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Abstract: The partial information decomposition (PID) framework is concerned with decomposing the
information that a set of (two or more) random variables (the sources) has about another variable
(the target) into three types of information: unique, redundant, and synergistic. Classical information
theory alone does not provide a unique way to decompose information in this manner and additional
assumptions have to be made. One often overlooked way to achieve this decomposition is using
a so-called measure of union information—which quantifies the information that is present in at
least one of the sources—from which a synergy measure stems. In this paper, we introduce a new
measure of union information based on adopting a communication channel perspective, compare it
with existing measures, and study some of its properties. We also include a comprehensive critical
review of characterizations of union information and synergy measures that have been proposed in
the literature.

Keywords: information theory; partial information decomposition; union information; synergy;
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1. Introduction

Williams and Beer [1] introduced the partial information decomposition (PID) framework
as a way to characterize, or analyze, the information that a set of random variables (often
called sources) has about another variable (referred to as the target). PID is a useful tool for
gathering insights and analyzing the way information is stored, modified, and transmitted
within complex systems [2,3]. It has been applied in several areas such as cryptography [4]
and neuroscience [5,6], with many other potential use cases, such as in studying information
flows in gene regulatory networks [7], neural coding [8], financial markets [9], and network
design [10,11].

Consider the simplest case, a three-variable joint distribution p(y1, y2, t) describing
three random variables: two so-called sources, Y1 and Y2, and a target T. Notice that,
despite what the names sources and target might suggest, there is no directionality (causal
or otherwise) assumption. The goal of PID is to decompose the information that the sources
Y = (Y1, Y2) have about T into the sum of four non-negative quantities: the information
that is present in both Y1 and Y2, known as redundant information, R; the information that
only Y1 (respectively Y2) has about T, known as unique information, U1 (respectively U2);
and the synergistic information, S, that is present in the pair (Y1, Y2) but not in Y1 or Y2
alone. In this case with two variables, the goal is, thus, to write

I(T; Y) = R + U1 + U2 + S, (1)

where I(T; Y) is the mutual information between T and Y [12]. The redundant information
R, because it is present in both Y1 and Y2, is also referred to as intersection information
and denoted as I∩. Finally, I∪ refers to union information, i.e., the amount of information
provided by at least one of the sources; in the case of two sources, I∪ = U1 + U2 + R, thus
S = I(T; Y)− I∪.
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Because unique information and redundancy satisfy the relationship Ui = I(T; Yi)− R
(for i ∈ {1, 2}), it turns out that defining how to compute one of these quantities (R, Ui,
or S) is enough to fully determine the others [1]. Williams and Beer [1] suggested a set of
axioms that a measure of redundancy should satisfy, and proposed a measure of their own.
Those axioms became well known as the Williams–Beer axioms, although the measure they
proposed has subsequently been criticized for not capturing informational content, but
only information size [13]. It is worth noting that as the number of variables grows the
number of terms appearing in the PID of I(T; Y) grows super-exponentially [14].

Stimulated by that initial work, other measures of information and other sets of
axioms for information decomposition have been introduced; see, for example, the work by
Bertschinger et al. [15], Griffith and Koch [16], and James et al. [17], for different measures
of redundant, unique, and synergistic information. There is no consensus about what
axioms any measure should satisfy or whether a given measure captures the information
that it should capture, except for the Williams–Beer axioms. Today, there is still debate
about what axioms different measures of information should satisfy, and there is no general
agreement on what is an appropriate PID [17–21].

Most PID measures that have been suggested thus far are either measures of redundant
information, e.g., [1,13,21–26], or measures of unique information, e.g., [15,17]. Alterna-
tively, it is possible to define the union information of a set of sources as the amount of
information provided by at least one of those sources. Synergy is then defined as the
difference between the total information and union information [22].

In this paper, we introduce a new measure of union information based on the informa-
tion channel perspective that we already pursued in earlier work [26] and study some of
its properties. The resulting measure leads to a novel information decomposition that is
particularly suited for analyzing how information is distributed in channels.

The rest of the paper is organized as follows. A final subsection of this section
introduces the notation used throughout the paper. In Section 2, we recall some properties of
PID and take a look at how the degradation measure for redundant information introduced
by Kolchinsky [22] decomposes information in bivariate systems, while also pointing out
some drawbacks of that measure. Section 3 presents the motivation for our proposed
measure, its operational interpretation, its multivariate definition, as well as some of its
drawbacks. In Section 4, we propose an extension of the Williams–Beer axioms for measures
of union information and show that our proposed measure satisfies those axioms. We
review all properties that have been proposed both for measures of union information and
synergy, and either accept or reject them. We also compare different measures of synergy
and relate them, whenever possible. Finally, Section 5 presents concluding remarks and
suggestions for future work.

Notation

For two discrete random variables X ∈ X and Z ∈ Z , their Shannon mutual in-
formation I(X; Z) is given by I(X; Z) = I(Z; X) = H(X)− H(X|Z) = H(Z)− H(Z|X),
where H(X) = −∑x∈X p(x) log p(x) and H(X|Z) = −∑x∈X ∑z∈X p(x, z) log p(x|z) are
the entropy and conditional entropy, respectively [12]. The conditional distribution p(z|x)
corresponds, in an information-theoretical perspective, to a discrete memoryless channel
with a channel matrix K, i.e., such that K[x, z] = p(z|x) [12]. This matrix is row-stochastic:
K[x, z] ≥ 0, for any x ∈ X and z ∈ Z , and ∑z∈Z K[x, z] = 1, for any x.

Given a set of n discrete random variables (sources), Y1 ∈ Y1, . . ., Yn ∈ Yn, and a
discrete random variable T ∈ T (target) with joint distribution (probability mass function)
p(y1, . . ., yn, t), we consider the channels K(i) between T and each Yi, that is, each K(i) is a
|T | × |Yi| row-stochastic matrix with the conditional distribution p(yi|t). For a vector y,
y−i refers to the same vector without the ith component.

We say that three random variables, say X, Y, Z, form a Markov chain (which we
denote by X − Y − Z or by X ⊥ Z | Y) if X and Z are conditionally independent, given Y.
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2. Background
2.1. PID Based of Channel Orders

In its current versions, PID is agnostic to causality in the sense that, like mutual
information, it is an undirected measure, i.e., I(T; Y) = I(Y; T). Some measures indirectly
presuppose some kind of directionality to perform PID. Take, for instance, the redundancy
measure introduced by Kolchinsky [22], based on the so-called degradation order ⪯d
between communication channels (see recent work by Kolchinsky [22] and Gomes and
Figueiredo [26] for definitions):

Id
∩(Y1, Y2, . . ., Ym → T) := sup

KQ : KQ⪯dK(i), i∈{1,...,m}
I(Q; T). (2)

In the above equation, Q is the output of the channel T → Q, which we also denote as KQ.
When computing the information shared by the m sources, Id

∩(Y1, Y2, . . ., Ym → T), the
perspective is that there is a channel with a single input T and m outputs Y1, . . ., Ym. This
definition of Id

∩ corresponds to the mutual information of the most informative channel,
under the constraint that this channel is dominated (in the degradation order ⪯d sense)
by all channels K(1), . . ., K(m). Since mutual information was originally introduced to
formalize the capacity of communication channels, it is not surprising that measures that
presuppose channel directionality are found useful in this context. For instance, the work
of James et al. [27] concluded that only if one assumes the directionality T → Yi does one
obtain a valid PID from a secret key agreement rate, which supports the approach of
assuming this directionality perspective.

Although it is not guaranteed that the structure of the joint distribution p(y1, . . ., yn, t)
is compatible with the causal model of a single input and multiple output channels (which
implies that the sources are conditionally independent, given T), one may always compute
such measures, which have interesting and relevant operational interpretations. In the
context of PID, where the goal is to study how information is decomposed, such measures
provide an excellent starting point. Although it is not guaranteed that there is actually
a channel (or a direction) from T to Yi, we can characterize how information about T is
spread through the sources. In the case of the degradation order, Id

∩ provides insight about
the maximum information obtained about T if any Yi is observed.

Arguably, the most common scenario in PID is finding out something about the struc-
ture of the information the variables Y1, . . ., Yn have about T. In a particular system of
variables characterized by its joint distribution, we do not make causal assumptions, so
we can adopt the perspective that the variables Yi are functions of T, hence obtaining the
channel structure. Although this channel structure may not be faithful [28] to the conditional
independence properties implied by p(y1, . . ., yn, t), this channel perspective allows for
decomposition of I(Y; T) and for drawing conclusions about the inner structure of the
information that Y has about T. Some distributions, however, cannot have this causal struc-
ture. Take, for instance, the distribution generated by T = Y1 xor Y2, where Y1 and Y2 are
two equiprobable and independent binary random variables. We will call this distribution
XOR. For this well-known distribution, we have Y1 ⊥ Y2 and Y1 ̸⊥ Y2 | T, whereas the
implied channel distribution that Id

∩ assumes yields the exact opposite dependencies, that
is, Y1 ̸⊥ Y2 and Y1 ⊥ Y2|T; see Figure 1 for more insight.

Consider the computation of Id
∩(Y1, Y2 → T) for the XOR distribution. This measure

argues that, since

K(1) = K(2) =

[
0.5 0.5
0.5 0.5

]
,

then a solution to Id
∩(Y1, Y2 → T) is given by the channel KQ = K(1) and redundancy

is computed as I(Q; T), yielding 0 bits of redundancy, and consequently 1 bit of syn-
ergy (as computed from (1)). Under this channel perspective (as in Figure 1b), Id

∩ is not
concerned with, for example, p(Y1|T, Y2) or p(Y1, Y2). If all that is needed to compute re-
dundancy is p(T), K(1), and K(2), this would lead to the wrong conclusion that the outcome
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(Y1, Y2, T) = (0, 0, 1) has non-null probability, which it does not. With this, we do not
mean that Id

∩ is an incomplete or incorrect measure to perform PID, we are using its insights
to point us in a different direction.

(a) (b) (c)

Figure 1. (a) Assuming faithfulness [28], this is the only three-variable directed acyclic graph (DAG)
that satisfies Y1 ⊥ Y2 and Y1 ̸⊥ Y2|T, in general [28]. (b) The DAG that is “implied” by the perspective
of Id

∩. (c) A DAG that can generate the XOR distribution, but does not satisfy the dependencies implied
by T = Y1 xor Y2. In fact, any DAG that is in the same Markov equivalence class as (c) can generate
the XOR distribution (or any other joint distribution), but none satisfy the earlier dependencies,
assuming faithfulness.

2.2. Motivation for a New PID

At this point, the most often used approaches to PID are based on redundancy mea-
sures. Usually, these are in one of the two following classes:

• Measures that are not concerned with information content, only information size, which
makes them easy to compute even for distributions with many variables, but at the
cost that the resulting decompositions may not give realistic insights into the system,
precisely because they are not sensitive to informational content. Examples are IWB

∩ [1]
or IMMI

∩ [23], and applications of these can be found in [29–32].
• Measures that satisfy the Blackwell property—which arguably do measure information

content—but are insensitive to changes in the sources’ distributions
p(y1, . . ., yn) = ∑t p(y1, . . ., yn, t) (as long as p(T), K(1), . . ., K(n) remain the same).
Examples are Id

∩ [22] (see Equation (2)) or IBROJA
∩ [15]. It should be noted that IBROJA

∩ is
only defined for the bivariate case, that is, for distributions with at most two sources,
described by p(y1, y2, t). Applications of these can be found in [33–35].

Particularly, Id
∩ and IBROJA

∩ satisfy the so-called (*) assumption [15], which argues that
redundant and unique information should only depend on the marginal distribution of the
target p(T) and on the conditional distributions of the sources given the target, that is, on
the stochastic matrices K(i). James et al. [17] (Section 4) and Ince [21] (Section 5) provide
great arguments as to why the (*) assumption should not hold in general, and we agree
with them.

Towards motivating a new PID, let us look at how Id
∩ decomposes information in

the bivariate case. Any measure that is based on a preorder between channels and which
satisfies Kolchinsky’s axioms yields similar decompositions [26], thus there is no loss of
generality in focusing on Id

∩. We next analyze three different cases.

• Case 1: There is an ordering between the channels, that is, w.l.o.g., K(2) ⪯d K(1).
This means that I(Y2; T) ≤ I(Y1; T) and the decomposition (as in (1)) is given by
R = I(Y2; T), U2 = 0, U1 = I(Y1; T)− I(Y2; T), and S = I(Y; T)− I(Y1; T). Moreover,
if K(1) ̸⪯d K(2), then S = 0.
As an example, consider the leftmost distribution in Table 1, which satisfies T = Y1. In
this case,

K(1) =

[
1 0
0 1

]
⪰d K(2) =

[
0.5 0.5
0.5 0.5

]
,

yielding R = 0, U1 = 1, U2 = 0, and S = 0, as expected, because T = Y1.
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Table 1. Three joint distributions p(yt, y2, y2) used to exemplify the three cases. Left: joint distribution
satisfying T = Y1. Middle: distribution satisfying T = (Y1, Y2), known as the COPY distribution.
Right: the so-called BOOM distribution (see text).

t y1 y2 p(t, y1, y2) t y1 y2 p(t, y1, y2) t y1 y2 p(t, y1, y2)
0 0 0 1/4 (0,0) 0 0 1/4 0 0 2 1/6
0 0 1 1/4 (0,1) 0 1 1/4 1 0 0 1/6
1 1 0 1/4 (1,0) 1 0 1/4 1 1 2 1/6
1 1 1 1/4 (1,1) 1 1 1/4 2 0 0 1/6

2 2 0 1/6
2 2 1 1/6

• Case 2: There is no ordering between the channels and the solution of Id
∩(Y1, Y2 → T)

is a trivial channel, in the sense that it has no information about T. The decomposition
is given by R = 0, U2 = I(Y2; T), U1 = I(Y1; T), and S = I(Y; T)− I(Y1; T)− I(Y2; T),
which may lead to a negative value of synergy. An example of this is provided later.
As an example, consider the COPY distribution with Y1 and Y2 i.i.d. Bernoulli variables
with parameter 0.5, shown in the center of Table 1. In this case, channels K(1) and K(2)

have the forms

K(1) =


1 0
1 0
0 1
0 1

, K(2) =


1 0
0 1
1 0
0 1

,

with no degradation order between them. This yields R = 0, U1 = U2 = 1, and S = 0.
• Case 3: There is no ordering between the channels and Id

∩(Y1, Y2 → T) is achieved by a
nontrivial channel KQ. The decomposition is given by R = I(Q; T),
U2 = I(Y2; T) − I(Q; T), U1 = I(Y1; T) − I(Q; T), and S = I(Y; T) + I(Q; T) −
I(Y1; T)− I(Y2; T).
As an example, consider the BOOM distribution [17], shown on the right-hand side of
Table 1. In this case, channels K(1) and K(2) are

K(1) =

 1 0 0
1/2 1/2 0
1/3 0 2/3

, K(2) =

 0 0 1
1/2 0 1/2
2/3 1/3 0

,

and there is no degradation order between them. However, there is a nontrivial
channel KQ that is dominated by both K(1) and K(2) that maximizes I(Q; T). One of
its versions is

KQ =

 0 1 0
0 3/4 1/4

1/3 1/3 1/3

,

yielding R ≈ 0.322, U1 = U2 ≈ 0.345, and S ≈ 0.114.

This class of approaches has some limitations, as is the case for all PID measures. In
the bivariate case, the definition of synergy S from a measure of redundant information
is the completing term such that I(Y; T) = S + R + U1 + U2 holds. The definition of Id

∩
supports the argument that if K(2) ⪯d K(1) and K(1) ̸⪯d K(2), then there is no synergy. This
makes intuitive sense because, in this case, T − Y1 − Y2 is a Markov chain (see Section 1 for
the definition), consequently, I(Y; T) = I(Y1; T), that is, Y1 has the same information about
T as the pair Y = (Y1, Y2).

If there is no ⪯d ordering between the channels, as in the COPY distribution (Table 1,
middle), the situation is more complicated. We saw that the decomposition for this dis-
tribution yields R = 0, U1 = U2 = 1, and S = 0. However, suppose we change the
distribution such that T = (1, 1) has probability 0 and the other outcomes have proba-
bility 1/3. For example, consider the distribution in Table 2. For this distribution, we
have I(Y; T) ≈ 1.585. Intuitively, we would expect that I(Y; T) would be decomposed as
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R = 0, U1 = U2 = I(Y; T)/2, and S = 0, just as before, so that the proportions Ui/I(Y; T),
for i ∈ {1, 2}, in both distributions remain the same, whereas redundancy and synergy
would remain zero. That is, we do not expect that removing one of the outcomes while
maintaining the remaining outcomes equiprobable would change the types of information
in the system. However, if we perform this and compute the decomposition yielded by Id

∩,
we obtain R = 0, U1 = U2 = 0.918 ̸= I(Y; T)/2, and S = −0.251, i.e., a negative synergy,
arguably meaningless.

Table 2. Tweaked COPY distribution, now without the outcome (T, Y1, Y2) = ((1, 1), 1, 1).

T Y1 Y2 p(t, y1, y2)

(0,0) 0 0 1/3

(0,1) 0 1 1/3

(1,0) 1 0 1/3

There are still many open questions in PID. One of those questions is: Should measures
of redundant information be used to measure synergy, given that they compute it as the
completing term in Equation (1). We agree that using a measure of redundant information to
compute the synergy in this way may not be appropriate, especially because the inclusion–
exclusion principle (IEP) should not necessarily hold in the context of PID; see [22] for
comments on the IEP.

With these motivations, we propose a measure of union information for PID that
shares with Id

∩ the implicit view of channels. However, unlike Id
∩ and IBROJA

∩ —which satisfy
the (*) assumption, and thus, are not concerned with the conditional dependencies in
p(yi|t, y−i)—our measure defines synergy as the information that cannot be computed
from p(yi|t), but can be computed from p(yi|t, y−i). That is, we propose that synergy be
computed as the information that is not captured by assuming conditional independence
of the sources, given the target.

3. A New Measure of Union Information
3.1. Motivation and Bivariate Definition

Consider a distribution p(y1, y2, t) and suppose there are two agents, agent 1 and
agent 2, whose goal is to reduce their uncertainty about T by observing Y1 and Y2, respec-
tively. Suppose also that the agents know p(t), and that agent i has access to its channel
distribution p(yi|t). Many PID measures make this same assumption, including Id

∩. When
agent i works alone to reduce the uncertainty about T, since it has access to p(t) and
p(yi|t), it also knows p(yi) and p(yi, t), which allows it to compute I(Yi; T): the amount of
uncertainty reduction about T achieved by observing Yi.

Now, if the agents can work together, that is, if they have access to Y = (Y1, Y2),
then they can compute I(Y; T), because they have access to p(y1, y2|t) and p(t). On the
other hand, if the agents are not able to work together (in the sense that they are not able
to observe Y together, but only Y1 and Y2, separately) yet can communicate, then they
can construct a different distribution q given by q(y1, y2, t) := p(t)p(y1|t)p(y2|t), i.e., a
distribution under which Y1 and Y2 are conditionally independent given T, but have the
same marginal p(t) and the same individual conditionals p(y1|t) and p(y2|t).

The form of q in the previous paragraph should be contrasted with the following factor-
ization of p, which entails no conditional independence assumption:
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p(y1, y2, t) = p(t)p(y1|t)p(y2|t, y1). In this sense, we would propose to define union
information, for the bivariate case, as follows:

I∪(Y1 → T) = Iq(Y1; T) = Ip(Y1; T),

I∪(Y2 → T) = Iq(Y2; T) = Ip(Y2; T),

I∪(Y1, Y2 → T) = Iq(Y; T), (3)

I∪((Y1, Y2) → T) = Ip(Y; T),

where the subscript refers to the distribution under which the mutual information is
computed. From this point forward, the absence of a subscript means that the computation
is performed under the true distribution p. As we will see, this is not yet the final definition,
for reasons to be addressed below.

Using the definition of synergy derived from a measure of union information [22], for
the bivariate case we have

S(Y1, Y2 → T) := I(Y; T)− I∪(Y1, Y2 → T). (4)

Synergy is often posited as the difference between the whole and the union of the parts. For our
measure of union information, the ‘union of the parts’ corresponds to the reduction in
uncertainty about T—under q—that agents 1 and 2 can obtain by sharing their conditional
distributions. Interestingly, there are cases where the union of the parts is better than the
whole, in the sense that I∪(Y1, Y2 → T) > I(Y; T). An example of this is given by the
Adapted ReducedOR distribution, originally introduced by Ince [21] and adapted by James
et al. [17], which is shown in the left-hand side of Table 3, where r ∈ [0, 1]. This distribution
is such that Iq(Y; T) does not depend on r (Iq(Y; T) ≈ 0.549), since neither p(t) nor p(y1|t)
and p(y2|t) depend on r; consequently, q(t, y1, y2) also does not depend on r, as shown in
the right-hand side of Table 3.

Table 3. Left: The Adapted Reduced OR distribution, where r ∈ [0, 1]. Right: The corresponding
distribution q(t, y1, y2) = p(t)p(y1|t)p(y2|t).

t y1 y2 p(t, y1, y2) t y1 y2 q(t, y1, y2)
0 0 0 1/2 0 0 0 1/2
1 0 0 r/4 1 0 0 1/8
1 1 0 (1 − r)/4 1 1 0 1/8
1 0 1 (1 − r)/4 1 0 1 1/8
1 1 1 r/4 1 1 1 1/8

It can be easily shown that if r > 0.5, then Iq(Y; T) > I(Y; T), which implies that
synergy, if defined as in (4), could be negative. How do we interpret the fact that there exist
distributions such that Iq(Y; T) > I(Y; T)? This means that under distribution q, which
assumes Y1 and Y2 are conditionally independent given T, Y1 and Y2 reduce the uncertainty
about T more than in the original distribution. Arguably, the parts working independently
and achieving better results than the whole should mean there is no synergy, as opposed to
negative synergy.

The observations in the previous paragraphs motivate our definition of a new measure
of union information as

ICI
∪ (Y1, Y2 → T) := min{I(Y; T), Iq(Y; T)}, (5)

with the superscript CI standing for conditional independence, yielding a non-negative synergy:

SCI(Y1, Y2 → T) = I(Y; T)− ICI
∪ (Y1, Y2 → T) = max{0, I(Y; T)− Iq(Y; T)}. (6)

Note that for the bivariate case we have zero synergy if p(t, y2, y2) is such that Y1 ⊥p Y2|T,
that is, if the outputs are indeed conditionally independent given T. Moreover, ICI

∪ satisfies
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the monotonicity axiom from the extension of the Williams–Beer axioms to measures of
union information (to be mentioned in Section 4.1), which further supports this definition.
For the bivariate source case, the decomposition of I(Y; T) derived from a measure of union
information is given by

I∪(Y1) = I(Y1; T) = U1 + R
I∪(Y2) = I(Y2; T) = U2 + R
I∪(Y1, Y2) = U1 + U2 + R
I∪(Y12) = I(Y12; T) = U1 + U2 + R + S

⇐⇒


S = I(Y; T)− I∪(Y1, Y2)

U1 = I∪(Y1, Y2)− I(Y2; T)
U2 = I∪(Y1, Y2)− I(Y1; T)
R = I(Y1; T)− U1 = I(Y2; T)− U2

.

3.2. Operational Interpretation

For the bivariate case, if Y1 and Y2 are conditionally independent given T (Figure 1b),
then p(y1|t) and p(y2|t) (and p(t)) suffice to reconstruct the original joint distribution
p(y1, y2, t), which means the union of the parts is enough to reconstruct the whole, i.e.,
there is no synergy between Y1 and Y2. Conversely, a distribution generated by the DAG in
Figure 1c does not satisfy conditional independence (given T), hence we expect positive
synergy, as is the case for the XOR distribution, and indeed our measure yields 1 bit of
synergy for this distribution. These two cases motivate the operational interpretation of
our measure of synergy: it is the amount of information that is not captured by assuming
conditional independence of the sources (given the target).

Recall, however, that some distributions are such that Iq(Y; T) > Ip(Y; T), i.e., such
that the union of the parts ‘outperforms’ the whole. What does this mean? It means
that under q, Y1 and Y2 have more information about T than under p: the constructed
distribution q, which drops the conditional dependence of Y1 and Y2 given T, reduces
the uncertainty that Y has about T more than the original distribution p. In some cases,
this may happen because the support of q is larger than that of p, which may lead to a
reduction in uncertainty under q that cannot be achieved under p. In these cases, since
we are decomposing Ip(Y; T), we revert to saying that the union information that a set of
variables has about T is equal to Ip(Y; T), so that our measure satisfies the monotonicity
axiom (later introduced in Definition 2). We will comment on this compromise between
satisfying the monotonicity axiom and ignoring dependencies later.

3.3. General (Multivariate) Definition

To extend the proposed measure to an arbitrary number n ≥ 2 of sources, we briefly
recall the synergy lattice [18,36] and the union information semi-lattice [36]. For n = 3,
these two lattices are shown in Figure 2. For the sake of brevity, we will not address the
construction of the lattices or the different orders between sources. We refer the reader
to the work of Gutknecht et al. [36] for an excellent overview of the different lattices, the
orders between sources, and the construction of different PID measures.

In the following, we use the term source to mean a subset of the variables {Y1, . . ., Yn},
or a set of such subsets, we drop the curly brackets for clarity and refer to the different
variables by their indices, as is common in most works on PID. The decomposition resulting
from a measure of union information is not as direct to obtain as one obtained from a
measure of redundant information, as the solution for the information atoms is not a
Möbius inversion [14]. One must first construct the measure of synergy for source α
by writing

SCI(α → T) = I(Y; T)− ICI
∪ (α → T), (7)

which is the generalization of (6) for an arbitrary source α. In the remainder of this paper,
we will often omit “→ T” from the notation (unless it is explicitly needed), with the
understanding that the target variable is always referred to as T. Also for simplicity, in the
following, we identify the different agents that have access to different distributions as the
distributions they have access to.
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(a) (b)

Figure 2. Trivariate distribution lattices and their respective ordering of sources. Left (a): synergy
lattice [18]. Right (b): union information semi-lattice [36].

It is fairly simple to extend the proposed measure to an arbitrary number of sources,
as illustrated in the following two examples.

Example 1. To compute ICI
∪
(
(Y1, Y2), Y3

)
, agent (Y1, Y2) knows p(y1, y2|t), thus it can also

compute, by marginalization, p(y1|t) and p(y2|t). On the other hand, agent Y3 only knows
p(y3|t). Recall that both agents also have access to p(t). By sharing their conditionals, the
agents can compute q1(y1, y2, y3, t) := p(t)p(y1, y2|t)p(y3|t), and also q2(y1, y2, y3, t) :=
p(t)p(y1|t)p(y2|t)p(y3|t). After this, they may choose whichever distribution has the highest
information about T, while still holding the view that any information gain larger than I(Y; T)
must be disregarded. Consequently, we write

ICI
∪
(
(Y1, Y2), Y3

)
= min

{
I(Y; T), max

{
Iq1(Y; T), Iq2(Y; T)

}}
.

Example 2. Slightly more complicated is the computation of ICI
∪
(
(Y1, Y2), (Y1, Y3), (Y2, Y3)

)
.

In this case, the three agents may compute four different distributions, two of which are the
same q1 and q2 defined in the previous paragraph, and the other two are q3(y1, y2, y3, t) :=
p(t)p(y1, y3|t)p(y2|t), and q4(y1, y2, y3, t) := p(t)p(y1|t)p(y2, y3|t).

Given these insights, we propose the following measure of union information.

Definition 1. Let A1, . . ., Am be an arbitrary collection of m ≥ 1 sources (recall sources may
be subsets of variables). Assume that no source is a subset of another source and no source is a
deterministic function of other sources (if there is, remove it). We define

ICI
∪ (A1, . . ., Am → T) = min

{
I(A; T), max

q∈Q
Iq(A; T)

}
,

where A =
m⋃

i=1
Ai and Q is the set of all different distributions that the m agents can construct by

combining their conditional distributions and marginalizations thereof.
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For instance, in Example 1 above, A = {Y1, Y2} ∪ {Y3} = {Y1, Y2, Y3}; in Example 2,
A = {Y1, Y2} ∪ {Y1, Y3} ∪ {Y2, Y3} = {Y1, Y2, Y3}. In Example 1, Q = {q1, q2}, whereas in
Example 2, Q = {q1, q2, q3, q4}. We now justify the conditions in Definition 1 and the fact
that they do not entail any loss of generality.

• The condition that no source is a subset of another source (which also excludes the
case where two sources are the same) implies no loss of generality: if one source is a
subset of another, say Ai ⊆ Aj, then Ai may be removed without affecting either A or
Q, thus yielding the same value for ICI

∪ . The removal of source Ai is also performed
for measures of intersection information, but under the opposite condition: whenever
Aj ⊆ Ai.

• The condition that no source is a deterministic function of other sources is slightly
more nuanced. In our perspective, an intuitive and desired property of measures of
both union and synergistic information is that their value should not change when-
ever one adds a source that is a deterministic function of sources that are already
considered. We provide arguments in favor of this property in Section 4.2.1. This
property may not be satisfied by computing ICI

∪ without previously excluding such
sources. For instance, consider p(t, y1, y2, y3), where Y1 and Y2 are two i.i.d. random
variables following a Bernoulli distribution with parameter 0.5, Y3 = Y2 (that is,
Y3 is deterministic function of Y2), and T = Y1 AND Y2. Computing ICI

∪ (Y1, Y2, Y3)
without excluding Y3 (or Y2) yields ICI

∪ (Y1, Y2, Y3) = Iq(Y1, Y2, Y3; T) ≈ 0.6810 and
ICI
∪ (Y1, Y2) = Iq(Y1, Y2; T) ≈ 0.5409. This issue is resolved by removing deterministic

sources before computing ICI
∪ .

We conclude this section by commenting on the monotonicity of our measure. Sup-
pose we wish to compute the union information of sources {(Y1, Y2), Y3} and {Y1, Y2, Y3}.
PID theory demands that ICI

∪ ((Y1, Y2), Y3) ≥ ICI
∪ (Y1, Y2, Y3) (monotonicity of union in-

formation). Recall our motivation for ICI
∪ ((Y1, Y2), Y3): there are two agents, the first

has access to p(y1, y2|t) and the second to p(y3|t). The two agents assume conditional
independence of their variables and construct q′(y1, y2, y3, t) = p(t)p(y1, y2|t)p(y3|t).
The story is similar for the computation of ICI

∪ (Y1, Y2, Y3), in which case we have three
agents that construct q′′(y1, y2, y3, t) = p(t)p(y1|t)p(y2|t)p(y3|t). Now, it may be the
case that Iq′(Y; T) < Iq′′(Y; T); considering only these two distributions would yield
ICI
∪ ((Y1, Y2), Y3) < ICI

∪ (Y1, Y2, Y3), contradicting monotonicity for measures of union in-
formation. To overcome this issue, for the computation of ICI

∪ ((Y1, Y2), Y3)—and other
sources in general—the agent that has access to p(y1, y2|t) must be allowed to disregard
the conditional dependence of Y1 and Y2 on T, even if it holds in the original distribution p.

4. Properties of Measures of Union Information and Synergy
4.1. Extension of the Williams–Beer Axioms for Measures of Union Information

As Gutknecht et al. [36] rightfully notice, the so-called Williams–Beer axioms [1] can
actually be derived from parthood distribution functions and the consistency equation [36].
Consequently, they are not really axioms but consequences of the PID framework. As
far as we know, there has been no proposal in the literature for the equivalent of the
Williams–Beer axioms (which refer to measures of redundant information) for measures
of union information. In the following, we extend the Williams–Beer axioms to measures
of union information and show that the proposed ICI

∪ satisfies these axioms. Although
we just argued against calling them axioms, we keep the designation Williams–Beer axioms
because of its popularity. Although the following definition is not in the formulation of
Gutknecht et al. [14], we suggest formally defining union information from the formulation
of parthood functions as

I∪(Y1, . . ., Ym; T) = ∑
∃i: f (Yi)=1

Π( f ), (8)
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where f refers to a parthood function and Π( f ) is the information atom associated with
the parthood function f . Given this formulation, the following properties must hold.

Definition 2. Let A1, . . ., Am be an arbitrary number m ≥ 2 of sources. A measure of union
information I∪ is said to satisfy the Williams–Beer axioms for union information measures if
it satisfies:

1. Symmetry: I∪ is symmetric in the Ai’s.
2. Self-redundancy: I∪(Ai) = I(Ai; T).
3. Monotonicity: I∪(A1, . . ., Am−1, Am) ≥ I∪(A1, . . ., Am−1).
4. Equality for monotonicity: Am ⊆ Am−1 ⇒ I∪(A1, . . ., Am−1, Am) = I∪(A1, . . ., Am−1).

Theorem 1. ICI
∪ satisfies the Williams–Beer axioms for measures of union information given in

Definition 2.

Proof. We address each of the axioms in turn.

1. Symmetry follows from the symmetry of mutual information, which in turn is a
consequence of the well-known symmetry of joint entropy.

2. Self-redundancy follows from the fact that agent i has access to p(Ai|T) and p(T),
which means that p(Ai, T) is one of the distributions in the set Q, which implies that
I∪(Ai) = I(Ai; T).

3. To show that monotonicity holds, begin by noting that

I

(
m⋃

i=1

Ai; T

)
≥ I

(
m−1⋃
i=1

Ai; T

)
,

due to the monotonicity of mutual information. Let Qm be the set of distributions that
the sources A1, . . ., Am can construct and Qm−1 that which the sources A1, . . ., Am−1
can construct. Since Qm−1 ⊆ Qm, it is clear that

max
q∈Qm

Iq

(
m⋃

i=1

Ai; T

)
≥ max

q∈Qm−1
Iq

(
m−1⋃
i=1

Ai; T

)
.

Consequently,

min
{

I

(
m⋃

i=1
Ai; T

)
, max

q∈Qm
Iq

(
m⋃

i=1
Ai; T

)}
≥ min

{
I

(
m−1⋃
i=1

Ai; T

)
, max
q∈Qm−1

Iq

(
m−1⋃
i=1

Ai; T

)}
,

which means monotonicity holds.
4. Finally, the proof of equality for monotonicity is the same that was used above to show that

the assumption that no source is a subset of another source entails no loss of generality. If

Am ⊆ Am−1, then the presence of Am is irrelevant: A =
m⋃

i=1
Ai =

m−1⋃
i=1

Ai and Qm = Qm−1,

which implies that I∪(A1, . . ., Am−1, Am) = I∪(A1, . . ., Am−1).

4.2. Review of Suggested Properties: Griffith and Koch [16]

We now review properties of measures of union information and synergy that have
been suggested in the literature in chronological order. The first set of properties was
suggested by Griffith and Koch [16], with the first two being the following.

• Duplicating a predictor does not change synergistic information; formally,

S(A1, . . ., Am → T) = S(A1, . . ., Am, Am+1 → T),

where Am+1 = Ai, for some i = 1, . . ., m. Griffith and Koch [16] show that this property
holds if the equality for monotonicity property holds for the “corresponding” measure
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of union information (“corresponding” in the sense of Equation (7)). As shown in
the previous subsection, ICI

∪ satisfies this property, and so does the corresponding
synergy SCI.

• Adding a new predictor can decrease synergy, which is a weak statement. We suggest
a stronger property: Following the monotonicity property, adding a new predictor cannot
increase synergy, which is formally written as

S(A1, . . ., Am → T) ≥ S(A1, . . ., Am, Am+1 → T).

This property simply follows from monotonicity for the corresponding measure of
union information, which we proved above holds for ICI

∪ .

The next properties for any measure of union information were also suggested by
Griffith and Koch [16]:

1. Global positivity: I∪(A1, . . ., Am) ≥ 0.
2. Self-redundancy: I∪(Ai) = I(Ai; T).
3. Symmetry: I∪(A1, . . ., Am) is invariant under permutations of A1, . . ., Am.
4. Stronger monotonicity: I∪(A1, . . ., Am) ≤ I∪(A1, . . ., Am, Am+1), with equality if there

is some Ai such that H(Am+1|Ai) = 0.
5. Target monotonicity: for any (discrete) random variables T and Z, I∪(A1, . . ., Am →

T) ≤ I∪(A1, . . ., Am → (T, Z)).
6. Weak local positivity: for n = 2 the derived partial informations are non-negative.

This is equivalent to

max
{

I(Y1; T), I(Y2; T)
}
≤ I∪(Y1, Y2) ≤ I(Y; T).

7. Strong identity: I∪(T → T) = H(T).

We argued before that self-redundancy and symmetry are properties that follow
trivially from a well-defined measure of union information [36]. In the following, we
discuss in more detail properties 4 and 5, and return to the global positivity property later.

4.2.1. Stronger Monotonicity

Property 4 in the above list was originally called monotonicity by Griffith and Koch [16];
we changed its name because we had already defined monotonicity in Definition 2, a
weaker condition than stronger monotonicity. The proposed inequality clearly follows from
the monotonicity of union information (the third Williams–Beer axiom). Now, if there is
some Ai such that H(Am+1|Ai) = 0 (equivalently, if Am+1 is a deterministic function of
Ai), Griffith and Koch [16] suggest that we must have equality. Recall Axiom 4 (equality for
monotonicity) in the extension of the WB axioms (Definition 2). It states that equality must
hold if Am ⊆ Am−1. In this context, Am and Am−1 are sets of random variables, for example,
Am = {Y1, Y2} and Am−1 = {Y1, Y2, Y3}. There is a different point of view we may take.
The only way that Am is a subset of Am−1 is if Am, when viewed as a random vector (in this
case, write Am = (Y1, Y2) and Am−1 = (Y1, Y2, Y3)), is a subvector of Am−1. A subvector
of a random vector is a deterministic function, and no information gain can come from
applying a deterministic function to a random vector. As such, there is no information gain
when one considers Am, a function of Am−1, if one already has access to Am−1. Griffith and
Koch [16] argue similarly, there is no information gain by considering Am+1—a function of
Ai—in addition to Ai. In conclusion, considering the ‘equality for monotonicity’ strictly
through a set-inclusion perspective, stronger monotonicity does not follow. On the other
hand, extending the idea of set inclusion to the more general context of functions of random
variables, then stronger monotonicity follows, because {Am+1} = { f (Ai)} is a subset of
{Ai}, hence there is no information gain by considering Am+1 = f (Ai) in addition to Ai.
As such, we obtain I∪(A1, . . ., Am) = I∪(A1, . . ., Am, Am+1). Consequently, it is clear that
stronger monotonicity must hold for any measure of union information. We, thus, argue in
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favor of extending the concept of subset inclusion of property 4 in Definition 2 to include
the concept of deterministic functions.

4.2.2. Target Monotonicity

Let us move on to target monotonicity, which we argue should not hold in general.
This precise same property was suggested, but for a measure of redundant information, by
Bertschinger et al. [19]; they argue that a measure of redundant information should satisfy

I∩(A1, . . ., Am → T) ≤ I∩(A1, . . ., Am → (T, Z)),

for any discrete random variable Z, as they argue that this property ‘captures the intuition
that if A1, . . ., Am share some information about T, then at least the same amount of information is
available to reduce the uncertainty about the joint outcome of (T, Z)’. Since most PID approaches
have been built upon measures of redundant information, it is simpler to refute this
property. Consider Id

∩, which we argue is one of the most well-motivated and accepted
measures of redundant information (as defined in (2)): it satisfies the WB axioms, it is based
on the famous Blackwell channel preorder—thus inheriting a well-defined and rigorous
operation interpretation—it is based on channels, just as I(X; T) was originally motivated
based on channels, and is defined for any number of input variables, which is more than
most PID measures can accomplish. Consider also the distribution presented in Table 4,
which satisfies T = Y1 AND Y2 and Z = (Y1, Y2).

Table 4. Counter-example distribution for target monotonicity.

T Z Y1 Y2 p(t, z, y1, y2)

0 (0,0) 0 0 1/4

0 (0,1) 0 1 1/4

0 (1,0) 1 0 1/4

1 (1,1) 1 1 1/4

From a game theory perspective, since neither agent (Y1 or Y2) has an advantage when
predicting T (because the channels that each agent has access to have the same condi-
tional distributions), neither agent has any unique information. Moreover, redundancy—as
computed by Id

∩(Y1, Y2 → T)—evaluates to approximately 0.311. However, when con-
sidering the pair (T, Z), the structure that was present in T is now destroyed, in the
sense that now there is no degradation order between the channels that each agent has
access to. Note that p((t, z), y1, y2) is a relabeling of the COPY distribution. As such,
Id
∩
(
Y1, Y2 → (T, Z)

)
= 0 < Id

∩(Y1, Y2 → T), contradicting the property proposed by
Bertschinger et al. [19].

For a similar reason, we believe that this property should not hold for a general mea-
sure of union information, even if the measure satisfies the extension of the Williams–Beer
axioms, as our proposed measure does. For instance, consider the distribution presented
in Table 5.

Table 5. Counter-example distribution for target monotonicity.

T Z Y1 Y2 p(t, z, y1, y2)

0 0 1 0 0.419

1 1 2 1 0.203

2 1 3 0 0.007

0 0 3 1 0.346

2 2 4 4 0.025
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This distribution yields ICI
∪ (Y1, Y2 → T) ≈ 0.91 > 0.90 ≈ ICI

∪ (Y1, Y2 → (T, Z)), meaning
target monotonicity does not hold. This happens because although Ip(Y; T) ≤ Ip(Y; T, Z),
it is not necessarily true that Iq(Y; T) ≤ Iq(Y; T, Z). The union information measure derived
from the degradation order between channels, defined as the ‘dual’ of (2), also agrees with
our conclusion [22]. For the distribution in Table 4 we have Id

∪(Y1, Y2 → T) ≈ 0.331 > 0 =
Id
∪
(
Y1, Y2 → (T, Z)

)
, for the same reason as above: considering (T, Z) as the target variable

destroys the structure present in T. We agree with the remaining properties suggested by
Griffith and Koch [16] and we will address those later.

4.3. Review of Suggested Properties: Quax et al. [37]

Moving on to additional properties, Quax et al. [37] suggest the following properties
for a measure of synergy:

1. Non-negativity: S(A1, . . ., Am → T) ≥ 0.
2. Upper-bounded by mutual information: S(Y → T) ≤ I(Y; T).
3. Weak symmetry: S(A1, . . ., Am → T) is invariant under any reordering of A1, . . ., Am.
4. Zero synergy about a single variable: S(Yi → T) = 0 for any i ∈ {1, . . ., n}.
5. Zero synergy in a single variable: S(Y → Yi) = 0 for any i ∈ {1, . . ., n}.

Let us comment on the proposed ‘zero synergy’ properties (4 and 5) under the context
of PID. Property 4 seems to have been proposed with the rationale that synergy can only
exist for at least two sources, which intuitively makes sense, as synergy is often defined as
‘the information that is present in the pair, but that is not retrievable from any individual
variable’. However, because of the way a synergy-based PID is constructed—or weak-
synergy, as Gutknecht et al. [36] call it—synergy must be defined as in (7), so that, for
example, in the bivariate case, S(Y1 → T) := I(Y; T)− I∪(Y1 → T) = I(Y2; T|Y1), because
of self-redundancy of union information and the chain rule of mutual information [12], and
since I(Y2; T|Y1) is in general larger than 0, we reject the property ‘zero synergy about a
single variable’. We note that our rejection of this property is based on the PID perspective.
There may be other areas of research where it makes sense to demand that any (single)
random variable alone has no synergy about any target, but under the PID framework, this
must not happen, particularly so that we obtain a valid information decomposition.

Property 5, ‘zero synergy in a single variable’, on the other hand, must hold because
of self-redundancy. That is because, for any i ∈ {1, . . ., n}, S(Y → Yi) := I(Y; Yi)− I∪(Y →
Yi) = I(Yi; Yi)− I(Y; Yi) = H(Yi)− H(Yi) = 0.

4.4. Review of Suggested Properties: Rosas et al. [38]

Based on the proposals of Griffith et al. [24], Rosas et al. [38] suggested the following
properties for a measure of synergy:

• Target data processing inequality: if Y − T1 − T2 is a Markov chain, then S(Y → T1) ≥
S(Y → T2).

• Channel convexity: S(Y → T) is a convex function of P(T|Y) for a given P(Y).

We argue that a principled measure of synergy does not need to satisfy these properties
(in general). Consider the distribution presented in Table 6, in which T1 is a relabeling of
the COPY distribution and T2 = Y1 xor Y2.

Table 6. T1 = COPY, T2 = XOR.

T2 T1 Y1 Y2 p(t2, t1, y1, y2)

0 0 0 0 1/4

1 1 0 1 1/4

1 2 1 0 1/4

0 3 1 1 1/4
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Start by noting that since T2 is a deterministic function of T1, then Y − T1 − T2 is a
Markov chain. Since Y1 ⊥ Y2|T1, our measure SCI(Y1, Y2 → T1) = I(Y; T1)− ICI

∪ (Y1, Y2 →
T1) = 0 leads to zero synergy. On the other hand, SCI(Y1, Y2 → T2) = 1, contradicting the
first property suggested by Rosas et al. [38]. This happens because Y1 ̸⊥p Y2|T2, so synergy
is positive. The loss of conditional independence of the inputs (given the target) when one
goes from considering the target T1 to T2 is the reason why synergy increases. It can be
easily seen that Sd, the measure of synergy derived from Kolchinsky’s proposed union
information measure Id

∪ [22], agrees with this. A simpler way to see this is by noticing that
the XOR distribution must yield 1 bit of synergistic information, and many PID measures
do not yield 1 bit of synergistic information for the COPY distribution.

The second suggested property argues that synergy should be a convex function of
P(T|Y), for fixed P(Y). Our measure of synergy does not satisfy this property, even though
it is derived from a measure of union information that satisfies the extension of the WB
axioms. For instance, consider the XOR distribution with one extra outcome. We introduce
it in Table 7 and parameterize it using r = p(T = 0|Y = (0, 0)) ∈ [0, 1]. Notice that this
modification does not affect P(Y).

Table 7. Adapted XOR distribution.

T Y1 Y2 p(t, y1, y2)

0 0 0 r/4

1 0 0 (1 − r)/4

1 1 0 1/4

1 0 1 1/4

0 1 1 1/4

Synergy, as measured by SCI(Y1, Y2 → T), is maximized when r equals 1 (the distri-
bution becomes the standard XOR) and minimized when r equals 0. We do not see an
immediate reason as to why a general synergy function should be convex in p(t|y), or why
it should have a unique minimizer as a function of r. Recall that a function S is convex if
∀t ∈ [0, 1], ∀x1, x2 ∈ D, we have

S(tx1 + (1 − t)x2) ≤ tS(x1) + (1 − t)S(x2).

In the following, we slightly abuse the notation of the input variables of a synergy function.
Our synergy measure SCI, when considered as a function of r, does not satisfy this inequality.
For the adapted XOR distribution, take t = 0.5, x1 = 0, and x2 = 0.5. We have

SCI(0.5 × 0 + 0.5 × 0.5) = SCI(0.25) ≈ 0.552

and
0.5 × SCI(0) + 0.5 × SCI(0.5) ≈ 0.5 × 0.270 + 0.5 × 0.610 ≈ 0.440,

contradicting the property of channel convexity. Sd agrees with this. We slightly change
p(y) in the above distribution to obtain a new distribution, which we present in Table 8.

This distribution does not satisfy the convexity inequality, since

Sd(0.5 × 0 + 0.5 × 0.5) ≈ 0.338 > 0.3095 ≈ 0.5Sd(0) + 0.5Sd(0.5).

This can be easily seen since K(1) = K(2) for any r ∈ [0, 1], hence we may choose KQ = K(1)

to compute Sd = I(Y; T)− I(Q; T), which is not convex for this particular distribution. To
conclude this section, we present a plot of SCI(Y1, Y2) and Sd(Y1, Y2) as a function of r in
Figure 3, for the distribution presented in Table 7.
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Table 8. Adapted XOR distribution v2.

T Y1 Y2 p(t, y1, y2)

0 0 0 r/10

1 0 0 (1 − r)/10

1 1 0 4/10

1 0 1 4/10

0 1 1 1/10

Figure 3. Computation of SCI and Sd as functions of r = p(T = 0|Y = (0, 0)) for the distribution
presented in Table 8. As we showed for this distribution, SCI is not a convex function of r.

With this we do not mean that these properties should not hold for an arbitrary PID.
We are simply showing that some properties must be satisfied in the context of PID (such as
the WB axioms), whereas other properties are not necessary for PID (such as the previous
two properties).

4.5. Relationship with the Extended Williams–Beer Axioms

We now prove which of the introduced properties are implied by the extension of the
Williams–Beer axioms for measures of union information. In what follows, assume that the
goal is to decompose the information present in the distribution p(y, t) = p(y1, . . ., yn, t).

Theorem 2. Let I∪ be a measure of union information that satisfies the extension of the Williams–
Beer axioms (symmetry, self-redundancy, monotonicity, and equality for monotonicity) for measures
of union information as in Definition (2). Then, I∪ also satisfies the following properties of Griffith
and Koch [16]: global positivity, weak local positivity, strong identity, “duplicating a predictor does
not change synergistic information”, and “adding a new predictor cannot increase synergy”.

Proof. We argued before that the last two properties follow from the definition of a measure
of union information. Global positivity is a direct consequence of monotonicity and the
non-negativity of mutual information: I∪(A1, . . ., Am) ≥ I∪(A1) = I(A1; T) ≥ 0.

Weak local positivity holds because monotonicity and self-redundancy imply that
I∪(Y1, Y2) ≥ I∪(Y1) = I(Y1; T), as well as I∪(Y1, Y2) ≥ I(Y2; T), hence max{I(Y1; T), I(Y2; T)}
≤ I∪(Y1, Y2). Moreover, I∪(Y1, Y2) ≤ I∪(Y1, Y2, Y12) = I∪(Y12) = I(Y; T).

Strong identity follows trivially from self-redundancy, since I∪(T → T) =
I(T; T) = H(T).
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Theorem 3. Consider a measure of union information that satisfies the conditions of Theorem 2. If
synergy is defined as in Equation (7), it satisfies the following properties of [37]: non-negativity,
upper-bounded by mutual information, weak symmetry, and zero synergy in a single variable.

Proof. Non-negativity of synergy and upper-bounded by mutual information follow from
the definition of synergy and from the fact that for whichever source (A1, . . ., Am), with
m ≥ 1, we have that I∪(A1, . . ., Am → T) ≤ I(Y; T).

Weak symmetry follows trivially from the fact that both I(Y; T) and I∪(A1, . . ., Am → T)
are symmetric in the relevant arguments.

Finally, zero synergy in a single variable follows from self-redundancy together with
the definition of synergy, as shown above.

5. Previous Measures of Union Information and Synergy

We now review other measures of union information and synergy proposed in the
literature. For the sake of brevity, we will not recall all their definitions, only some
important conclusions. We suggest the interested reader consult the bibliography for
more information.

5.1. Qualitative Comparison

Griffith and Koch [16] review three previous measures of synergy:

• SWB, derived from IWB
∩ , the original redundancy measure proposed by Williams and

Beer [1], using the IEP;
• the whole-minus-sum (WMS) synergy, SWMS;
• the correlational importance synergy, S∆I .

These synergies can be interpreted as resulting directly from measures of union
information; that is, they are explicitly written as S(α → T) = I(Y; T)− I∪(α → T), where
I∪ may not necessarily satisfy our intuitions of a measure of union information, as in
Definition 2, except for S∆I , which has the form of a Kullback–Leibler divergence.

Griffith and Koch [16] argue that SWB overestimates synergy, which is not a surprise, as
many authors criticized IWB

∩ for not measuring informational content, only informational
values [13]. The WMS synergy, on the other hand, which can be written as a difference
of total correlations, can be shown to be equal to the difference between synergy and
redundancy for n = 2, which is not what is desired in a measure of synergy. For n > 2,
the authors show that the problem becomes even more exacerbated: SWMS equals synergy
minus the redundancy counted multiple times, which is why the authors argue that SWMS

underestimates synergy. Correlational importance, S∆I , is known to be larger than I(Y; T)
for some distributions, excluding it from being an appropriately interpretable measure
of synergy.

Faced with these limitations, Griffith and Koch [16] introduce their measure of union
information, which they define as

IVK
∪ (A1, . . ., Am → T) :=min

p∗
Ip∗

(
m⋃

i=1

Ai; T

)
s.t. p∗(Ai, T) = p(Ai, T), i = 1, . . ., m,

(9)

where the minimization is over joint distributions of A1, . . ., Am, T, alongside the derived
measure of synergy SVK(α → T) = I(Y; T)− IVK

∪ (α → T). This measure quantifies union
information as the least amount of information that source α has about T when the source–
target marginals (as determined by α) are fixed by p. Griffith and Koch [16] also established
the following inequalities for the synergistic measures they reviewed:

max
{

0, SWMS(α → T)
}
≤ SVK(α → T) ≤ SWB(α → T) ≤ I

(
m⋃

i=1

Ai; T

)
, (10)
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where α = (A1, . . ., Am). At the time, Griffith and Koch [16] did not provide a way to
analytically compute their measure. Later, Kolchinsky [22] showed that the measure
of union information derived from the degradation order, Id

∪, is equivalent to IVK
∪ , and

provided a way to compute it. For this reason, we will only consider Id
∪.

After the work of Griffith and Koch [16] in 2014, we are aware of only three other
suggested measures of synergy:

• SMSRV, proposed by Quax et al. [37], where MSRV stands for maximally synergistic
random variable;

• synergistic disclosure, SSD, proposed by Rosas et al. [38];
• Sd, proposed by Kolchinsky [22].

The first two proposals do not define synergy via a measure of union information. They
define synergy through an auxiliary random variable, Z, which has positive information
about the whole—that is, I(Z; Y) > 0—but no information about any of the parts—that is,
I(Z; Yi) = 0, i = 1, . . ., n. While this property has an appealing operational interpretation,
we believe that it is too restrictive; that is, we believe that information can be synergistic,
even if it provides some positive information about some part of Y.

The authors of SMSRV show that their proposed measure is incompatible with PID
and that it cannot be computed for all distributions, as it requires the ability to compute
orthogonal random variables, which is not always possible [37]. A counter-intuitive
example for the value of this measure can be seen for the AND distribution, defined by
T = Y1 AND Y2, with Y1 and Y2 i.i.d. taking values in {0, 1} with equal probability. In this
case, SMSRV = 0.5, a value that we argue is too large, because whenever Y1 (respectively Y2)
is 0, then T does not depend on Y2 (respectively Y1) (which happens with probability 0.75).
Consequently, SMSRV/I(Y; T) ≈ 0.5/0.811 ≈ 0.617 may be too large of a synergy ratio for
this distribution. As the authors note, the only other measure that agrees with SMSRV for the
AND distribution is SWB, which Griffith and Koch [16] argued also overestimates synergy.

Concerning SSD, we do not have any criticism, except for the one already pointed
out by Gutknecht et al. [36]: they note that the resulting decomposition from SSD is not
a standard PID, in the sense that it does not satisfy a consistency equation (see [36] for
more details), which implies that ‘. . . the atoms cannot be interpreted in terms of parthood
relations with respect to mutual information terms . . . . For example, we do not obtain any
atoms interpretable as unique or redundant information in the case of two sources’ [36].
Gutknecht et al. [36] suggest a very simple modification to the measure so that it satisfies
the consistency equation.

For the AND distribution, SSD evaluates to approximately 0.311, as does Sd, whereas
our measure yields SCI ≈ 0.270, as the information that the parts cannot obtain when they
combine their marginals, under distribution q. This shows that these four measures are
not equivalent.

5.2. Quantitative Comparison

Griffith and Koch [16] applied the synergy measures they reviewed to other distribu-
tions. We show their results below in Table 9 and compare them with the synergy resulting
from our measure of union information, SCI, with the measure of Rosas et al. [38], SSD,
and that of Kolchinsky [22], Sd. Since the code for the computation of SMSRV is no longer
available online, we do not present it.

We already saw the definition of the AND, COPY, and XOR distributions. The XORDU-
PLICATE and ANDDUPLICATE are built from the XOR and the AND distributions by
inserting a duplicate source variable Y3 = Y2. The goal is to test if the presence of a dupli-
cate predictor impacts the different synergy measures. The definitions of the remaining
distributions are presented in Appendix A. Some of these are trivariate, and for those we
compute synergy as

S(Y1, Y2, Y3 → T) = I(Y1, Y2, Y3; T)− I∪(Y1, Y2, Y3 → T), (11)
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unless the synergy measure is directly defined (as opposed to being defined via a union infor-
mation measure). We now comment on the results. It should be noted that Kolchinsky [22]
suggested that unique information U1 and U2 should be computed from measures of
redundant information, and excluded information E1 and E2 should be computed from
measures of union information, as in our case. However, since we will only present the
decompositions for the bivariate case and in this case E1 = U2 and E2 = U1, we present the
results considering unique information, as is mostly performed in the literature.

Table 9. Application of the measures reviewed in Griffith and Koch [16] (SWB, SWMS, and S∆I), SSD

introduced by Rosas et al. [38], Sd introduced by Kolchinsky [22], and our measure of synergy SCI to
different distributions. The bottom four distributions are trivariate. We write DNF to mean that a
specific computation did not finish within 10 min.

Example SWB SWMS S∆I Sd SSD SCI

XOR 1 1 1 1 1 1
AND 0.5 0.189 0.104 0.5 0.311 0.270
COPY 1 0 0 0 1 0
RDNXOR 1 0 1 1 1 1
RDNUNQXOR 2 0 1 1 DNF 1
XORDUPLICATE 1 1 1 1 1 1
ANDDUPLICATE 0.5 -0.123 0.038 0.5 0.311 0.270
XORLOSES 0 0 0 0 0 0
XORMULTICOAL 1 1 1 1 DNF 1

• XOR yields I(Y; T) = 1. The XOR distribution is the hallmark of synergy. Indeed, the
only solution of (1) is (S, R, U1, U2) = (1, 0, 0, 0), and all of the above measures yield
1 bit of synergy.

• AND yields I(Y; T) ≈ 0.811. Unlike XOR, there are multiple solutions for (1), and none
is universally agreed upon, since different information measures capture different
concepts of information.

• COPY yields I(Y; T) = 2. Most PID measures argue one of two different possibilities for
this distribution. They suggest that the solution is either (S, R, U1, U2) = (1, 1, 0, 0) or
(0, 0, 1, 1). Our measure suggests that all information flows uniquely from each source.

• RDNXOR yields I(Y; T) = 2. In words, this distribution is the concatenation of two
XOR ‘blocks’, each of which has its own symbols, and not allowing the two blocks to
mix. That is, both Y1 and Y2 can determine in which XOR block the resulting value T
will be—which intuitively means that they both have this information, meaning it is
redundant—but neither Y1 nor Y2 have information about the outcome of the XOR
operation—as is expected in the XOR distribution—which intuitively means that such
information must be synergistic. All measures except SWMS agree with this.

• RDNUNQXOR yields I(Y; T) = 4. According to Griffith and Koch [16], it was con-
structed to carry 1 bit of each information type. Although the solution is not unique, it
must satisfy U1 = U2. Indeed, our measure yields the solution (S, R, U1, U2) = (1, 1, 1, 1),
like most measures except SWB and SWMS. This confirms the intuition by Griffith and
Koch [16] that SWB and SWMS overestimate and underestimate synergy, respectively. In
fact, in the decomposition resulting from SWB, there are 2 bits of synergy and 2 bits of re-
dundancy, which we argue cannot be the case, as this would imply that U1 = U2 = 0, and
given the construction of this distribution, it is clear that there is some unique information
since, unlike in RDNXOR, the XOR blocks are allowed to mix, thus (T, Y1, Y2) = (1, 0, 1)
is a possible outcome, but so is (T, Y1, Y2) = (2, 0, 2). That is not the case with RDNXOR.
On the other hand, SWMS yields zero synergy and redundancy, with U1 and U2 each
evaluating to 2 bits. Since this distribution is a mix of blocks satisfying a relation of
the form T = Y1 xor Y2, we argue that there must be some non-null amount of synergy,
which is why we claim that SWMS is not valid.



Entropy 2024, 26, 271 20 of 24

• XORDUPLICATE yields I(Y; T) = 1. All measures correctly identify that the duplica-
tion of a source should not change synergy, at least for this particular distribution.

• ANDDUPLICATE yields I(Y; T) ≈ 0.811. Unlike in the previous example, both SWMS

and S∆I yield a change in their synergy value. This is a shortcoming, since duplicating
a source should not increase either synergy or union information. The other measures
are not affected by the duplication of a source.

• XORLOSES yields I(Y; T) = 1. Its distribution is the same as XOR but with a new
source Y3 satisfying T = Y3. As such, since Y3 uniquely determines T, we expect no
synergy. All measures agree with this.

• XORMULTICOAL yields I(Y; T) = 1. Its distribution is such that any pair (Yi, Yj),
i, j = 1, 2, 3, i ̸= j is able to determine T with no uncertainty. All measures agree that
the information present in this distribution is purely synergistic.

From these results, we agree with Griffith and Koch [16] that SWB, SWMS, and S∆I are
not good measures of synergy: they do not satisfy many of our intuitions and overestimate
synergy, not being invariant to duplicate sources or taking negative values. For these
reasons, and those presented in Section 5, we reject those measures of synergy. In the next
section, we comment on the remaining measures Sd, SSD, and SCI.

5.3. Relation to Other PID Measures

Kolchinsky [22] introduced Id
∪ and showed that this measure is equivalent to IVK

∪ [16]
and to IBROJA

∪ [15], in the sense that the three of them achieve the same optimum value [22].
The multivariate extension of IBROJA

∪ was proposed by Griffith and Koch [16], defined as

IBROJA
∪ (A1, . . ., Am → T) := min

Ã1,...,Ãm

I(Ã1, . . ., Ãm; T) such that ∀i P(Ãi, T) = P(Ai, T),

which we present because it makes it clear what conditions are enforced upon the marginals.
There is a relation between IBROJA

∪ (A1, . . ., Am) = Id
∪(A1, . . ., Am) and ICI

∪ (A1, . . ., Am)whenever
the sources A1, . . .Am are singletons. In this case, and only in this case, the set Q involved in the
computation of ICI

∪ (A1, . . ., Am) has only one element: q(t, a1, . . ., am) = p(t)p(a1|t). . .p(am|t).
Since this distribution, as well as the original distribution p, are both admissible points in
Id
∪, we have that Id

∪ ≤ ICI
∪ , which implies that Sd ≥ SCI. On the other hand, if there is at

least one source A1, . . ., Am that is not a singleton, the measures are not trivially comparable.
For example, suppose we wish to compute I∪((Y1, Y2), (Y2, Y3)). We know that the solu-
tion of Id

∪((Y1, Y2), (Y2, Y3)) is a distribution p∗ whose marginals p∗(y1, y2, t) and p∗(y2, y3, t)
must coincide with the marginals under the original p. However, in the computation of
ICI
∪ ((Y1, Y2), (Y2, Y3)), it may be the case that the solution p∗ of Id

∪((Y1, Y2), (Y2, Y3)) is not in the
set Q, involved in the computation of ICI

∪ , and it achieves a lower mutual information with T.
That is, it might be the case that Ip∗(Y; T) < Iq(Y; T), for all q ∈ Q. In such a case, we would
have Id

∪ > ICI
∪ .

It is convenient to be able to upper-bound certain measures with other measures. For
example, Gomes and Figueiredo [26] (see that paper for the definitions of these measures)
showed that for any source (A1, . . ., Am), m ≥ 1,

Id
∩(A1, . . ., Am) ≤ Iln

∩ (A1, . . ., Am) ≤ Imc
∩ (A1, . . ., Am).

However, we argue that the inability to draw such strong conclusions (or bounds) is a posi-
tive aspect of PID. This is because there are many different ways to define the information
(be it redundant, unique, union, etc.) that one wishes to capture. If one could trivially relate
all measures, it would mean that it would be possible to know a priori how those measures
would behave. Consequently, this would imply the absence of variability/freedom in
how to measure different information concepts, as those measures would capture, non-
equivalent but similar types of information, as they would all be ordered. It is precisely
because one cannot order different measures of information trivially that PID provides a
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rich and complex framework to distinguish different types of information, although we
believe that PID is still in its infancy.

James et al. [17] introduced a measure of unique information, which we recall now. In
the bivariate case—i.e., consider p(y1, y2, t)—let q be the maximum entropy distribution that
preserves the marginals p(y1, t) and p(y2, t), and let r be the maximum entropy distribution
that preserves the marginals p(y1, t), p(y2, t), and p(y1, y2). Although there is no closed
form for r, which has to be computed using an iterative algorithm [39], it may be shown
that the solution for q is q(y1, y2, t) = p(t)p(y1|t)p(y2|t) (see, e.g., [17]). This is the same
distribution q that we consider for the bivariate decomposition (3). James et al. [17] suggest
defining unique information Ui as the least change (in sources–target mutual information)
that involves the addition of the (Yi, T) marginal constraint, that is,

U1 = min{Iq(Y1; T|Y2), Ir(Y1; T|Y2)}, (12)

and analogously for U2. They show that their measure yields a non-negative decomposition
for the bivariate case. Since I(Y1; T|Y2) = S + U1, some algebra leads to

Sdep = I(Y; T)− min{Iq(Y; T), Ir(Y; T)}, (13)

where Sdep is the synergy resulting from the decomposition of James et al. [17] in the
bivariate case. Recall that our measure of synergy for the bivariate case is given by

SCI = I(Y; T)− min{Iq(Y; T), Ip(Y; T)}. (14)

The similarity is striking. Computing Sdep for the bivariate distributions in Table 9 shows that
it coincides with the decomposition given by our measure, although this is not the case in
general. We could not obtain Sdep for the RDNUNQXOR distribution because the algorithm
that computes r did not finish in the allotted time of 10 min. James et al. [17] showed
that for whichever bivariate distribution Ir(Y; T) ≤ Ip(Y; T); therefore, for the bivariate
case we have SCI ≤ Sdep. Unfortunately, the measure of unique information proposed by
James et al. [17], unlike the usual proposals of intersection or union information, does not
allow for the computation of the partial information atoms in the complete redundancy lattice
if n > 2. The authors also comment that it is not clear if their measure satisfies monotonicity
when n > 2. Naturally, our measure is not the same as Sdep, so it does not retain the
operational interpretation of unique information Ui being the least amount that influences
I(Y; T) when the marginal constraint (Yi, T) is added to the resulting maximum entropy
distributions. Given the form of Sdep, one could define Idep

∪ := min{Iq(Y; T), Ir(Y; T)} and
study its properties. Clearly, it does not satisfy the self-redundancy axiom, but we wonder if
it could be adjusted so that it satisfies all of the proposed axioms. The n = 2 decomposition
retains the operational interpretation of the original measure, but it is not clear whether this is
true for n > 2. For the latter case, the maximum entropy distributions that we wrote as q and
r have different definitions [17]. We leave this for future work.

6. Conclusions and Future Work

In this paper, we introduced a new measure of union information for the partial infor-
mation decomposition (PID) framework, based on the channel perspective, which quantifies
synergy as the information that is beyond conditional independence of the sources, given
the target. This measure has a clear interpretation and is very easy to compute, unlike most
measures of union information or synergy, which require solving an optimization problem.
The main contributions and conclusions of the paper can be summarized as follows.

• We introduced new measures of union information and synergy for the PID framework,
which thus far was mainly developed based on measures of redundant or unique
information. We provided its operational interpretation and defined it for an arbitrary
number of sources.
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• We proposed an extension of the Williams–Beer axioms for measures of union infor-
mation and showed our proposed measure satisfies them.

• We reviewed, commented on, and rejected some of the previously proposed properties
for measures of union information and synergy in the literature.

• We showed that measures of union information that satisfy the extension of the
Williams–Beer axioms necessarily satisfy a few other appealing properties, as well as
the derived measures of synergy.

• We reviewed previous measures of union information and synergy, critiqued them,
and compared them with our proposed measure.

• The proposed conditional independence measure is very simple to compute.
• We provide code for the computation of our measure for the bivariate case and for

source {{Y1}, {Y2}, {Y3}} in the trivariate case.

Finally, we believe this paper opens several avenues for future research, thus we point
out several directions to be pursued in upcoming work:

• We saw that the synergy yielded by the measure of James et al. [17] is given by Sdep =
I(Y; T)− min{Iq(Y; T), Ir(Y; T)}. Given its analytical expression, one could start by
defining a measure of union information as I∪(Y1, Y2 → T) = min{Iq(Y; T), Ir(Y; T)},
possibly tweak it so it satisfies the WB axioms, study its properties, and possibly
extend it to the multivariate case.

• Our proposed measure may ignore conditional dependencies that are present in p in
favor of maximizing mutual information, as we commented in Section 3.3. This is a
compromise so that the measure satisfies monotonicity. We believe this is a potential
drawback of our measure, and we suggest the investigation of a measure similar to
ours, but that does not ignore conditional dependencies that it has access to.

• Extending this measure for absolutely continuous random variables.
• Implementing our measure in the dit package [40].
• This paper reviewed measures of union information and synergy, as well as properties

that were suggested throughout the literature. Sometimes this was by providing
examples where the suggested properties fail, and other times simply by commenting.
We suggest performing something similar for measures of redundant information.

7. Code Availability

The code is publicly available at https://github.com/andrefcorreiagomes/CIsynergy/
and requires the dit package [40] (accessed on 12 January 2024).
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Appendix A

In this appendix, we present the remaining distributions for which we computed dif-
ferent measures of synergy. For these distributions each outcome has the same probability,
so we do not present their probabilities.

https://github.com/andrefcorreiagomes/CIsynergy/


Entropy 2024, 26, 271 23 of 24

Table A1. RDNXOR (left), XORLOSES (center), and XORMULTICOAL (right).

T Y1 Y2 T Y1 Y2 Y3 T Y1 Y2 Y3
0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 0 2 2 2
0 1 1 0 1 1 0 0 3 3 3
2 2 2 1 2 1 0
3 2 3 1 3 0 1
3 3 2 1 0 3 2
2 3 3 1 1 2 3

Table A2. RDNUNQXOR.

T Y1 Y2 T Y1 Y2

0 0 0 8 4 4

1 0 1 9 4 5

1 1 0 9 5 4

0 1 1 8 5 5

2 0 2 10 4 6

3 0 3 11 4 7

3 1 2 11 5 6

2 1 3 10 5 7

4 2 0 12 6 4

5 2 1 13 6 5

5 3 0 13 7 4

4 3 1 12 7 5

6 2 2 14 6 6

7 2 3 15 6 7

7 3 2 15 7 6

6 3 3 14 7 7
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