > H( f (X, Y)|Y). (26)

This illustrates the impact of the side information at the encoder in this setting, as we can
observe a large gap between the optimal rate R∗(g) and RNo g.

4. Optimization of the Encoder Side Information
4.1. Preliminary Results on Partitions

In order to optimize the function g in the encoder side information, we propose a new
equivalent characterization of the function g in the form of a partition of the set Y . The
equivalence is shown in Proposition 2 below.

Proposition 2. For all g : Y → Z , the collection of subsets (g−1(z))z∈Z is a partition of Y .
Conversely, if A ⊂ P(Y) is a partition of Y , then there exists a mapping gA : Y → Z such

that ∀z ∈ Im gA, ∃Az ∈ A, Az = g−1
A (z).

Proof. The direct part results directly from the fact that g is a function. For the converse
part, we take Z such that |Z| = |A| and we define gA : Y → Z by gA(y) = z, where z ∈ Z
is the unique index such that y ∈ Az. The property ∀z ∈ Im gA, ∃Az ∈ A, Az = g−1

A (z) is
therefore satisfied.

Now, let us define coarser and finer partitions, with the corresponding notions of
merging and splitting. These operations on partitions are the core idea of our greedy
algorithms; as illustrated in Proposition 2, the partitions of Y correspond to functions
g : Y → Z for the encoder’s side information. Therefore, obtaining a partition from
another means finding another function g : Y → Z for the encoder’s side information.

Definition 11 (Coarser, Finer). Let A,B ⊂ P(Y) be two partitions of the finite set Y . We say
that A is coarser than B if

∀B ∈ B, ∃A ∈ A, B ⊂ A. (27)

If so, we also say that B is finer than A.

Example 1. Let Y = {1, 2, 3, 4}, the partition A =
{
{1}, {2, 3, 4}

}
is coarser than B ={

{1}, {2}, {3, 4}
}

.

Definition 12 (Merging, Splitting). A merging is an operation that maps a partition
A = {A1, . . . , Ai, . . . , Aj, . . . , Am} to the partition A′ = {A1, . . . , Ai ∪ Aj, . . . , Am}. A
splitting in an operation that maps a partition A = {A1, . . . , Ai, . . . , Am} to the partition
A′ = {A1, . . . , A(1)

i , A(2)
i , . . . , Am}, where {A(1)

i , A(2)
i } form a partition of the subset Ai.
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We also define the set of partitions Merge(A) (resp. Split(A)), which correspond to all
partitions that can be obtained with a merging (resp. splitting) of A:

Merge(A) .
=
{

m(A)
∣∣∣m is a merging

}
; (28)

Split(A) .
=
{

s(A)
∣∣∣ s is a splitting

}
. (29)

Proposition 3. If A is coarser (resp. finer) than B, then A can be obtained from B by performing a
finite number of mergings (resp. splittings).

4.2. Greedy Algorithms Based on Partition Coarsening and Refining

In this Section, we assume PX,Y to be full support.
With Proposition 2, we know that determining the Pareto front by a brute force

approach would at least require to enumerate the partitions of Y . Therefore, the com-
plexity of this approach is exponential in |Y|. In the following we describe the greedy
Algorithms 1 and 2 that give an achievable set for the encoder’s side information design
problem; one of them has a polynomial complexity. Then we give an example where the
Pareto front coincides with the boundary of the convex hull of the achievable rate region
obtained by both greedy algorithms.

Algorithm 1 Greedy coarsening algorithm

1: A ←
{
{1}, . . . {|Y|}

}
// A starts by being the finest partition of Y , i.e., gA = Id.

2: Front ← [A, ndef, . . . , ndef] // Will contain the list of the |Y| partitions chosen
during the execution

3:
4: for i ∈ {1, . . . , |Y| − 1} do
5: // Maximize over B merging of A the slope between

(
H(gB(Y)), R∗(gB)

)
and(

H(gA(Y)), R∗(gA)
)
.

6: A ← argmaxB∈Merge(A)
R∗(gB)−R∗(gA)

H(gB(Y))−H(gA(Y))
7: Front[i]← A
8:
9: return Front // A =

{
{1, . . . , |Y|}

}
at this point

Algorithm 2 Greedy refining algorithm

1: A ←
{
{1, . . . , |Y|}

}
// A starts by being the coarsest partition of Y , i.e., gA = Id.

2: Front ← [A, ndef, . . . , ndef] // Will contain the list of the |Y| partitions chosen
during the execution

3:
4: for i ∈ {1, . . . , |Y| − 1} do
5: // Minimize over B splitting of A the slope between

(
H(gA(Y)), R∗(gA)

)
and(

H(gB(Y)), R∗(gB)
)
.

6: A ← argminB∈Split(A)
R∗(gB)−R∗(gA)

H(gB(Y))−H(gA(Y))
7: Front[i]← A
8:
9: return Front // A =

{
{1}, . . . {|Y|}

}
at this point

In these a argmin (resp. argmax) means any minimizer (resp. maximizer) of the
specified quantity; and the function gA : Y → Z is a function for the encoder’s side
information corresponding to the partition A, whose existence is given by Proposition 2.

The coarsening (resp. refining) algorithm starts by computing its first achievable
point

(
H(gA(Y)), R∗(gA)

)
with A being the finest (resp. coarsest) partition: it evaluates

R∗(gA), with gA = Id (resp. gA constant); and H(gA(Y)) = H(Y) (resp. H(gA(Y)) = 0).
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Then, at each iteration, the next achievable point will be computed by using a merging
(resp. splitting) of the current partition A. The next partition will be a coarser (resp. finer)
partition chosen from Merge(A) (resp. Split(A)), following a greedy approach. Since
we want to achieve good trade-offs between H(gA(Y)) and R∗(gA), we want to decrease
H(g(Y)) (resp. R∗(gA)) as much as possible while increasing the other quantity as less as
possible. We do so by maximizing over B ∈ Merge(A) the negative ratio

R∗(gB)− R∗(gA)
H(gB(Y))− H(gA(Y))

, (30)

resp. minimizing over B ∈ Split(A) the negative ratio

R∗(gB)− R∗(gA)
H(gB(Y))− H(gA(Y))

; (31)

hence the use of slope maximization (resp. minimization) in the algorithm. At the end, the
set of achievable points computed by the algorithm is returned.

In Figure 3, we show rate pairs associated with all possible partitions of Y : a point
corresponds to a partition of Y , its position gives the associated rates

(
H(g(Y)), R∗(g)

)
.

Two points are linked if their corresponding partitions A,B satisfy A ∈ Merge(B) or
A ∈ Split(B). The obtained graph is the Hasse diagram for the partial order “coarser than”.
Note that due to symmetries in the chosen example, several points associated with different
partitions may overlap. In Figure 4, (resp. Figure 5), we give an illustration of the trajectory
of the greedy coarsening (resp. refining) algorithm.

p1

p2

p3

p4
p5

Figure 3. An illustration of the rate pairs associated with all partitions of Y . The Pareto front is
the broken line corresponding to the partitions p1 – p2 – p3 – p4 – p5; with p1 =

{
{1, 2, 3, 4}

}
,

p2 =
{
{1, 2, 4}, {3}

}
, p3 =

{
{1, 2}, {3, 4}

}
, p4 =

{
{1, 2}, {3}, {4}

}
, p5 =

{
{1}, {2}, {3}, {4}

}
.
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Figure 4. An illustration of the trajectory of the coarsening greedy algorithm (blue), with the Pareto
front of the achievable rates (dashed red).

Figure 5. An illustration of the trajectory of the refining greedy algorithm (green), with the Pareto
front of the achievable rates (dashed red).
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Figures 3–5 are obtained with the following problem data:

PX,Y = Unif(X ×Y) f (·, ·) =


0 0 0 1
0 0 1 1
1 1 0 0
1 1 1 1

. (32)

As stated in Theorem 5, the complexity of the coarsening greedy algorithm is polyno-
mial since |Merge(A)| is quadratic in |Y| and the evaluation of R∗(g) can be conducted
in polynomial time. This polynomial complexity property is not satisfied by the refining
greedy algorithm, as | Split(A)| is exponential in |Y|.

Theorem 5. The coarsening greedy algorithm runs in polynomial time in |Y|. The refining greedy
algorithm runs in exponential time in |Y|.

Proof. The number of points evaluated by the coarsening (resp. refining) greedy algorithm
is O(|Y|3) (resp. O(2|Y|)): O(|Y|) mergings (resp. splittings) are made; and for each of
these mergings, all points from Merge(A) (resp. Split(A)) are evaluated; they are, at
most, (|Y|2 ) = O(|Y|2) (resp. O(2|Y|), in the worst case A =

{
{1, . . . , |Y|}

}
). Since the

expression R∗(g) = H
(

j(X, g(Y))
∣∣g(Y)) from Theorem 4 allows for an evaluation of R∗(g)

in polynomial time in |Y|, the coarsening (resp. refining) greedy algorithm has a polynomial
(resp. exponential) time complexity.
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Appendix A

Appendix A.1. Proof of Theorem 2

Consider the particular case f (X, Y) = X of Figure 1. The optimal rate in this particular
case equals the optimal rate R∗(g) in the following auxiliary problem, depicted in Figure A1:
(X, g(Y)) as source available at the encoder and to be retrieved by the decoder which knows
Y (thus, expecting it to retrieve g(Y) in addition to X does not change the optimal rate).

Encoder Decoder

Yn

Xn,
(

g(Yt)
)

t≤nXn,
(

g(Yt)
)

t≤n ⧸
R

Figure A1. An auxiliary zero-error Slepian–Wolf problem.

Definition A1 (Characteristic graph for the zero-error Slepian–Wolf problem). Let X ,Y
be two finite sets and PY|X be a conditional distribution from ∆(Y)|X |. The characteristic graph
associated with PY|X is defined by the following:

- X as set of vertices;
- x, x′ ∈ X are adjacent if PY|X(y|x)PY|X(y|x′) > 0 for some y ∈ Y .

This auxiliary problem is a particular instance of the zero-error Slepian–Wolf problem;
its optimal rate is written as H(G), where H(G) is the complementary graph entropy [17]
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and G is the characteristic graph in the Slepian–Wolf problem, defined in Definition A1, for
the pair

(
(X, g(Y)), Y

)
. The graph G has X ×Z as a set of vertices, and (x, z) is adjacent to

(x′, z′) if there exists a side information symbol y ∈ Y such that PX,Y,g(Y)(x, y, z)PX,Y,g(Y)
(x′, y, z′) > 0. It can be observed that the vertices (x, z) and (x′, z′) such that z ̸= z′ are not
adjacent in G. The graph G is therefore a disjoint union indexed by Z :

G =
⊔Pg(Y)

z∈Z Gz; (A1)

R∗(g) = H(G) = H
(⊔Pg(Y)

z∈Z Gz

)
; (A2)

where for all z ∈ Z , Gz is the characteristic graph defined in Definition A1 for the pair
(X′z, Y′z) ∼ PX,Y|g(Y)=z.

(⇒) Assume that g and PX,Y satisfy the “pairwise shared side information” condi-
tion. It directly follows that PX|g(Y)=z is full support for all z ∈ Z . Let z ∈ Z , and let
(x, z), (x′, z) be any two vertices of Gz. By construction, there exists y ∈ g−1(z) such that
PX,Y(x, y)PX,Y(x′, y) > 0; hence, PX,Y,g(Y)(x, y, z)PX,Y,g(Y)(x′, y, z) > 0, and (x, z), (x′, z) are

adjacent in Gz. Each graph Gz is therefore complete and perfect; the graph G =
⊔Pg(Y)

z∈Z Gz is
a disjoint union of perfect graphs and is therefore also perfect. We have the following:

R∗(g) = H
(⊔Pg(Y)

z∈Z Gz

)
(A3)

= Hκ

(⊔Pg(Y)
z∈Z Gz

)
(A4)

= ∑
z∈Z

Pg(Y)(z)Hκ(Gz) (A5)

= ∑
z∈Z

Pg(Y)(z)H(PX|g(Y)=z) (A6)

= H(X|g(Y)); (A7)

where (A3) comes from (A2); (A4) and (A5) follow from Corollary 12 in [18] used on the

perfect graph
⊔Pg(Y)

z∈Z Gz; and (A6) holds as the independent subsets of the complete graph
Gz are singletons containing one of its vertices.

(⇐)Conversely, assume that PX|g(Y)=z is full support for all z ∈ Z, and R∗(g) = H(X|g(Y)).
Assume, ad absurdum, that at least one of the (Gz)z∈Z is not complete; then, there

exists a coloring of that graph that maps two different vertices to the same color. Thus,
there exists z ∈ Z such that

H(Gz) < H(PX|g(Y)=z), (A8)

as PX|g(Y)=z is full support. We have

H(X|g(Y)) = R∗(g) (A9)

= H
(⊔Pg(Y)

z∈Z Gz

)
(A10)

≤ ∑
z∈Z

Pg(Y)(z)H(Gz) (A11)

< H(X|g(Y)); (A12)

where (A10) comes from (A2), (A11) results from Theorem 2 in [17], and (A12) follows
from (A8). We arrive at a contradiction, and hence all the graphs (Gz)z∈Z are complete:
for all z ∈ Z and x, x′ ∈ X , there exists a side information symbol y ∈ Y such that
PX,Y,g(Y)(x, y, z)PX,Y,g(Y)(x′, y, z) > 0; hence, y ∈ g−1(z) and satisfies PX,Y(x, y)PX,Y(x′, y) > 0.
The condition “pairwise shared side information” is satisfied by PX,Y, g.
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Appendix A.2. Proof of Theorem 3

Let us specify the adjacency condition in G[n] under assumption (13). Two vertices
are adjacent if they satisfy (7) and (8); however, (7) is always satisfied under (13). Thus,
(xn, zn)(x′n, zn) are adjacent if zn = z′n and

∃yn ∈ g−1(zn), ∃t ≤ n, f (xt, yt) ̸= f (x′t, yt). (A13)

It can be observed that condition (A13) is the adjacency condition of an OR product of
adequate graphs; more precisely,

G[n] =
⊔

zn∈Zn

∨
t≤n

G f
zt . (A14)

Although G[n] cannot be expressed as an n-th OR power, we will show that its chromatic
entropy asymptotically coincides with that of an appropriate OR power: we now search for
an asymptotic equivalent of Hχ(G[n]).

Definition A2. Sn is the set of colorings of G[n] that can be written as (xn, zn) 7→ (Tzn , c̃(xn, zn))

for some mapping c̃ : X n ×Zn → C̃; where Tzn denotes the type of zn.

In the following, we define Zn .
=
(
g(Yt)

)
t≤n. Now, we need several Lemmas. Lemma A1

states that the optimal coloring c(xn, zn) of G[n] has the type of zn as a prefix at a negligible
rate cost. Lemma A3 gives an asymptotic formula for the minimal entropy of the colorings
from Sn.

Lemma A1. The following asymptotic comparison holds as follows:

Hχ(G[n]) = inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) + O(log n). (A15)

Definition A3 (Isomorphic probabilistic graphs). Let G1 = (V1,E1, PV1) and G2 = (V2,E2, PV2)
be two probabilistic graphs. We say that G1 is isomorphic to G2 (denoted by G1 ≃ G2) if there exists
an isomorphism between them, i.e., a bijection ψ : V1 → V2 such that

- For all v1, v′1 ∈ V1, v1v′1 ∈ E1 ⇐⇒ ψ(v1)ψ(v′1) ∈ E2;
- For all v1 ∈ V1, PV1(v1) = PV2

(
ψ(v1)

)
.

Lemma A2. Let B be a finite set, let PB ∈ ∆(B) and let (Gb)b∈B be a family of isomorphic
probabilistic graphs, then Hχ

(⊔PB
b′∈B Gb′

)
= Hχ(Gb) for all b ∈ B.

Lemma A3. The following asymptotic comparison holds as follows:

inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) = n ∑
z∈Z

Pg(Y)(z)Hκ(G
f
z ) + o(n). (A16)

The proof of Lemma A1 is given in Appendix A.3 and its keypoint is the asymptotically
negligible entropy of the prefix TZn of the colorings of Sn. The proof of Lemma A2 is
given in Appendix A.5. The proof of Lemma A3 is given in Appendix A.4 and relies on
the decomposition G[n] =

⊔
Qn∈∆n(Z) GQn

[n] , where GQn
[n] is the subgraph induced by the

vertices (xn, zn) such that the type of zn is Qn. We show that GQn
[n] is a disjoint union of

isomorphic graphs whose chromatic entropy is given by Lemma A2 and (17):
∣∣Hχ(G

Qn
[n] )−

n ∑z∈Z Qn(z)Hκ(G
f
z )
∣∣ ≤ nϵn. Finally, uniform convergence arguments enable us draw

a conclusion.
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Now, let us combine these results together as follows:

R∗(g) =
1
n

Hχ(G[n]) + o(1) (A17)

=
1
n

inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) + o(1) (A18)

= ∑
z∈Z

Pg(Y)(z)Hκ(G
f
z ) + o(1), (A19)

where (A17) comes from Theorem 1, (A18) comes from Lemma A1, and (A19) comes from
Lemma A3. The proof of Theorem 3 is complete.

Appendix A.3. Proof of Lemma A1

Let c∗n be the coloring of G[n] with minimal entropy. Then, we have the following:

Hχ(G[n]) = inf
c coloring of G[n]

H(c(Xn, Zn)) (A20)

≤ inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) (A21)

= inf
c:(xn ,zn)

7→(Tzn ,c̃(xn ,zn))

H(TZn , c̃(Xn, Zn)) (A22)

≤ H(TZn) + H(c∗n(Xn, Zn)) (A23)

= Hχ(G[n]) + O(log n), (A24)

where (A22) comes from Definition A2; (A23) comes from the subadditivity of the entropy,
(xn, zn) 7→ (Tzn , c∗n(xn, zn)) is a coloring of G[n] that belongs to Sn, and (A24) comes from
H(TZn) = O(log n), as log |∆n(Z)| = O(log n). The desired equality comes from the
bounds Hχ(G[n]) and Hχ(G[n]) + O(log n) on (A21).

Appendix A.4. Proof of Lemma A3

For all Qn ∈ ∆n(Z), let

GQn
[n] =

⊔
zn∈Zn

Tzn=Qn

∨
t≤n

G f
zt , (A25)

with the probability distribution induced by Pn
X,Z. This graph is formed of the connected

components of G[n] whose corresponding zn has type Qn. We need to find an equivalent

for Hχ(G
Qn
[n] ). Since GQn

[n] is a disjoint union of isomorphic graphs, we can use Lemma A2
as follows:

Hχ(G
Qn
[n] ) = Hχ

( ∨
z∈Z

(G f
z )
∨nQn(z)

)
. (A26)

On one hand,

Hχ

( ∨
z∈Z

(G f
z )
∨nQn(z)

)
≥ Hκ

( ∨
z∈Z

(G f
z )
∨nQn(z)

)
(A27)

= n ∑
z∈Z

Qn(z)Hκ(G
f
z ), (A28)
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where (A27) comes from Hκ ≤ Hχ Lemma 14 in [14], (A28) comes from (17). On the
other hand,

Hχ

( ∨
z∈Z

(G f
z )
∨nQn(z)

)
≤ ∑

z∈Z
Qn(z)Hχ((G

f
z )
∨n) (A29)

= n ∑
z∈Z

Qn(z)Hκ(G
f
z ) + nϵn, (A30)

where ϵn
.
= maxz

1
n Hχ((G

f
z )
∨n) − Hκ(G

f
z ) is a quantity that does not depend on Qn

and satisfies limn→∞ ϵn = 0; (A29) comes from the subadditivity of Hχ. Combining
Equations (A26), (A28), and (A30) yields∣∣∣∣∣Hχ(G

Qn
[n] )− n ∑

z∈Z
Qn(z)Hκ(G

f
z )

∣∣∣∣∣ ≤ nϵn. (A31)

Now, we have an equivalent for Hχ(G
Qn
[n] ).

inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) (A32)

= inf
c:(xn ,zn)

7→(Tzn ,c̃(xn ,zn))

H(c̃(Xn, Zn)|TZn) + H(TZn) (A33)

= inf
c:(xn ,zn)

7→(Tzn ,c̃(xn ,zn))

∑
Qn∈∆n(Z)

PTZn (Qn)H(c̃(Xn, Zn)|TZn = Qn) + O(log n) (A34)

= ∑
Qn∈∆n(Z)

PTZn (Qn) inf
cQn coloring of GQn

[n]

H(cQn(Xn, Zn)|TZn = Qn) + O(log n) (A35)

= ∑
Qn∈∆n(Z)

PTZn (Qn)Hχ(G
Qn
[n] ) + O(log n) (A36)

= ∑
Qn∈∆n(Z)

PTZn (Qn)

(
n ∑

z∈Z
Qn(z)Hκ(G

f
z )± nϵn

)
+ O(log n) (A37)

= n ∑
Qn∈∆n(Z)

2−nD(Qn∥Pg(Y))+o(n)

(
∑

z∈Z
Qn(z)Hκ(G

f
z )

)
± nϵn + O(log n) (A38)

= n ∑
z∈Z

Pg(Y)(z)Hκ(G
f
z ) + o(n), (A39)

where (A34) comes from H(TZn) = O(log n), as log |∆n(Z)| = O(log n); (A35) follows
from the fact that the entropy of c̃ can be minimized independently on each GQn

[n] ; (A36)

follows from the definition of GQn
[n] ; (A37) comes from (A31); (A38) comes from Lemma 2.6

in [19] and the fact that ϵn does not depend on Qn.

Appendix A.5. Proof of Lemma A2

Let (G̃i)i≤N be isomorphic probabilistic graphs and G such that G =
⊔

i G̃i. Let
c∗1 : V1 → C be the coloring of G̃1 with minimal entropy, and let c∗ be the coloring of G
defined by

c∗ : V → C (A40)

vs. 7→ c∗1 ◦ ψiv→1(v), (A41)
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where iv is the unique integer such that v ∈ Viv and ψiv→1 : Viv → V1 is an isomorphism
between G̃iv and G̃1. In other words, c∗ applies the same coloring pattern c∗1 on each
connected component of G. We have

Hχ(G) ≤ H(c∗(V)) (A42)

= h
(

∑j≤N PiV (j)Pc∗(Vj)

)
(A43)

= h
(

∑j≤N PiV (j)Pc∗1(V1)

)
(A44)

= H(c∗1(V1)) (A45)

= Hχ(G̃1), (A46)

where h denotes the entropy of a distribution; (A44) comes from the definition of c∗; and
(A46) comes from the definition of c∗1 .

Now, let us prove the upper bound on Hχ(G̃1). Let c be a coloring of G, and let
i∗ .

= argmini H(c(Vi)) (i.e., i∗ is the index of the connected component for which the
entropy of the coloring induced by c is minimal). We have

H(c(V)) = h
(

∑j≤N PiV (j)Pc(Vj)

)
(A47)

≥ ∑j≤N PiV (j)h(Pc(Vj)
) (A48)

≥ ∑j≤N PiV (j)H(c(Vi∗)) (A49)

≥ Hχ(G̃i∗), (A50)

= Hχ(G̃1), (A51)

where (A48) follows from the concavity of h; (A49) follows from the definition of i∗; (A50)
comes from the fact that c induces a coloring of G̃i∗ ; (A51) comes from the fact that G̃1 and
G̃i∗ are isomorphic. Now, we can combine the bounds (A46) and (A51): for all coloring c of
G we have

Hχ(G) ≤ Hχ(G̃1) ≤ H(c(V)), (A52)

which yields the desired equality when taking the infimum over c.
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