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Abstract: Automatic crack segmentation plays an essential role in maintaining the structural health
of buildings and infrastructure. Despite the success in fully supervised crack segmentation, the costly
pixel-level annotation restricts its application, leading to increased exploration in weakly supervised
crack segmentation (WSCS). However, WSCS methods inevitably bring in noisy pseudo-labels,
which results in large fluctuations. To address this problem, we propose a novel confidence-aware
co-training (CAC) framework for WSCS. This framework aims to iteratively refine pseudo-labels,
facilitating the learning of a more robust segmentation model. Specifically, a co-training mechanism
is designed and constructs two collaborative networks to learn uncertain crack pixels, from easy to
hard. Moreover, the dynamic division strategy is designed to divide the pseudo-labels based on the
crack confidence score. Among them, the high-confidence pseudo-labels are utilized to optimize the
initialization parameters for the collaborative network, while low-confidence pseudo-labels enrich
the diversity of crack samples. Extensive experiments conducted on the Crack500, DeepCrack, and
CFD datasets demonstrate that the proposed CAC significantly outperforms other WSCS methods.

Keywords: weakly supervised learning; crack segmentation; co-training; confidence aware;
pseudo-label dynamic division

1. Introduction

Crack is one of the common defects in infrastructure such as roads, bridges, and tunnels.
Regular maintenance contributes to effectively extending the service life of these infrastruc-
tures [1–3]. Automatic crack detection based on computer vision has become an instantly
efficient and widely adopted method due to its non-contact and cost-effectiveness [4–7].
This task is essentially treated as a binary image segmentation problem, where each pixel
in an image is classified as either “crack” or “non-crack”. Fully supervised crack image
segmentation methods have demonstrated outstanding performance [8,9]. However, its
effectiveness is contingent upon accurate pixel-level annotations. Pixel-level annotations are
not only costly but also demand specialized expertise. To address this issue, weakly super-
vised crack segmentation (WSCS) attracts increasing attention [10]. The weakly supervised
segmentation only needs coarse-grained information such as the bounding boxes [11], and
patch-level labels [12–14]. Among them, the patch level labels greatly reduce annotation
difficulty by only giving the category information of image patches, which are thus widely
researched in the existing literature of WSCS.

To learn the accurate position and boundary information with merely the coarse-
grained labels, the existing approach typically comprises two key stages: pseudo-label
generation and segmentation model training. During the pseudo-labels generation stage,
pixel-level pseudo-labels are derived from the crack detector using weak labels. During the
segmentation model training stage, these pixel-level pseudo-labels are treated as ground
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truth for training the crack segmentation model. The majority of existing WSCS meth-
ods primarily concentrate on improving the accuracy of pixel pseudo-label generation.
König et al. [12] introduced a WSCS method that produces high-quality pixel pseudo-labels
by integrating class activation maps (CAMs) [15] with classifier localization and threshold
segmentation. Similarly, Dong et al. [13] proposed a WSCS model rooted in patch-based
techniques. They applied Conditional Random Field (CRF) post-processing to the crack
CAM to generate initial crack pixel pseudo-labels, subsequently using these pseudo-labels
to train the segmentation model. It is worth noting that both these methods rely exclusively
on image class labels to generate pseudo-labels from CAMs, but CAMs often highlight the
most discriminative part of the region and potentially compromise the overall integrity
of crack regions. Al-Huda et al. [10] incorporated multi-scale CAMs as the initial crack
pixel pseudo-labels. From the model training perspective, they introduced an Incremental
Annotation Refinement (IAR) strategy, meticulously designed to iteratively improve the
segmentation model. Moreover, the challenge arises from the inherent thin topology and
low contrast of cracks, causing the activated crack pixels to appear coarser than the ground
truth. Consequently, the generated pixel-level pseudo-labels contain a significant amount
of noisy pixels, making them less reliable for model training. Nevertheless, this deep
neural network model is sensitive to noisy labels, which can lead to model over-fitting in a
mislabeled feature space [16].

To overcome the challenge of noisy labels in crack segmentation, the WSCS task can
be defined as a robust learning problem of pixel-wise noisy labels. Notably, it can be
observed that the center pixels of activated crack objects tend to have higher confidence
scores in pseudo-labels, while the surrounding pixels have lower scores. This observation
has inspired us to introduce a novel framework for co-training crack segmentation models,
which leverages pixel pseudo-labels with varying confidence scores. In addition, we
have incorporated a dynamic correction mechanism during the model training process to
ensure that pixel-level pseudo-labels with different confidence scores are iteratively refined.
Our approach aims to exploit the properties of noisy pseudo-labels and provide valuable
insights for crack segmentation tasks.

The confidence-aware co-training (CAC) framework has been proposed to effectively
address the issue of crack segmentation. Firstly, the CAC framework trains the crack
classifier to generate class activation maps (CAMs) [15] using only patch-level class labels.
These CAMs are subsequently refined to serve as initial crack pixel pseudo-labels. Secondly,
the crack pixel pseudo-labels are categorized into two groups, high confidence and low
confidence, based on the confidence scores within the CAM. Subsequently, a co-training
crack segmentation model is introduced, where two collaborative networks are fed succes-
sively with both the high-confidence and low-confidence pseudo-label sample sets. The
high-confidence pseudo-labels offer the model more reliable crack features and superior
initialization parameters, while the low-confidence pseudo-labels provide a diverse range
of crack features to enrich understanding. This strategy of co-training pseudo-labels with
varying confidence scores harnesses the inherent characteristics of noisy pseudo-labels,
enhancing the generalization of the model. Finally, to elevate the quality of the pseudo-
labels, the intermediate results predicted by the segmentation model during the training
process are used as weighting parameters to dynamically re-weight the pseudo-labels.
This iterative optimization process ensures that both high-confidence and low-confidence
pseudo-labels receive continual updates, ultimately contributing to a more accurate and
robust segmentation model.

The contributions of this work are summarized as follows:

• A novel confidence-aware co-training framework is introduced for weakly supervised
crack segmentation.

• Aiming at mitigating the effect of noisy pseudo-labels, a co-training mechanism is
designed to iteratively refine the predicted pseudo-labels and accordingly learn a
more robust crack segmentation model.
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• A dynamic division strategy is proposed to handle the noisy pseudo-labels. Among
them, the high-confidence pseudo-labels are utilized to optimize the initialization
parameters and those with low-confidence enrich the diversity of crack samples.

• The effectiveness of the proposed CAC is demonstrated through extensive validation
on three crack datasets: Crack500, DeepCrack, and CFD. The results showcase the
superior performance of this approach compared to other state-of-the-art models.

The subsequent structure is as follows: Section 2 reviews existing work related to
crack segmentation methods. Section 3 outlines the proposed CAC framework in detail.
Section 4 presents the experimental setup and results pertaining to crack segmentation.
Finally, Section 5 concludes the paper and offers insights for future research.

2. Related Works

This section provides an overview of crack segmentation research, covering both fully
supervised and weakly supervised crack segmentation methods.

2.1. Fully Supervised Crack Segmentation Method

In recent years, deep neural network techniques have exhibited remarkable perfor-
mance in the realm of image semantic segmentation [17]. These techniques have also
found widespread application in the detection of cracks on infrastructure surfaces such
as pavements and bridges [4]. Unlike natural images, cracks present a distinct linear
topological structure with discontinuous, low-contrast crack pixels. Consequently, fully
supervised crack segmentation methods have traditionally amalgamated principles of edge
detection [18,19] with semantic segmentation frameworks. These methods fuse multi-scale
features to distinguish cracks from the background. A noteworthy example is Deep-
Crack [20], which integrates multi-level features within the fully convolutional networks
(FCNs) for semantic segmentation [21] to achieve superior crack recognition. Zou et al. [22]
introduced DeepCrack, which is a crack segmentation framework that incorporates multi-
scale features of encoder and decoder in the SegNet for image segmentation [23] to capture
crack structures. Both of these approaches propose the strategy of multi-scale feature fusion,
which effectively addresses the challenge of crack continuity.

Building upon multi-scale fusion, several methods introduce an attention mechanism
to emphasize crack pixels within the segmentation. Chen et al. [24] proposed a crack
segmentation method that integrates an attention mechanism into the U-Net [25] frame-
work to efficiently focus on crack pixel information. Sun et al. [26] introduced a pavement
crack segmentation framework. This framework incorporates a novel multi-scale attention
module within the decoder of DeepLabv3+ for semantic segmentation [27]. The primary
function of this multi-scale attention module is to generate an attention mask. This mask
dynamically assigns weights to features in different layers, thereby enhancing multi-scale
feature fusion. Wang et al. [28] developed a saliency detection method, RENet, for pave-
ment cracks. It incorporates a rectangular convolutional pyramid module to fuse contrast
information between crack and background at different scales. Furthermore, the method
introduces a crack edge enhancement network to filter out background noise and refine
crack boundaries globally.

The advent of Transformer [29] has brought about a paradigm shift in vision tasks.
In the field of crack segmentation [30–32], Transformer overcomes the limitation of fully
exploiting contextual information in convolutional neural networks (CNNs) by capturing
long-range dependencies in images through a self-attentive mechanism [33]. Presently,
fully supervised crack segmentation methods that rely on data-driven approaches have
achieved optimal performance in the field. However, these methods are contingent on
high-precision manual annotation, incurring substantial costs.

2.2. Weakly Supervised Crack Segmentation Methods

To mitigate the cost of pixel-level annotation, weakly supervised crack segmentation
(WSCS) methods have garnered increasing interest [34–37]. Presently, common weak labels
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in WSCS methods encompass category labels, bounding boxes, scribble lines, and other
variants. Zhang et al. [11] introduced a WSCS method that leverages the bounding box la-
bels of cracks to train an object detection network for the generation of initial pseudo-labels.
These initial pseudo-labels are subsequently refined into precise pixel-level crack labels
through the application of region-growing and GrabCut algorithms [38]. Zhang et al. [39]
developed CrackGAN, a crack segmentation network based on generative adversarial
networks [40] using scribble lines as weak labels. This method employs an asymmetric
U-shape generator to address the “all-black” problem caused by the imbalance between
crack and background pixels.

Among the various weak labels mentioned, patch-level category labels prove to be
the most accessible and widely adopted. Fan et al. [41] presented a patch-based crack
segmentation method. It combines traditional image processing methods with a deep clas-
sification model. The deep classification model is responsible for locating the cracks, while
traditional image processing techniques are employed for bilateral filtering and threshold
segmentation on the crack image patches. Nevertheless, the prevalent WSCS method,
which relies exclusively on image-level category labels, follows a two-stage approach.
This process entails the generation of crack pixel labels and the subsequent training of the
segmentation model. Image-level category labels are utilized to train the crack classifier,
generating CAMs [15] as pixel-level crack pseudo-labels. These pseudo-labels are then
used to train the crack segmentation model. König et al. [12] proposed a WSCS method that
employed location with a classifier and threshold segmentation to generate crack pixel-level
pseudo-labels. These pseudo-labels serve as training data for the crack segmentation model.
This approach enables the approximate identification of crack locations by the crack classi-
fier while mitigating the impact of noisy background pixels. However, this method may
overlook tiny cracks. Dong et al. [13] introduced a weakly supervised patch-based crack
segmentation method. It obtains CAMs as the initial pixel pseudo-labels from a trained
classification network and subsequently refines these labels using CRF. Wang et al. [42]
developed Crack-CAM, a pixel-level WSCS method that incorporates clustering within
the CNN classifier to enhance crack features and improve the quality of the pseudo-labels
assigned to crack pixels.

While several WSCS methods have prioritized the generation of higher-quality crack
pixel pseudo-labels, the most recent approaches have extended their focus to enhancing
the training process of the segmentation model. Al-Huda et al. [10] proposed a weakly
supervised pavement crack segmentation method. This approach employs the strategy of
multi-scale CAM fusion to enhance the completeness of pseudo-labels and improve the
quality of the initial pseudo-labels. Furthermore, the method incorporates an incremental
annotation refinement (IAR) module to progressively enhance the pseudo-labels and
iteratively optimize the crack segmentation model. Al-Huda et al. [14] also introduced a
hybrid deep learning approach for WSCS. This method combines CAMs from the CNN
classifier with encoder-extracted features. These fused features are then input into the
decoder of the segmentation model to improve the quality of crack segmentation. However,
our proposed approach not only concentrates on enhancing pseudo-labels during the
model training process but also capitalizes on the inherent characteristics of noisy pseudo-
labels. This approach allows the crack segmentation model to be iteratively optimized for
better performance.

3. Methods
3.1. Overview

This paper proposes a novel method named confidence-aware co-training (CAC) for
weakly supervised crack segmentation. The whole framework of CAC is shown in Figure 1.
As aforementioned, CAC is designed to iteratively refine pixel-level pseudo-labels by
co-training data with high confidence and low confidence. The proposed CAC method
consists of three main modules: (a) crack pseudo-labels generation, (b) dynamic division of
confidence pseudo-labels, and (c) co-training of segmentation models.
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The first module, the crack pseudo-label generation module, involves training a crack
image classifier using solely patch-level class labels to generate crack class activation maps
(CAMs), serving as initial crack pseudo-labels. During the dynamic refining process of
the pixel-level pseudo-labels, the confidence measures of the pseudo-labels also change
accordingly. Among them, the pixels with high-confidence pseudo-labels are utilized to
mine intrinsic discriminative patterns, while those with low-confidence pseudo-labels
carry some partially activated crack pixels and boundary information. This motivates the
idea of confidence-aware co-training to enable a more robust crack segmentation model.
Specifically, in the second stage, the crack pseudo-label is divided into two sets of pseudo-
labels, each assigning different confidence scores. In the third stage, two collaborative crack
segmentation networks are co-trained by both the high-confidence and low-confidence
pseudo-label sample sets, leading to the optimization of the pseudo-label quality dur-
ing the training process. These main modules are respectively detailed in the following
three subsections.

Grad-CAM Low-Confidence label

High-Confidence label

Crack Classifier

Co-training

Segmentation 

Network
Image Segmentation

Pesudo Label
Intermediate

Result

Reweight & Correction

(a) Crack Pesudo 

Label Generation 

(b) Dynamic Division

Confidence Pseudo-Label 

(c) Co-training 

Segmentation Network

Figure 1. Overview of the proposed CAC framework. (a) Pixel-level crack pseudo-labels are produced
using the patch-based Grad-CAM method. (b) The prediction results generated by the segmentation
model at each training epoch are utilized as weights for updating the pseudo-labels. The pseudo-
labels are dynamically divided into high-confidence and low-confidence sets based on the confidence
scores associated with the crack pixels. (c) A co-training network is designed to train the segmentation
model by collaborating high-confidence pseudo-label samples with low-confidence ones. The purpose
is to train the segmentation model progressively and iteratively optimize its performance.

3.2. Crack Pseudo-Label Generation

The CAM method proposed as a visualization tool for convolutional neural networks is
widely applied to weakly supervised image segmentation tasks [43–45]. Image-level labels
are employed to train an image classification model, and the CAM method generates pixel-
level pseudo-labels based on up-sampling the regions of interest of the classification model.
The CAM operates by applying global average pooling (GAP) to the final convolutional
layer features in the classifier and then reversely mapping the weight of the GAP output
layer back to the output feature layer. Building on the CAM method, the Grad-CAM
method [46] omits the GAP layer and directly propagates the gradient information of the
target object into the final convolutional layer, thereby providing a more direct focus on the
target pixels. Following this principle, this work employs the ResNet network [47] to train
a classification model and applies the Grad-CAM method to generate an initial pseudo-
label for each pixel. Since crack pixels typically represent a relatively small proportion of
the entire image and tend to be overlooked during feature extraction due to their linear
topology, this work constructs an image patch dataset with class labels (crack or non-crack)
for training the classification model. The Grad-CAM method based on local image patches
aims to maximize the activation of the crack area within the entire image.

Given an image X, it is divided into a crack image patch x = {xi | i = 1, 2, . . . , n}
with overlapping regions using a step size of d. Each crack image patch xi is fed into the
classification model, resulting in the generation of the corresponding CAM si. These si are
then synthesized to produce the crack CAM S corresponding to the original image X. The
crack pseudo-labels are generated using two distinct methods for comparison. The first
method employs location information with the crack classifier and threshold segmentation
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as proposed by König et al. [12]. The second method utilizes CRF post-processing to
refine the crack CAMs, following the approach by Dong et al. [13]. Both of these methods
produce pseudo-labels with varying degrees of quality. According to Equation (1), the
initial pseudo-label M is formulated as follows: if Pij is greater than τ1, then Mij is set to Pij,
and otherwise, Mij is set to 0:

Mij =

{
Pij, Pij ≥ τ1;
0, otherwise.

(1)

Here, Pij denotes the pixel values of the i-th row and j-th column in the pseudo-label
image P. The threshold τ1 corresponds to the value selected from the top k elements in
the histogram of pseudo-label P. Based on the crack pseudo-label pixels statistics, k is
set to a larger value of 15% to retain as many crack pixels as possible. This thresholding
process is used to create the gray-scale image M, which serves as the initial pseudo-label
for crack segmentation.

3.3. Dynamic Division of Confidence Pseudo-Labels

This section addresses the issue of noisy pseudo-labels generated by CAM methods
and focuses on utilizing these labels to train a robust crack segmentation model. Since CAM
methods tend to activate only the most discriminative regions of the crack, the proposed
method divides the noisy pseudo-labels into two sets: high-confidence and low-confidence
pseudo-labels. These two sets are used to co-train the segmentation network.

In the previous stage, the initial noisy pseudo-labels are denoted as M, where Mij ∈ [0, 255].
At the current stage, these M are divided into high-confidence pseudo-labels H and low-
confidence pseudo-labels L by threshold processing. The division of pseudo-labels is described
as follows:

Hij =

{
255, Mij ≥ τ2;
0, otherwise.

(2)

Lij =

{
255, τ1 ≤ Mij < τ2;

0, otherwise.
(3)

Here, τ1 is defined in Equation (1), and τ2 is the threshold corresponding to the top C%
in the gray-scale histogram of M. More details about the configuration of C can be found
in Section 4.9. The high-confidence sample set DH provides accurate supervision for the
segmentation network, while the low-confidence sample set DL offers richer information
to the network. During the training process, the semantic information of uncertain crack
pixels is corrected by dynamically updating the noisy pseudo-labels M. The correction
weights are defined as α, the size of α is the same as that of M, αij ∈ [0, 1], and α is initialized
as a unit matrix. During the model training process, after each training epoch, the result
map output from the segmentation model is used as the correction weights α and represents
the probability value of each pixel belonging to the crack in the input image. The correction
process for the pseudo label M is described as:

Mt+1 = α ·Mt. (4)

This approach progressively refines the pixel pseudo-labels as the model is iteratively optimized.

3.4. Co-Training of Segmentation Models

Instead of directly training a segmentation model using noisy labels, the CAC frame-
work is inspired by the optimization methodology of Model-Agnostic Meta-Learning
(MAML) [48] to overcome the challenges posed by noisy pseudo-labels. Although our
problem setting differs significantly from MAML, we are inspired by the optimization
methodology of MAML and propose a co-training strategy. The CAC framework em-
ploys two collaborative networks that share the same architecture. This design allows
high-confidence and low-confidence pseudo-labels to co-train the segmentation model
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effectively. High-confidence pseudo-labels offer accurate supervision information, allowing
for better initialization parameters for the segmentation model. In contrast, low-confidence
pseudo-labels contain some partially activated crack pixels and background pixels around
the cracks, providing richer data features.

In the CAC framework, after collecting the required image and pseudo-labels in the
previous stage, the semantic segmentation dataset D =

{(
Xi, Hi, Li)}N

i=1 is obtained, and
Xi, Hi, Li represent the original image, high-confidence pseudo-labels, and low-confidence
pseudo-labels, respectively. Two collaborative networks, denoted as fθ and fθ′ , are con-
structed. The parameters of the two networks are θ and θ′, respectively. The details of the
co-training strategy are shown in Figure 2.

( )f x 1( ( ), )L f x H

High Confidence Label:

( )f x  2 ( ( ), )L f x L 

Low Confidence Label:

1L      1 2(1 )totalL L L    totalL    

Src Image: x

H

L

One-step 
Gradient Update

Gradient Update

f 

f

Figure 2. Co-training segmentation networks with pseudo-labels of different confidence.

Firstly, the high-confidence pseudo-label samples set DH =
{(

Xi, Hi)}N
i=1 is fed into

the crack segmentation network fθ , resulting in prediction results P1
i, where Pi

1 = fθ

(
Xi).

The segmentation loss L1
(

Pi
1, Hi) is calculated using the focal loss [49]. L1 is defined as:

L1

(
Pi

1, Hi
)

= −
N

∑
i=1

β
(

1− Pi
1

)γ
Hi log Pi

1 + (1 − β)
(

Pi
1

)γ(
1− Hi

)
log

(
1− Pi

1

)
. (5)

Here, low-confidence crack pixels are not involved in training fθ to avoid the interference
of low-confidence pixels, as background pixels, with the training of fθ . So Pi

1 and Hi are
masked to hide the low-confidence crack pixels portion of pseudo-labels as shown in
Figure 3a. Moreover, β is used to balance the number of positive and negative samples, and
γ regulates the imbalance between easy-to-discriminate and hard-to-discriminate samples.
A one-step gradient update θ′ is performed: θ′ ← θ−∇θL1 .

（a）High-confidence pseudo-label sample （b）Low-confidence pseudo-label sample

Figure 3. The graphic shows the high-confidence and low-confidence pseudo-label cracking samples.
The blue parts are the masked pixels at the current confidence level.

Then, the low-confidence pseudo-label samples set DL =
{(

Xi, Li)}N
i=1 is fed into the

crack segmentation network fθ′ , resulting in prediction results P2
i, where Pi

2 = fθ′
(
Xi). The

segmentation loss L2
(

Pi
2, Li) is calculated as:

L2

(
Pi

2, Li
)

= −
N

∑
i=1

β
(

1− Pi
2

)γ
Li log Pi

2 + (1 − β)
(

Pi
2

)γ(
1− Li

)
log

(
1− Pi

2

)
. (6)
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Here, Pi
2 and Li are masked to hide the high-confidence crack pixel portion as shown

in Figure 3b. High-confidence crack pixels are not involved in training fθ′ to avoid the
high-confidence pixels, as background pixels, interfering with the training of fθ′ .

Finally, the total loss Ltotal is calculated and is formulated as:

Ltotal = λL1 + (1− λ)L2. (7)

Here, λ is a parameter used to adjust the balance of the contribution of high-confidence and
low-confidence sample sets. The gradient θ← θ−∇θLtotal is updated for the segmentation
network fθ , which is used as the final test model. This process ensures that the model learns
from both high-confidence and low-confidence pseudo-labels, improving the robustness of
the segmentation model while exploiting the properties of the noisy pseudo-labels.

Algorithm 1 describes the overall flow of the proposed CAC method.

Algorithm 1: CAC algorithm.

Input: DH =
{(

Xi, Mi)}N
i=1: crack pixel pseudo-label dataset,

Epochs: training rounds,
Iterations: numbers of iterations each round,
α: step size hyperparameter

Output: θ: crack segmentation model parameters
1 Initialize: randomly initialize θ;
2 for Epochs do
3 Dividing Mi into Hi and Li, then constructing high-confidence sample set

DH =
{(

Xi, Hi)}N
i=1 and low-confidence sample set DL =

{(
Xi, Li)}N

i=1
based on Equations (2) and (3);

4 for Iterations do
5 Sample a batch from the high-confidence sample set DH ;
6 Compute loss L1( fθ) by the high-confidence pseudo-label based on

Equation (5);
7 One-step gradient update model parameters θ′ ← θ−∇θL1;
8 Sample a batch from the low-confidence sample set DL;
9 Compute loss L2( fθ′ ) by the low-confidence pseudo-label based on

Equation (6);
10 Compute total loss Ltotal based on Equation (7);
11 end
12 Update model parameters θ← θ−∇θLtotal ;
13 Update crack pseudo-label Mi based on Equation (4);
14 end

4. Experimental Results, Comparisons, and Analysis

This section discusses the implementation details of the proposed CAC and compares
its effectiveness to other state-of-the-art WSCS methods presented in recent years using
three crack image datasets.

4.1. Datasets

Following the literature [12], the Crack500 dataset [50] is employed to train the classifi-
cation network for computing grad-CAM and generating initial pseudo-labels. This dataset
consists of 1896 crack images, each with a resolution of 648 × 484 pixels. To augment the
data, these images are sliced into patches of 128 × 128 pixels, and augmentation techniques
like rotation and flipping are applied. In total, 556,448 images are used for training the
classification network. The dataset contains 238,820 images with cracks and 317,628 images
without cracks.
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The crack segmentation network is trained on the original images and the generated
pseudo-labels for crack pixels in the Crack500 training set. The segmentation model is then
tested on three different datasets:

• Crack500 testing dataset [50]: This dataset consists of 1124 crack images. Crack500 is
a pavement cracking dataset that is collected with a mobile phone on the campus of
Temple University.

• CFD dataset [51]: It contains 118 crack images, each with a resolution of 320 × 480 pixels,
which reflect urban road surface conditions in Beijing, China. This dataset includes
various types of noise such as shadows, oil spots, and water stains.

• DeepCrack dataset [20]: This dataset comprises a total of 537 images, each with a
resolution of 544 × 384 pixels. It includes crack data with multiple textures, scenes,
and scales.

These datasets serve as the foundation for training and testing the CAC framework.
The diversity in dataset sources and characteristics allows for a comprehensive evaluation
of the performance and its ability to handle different types of crack data.

4.2. Evaluation Metrics

Following the original literature [12,22], three different F1-based metrics are employed
for the evaluation of the proposed CAC: optimal dataset scale (ODS), optimal image scale
(OIS), and average precision (AP). The ODS represents the best F1 scores on the entire
dataset for a fixed threshold. The OIS denotes the aggregate F1 scores calculated for each
image in the dataset using the best threshold for each image. The AP denotes the area
under the precision–recall curve [52]. ODS and OIS are represented as follows:

Pr =
TP

TP + FN
, (8)

Re =
TP

TP + FP
, (9)

F1 = 2× Re× Pr
Re + Pr

, (10)

OIS =
1
N

N

∑
i=1

max
{

F1i
t : ∀t ∈ {0.01, 0.02, . . . , 0.99}

}
, (11)

ODS = max

{{
1
N

N

∑
i=1

F1i
t

}
: ∀t ∈ {0.01, 0.02, . . . , 0.99}

}
. (12)

Here, Pr, Re, F1, TP, FP, TN, and FN denote precision, recall, F1-score, true positive, false
positive, true negative, and false negative, sequentially. AP is represented as follows:

AP =
t=1

∑
t=0.01

1
T
(Ret − Ret−0.01)Prt, (13)

where t is the selected threshold and T is set to 100.

4.3. Implementation Details
4.3.1. Environment

Our experiments are conducted on a deep learning workstation running Ubuntu 16.04 LTS
containing a CPU of Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10 GHz and a Nvidia Titan XP GPU
with 8 GB of RAM. The framework used for the experiments is pytorch1.2.

4.3.2. Experimental Setting

This section provides detailed information about the experimental settings for the crack
pixel-level pseudo-label generation and the training and testing phases of the crack segmen-
tation model. During the crack pixel-level pseudo-label generation, a binary classification
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model based on ResNet50 architecture is used for generating pixel-level pseudo-labels for
crack images. The classification model is trained for 10 epochs with a batch size of 16. The
initial learning rate is set to 1× 10−3, and the learning rate is reduced by a factor of 10 per
epoch. Stochastic Gradient Descent (SGD) is employed as the optimizer with a momentum
value of 0.9. Grad-CAM is generated for crack images by training the binary classification
network (ResNet50). Two different processes are used to obtain the initial pseudo-label
from the Grad-CAM. One process involves fusing the CAMs and crack locations obtained
from the classification network, followed by threshold segmentation to generate the initial
crack pseudo-labels [12]. The other process refines the CAMs using CRF post-processing to
produce initial crack pseudo-labels [13]. During the division phase of different confidence
pseudo-labels, a threshold segmentation method P-Tile [53] is employed due to its anti-
noise capabilities compared to other threshold segmentation methods. P-Tile adapts the
threshold dynamically based on the gray-scale histogram statistics. The division threshold
values τ1 and τ2 are selected based on prior information from DeepCrack [22] to match the
statistics of crack pixels. During the phase of crack pseudo-label generation, k is set to 15%
by P-Tile.

During the training phase of the crack segmentation model, DeepCrack, a specific
segmentation framework, is chosen for training the crack segmentation model. The model
is trained on the Crack500 training set, which includes original images and pseudo-labels
of crack pixels with different confidence scores. Training takes place for 30 epochs with
a batch size of 4. The initial learning rate is set to 1× 10−3 and is reduced by a factor of
10 every 10 epochs. The used optimizer is SGD with a momentum value of 0.9. The input
image size for DeepCrack is set to 256 × 256 pixels. Focal loss, a type of binary cross-entropy
loss, is employed to calculate the error between the predicted output and the corresponding
pseudo-labels. During segmentation model testing, three datasets including the Crack500
test set, CFD, and DeepCrack are involved in the inference process.

4.4. Evaluation on Crack500

As shown in Table 1, the results of the Crack500 testing dataset demonstrate the
effectiveness of the proposed CAC method compared to the state-of-the-art methods.
Compared to using CAM as pseudo-labels for direct segmentation model training, CAC
achieves improvements in terms of the following metrics: ODS increases by 0.76% to reach
a value of 53.88%; OIS increases by 1.58% to reach a value of 58.44%; and AP improves by
7.18% to reach a value of 57.07%. Compared to PWSV methods, refining CAM with CRF
post-processing as pseudo-labels for direct segmentation model training [13], CAC achieves
improvements in the following metrics: ODS increases by 4.68% to reach a value of 61.22%;
OIS improves slightly, with a 0.34% increase to reach a value of 64.07%; and the AP value
is closer, with a value of 65.10%. Compared to the GPLL method that employed location
with a classifier and thresholding as the initial crack pseudo-labels for direct segmentation
model training [12], CAC achieves significant improvements in the following metrics:
ODS increases substantially by 15.39% to reach a value of 60.43%; OIS improves by 7.81%,
reaching a value of 64.50%; and AP sees a remarkable improvement of 18.19% to reach
a value of 63.65%. It is important to note that the fully supervised method (FSV), which
uses pixel labels with precise annotations, serves as an upper bound on the performance
of the segmentation model. These results indicate that CAC outperforms other methods
when it comes to optimizing the training of models. The model is more resistant to noise
interference, resulting in a refined crack segmentation map with less noise and more visible
cracks, particularly with a higher recall of crack pixels as demonstrated in Figure 4.
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Table 1. Evaluation of the segmentation results ODS, OIS, and AP of different methods on the
Crack500 test set (%).

Methods ODS OIS AP

FSV 66.20 71.97 76.70

CAM [46] 53.12 56.86 49.89
PWSV [13] 56.54 63.73 65.13
GPLL [12] 45.04 56.69 45.46

Ours (CAM) 53.88 58.44 57.07
Ours (PWSV) 61.22 64.07 65.10
Ours (GPLL) 60.43 64.50 63.65

         (a)Image                       (b)GT                         (c)FSV                       (d)CAM                (e)Ours(CAM)               (f)PWSV                (g)Our(PWSV)               (h)GPLL                 (i)Ours(GPLL)

Figure 4. Visualization of the crack segmentation results of the different methods on the Crack500
testing dataset.

4.5. Evaluation on CFD

As shown in Table 2, the evaluation of the CFD dataset demonstrates the performance
of CAC compared to other state-of-the-art methods. The CAC performs better than existing
methods when using pseudo-labels of the same quality. Specifically, when GPLL is used as
the initial pseudo label [12], CAC achieves the best segmentation results, which hold on
an ODS value of 25.31%, an OIS value of 31.55%, and an AP value of 18.55%. However,
when using CAMs as pseudo-labels, the pseudo-label refinement strategy is less effective
due to the roughness of the intermediate results α. Compared to the Crack500 dataset,
the cracks in the CFD dataset are thinner and more challenging to detect, resulting in
lower performance for the segmentation results. Note that the FSV in Table 2 refers to the
segmentation model trained on Crack500 rather than CFD, and it does not show the best
performance because of its poor generalization ability. Similar results can be observed in
Table 3. The visualizations provided in Figure 5 indicate that CAC has less noise compared
to other methods, but it may still miss thinner cracks. These results suggest that CAC
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outperforms other methods on the CFD dataset in terms of handling noisy pseudo-labels,
although it still faces challenges with very thin cracks. The exploration of trying to use
the output results of different layers (shallow feature or deep feature) in the DeepCrack
framework is helpful to further enhance the pseudo-label correction strategy.

Table 2. Evaluation of the segmentation results ODS, OIS, and AP of different methods on the CFD
dataset (%).

Methods ODS OIS AP

FSV 16.67 24.35 6.31

CAM [46] 23.16 17.52 14.07
PWSV [13] 8.56 14.46 7.72
GPLL [12] 18.74 19.41 14.88

Ours (CAM) 22.87 15.11 12.88
Ours (PWSV) 25.82 14.96 18.36
Ours (GPLL) 25.31 31.55 18.55

         (a)Image                  (b)GT                        (c)FSV                   (d)CAM             (e)Ours(CAM)             (f)PWSV              (g)Our(PWSV)            (h)GPLL           (i)Ours(GPLL)

Figure 5. Visualization of the crack segmentation results of the different methods on the CFD dataset.

Table 3. Evaluation of the segmentation results ODS, OIS, and AP of different methods on the
DeepCrack dataset (%).

Methods ODS OIS AP

FSV 46.43 54.97 30.95

CAM [46] 44.88 52.43 37.33
PWSV [13] 37.05 43.95 44.31
GPLL [12] 65.97 73.19 72.28

Ours (CAM) 49.66 53.18 47.22
Ours (PWSV) 69.47 63.31 73.91
Ours (GPLL) 71.01 77.98 75.51

4.6. Evaluation on DeepCrack

As shown in Table 3, the evaluation of the DeepCrack dataset shows that CAC achieves
superior performance compared to other state-of-the-art methods. The CAC outperforms
other methods on the DeepCrack dataset when using the same quality of pseudo-labels.
Specifically, when GPLL is used as the initial pseudo label [12], the CAC achieves state-
of-the-art segmentation results, which hold on an ODS value of 71.01%, an OIS value of
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77.98%, and an AP value of 75.51%. In Figure 6, the visualized crack segmentation results
of CAC and existing methods on the DeepCrack dataset with three different pseudo-labels
demonstrate that CAC produces segmentation results with fewer noisy pixels compared to
other methods. The CAC displays excellent generalization performance on the DeepCrack
dataset, showcasing its robustness and superior performance. These results highlight
that CAC is highly effective in handling noisy pseudo-labels and demonstrates excellent
generalization performance, making it a state-of-the-art method for crack segmentation on
the DeepCrack dataset.

     (a)Image                  (b)GT                      (c)FSV                   (d)CAM             (e)Ours(CAM)             (f)PWSV              (g)Our(PWSV)             (h)GPLL           (i)Ours(GPLL)

Figure 6. Visualization of the crack segmentation results of the different methods on the
DeepCrack dataset.

4.7. Model Performance Discussion and Summary

From our experimental results, we observed that the performance of segmentation
results significantly improves when the segmentation model is trained using crack pseudo-
labels of comparable quality. Surprisingly, the noise inherent in these crack pseudo-labels
has minimal impact on the performance of our model. Consequently, our approach demon-
strates remarkable resilience to noise interference from pseudo-labels. The segmentation
results on the CFD dataset are relatively poor compared to the Crack500 dataset. This can
be attributed to the thinner and lower-contrast nature of the cracks in the CFD dataset,
which can be more challenging to detect and segment accurately. The DeepCrack dataset,
with a data distribution more similar to the crack distribution in the training set, yields
better segmentation results with CAC.

The results presented in Figure 7 and the provided explanation indicate that the
proposed CAC method faces challenges in detecting thin and low-contrast cracks. All
WSCS methods for detecting thin cracks, including our proposed method, may experience
instances of missed detection.

The experimental results presented in Tables 2 and 3 reveal that the weakly supervised
crack segmentation method exhibits superior generalization performance compared to the
fully supervised method on both the CFD and DeepCrack datasets. Analyzing the training
data perspective, the fully supervised approach in this study utilizes the Crack500 dataset,
potentially leading to model over-fitting. In contrast, the weakly supervised approach
incorporates pseudo-labels with varying degrees of noise, which contributes to enhanced
model generalization. Consequently, the proposed CAC offers a balancing mechanism
that effectively mitigates the influence of dataset-specific features and noise during the
data-fitting process.
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           (a)Image                          (b)GT                             (c)FSV                         (d)CAM                     (e)Ours(CAM)                   (f)PWSV                    (g)Our(PWSV)                  (h)GPLL                     (i)Ours(GPLL)
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Figure 7. The graphic shows some example images with poor segmentation results under different
datasets. The red box is the region where the detection error occurs.

4.8. Ablation Experiments

Table 4 presents the performance of different modules in the CAC framework using
the pseudo-labels generated by the fusion of CAM and crack location [12] on the Crack500.
The first row shows the segmentation performance of directly training the segmentation
model using the initial pseudo-labels. This is the baseline method. The second row demon-
strates that the co-training module provides a significant improvement in the segmentation
performance of the model. Co-training with high-confidence and low-confidence pseudo-
labels allows the model to better leverage the features of noisy labels, resulting in enhanced
segmentation. The third row showcases the performance of the dynamical division module
for pseudo-labels with different confidence scores. The results indicate that as the quality
of pseudo-labels improves, the segmentation performance also improves. In summary, the
experimental results suggest that the co-training module and the dynamical division mod-
ule play crucial roles in enhancing the segmentation performance of the CAC model. These
modules help the model make better use of pseudo-labels, leading to improved results.

Table 4. Performance of different modules in the model on Crack500 testing dataset (%).

Co-Training Dynamical Division ODS OIS AP

45.04 56.69 45.46
✓ 56.86 63.74 59.09
✓ ✓ 60.43 64.50 63.65

Figure 8 visually demonstrates the pixel pseudo-label correction during model train-
ing. It can be seen that the crack CAM is used as the initial coarse pseudo-label Iter_0,
which contains a significant amount of noise. As the iterative number increases, it shows
steady trends, and the pseudo-label is refined gradually. This supports the motivation of
confidence-aware co-training experimentally and illustrates that the proposed CAC can
effectively strengthen the ability to resist noises.

45.5 

(a)Source Image (b)Iter_0 (c)Iter_1 (d)Iter_2 (e)Iter_3 (g)Iter_5 (h)GroundTruth(f)Iter_4

Figure 8. Visualization of the process of CAM pseudo-label correction during model iterations.
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4.9. Parameter Experiments

Figure 9 illustrates the impact of different values of the parameter λ on the total loss
of the segmentation model using the pseudo-labels generated by the fusion of CAM and
crack location [12] on the Crack500. The graph shows that the crack segmentation model
performs optimally when λ is set to 0.7. In this configuration, the contribution of the
high-confidence sample set accounts for 70% of the total loss, while the contribution of
the low-confidence sample set accounts for the remaining 30%. This balance between
high-confidence and low-confidence sample sets yields the best segmentation results. As
λ varies, the performance of the segmentation model changes. For values below 0.7, the
model appears to under-utilize the high-confidence sample set, leading to sub-optimal
performance. Conversely, for values above 0.7, the model starts to favor the high-confidence
samples to a greater extent, which can also negatively affect the overall performance. The
figure indicates that as the parameter λ changes, the performance of the model fluctuates
within a relatively small range (around 10%).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
parameter 

30

40

50

60

70

80

ODS
OIS
ap

Figure 9. Performance of different λ in total loss for segmentation model on Crack500 testing dataset.

Figure 10 illustrates the impact of different division ratios, parameter C, on the perfor-
mance of the crack segmentation model when using pseudo-labels generated by the fusion
of CAM and crack location on the Crack500. It shows that the performance of the model is
optimized when C is set to 5, which means that the top 5% of the initial noisy pseudo-labels
are divided as a high-confidence sample set, and the remaining pixels are divided as a
low-confidence sample set. These results indicate that selecting an appropriate division
ratio is crucial for achieving the best segmentation performance with the CAC model.

1 2 3 4 5 6 7 8 9
parameter C

30
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60

70

80

ODS
OIS
AP

Figure 10. Performance of different division ratios C for the segmentation model on the Crack500
testing dataset.
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5. Conclusions and Future Work

We contributed an effective strategy named confidence-aware co-training (CAC) for
weakly supervised crack segmentation tasks. The proposed CAC employed the co-training
of crack segmentation networks with pseudo-labels under different degrees of confidence
to mitigate the impact of noisy labels and enhance pseudo-label accuracy. The approach
leveraged high-confidence pseudo-labels for better initialization parameters and reduced
over-fitting to noisy pixels while using low-confidence pseudo-labels to provide richer
features for the model. Pseudo-labels were dynamically updated to improve their quality
during model training by iterative optimization model. The experimental results have
demonstrated the superiority of the proposed CAC approach over state-of-the-art methods
on the Crack500, CFD, and DeepCrack datasets. The CAC framework offers a promising
approach to weakly supervised crack segmentation and highlights the potential for further
improvements in crack segmentation methodologies. For future work, more exploration
will be performed to meet the challenges of CAC in preserving the connectivity of cracks.
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