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Abstract: We study Einstein’s gravity coupled to nonlinear electrodynamics with two parameters
in anti-de Sitter spacetime. Magnetically charged black holes in an extended phase space are in-
vestigated. We obtain the mass and metric functions and the asymptotic and corrections to the
Reissner–Nordström metric function when the cosmological constant vanishes. The first law of black
hole thermodynamics in an extended phase space is formulated and the magnetic potential and the
thermodynamic conjugate to the coupling are obtained. We prove the generalized Smarr relation.
The heat capacity and the Gibbs free energy are computed and the phase transitions are studied. It
is shown that the electric fields of charged objects at the origin and the electrostatic self-energy are
finite within the nonlinear electrodynamics proposed.

Keywords: Einstein’s gravity; black holes; thermodynamics; Smarr relation; Gibbs free energy;
Anti-de Sitter spacetime

1. Introduction

It is understood that the black hole area plays the role of entropy and the temperature
is connected with the surface gravity [1–5]. The importance of gravity in AdS spacetime is
due to the holographic principle (a gauge duality description) [6], which has applications
in condensed matter physics. Firstly, black hole phase transitions in Schwarzschild–AdS
spacetime were studied in Ref. [7]. The negative cosmological constant, in an extended-
phase-space black hole thermodynamics, is linked with the thermodynamic pressure
conjugated to the volume [8–11]. The cosmological constant variation was included in the
first law of black hole thermodynamics in Refs. [12–17]. However, within general relativity,
the cosmological constant Λ is a fixed external parameter. Moreover, such variation in Λ in
the first law of black hole thermodynamics means the consideration of black hole ensembles
possessing different asymptotics. This point of view is different from that of standard black
hole thermodynamics, where the parameters are varied but the AdS background is fixed.
There are some reasons to consider the variation in Λ in black hole thermodynamics. First
of all, physical constants can arise as the vacuum expectation values are not fixed a priori
and therefore may vary. As a result, these ‘constants’ are not real constants and may be
included in the first law of black hole thermodynamics [18,19]. The second reason is that,
without varying the cosmological constant, the Smarr relation is inconsistent with the
first law of black hole thermodynamics [13]. When Λ is inserted in the first law of black
hole thermodynamics, the mass M of the black hole should be treated as enthalpy but not
internal energy [13]. The first law of black hole thermodynamics can be formulated within
Einstein’s gravity if one includes the VdP term. This requires us to introduce a negative
cosmological constant Λ as a positive pressure P = −Λ/(8π). As a result, we come to AdS
spacetime. It should be noted that the thermodynamic pressure P is different from the local
pressure that is present in the energy–momentum tensor. The conjugate variable to P is the
thermodynamic volume V = 4πr3

+/3, where r+ is the event horizon radius of a black hole.
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In this paper, we study Einstein–AdS gravity coupled to nonlinear electrodynamics
(NED) with two parameters, proposed here, that allow us to smooth out singularities.
The first NED was Born–Infeld electrodynamics [20]; without the singularities of point-
like particles possessing finite electric self-energy at the weak-field limit, it is converted
into Maxwell’s theory. Our NED model has similar behavior. We study magnetic black
holes and their thermodynamics in Einstein–AdS gravity in the extended phase space.
The NED model, with coupling β and dimensionless parameter σ, proposed here, is of
interest because it includes model [21] for σ = 1. This unified approach allows us to find
similarities and differences for different models.

The structure of the paper is as follows. In Section 2, we find the mass and metric
functions and their asymptotics. Corrections to the Reissner–Nordström metric function
are obtained when the cosmological constant is zero. We prove the first law of black
hole thermodynamics in an extended phase space and obtain the magnetic potential and
the thermodynamic conjugate to the coupling. The generalized Smarr formula is proven.
The Gibbs free energy is calculated and depicted for some parameters and the phase
transitions are studied in Section 3. In Appendix A, we obtain the electric fields of charged
objects and corrections to Coulomb’s law. We show that the electrostatic self-energy of
charged particles is finite in Appendix B. In Appendix C, we obtain the metric that is a
solution to the Einstein–Maxwell system. Section 4 is a discussion of the results obtained.

We use units with c = h̄ = kB = 1.

2. Einstein–AdS Black Hole Solution

The action of Einstein’s gravity in AdS spacetime is given by

I =
∫

d4x
√
−g
(

R − 2Λ
16πG

+ L(F )

)
, (1)

where G is the gravitational constant, Λ = −3/l2 is the negative cosmological constant,
and l is the AdS radius. We propose the NED Lagrangian as follows:

L(F ) = − F
4π(1 + 2βF )σ , (2)

where F = FµνFµν/4 = (B2 − E2)/2 is the Lorenz invariant and E and B are the electric
and magnetic fields, correspondingly. The coupling β > 0 has the dimension L4, and the
dimensionless parameter σ > 0. The weak-field limit of Lagrangian (2) is Maxwell’s
Lagrangian. Lagrangian (2) at σ = 1 becomes the rational NED Lagrangian [22]. The NED
Lagrangian (2) for some values of σ was used in the inflation scenario [23–25]. From action
(1), one finds the Einstein and field equations

Rµν −
1
2

gµνR + Λgµν = 8πGTµν, (3)

∂µ

(√
−gLF Fµν

)
= 0, (4)

where LF = ∂L(F )/∂F . The energy–stress tensor reads

Tµν = FµρF ρ
ν LF + gµνL(F ). (5)

We consider here spherical symmetry with the line element

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2

(
dθ2 + sin2(θ)dϕ2

)
. (6)
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Magnetic black holes possess the magnetic field B = q/r2, where q is the magnetic charge.
The metric function is given by (see Appendix C and [26])

f (r) = 1 − 2m(r)G
r

, (7)

with the mass function
m(r) = m0 + 4π

∫
ρ(r)r2dr, (8)

where m0 is an integration constant (the Schwarzschild mass) and ρ is the energy density.
We obtain the energy density

ρ = ρM − 3
8πGl2 , (9)

where the magnetic energy density found from Equations (2) and (5) is

ρM =
q2r4(σ−1)

8π(r4 + q2β)
σ .

Making use of Equations (8) and (9), we obtain the mass function

m(r) = m0 +
q2r4σ−1

2(4σ − 1)(q2β)σ
F
(

σ − 1
4

, σ; σ +
3
4

;− r4

q2β

)
− r3

2Gl2 , (10)

where F(a, b; c; z) is the hypergeometric function. The magnetic energy is given by

mM = 4π
∫ ∞

0
ρM(r)r2dr =

q3/2Γ(σ − 1/4)Γ(5/4)
2β1/4Γ(σ)

, (11)

where Γ(x) is the Gamma function. Equation (11) shows that, at Maxwell’s limit β → 0,
the black hole’s magnetic mass diverges. Therefore, a smooth limit to Maxwell’s theory is
questionable. From Equations (7) and (10), one finds the metric function

f (r) = 1 − 2m0GN
r

− q2Gr4σ−2

(4σ − 1)(q2β)σ
F
(

σ − 1
4

, σ; σ +
3
4

;− r4

q2β

)
+

r2

l2 . (12)

We employ the relation [27]

F(a, b; c; z) = 1 +
ab
c

z +
a(a + 1)b(b + 1)

c(c + 1)
z2 + . . . ., (13)

for |z| < 1, which will be used to obtain the asymptotic of the metric function as r → 0.
When the Schwarzschild mass is zero (m0 = 0) and as r → 0, the asymptotic is

f (r) = 1 +
r2

l2 − Gq2r4σ−2

(q2β)σ(4σ − 1)
+

Gσr4σ+2

βσ+1q2σ(4σ + 3)
+O(r4σ+6). (14)

Equation (14) shows that, at σ ≥ 1/2, a singularity of the metric function f (r) is absent.
In addition, to avoid a conical singularity at r = 0, we also should set 4σ − 2 > 1 (σ > 3/4).
It is worth noting that the magnetic energy density ρM is finite at r = 0 only if σ ≥ 1. There-
fore, to have regular black holes, one has to assume that σ ≥ 1. Then, from Equation (14),
we find f (0) = 1, which is a necessary condition to have regular spacetime. We explore the
transformation [27]

F(a, b; c; z) =
Γ(c)Γ(b − a)
Γ(b)Γ(c − a)

(−z)−aF
(

a, 1 − c + a; 1 − b + a;
1
z

)

+
Γ(c)Γ(a − b)
Γ(a)Γ(c − b)

(−z)−bF
(

b, 1 − c + b; 1 − a + b;
1
z

)
, (15)
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to obtain the asymptotic of the metric function as r → ∞. By virtue of Equations (13) and (15),
we find

f (r) = 1 − 2(m0 + mM)G
r

+
q2G
r2 F

(
σ,

1
4

;
5
4

;− q2β

r4

)
+

r2

l2 , (16)

where the relations Γ(1 + z) = zΓ(z) and F(a, 0; c; z) = 1 are used. Making use of
Equations (13) and (16) as r → ∞ when the cosmological constant vanishes (l → ∞),
we find

f (r) = 1 − 2MG
r

+
q2G
r2 − q4βσG

5r6 +O(r−10), (17)

where M = m0 +mM is the ADM mass (the total black hole mass as r → ∞). It follows from
Equation (17) that the corrections to the Reissner–Nordström solution are in the order of
O(r−6). When β → 0, metric function (17) is converted into the Reissner–Nordström metric
function. The plot of metric function (12) is given in Figure 1 with m0 = 0, G = q = 1,
β = 0.1, l = 5.

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

r

f(
r)

 

 

σ= 1

σ= 1.5

σ= 2

Figure 1. The function f (r) at m0 = 0, G = 1, q = 1, β = 0.1, l = 5. Figure 1 shows that black holes
may have one or two horizons. When σ increases, the event horizon radius r+ decreases.

In accordance with Figure 1, if parameter σ increases, the event horizon radius r+
decreases. Figure 1 shows that black holes can have one or two horizons. It should be
noted that when we set G = c = h̄ = 1 as in Figure 1, we come to Planckian units [28].
Then, in this case, if one has, for example, dimensionless event horizon radius r+ = 1
(as in Figure 1), in the usual units, r+ = lPl = (Gh̄/c3)1/2 = 1.616 × 10−33 cm, where
lPl is Planck’s length. When the dimensionless mass is m = 2, for example, in the usual
units, m = 2 × mPl = 2 × (h̄c/G)1/2 = 2 × 2.177 × 10−5 g, where mPl is Planck’s mass.
Because, in Figure 1 the event horizon radius is small, we have here the example of tiny
black holes (primordial black holes). Such black holes could have been created after the Big
Bang. It is worth noting that such an example of quantum-sized black holes is described
here by semiclassical gravity.

3. First Law of Black Hole Thermodynamics

The pressure, in extended-phase-space thermodynamics, is defined as P = −Λ/(8π)
[13,14,17,29]. The coupling β is treated as the thermodynamic value and the mass M is a
chemical enthalpy so that M = U + PV and U is the internal energy. In the following, we
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will use Planckian units with G = c = h̄ = 1. By using Euler’s dimensional analysis [13,30],
we have dimensions [M] = L, [S] = L2, [P] = L−2, [J] = L2, [q] = L, [β] = L2 and

M = 2S
∂M
∂S

− 2P
∂M
∂P

+ 2J
∂M
∂J

+ q
∂M
∂q

+ 2β
∂M
∂β

, (18)

where J is the black hole’s angular momentum. In the following, we consider non-
rotating black holes and, therefore, J = 0. The thermodynamic conjugate to coupling β is
B = ∂M/∂β (so-called vacuum polarization) [10]. The black hole volume V and entropy S
are defined as

V =
4
3

πr3
+, S = πr2

+. (19)

From Equation (16) and the equation f (r+) = 0, where r+ is the event horizon radius, one finds

M(r+) =
r+
2

+
q2

2r+
F

(
σ,

1
4

;
5
4

;− q2β

r4
+

)
+

r3
+

2l2 . (20)

Making use of Equation (20), we obtain

dM(r+) =
[

1
2
+

3r2
+

2l2 − q2

2r2
+

F

(
σ,

1
4

;
5
4

;− q2β

r4
+

)

+
2σq4β

5r6
+

F

(
σ + 1,

5
4

;
9
4

;− q2β

r4
+

)]
dr+ −

r3
+

l3 dl

+

[
q

r+
F

(
σ,

1
4

;
5
4

;− q2β

r4
+

)
− q3βσ

5r5
+

F

(
σ + 1,

5
4

;
9
4

;− q2β

r4
+

)]
dq

− q4σ

10r5
+

F

(
σ + 1,

5
4

;
9
4

;− q2β

r4
+

)
dβ. (21)

Here, we have used the relation [27]

dF(a, b; c; z)
dz

=
ab
c

F(a + 1, b + 1; c + 1; z). (22)

Defining the Hawking temperature

T =
f ′(r)|r=r+

4π
, (23)

where f ′(r) = ∂ f (r)/∂r, and by virtue of Equations (16) and (23), we obtain

T =
1

4π

[
1

r+
+

3r+
l2 − q2

r3
+

F

(
σ,

1
4

;
5
4

;− q2β

r4
+

)
+

4σq4β

5r7
+

F

(
σ + 1,

5
4

;
9
4

;− q2β

r4
+

)]
. (24)

At β = 0 in Equation (24), one finds the Maxwell–AdS black hole Hawking temperature.
The first law of black hole thermodynamics follows from Equations (19), (20) and (24),

dM = TdS + VdP + Φdq + Bdβ. (25)

From Equations (21) and (25), we obtain the magnetic potential Φ and the thermodynamic
conjugate to coupling β (vacuum polarization) B

Φ =
q

r+
F

(
σ,

1
4

;
5
4

;− q2β

r4
+

)
− q3βσ

5r5
+

F

(
σ + 1,

5
4

;
9
4

;− q2β

r4
+

)
,
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B = − q4σ

10r5
+

F

(
σ + 1,

5
4

;
9
4

;− q2β

r4
+

)
. (26)

The plots of Φ and B versus r+ are depicted in Figure 2.
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Subplot 1: m
0
=0, G=1, β=0.1, q=1
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Figure 2. The functions Φ and B vs. r+ at q = 1, β = 0.1. The solid curve in subplot 1 is for σ = 0.75,
the dashed curve is for σ = 1, and the dashed-dotted curve is for σ = 1.5. It follows that the magnetic
potential Φ is finite at r+ = 0 and becomes zero as r+ → ∞. The function B, in subplot 2, vanishes as
r+ → ∞ and is finite at r+ = 0.

Figure 2, in the left panel, shows that as r+ → ∞, the magnetic potential vanishes
(Φ(∞) = 0), and at r+ = 0, it is finite. If the parameter σ increases, Φ(0) decreases.
According to the right panel of Figure 2, at r+ = 0, the vacuum polarization is finite, and
as r+ → ∞, B vanishes (B(∞) = 0). When the parameter σ increases, B(0) also increases.
With the aid of Equations (19), (24) and (26), we find the generalized Smarr relation

M = 2ST − 2PV + qΦ + 2βB. (27)

4. Thermodynamics of Black Holes

To study the local stability of black holes, one can analyze the heat capacity

Cq = T
(

∂S
∂T

)
q
=

T∂S/∂r+
∂T/∂r+

=
2πr+T
∂T/∂r+

. (28)

Equation (28) shows that when the Hawking temperature has an extremum, the heat
capacity possesses a singularity and the black hole phase transition occurs. With the help
of Equation (24), we depict in Figure 3 the Hawking temperature as a function of the event
horizon radius.

For the case σ = 1, the analysis of a black hole’s local stability was performed in [21].
The behavior of T and Cq depends on many parameters. By virtue of Equation (24),
we obtain

∂T
∂r+

=
1

4π

[
− 1

r2
+

+
3
l2 +

3q2

r4
+

F

(
σ,

1
4

;
5
4

;− q2β

r4
+

)
− 32σq4β

5r8
+

F

(
σ + 1,

5
4

;
9
4

;− q2β

r4
+

)

+
16q6β2σ(4σ + 1)

9r12
+

F

(
σ + 2,

9
4

;
13
4

;− q2β

r4
+

)]
. (29)
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Equations (24) and (29) define the heat capacity (28). Making use of Equations (24), (28) and (29),
one can study the heat capacity and the black hole phase transition for different parameters
β, σ, q and l.

0 0.5 1 1.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

r
+

T

 

 

 σ= 0.75

 σ= 1

σ= 2

0 5 10
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

r
+

T
 

 

 σ= 0.75

 σ= 1

σ= 2

Figure 3. The functions T vs. r+ at q = 1, β = 0.1, l = 10. The solid curve in the left panel is for
σ = 0.75, the dashed curve is for σ = 1, and the dashed-dotted curve is for σ = 2. In some intervals of
r+, the Hawking temperature is negative and, therefore, black holes do not exist at these parameters.
There are extrema of the Hawking temperature T where the black hole phase transitions occur.

With the help of Equation (24), we obtain the black hole equation of state (EoS):

P =
T

2r+
− 1

8πr2
+

+
q2

8πr4
+

[
F

(
σ,

1
4

;
5
4

;− q2β

r4
+

)
− 4q2βσ

5r4
+

F

(
σ + 1,

5
4

;
9
4

;− q2β

r4
+

)]
. (30)

The specific volume is given by v = 2lPr+ (lP =
√

G = 1) [11]. Equation (30) is similar to
the EoS of the Van der Waals liquid. Placing v = 2r+ into expression (30), we obtain

P =
T
v
− 1

2πv2 +
2q2

πv4

[
F
(

σ,
1
4

;
5
4

;−16q2β

v4

)

−64q2βσ

5v4 F
(

σ + 1,
5
4

;
9
4

;−16q2β

v4

)]
. (31)

The plot of P vs. v is given in Figure 4.
The critical points (inflection points) are defined by the equations ∂P/∂v = 0, ∂2P/∂v2 =

0, which are complex, so we will not present them here. The analytical solutions for critical
points do not exist. The P − v diagrams at the critical values are similar to Van der Waals
liquid diagrams having inflection points.

Because M is treated as a chemical enthalpy, the Gibbs free energy reads

G = M − TS. (32)

Making use of Equations (19), (20), (24) and (32), we obtain

G =
r+
4

−
2πr3

+P
3

+
3q2

4r+
F

(
σ,

1
4

;
5
4

;− q2β

r4
+

)
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− q4βσ

5r5
+

F

(
σ + 1,

5
4

;
9
4

;− q2β

r4
+

)
. (33)

The plot of G versus T is given in Figure 5 for β = 0.1, q = 1, σ = 0.75.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−2.5

−2

−1.5

−1

−0.5

0

0.5

v

P

 

 

σ=0.75

σ=1

σ=1.5

Figure 4. The functions P vs. v at q = 1, β = 0.1, T = 0.05. The solid line is for σ = 0.75, the dashed
curve is for σ = 1, and the dashed-dotted curve is for σ = 1.5.
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G
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Subplot 2:  σ=0.75, P=0.002

T
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Subplot 3:  σ=0.75, P=0.003

T
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0 0.02 0.04 0.06
0

0.2

0.4
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0.8

1

Subplot 4: σ=0.75, P=0.004

T

G

Figure 5. The functions G vs. T at q = 1, β = 0.1, σ = 0.75 for P = 0.0015, P = 0.002, P = 0.003 and
P = 0.004. Subplots 1 and 2 show the critical ’swallowtail’ behavior with first-order phase transitions
between small and large black holes. Subplot 3 corresponds to the case of critical points where a
second-order phase transition occurs (Pc ≈ 0.003). Subplot 4 shows the non-critical behavior of the
Gibbs free energy.

The critical points and phase transitions of black holes for σ = 1 were studied in [21].
One can investigate black hole phase transitions in our model for an arbitrary σ with
the help of the Gibbs free energy (33). It should be noted that the analytical expressions
obtained can be applied for black holes of any sizes. In Figures 1–5, we consider examples
only for tiny black holes (quantum black holes).
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5. Summary

We have obtained magnetic black hole solutions in Einstein–AdS gravity coupled to
NED with two parameters, which we propose here. The metric and mass functions and their
asymptotics with corrections to the Reissner–Nordström solution, when the cosmological
constant is zero, have been found. The total black hole mass includes the Schwarzschild
mass and the magnetic mass, which is finite. We have plotted the metric function showing
that black holes may have one or two horizons. When parameter σ increases, the event
horizon radius r+ decreases. Figures 2–4 show how other physical variables depend on σ.
The black hole thermodynamics in an extended phase space was studied. We formulated
the first law of black hole thermodynamics where the pressure is connected with the
negative cosmological constant (AdS spacetime) conjugated to the Newtonian geometric
volume of the black hole. The thermodynamic potential conjugated to the magnetic charge
and the thermodynamic quantity conjugated to coupling β (so called vacuum polarization)
were computed and plotted. It was proven that the generalized Smarr relation holds for any
parameter σ. We calculated the Hawking temperature, the heat capacity and the Gibbs free
energy. Analyses of the first-order and second-order phase transitions were performed for
some parameters. The Gibbs free energy showed the critical ‘swallowtail’ behavior, which
is similar to the Van der Waals liquid–gas behavior. Figure 5 shows a first-order phase
transition with Gibbs free energy that is continuous but not differentiable, but, for a second-
order transition, the Gibbs free energy and its first derivatives are continuous. The same
feature was first discovered for another model in [11]. It was shown within the NED
proposed that the electric fields of charged objects at the origin and the electrostatic self-
energy are finite. It should be noted that the first law of electric black hole thermodynamics
in Einstein–Born–Infeld theory and other problems were originally studied in Ref. [11].
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Appendix A

Making use of Equation (4), the Euler–Lagrange equation gives

∇µ(LF Fµν) = 0, (A1)

where

LF =
∂L
∂F =

2β(σ − 1)F − 1
4π(1 + 2βF )σ+1 . (A2)

The equation for the electric field, with spherical symmetry and Equation (A1), becomes
(F = −E2(r)/2)):

1
r

d(r2E(r)LF )

dr
= 0. (A3)

By virtue of Equation (A2) and integrating Equation (A3), we obtain

E(r)(1 + β(σ − 1)E(r)2)

(1 − βE(r)2)σ+1 =
Q
r2 , (A4)

where Q is the electric charge (the integration constant). At β = 0, Equation (A4) gives the
Coulomb electric field EC(r) = Q/r2. It is convenient to define unitless variables

x =
r

β1/4
√

Q
, y =

√
βE. (A5)
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Then, Equation (A4) becomes

y(1 + (σ − 1)y2)

(1 − y2)σ+1 =
1
x2 . (A6)

From Equation (A6), we obtain, for a small x (and small r),

y = 1 +O(x). (A7)

Making use of Equations (A5) and (A7), one finds as r → 0

E(r) =
1√

β
+O(r). (A8)

As a result, we have the finite value of the electric field at the origin E(0) = 1/
√

β that
is the maximum of the electric field. The plot of y versus x is depicted in Figure A1 for
σ = 0.75, 1.5, 2.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

y

 

 

σ= 0.75

σ= 1.5

σ= 2

Figure A1. The function y vs. x at σ = 0.75, 1.5, 2.

We obtain, from Equation (A4), as r → ∞

E(r) =
Q
r2 +O(r−4). (A9)

Equation (A9) shows that the corrections to Coulomb’s law are in the order of O(r−4).
According to Equation (A7) and Figure A1, the electric field is finite at the origin r = 0
(y = 1) and becomes zero as r → ∞. Because of the nonlinearity of electric fields, an electric
charge is not a real point-like object and does not possess a singularity at the center.

Appendix B

By virtue of Equation (5), we obtain the electric energy density

ρ = −E2LF −L =
E2 + βE4(2σ − 1)
8π(1 − βE2)σ+1 . (A10)

Making use of the dimensionless variables (A5), one finds the electric energy density

ρ =
y2 + y4(2σ − 1)
8πβ(1 − y2)σ+1 . (A11)
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The total electric energy becomes

E = 4π
∫ ∞

0 ρ(r)r2dr = Q3/2

β1/4

×
∫ 1

0
(1−y2)(σ−1)/2[1+y2(2σ−1)][(2σ2−3σ+1)y4+(5σ−2)y2+1]dy

[1+(σ−1)y2]2
√

y[y2(σ−1)+1]
,

(A12)

where we have used Equation (A6). By numerical calculations of integral (A12), we obtain
the dimensionless variables Ē ≡ Eβ1/4/Q3/2, which are presented in Table A1.

Table A1. Approximate values of Ē ≡ Eβ1/4/Q3/2.

σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ē 1.272 1.233 1.202 1.176 1.153 1.132 1.108 1.097 1.081 1.067

As a result, in our NED model, the electrostatic energy of charged objects is finite.
According to the Abraham and Lorentz idea, the electron mass may be identified with the
electromagnetic energy [20,31,32]. Then, one can obtain the parameters β1/4 and σ to have
the electron mass me = E ≈ 0.51 MeV. Dirac also considered that the electron can be a
classical charged object [33].

Appendix C

We will obtain the solution with a magnetic black hole. The tt component of Einstein’s
Equation (3) with spherical symmetry (6) is given by

f ′(r) +
f (r)

r
=

1
r
+ 8πGr

(
ρM(r) +

Λ
8πG

)
, (A13)

where
ρM(r) = −T t

t = −L(r). (A14)

Equation (A13) is a linear first-order equation that belongs to the class of the general
equation [34]

y′(x) + P(x)y(x) = Q(x), (A15)

with the solution

y(x) = exp(−I(x))
∫

Q(x) exp(I(x))dx + C exp(−I(x)), (A16)

where C is the integration constant and

I(x) =
∫

P(x)dx. (A17)

Comparing Equations (A13) and (A15), one finds

P(r) =
1
r

, Q(r) =
1
r
+ 8πGr

(
ρM(r) +

Λ
8πG

)
, (A18)

and y(x) → f (r), x → r. Then, from Equations (A16)–(A18), we obtain the solution to the
tt component of Einstein’s Equation (A13)

f (r) = 1 +
2Gm(r)

r
, (A19)

where we use the notations

m(r) = m0 + 4π
∫

r2ρM(r)dr − r3

2Gl2 , C = 2Gm0, (A20)
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with Λ = −3/l2.
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