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Abstract: Entropy generation, formulated by combining the first and second laws of thermodynamics
with an appropriate thermodynamic potential, emerges as the difference between a phenomenological
entropy function and a reversible entropy function. The phenomenological entropy function is
evaluated over an irreversible path through thermodynamic state space via real-time measurements
of thermodynamic states. The reversible entropy function is calculated along an ideal reversible path
through the same state space. Entropy generation models for various classes of systems—thermal,
externally loaded, internally reactive, open and closed—are developed via selection of suitable
thermodynamic potentials. Here we simplify thermodynamic principles to specify convenient and
consistently accurate system governing equations and characterization models. The formulations
introduce a new and universal Phenomenological Entropy Generation (PEG) theorem. The systems
and methods presented—-and demonstrated on frictional wear, grease degradation, battery charging
and discharging, metal fatigue and pump flow—can be used for design, analysis, and support of
diagnostic monitoring and optimization.

Keywords: entropy generation; non-equilibrium thermodynamics; phenomenology; second law;
thermodynamic potentials

1. Introduction

System analyses based on energy conservation alone have been shown inadequate for
consistent characterization of real, often nonlinear, system transformation. The introduction
of the second law via the works of Carnot, Clapeyron [1], Clausius, Massieu [2] and others
established thermodynamics as a field for consistent description of changes in a system
undergoing any form of energy conversion. For centuries, classical thermodynamics has
been restricted to equilibrium and near-equilibrium transformations. Defining a minimum
condition for a system to exist or process to occur in nature, Rayleigh’s dissipation func-
tion [3], Onsager’s least energy dissipation [4] (an application of his reciprocal relations of
microscopic reversibility) and Prigogine’s minimum entropy generation [5,6]—similar state-
ments expressed as δS′ = YdX/T—set the stage for thermodynamic characterization of real
system transformation, a field commonly known as irreversible thermodynamics. Here, δS′

is entropy generation, Y is generalized force, dX is generalized displacement and T is tem-
perature. The correlation between energy dissipation (or entropy generation) and system
degradation—advanced and permanent disorganization of material structure—has been
theorized and experimentally verified. Recently, several multi-disciplinary system charac-
terizations have emerged, presenting experimental results consistent with entropy-based
formulations. These works show high accuracies in analyzing active system transfor-
mations, with inconsistencies attributable to the often-used “steady state” assumption.
While some long-running systems operate predominantly in pseudo-steady state, e.g.,
very high-cycle fatigue of steels, most loaded systems often transform unsteadily, limiting
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the applicability of energy conservation and steady-state entropy characterizations. Re-
cent works by Osara and Bryant [7–10] using the Degradation-Entropy Generation (DEG)
methodology [11] to assess battery degradation, grease degradation and metal fatigue,
showed a near 100% accurate and consistent characterization of these systems undergoing
severely abusive loads. DEG methods relate increments of degradation to increments
of entropy generation. Instead of a “steady state” assumption, Osara and Bryant [7–10]
augmented laws of thermodynamics with the thermodynamic potentials to formulate
entropy generation. Methods to calculate entropy generation under general conditions for
all systems are needed to enable real-time assessment of system transformation.

This article will develop entropy generation δS′ for open and closed systems as
the difference

δS′ = δSphen − dSrev ≥ 0 (1a)

between a phenomenological entropy generation function δSphen, evaluated via suitable
measurements of variables over an irreversible path in a thermodynamic state space be-
tween initial and final (or current) thermodynamic states; and a reversible entropy function
dSrev, evaluated over a reversible path in the same state space between the same initial
and final states. The thermodynamic state space consists of any independent variables
that characterize the thermodynamic state and all active irreversible dissipative processes.
The reversible path for dSrev, which is the projection of the irreversible phenomenological
path of δSphen onto the reversible subspace, consists of the thermodynamic state variables
of the phenomenological path sans the irreversible dissipative process variables. This ap-
proach will eliminate many tenuous “steady state” assumptions and loopholes in existing
approaches. To obtain entropy generation S′, Equation (1a) must be integrated between
the initial and final/current states, with entropy functions δSphen and dSrev integrated over
their respective paths. True reversibility excludes process rates and time effects, hence, the
reversible path defined herein marks the theoretical limit of a real-time-based process via a
linear function joining the initial and final states.

1.1. Local Equilibrium

Prigogine posited: given that true equilibrium is asymptotic for all real systems, every
continuous macroscopic system is made up of elements for which observable state proper-
ties (such as temperature and pressure) can be instantaneously determined or measured,
thereby rendering equilibrium formulations describing these properties valid for each
element in the macrosystem. Each element is, therefore, in local equilibrium [5,6,12,13].
This theorem allows the extension of reversibility-based formulations to real systems, with
entropy generation representation. While the system variables are spatial and temporal
functions, many real systems operate with near-uniform internal properties, primarily
changing with time.

1.2. States, Paths and Path (Line) Integrals

The following principles will be judicious to Section 2:

1. Thermodynamics often involves changes in variables between two states. Variables in-
clude a set of the independent thermodynamic state variables Z chosen and measured
for a particular system, and state dependent system properties which are functions
of the states of Z. The Z characterize a system’s thermodynamic state and can in-
clude temperature T, pressure P, and number of moles N, among others. Changes
in system properties such as energy E, entropy S, temperature T and Srev use the
exact differential d; are path independent, wherein changes in properties over an
irreversible path (irr) are identical to changes in properties over a reversible path
(rev), e.g., dE = dEirr = dErev; and the line integral

∫ f
o dE = ∆E = E f − Eo depends

only on the property values at the beginning and end states (o and f ). This is the
thermodynamic state principle.
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2. Path-dependent variables such as work W, heat transfer Q, entropy generation S′

and Sphen depend on what occurs along the path between states o and f, and use the

inexact differential δ such that
∫ f

o δW = W must be accumulated over all instants of
time t along the (assumed known) transformation path between times to and t f . The
path-dependent parameters will depend on a set of variables Z = {Z, ζk} assumed to be
time dependent, observable, and measurable. The Z characterize the thermodynamic
state, whereas the ζk characterize any active irreversible dissipative processes. Via a
suitable numerical integration such as the trapezoid rule, with the Z(t) = {Z(t), ζk(t)}
measured as points Z

(
tj
)

= {Z(tj), ζk(tj)
}

suitably spaced at time instants to < tj < t f
in accord with the sampling theorem [14], the increments δW can be accumulated into
the line integral

∫ f
o δW = W.

3. Exact differentials dE, state functions of the independent state variables Z(t), if in-
tractable, can be numerically integrated over the (ideal) reversible path per meth-
ods of the prior paragraph. The reversible path must transit states o to f in quasi-
equilibrium and be continuous and maximally smooth over time, which can be
approximated by linear functions with slope determined by the end states, for exam-

ple, if dE(t) = dE(Z(t)), components of Z(t) with slope
Z(t f )−Z(to)

t f −to
where Z(t f ) and

Z(to) must be measured or known at the beginning and final times to and t f . With

this, the line integral
∫ f

o dE =
∫ t f

to
dE
dt dt =

∫ t f
to ∑Z

dE
dZ

dZ
dt dt = ∑Z

Z(t f )−Z(to)

t f −to

∫ t f
to

dE
dZ dt,

where sum index Z denotes a sum over all the components of Z, and dE/dZ must be
evaluated at each time instant to < tj < t f along the reversible path.

4. For reversible processes dSrev with initial and final states dSrevo and dSrev f ,

dSrev(t) =
dSrev f −dSrevo

t f −to
(t − to) + dSrevo satisfies the reversible path approximations of

item 3.
5. A phenomenological path (phen) through the thermodynamic state space enclosing

Z = {Z, ζk} defined in item 2 includes nonzero ζk(t). A reversible path (rev) in the
reversible subspace {Z} of Z [15] involves only the thermodynamic states Zrev, not
the ζk. The projection of the set of points Z

(
tj
)

= {Z
(
tj
)
, ζk(tj)

}
that comprise an

irreversible phenomenological path onto the reversible subspace is the set of points
{Zrev

(
tj
)}

[15]. The system inputs, active mechanisms and dynamics are determined
by the phenomenological path.

These principles are based on classical approaches [2,16,17]. While classical theories are
limited to equilibrium and near-equilibrium states, we here introduce concurrent physically
observable states to characterize real, often highly dissipative, far-from-equilibrium systems.

2. Irreversible Thermodynamics and Entropy Generation
2.1. Combining Internal Energy and Entropy Balances

For a stationary thermodynamic system (open and closed), excluding gravitational
effects, the first law of thermodynamics

dU = ∑ δQ − ∑ δW + ∑ (u + Pv)dNe + ∑ µkdNk, (2)

balances dU, the change in overall system “internal” energy. Here ∑ δQ is the sum of all
heat exchanges across the system boundary, ∑ δW is the sum of all work transfers across the
system boundary, ∑ (u + Pv)dNe is the sum of energy transfers by matter flows dNe across
the system boundary (for open systems only), and ∑ µkdNk is the sum of all compositional
energy changes within the system boundary. Embedded in the compositional change term
∑ µkdNk are, in terms of mole number Nk of species k, changes in the quantity of matter due
to chemical reactions dNr

k and ionic mass diffusions within the system boundary dNd
k,

i.e., dNk = dNr
k + dNd

k, where Nr
k and Nd

k are reactive and internally diffusive species,
respectively. Also, u is molar internal energy, P is pressure, v is molar volume and µ is
chemical potential. The product Pv is termed the flow work in open systems. Via the molar
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mass, Equation (2) can be re-written in terms of mass m. Inexact differential δ indicates
path-dependent variables.

A statement of the second law—the Clausius inequality—gives the change in entropy
of a closed system as dS ≥ δQ

T where δQ/T is entropy flow by heat transfer, which can
be positive or negative depending on the transfer direction, and T is the temperature of
the boundary where the energy/entropy transfer takes place. Via the thermodynamic
state principle—item 1 of Section 1.2—and the entropy balance [5,6,12], entropy change
accompanying an open system process can be evaluated along a real and often nonlinear
irreversible path (irr) as

dS = dSirr =
δQ
T

+
(u + Pv)dNe

T
+ δS′ = δSQ + dSNe + δS′, (3)

where δSQ = δQ
T is entropy transfer via heat, dSNe =

(u+Pv)dNe
T is entropy transfer via mass,

and δS′ is internal entropy generation which always accompanies permanent change and
structural disorganization of the evolving system. While dS, δSQ and dSNe can be positive
or negative, the second law asserts δS′ ≥ 0. Without a priori knowledge of the entropy
generation, change along the irreversible path, Equation (3), cannot be determined. Along
a reversible rev (ideal and linear) path with δS′ = 0,

dS = dSrev =
δQrev

T
+

(u + Pv)revdNe

T
= δSQ,rev + dSNe ,rev. (4)

Substituting δW = ∑ YldXl [18] for external/boundary works including compression
PdV, strain work Vσdε, electrical work νdq and others into Equation (2) and combining
with entropy Equation (3) gives the combined first and second laws as

TδS′ + dU = TdS − ∑ YldXl + ∑ µkdNk = TδSU,phen(S, Xl , Nk), (5)

where Yl are intensive variables such as pressure P, strength/stress σ, voltage ν, etc.; Xl are
the system’s extensive variables such as volume V, strain ε, charge q; and TδSU(S, Xl , Nk),
a path-dependent inexact differential, is defined by and equal to the middle expression
of Equation (5). The script notation distinguishes SU as an entropy related function of
the independent variables in parenthesis. Subscript phen indicates evaluation along the
phenomenological path, the observable path where the independent states and dissipative
process variables are available and measured at each instant. Since the product of tempera-
ture and entropy change (TdS) in Equation (5) subsumes the heat and flow transfer terms
in Equations (2) and (3), Equation (5) is valid for all systems, open and closed [7–10,12].
Equation (5), which governs the system along an irreversible path, has a pair of unknowns
δS′ > 0 and dU; all other terms are observable and can be measured, as shown later.

To solve, a second independent equation will arise via δS′ = 0 [7–10] applied to
Equation (5). Recalling the thermodynamic state principle, all process paths between the
same initial and end states must have the same difference between states: dU = dUirr = dUrev,
dS = dSirr = dSrev, etc., whether the path be reversible or irreversible. Substituting
difference values into Equation (5) with δS′ = 0, and solving yields

dU = dUrev = TdSrev − ∑ Yl,revdXl + ∑ µk,revdNk = TdSU,rev(S, Xl , Nk), (6)

where subscript rev indicates a quantity evaluated under reversible conditions. (Classical
thermodynamics calculates entropy change along a reversible path, Equations (4) and (6),
with reversible energy changes conveniently calculated via ideal response to loads, e.g.,
elastic deformation or non-saturating magnetics). Substituting dU = dUrev from Equation (6)
into Equation (5) and rearranging yields entropy generation

δS′ = dS − ∑ YldXl
T

+
∑ µkdNk

T
− dUrev

T
= δSU,phen(S, Xl , Nk)− dSU,rev(S, Xl , Nk) (7)
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for all systems. The middle equalities of Equations (5) and (6) serve to evaluate the right-
side terms of Equation (7).

In Equations (3) and (4) and forthcoming entropy formulations, summation signs ∑
indicating multiple heat and mass flow terms are omitted for convenience.

2.2. Entropy Generation of Various System Classes via Thermodynamic Potentials

To evaluate entropy generation, Equation (7) requires the system’s changes of entropy
dS and internal energy dUrev. These are difficult to determine, especially for non-thermal
and multi-component systems [16], necessitating the widely used “steady state” assumption
(dS = dUrev = 0) that led to Prigogine’s stationary nonequilibrium transformation or mini-
mum entropy generation δS′

min = PdV
T + ∑ µkdNk

T for a reacting compressible system [5,6,12].
Via Legendre transforms, equivalent forms of Equations (5) and (7) are derived in terms of
observable, measurable and more easily controllable system properties such as temperature
and pressure [16] for all systems, open or closed, steady or unsteady. The thermodynamic
potentials (with PV work replaced by generalized YX work)—-enthalpy H = U + YX,
Helmholtz free energy A = U–TS and Gibbs free energy G = U + YX–TS—-are differenti-
ated and solved for dU, the result of which is then inserted into Equation (5) to get:

TδS′ + dH = TdS +
l

∑ XldYl +
k

∑ µkdNk = TδSH,phen(S, Yl , Nk) (8a)

TδS′ + dA = −SAdT −
l

∑ YldXl +
k

∑ µkdNk = TδSA,phen(T, Xl , Nk) (8b)

TδS′ + dG = −SGdT +
l

∑ XldYl +
k

∑ µkdNk = TδSG,phen(T, Yl , Nk) (8c)

Analogous to the operations performed on Equation (5) that led to Equation (7), similar
operations performed on Equations (8) and solved for δS′ render

δS′ = dS +
∑ XldYl

T
+

∑ µkdNk
T

− dHrev

T
= δSH,phen(S, Yl , Nk)− dSH,rev(S, Yl , Nk) (9a)

δS′ =
−SAdT

T
− ∑ YldXl

T
+

∑ µkdNk
T

− dArev

T
= δSA,phen(T, Xl , Nk)− dSA,rev(T, Xl , Nk) (9b)

δS′ =
−SGdT

T
+

∑ XldYl
T

+
∑ µkdNk

T
− dGrev

T
= δSG,phen(T, Yl , Nk)− dSG,rev(T, Yl , Nk). (9c)

Equations (7) and (9), of the form of Equation (1a), require:

• δSphen: evaluated via the expressions of the middle equalities of Equations (5) and (8)
at points over the irreversible phenomenological path defined in items 2 and 5 of
Section 1.2, where salient quantities can be measured.

• dSrev: evaluated as an exact differential over a reversible path between the beginning
and final values of the irreversible path for δSphen, as discussed in list items 3, 4 and 5
of Section 1.2. Here, the independent states in the parentheses of Equations (5) and (8)
are linear in time, as per items 3 and 4 of Section 1.2.

2.3. Phenomenological Entropy Generation Theorem

The results of Equations (7) and (9) can be summarized as the

Phenomenological Entropy Generation (PEG) Theorem: Spontaneous entropy (and energy)
changes along the (observable) phenomenological path is the sum of the ideal (linear, reversible
transformation) entropy and the internally generated entropy, respectively:

δSphen = dSrev + δS′, (1b)

which can be solved for entropy generation, as in Equation (1a), repeated here as
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δS′ = δSphen − dSrev ≥ 0,

where, for energy extraction/decomposition or system loading,
(

dSrev ≤ δSphen

)
< 0, and

for energy addition/formation, 0 <
(

dSrev ≤ δSphen

)
. Only end state measurements of

system variables (before and after process interaction) are required for evaluation of dSrev
(see items 3 and 4 of Section 1.2), unlike δSphen which requires an instantaneous account
of all active processes. Note that a system’s energy change and entropy change during a
process can be negative or positive, depending on the direction of energy or entropy flow
across system boundaries.

2.4. Phenomenological Entropy Generation Functions for Various System Classes
2.4.1. Thermal Systems: Internal Energy and Enthalpy

Thermal systems include heat engines (thermal energy to mechanical work), heat
pumps (mechanical work to thermal energy) and hydrocarbon fuels (chemical energy
to thermal energy). Convenient for fuels and open systems is enthalpy H [16], which
replaces volume with pressure as independent variable and measures the amount of thermal
energy in a system. In a chemical reaction, change in enthalpy sums the heat absorbed
or released by the reaction, by non-boundary deforming interactions, and by change in
internal compositional energies. A fuel source’s heating value is its enthalpy of combustion.
For heat energy, the external work terms ∑ Yl dXl

T in Equations (8a) and (7) are neglected and
dHrev and dUrev, the maximum/minimum theoretical thermal energies available are often
specified in tables, e.g., standard enthalpy of formation of pure substances [19], standard
enthalpy of reaction, or standard enthalpy of combustion or heating value of fuels [20]. The
heat entropy change dS in Equations (7) and (9a) is evaluated via Equation (4) using the
thermal energy balance δQ = CdT—for heat flow to or from a thermal system at uniform
temperature with no heat generation—rendering dSrev = CrevdT

T +
(u+Pv)revdNe

T . For a given
transformation and flow, dHrev and dUrev are constants, hence the middle set of terms of
Equations (7) and (9a) are extracted to obtain the phenomenological entropy generation
functions:

δSU,phen =
CrevdT

T
+

(u + Pv)revdNe

T
− ∑ YldXl

T
+

∑ µkdNk
T

(10a)

and

δSH,phen =
CrevdT

T
+

(u + Pv)revdNe

T
+

∑ XldYl
T

+
∑ µkdNk

T
. (10b)

Crev is the heat capacity (which can be obtained at standard room temperature and pres-
sure) and (u + Pv)rev is the open-system flow enthalpy which, in the case of evapora-
tion, is the latent heat of vaporization. Equation (10a) applies to a thermal system doing
external work or receiving non-thermal energy across its boundary; Equation (10b) to
a thermal system undergoing non-boundary-deforming internal transformation. Here,

∑ µkdNk = ∑ µk

(
dNr

k + dNd
k

)
, the sum of the energy change due to combustion, nuclear

or other exothermic/endothermic chemical reaction r, and diffusion d (as in a flame).

2.4.2. Boundary-Loaded (Work-Capable) Systems: Helmholtz Potential

Most electrical, structural and mechanical systems do not use or produce useful thermal
energy but output work and/or use an external power supply. With Equations (10a) and (10b)
inadequate for these systems, the Helmholtz free energy A [16] replaces entropy S with tem-
perature T as independent variable, offers an adequate, consistent and convenient charac-
terization, and measures maximum/minimum boundary work from/to a thermodynamic
system. Referring to Equation (9b), dArev is the maximum/minimum (theoretical) work pos-
sible. During work output, energy extraction or system loading, dT ≥ 0, dXl ≥ 0, dNk ≤ 0
and dArev ≤ 0, rendering δS′ ≥ 0. For work input, energy addition or product forma-
tion, dT ≤ 0, dXl ≤ 0, dNk ≥ 0 and dArev ≥ 0, reversing the respective signs of terms
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in Equation (9b) to accord with the second law δS′ ≥ 0 [5,8,9,19]. A comparison of
Equations (6) and (9b) shows that the Helmholtz relation conveniently absorbs dUrev and
dS into dArev and −SAdT, removing the need to measure heat or mass transfer across the
system boundary and the need to determine dUrev, which is ambiguous for non-thermal
systems. Most work-capable systems have a standardized maximum work dArev obtain-
able, e.g., the elastic energy function for deformable solids. With a specified dArev, δS′ in
Equation (9b) measures the irreversible entropy generation pertaining to dissipation of
useful energy via work across the thermodynamic boundary, which requires the instanta-
neous evaluation of the Helmholtz phenomenological entropy generation [8,9] terms in
Equation (8b),

δSA,phen(T, Xl , Nk) =
δAphen

T
=

−SAdT
T

− ∑ YldXl
T

+
∑ µkdNk

T
, (10c)

where δAphen = −SAdT − ∑ YldXl + ∑ µkdNk. Both δSH,phen and δAphen have consistent
interpretations in all boundary-loaded systems, with terms composed of conjugate pairs
involving physically observable and readily measurable changes in intensive and extensive
system variables dT, dXl and dNk. For a non-reactive non-diffusive (dNr

k = dNd
k = 0)

system, such as a lubricated mechanical interface, a fatigue-loaded component, and others,
the last term of Equation (10c) can be neglected. Note that the very slow and/or (typically
laboratory-controlled) isothermal case gives minimum entropy generation δSmin = −∑ YldXl

T .
Various forms of work ∑ YldXl include frictional Ff dx, electrical vdq, shear Vτdγ, com-
pression PdV, and magnetic BdM, among others.

2.4.3. Internally Reactive Systems and Energy Storage Systems: Gibbs Potential

Reactive systems (chemical, nuclear, among others) undergo energy transformations
via changes in composition. Energy storage and power sources such as batteries, nuclear
power plants, and super capacitors involve changes in active species. The Gibbs free
energy G in Equation (8c) replaces entropy S with temperature T and generalized posi-
tion X with generalized force Y as independent variables [16], and measures maximum
internal work or compositional (reactive) energy obtainable from a thermodynamic system.
Equations (8c) and (9c) apply to all reactions, such as chemical formation/decomposition
of substances, phase transitions, radioactive decay, etc. During active species consumption
or system decomposition, dT ≥ 0, dYl ≤ 0, dNk ≤ 0 and dGrev ≤ 0, rendering δS′ ≥ 0. For
active species production or system formation, dT ≤ 0, dYl ≥ 0, dNk ≥ 0 and dGrev ≥ 0,
reversing the signs of the respective terms in Equation (9c) to preserve δS′ ≥ 0. With a spec-
ified dGrev (most energy systems have rated capacities and specific energies), Equation (9c)
measures the actual irreversible entropy generation pertaining to the dissipation of use-
ful energy via compositional changes. From Equation (8c), the Gibbs phenomenological
entropy generation [7,10]

δSG,phen(T, Yl , Nk) =
δGphen

T
=

−SGdT
T

+
∑ XldYl

T
+

∑ µkdNk
T

, (10d)

where δGphen = −SGdT + ∑ XldYl + ∑ µkdNk. Both δSG,phen and δGphen have consistent
interpretations in all systems undergoing active compositional reactions (charge, discharge
or combinations) and are composed of conjugate pairs involving physically observable
and readily measurable system variables dT, dY and dNk. For constant-pressure reac-
tive system-process interactions such as cycling of electrochemical energy systems [7,10],
the term XdY/T can be neglected. For non-reactive (dNk = 0) energy systems such as
hydraulic/pressure accumulators, the last term in Equation (10d) can be dropped.

2.5. Generalized Material Properties, Entropy Content S, Internal Free Energy Dissipation “–SdT”

The irreversible Helmholtz and Gibbs fundamental relations, Equation (8b,c), in-
troduced “–SdT”, the portion of the free energy dissipated and accumulated internally
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by a loaded system, typically observed as the rise in temperature of the system under
non-thermal loading. This can include effects of plastic work, friction, resistive Ohmic
or Joule heat, chemical reaction heat generation, and sometimes heat from an external
source. Temperature change dT is driven by the system’s entropy content S. Without an
entropy measurement device, S is often neglected or dT = 0, which requires experiments to
be isothermal and/or significant temperature corrections for real-world applications. With
δW = YdX, the energy-based Helmholtz and Gibbs equations suggest A = A(T, X, N)
and G = G(T, Y, N). The entropy-based Massieu functions suggest SA = SA(T, X, N) and
SG = SG(T, Y, N) wherein the entropy of a system depends on temperature T, generalized
position X (for Helmholtz potential), generalized force Y (for Gibbs) and number of moles
N, all of which are experimentally and instantaneously measurable. Via partial derivatives,
total Helmholtz and Gibbs entropy changes

dSA =

(
∂SA
∂T

)
X,N

dT +

(
∂SA
∂X

)
T,N

dX +

(
∂SA
∂N

)
T,X

dN, (11a)

dSG =

(
∂SG
∂T

)
Y,N

dT +

(
∂SG
∂Y

)
T,N

dY +

(
∂SG
∂N

)
T,Y

dN. (11b)

Here, dN = dNe + dNk includes effects of mass flow and internal compositional changes/
chemical reactions, respectively. From Maxwell relations and Callen’s derivatives re-
duction [16], Equations (11) can be re-stated using derived measurable system parame-
ters [16,21,22], in terms of generalized work variables X, Y, as(

∂SA
∂T

)
X,N

= CX
T ;(

∂SG
∂T

)
Y,N

= CY
T ;(

∂SA
∂X

)
T,N

=
(

∂Y
∂T

)
X,N

= α
κT

= αE′ = β;(
∂SG
∂Y

)
T,N

= −
(

∂X
∂T

)
Y,N

= −Xα;(
∂SA
∂N

)
T,X

= −
(

∂µ
∂T

)
X,N

= −λX ;(
∂SG
∂N

)
T,Y

= −
(

∂µ
∂T

)
Y,N

= −λY,

(12)

where CX > 0 and CY > 0 are heat capacities (for solids, CX ≈ CY = C), α = 1
X

(
∂X
∂T

)
Y,N

> 0

is the thermal coefficient of generalized displacement, κT = 1
E′ − 1

X

(
∂X
∂Y

)
T,N

> 0 is generalized

“isothermal loadability” [9], obtained via a reduction of the isothermal Gibbs derivative [16](
∂G
∂Y

)
T,N

= X to give
(

∂2G
∂Y2

)
T,N

= −XκT , a system/material property whose inverse

defines the load modulus E’ also derived from the second partial isothermal Helmholtz
derivative (Appendix A). The equation α

κT
= αE′ = β > 0 is the thermal coefficient of

generalized force (pressure, stress, voltage, etc.); λX > 0 and λY > 0 are the coefficients of
thermal chemico-transport decay (for solids λX ≈ λY = λ) including the combined effects
of internal reaction and mass flow on entropy content.

Heat capacity C measures the system’s thermal response to heat transfer, retaining
consistent meanings in all systems, and α measures non-thermal and non-chemical response
(e.g., mechanical, electrical, etc.) to heat and temperature changes, obtained by defining YX
for the specific system-process interaction. Generalized κT—the inverse of the load-specific
modulus E’—represents isothermal loadability, a measure of a material/system’s “cold”
response to boundary loading: loadability is compressibility (inverse of bulk modulus)
for a compressible system [16], bendability for a beam under bending [9], shearability
(inverse of shear modulus) for shearing or torsional loading [8], and conductance (inverse
of resistance) for electrical work. Derivations and detailed discussions of the properties
in Equations (12) are presented in Appendix A and in reference [22] specifically for a
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shear-loaded system. These formulations can be used to define new system- and process-
specific material properties for assessing system/material performance and behavior.

By substituting Equations (12) into Equations (11), we have

dSA =
CX
T

dT + βdX − λXdN, dSG =
CY
T

dT − XαdY − λYdN. (13)

Integrating with an initial condition S0 = 0 on entropy (valid in degradation analysis) gives
Helmholtz and Gibbs entropy contents

SA = CX lnT + βX − λX N, SG = CY lnT − XαY − λY N (14)

as functions of observable and measurable system-process phenomenological variables T,
X, Y, N and material properties C, α, κT , µ. Internal free energy dissipation via Helmholtz
and Gibbs potentials are then

−SAdT = −(CX lnT + βX − λX N)dT,−SGdT = −(CY lnT − XαY − λY N)dT. (15)

While the system’s state response and process variables (T,X,Y,N) are directly dependent
on prevalent interaction rates (e.g., strain rates, electric currents, loads, etc.) and conditions
(e.g., external source heating or cooling), the material properties (C, α, κT , λ) can be assumed
steady over a wide range of values of the state variables. Although the material properties
may vary with changing state variables, the effects of such changes are minimal in a stable
system with no discontinuities such as phase changes, severe chemical reactions, etc.

For compositionally changing systems via chemical, nuclear or other reactions (conve-
niently characterized by the Gibbs potential), an alternate formulation is the Gibbs–Duhem
equation [7,10,12,16]:

−SdT + VdP = ∑ Nkdµk. (16)

Similar expressions can be established for other compositionally changing systems. For
energy systems, the choice of Equation (16) or the second of Equations (15) depends on
convenience and desired analysis output. “-SdT” is termed MicroStructuroThermal (MST)
energy dissipation [8,9] to suggest the dissipated energies as the source of heat. For elec-
trochemical energy systems such as batteries and capacitors—where the last terms in
Equation (16) and the second of Equations (15) are expressed via Faraday’s electrolysis
law in terms of cell charge capacity q and potential v—these equations are more specifi-
cally named ElectroChemicoThermal (ECT) energy dissipation [7,10]. An application is
presented in Section 4.3.

For reactive boundary-loaded (YdX) systems, substitute the first of Equations (15) into
Equation (10c) to give

δSA,phen(T, Xl , Nk) =
δAphen

T
= −(CX lnT + βX − λX N)

dT
T

− YdX
T

+
∑ µkdNk

T
, (17a)

and for internally reactive systems under displacement-controlled or non-boundary-deforming
loading XdY, substitute the second of Equations (15) into Equation (10d) to give

δSG,phen(T, Yl , Nk) =
δGphen

T
= −(CY lnT − XαY − λY N)

dT
T

+
XdY

T
+

∑ µkdNk
T

. (17b)

Equations (17) are posed in terms of the system’s phenomenological variables, which
are instantaneously measurable intensive and extensive system properties and process
parameters that characterize the active phenomena along irreversible and reversible paths.

2.6. Stress vs. Strength Sign Conventions

For material property definitions, generalized force is interpreted as generalized useful
force, strength or potential in line with the definitions of the free energies as maximum
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useful work obtainable from a system (Gibbs: internal work or compositional change;
Helmholtz: external or boundary work). All the energy and entropy balances here accord
with the IUPAC convention of representing energy leaving the system via work (and
heat) as negative. In such a loaded system, dY is the decrease in strength, and hence
is negative and dX is the increase in displacement. This accords with an expanding gas,
for which pressure drops with increasing volume. However, in mechanics and other
science/engineering fields that deal with solid materials, it is common to observe and use
increase in stress as the system is loaded. In such cases, dY is positive. The derivations in
this article and appendix consider dY < 0 the decrease in strength in a loaded system.

2.7. Helmholtz-Gibbs Coupling

Energy storage systems that provide boundary (external) work via direct interaction,
e.g., batteries, capacitors, and pressure tanks, undergo internal changes driven by active
external interaction. As such, internal phenomenological transformations can be monitored
via boundary work measurements at the work transfer interface/terminal. The pressure
stored in a hydraulic accumulator reduces as the accumulator provides external work, e.g.,
moves a weight over a distance. The phenomenological free energy change of an operational
hydraulic accumulator can be expressed via the Gibbs potential as δGphen = −SGdT + VdP
or via the Helmholtz potential as δAphen = −SAdT − PdV. For electrochemical energy
systems, Osara and Bryant [7,10] presented a coupling of the internal chemical/diffusion
kinetics with externally measured discharge/charge energy, µdN = −Vdq, to replace
the phenomenological Gibbs relation δGphen = −SGdT + µdN with the more convenient
phenomenological Helmholtz relation δAphen = −SAdT − Vdq. The Helmholtz and Gibbs
relations for systems with interdependent internal and external interactions provides
convenient characterization methods.

2.8. Rates

For application to time-based measurements, the phenomenological entropy genera-
tion functions of Equations (10) will be expressed in rate forms. With transport of active
species into and out of an open system, flow rate

.
Ne replacing dNe, Equations (10) in rate

forms become:
.
SU,phen =

CX
.
T

T
+

(u + Pv)
.

Ne

T
− Y

.
X

T
+

∑ µk
.

Nk
T

, (18a)

.
SH,phen =

CY
.
T

T
+

(u + Pv)
.

Ne

T
+

X
.

Y
T

+
∑ µk

.
Nk

T
, (18b)

.
SA,phen =

−SA
.
T

T
− Y

.
X

T
+

∑ µk
.

Nk
T

, (18c)

.
SG,phen =

−SG
.
T

T
+

X
.

Y
T

+
∑ µk

.
Nk

T
. (18d)

The dot notation represents time rate of change d( )/dt.

2.9. Open Systems: Pumps, Compressors, Fuel Cells, etc.

For one-dimensional flow in open systems such as pumps, compressors, turbines and
heat exchangers, among others, the second right-side term in Equation (18a,b) can be ap-
proximated as

( .
Neh

)
exit

−
( .

Neh
)

inlet
(the change (u + Pv)

.
Ne = h

.
Ne in the control volume

must equal the amounts in and out). Here, h = u + Pv is the specific standard enthalpy
of the flowing fluid, and the subscripts inlet and exit denote pertinent quantities at those
ports. The molar flow rate

.
Ne can be converted to mass flow rate by multiplying by molar

mass. Then, the internal energy-based phenomenological entropy rate, Equation (18a), in
the absence of chemical or other reactions, becomes
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.
SU,phen =

CX
.
T

T
+

∑
[( .

Neh
)

exit
−

( .
Neh

)
inlet

]
T

− Y
.

X
T

, (19)

where the last term can be output turbine power or input compressor/pump power.
Equation (19) can be used to monitor all boundary-loaded open systems in operation,

including chemically reactive systems such as fuel cells—which have coupled boundary
work, as discussed previously—simply by measuring inlet and exit flow rates, temperatures,
generalized forces and velocities. Similar formulations for enthalpy can be derived, based
on Equation (18b).

3. Evaluating Total Entropy Generation and Path (Line) Integrals

To estimate total entropy generation S’, δS′ in Equation (1a) must be integrated from
the initial state o to the final state f in thermodynamic state space:

S′ =
∫ f

o

[
δSphen(Z, ζk)− dSrev(Zrev)

]
=

∫ t f

to

[ .
Sphen(Z, ζk)−

.
Srev(Zrev)

]
dt, (20)

where to and tf are the times of the initial and final states, and the entropy generation

functions δSphen and dSrev and their time rates
.
Sphen and

.
Srev are defined by the middle

equality functions in Equations (5) and (8). The phenomenological entropy generation
function δSphen (or

.
Sphen) is evaluated along the irreversible phenomenological path where

states {Z, ζk} are measured. The reversible entropy change function dSrev (or
.
Srev) is

evaluated along the reversible path with states {Zrev}. Proper selection of δSphen—the
focus of Section 2—depends on system internal conditions and boundary loads.

To estimate S′ = S′(t) at time t, to < t < t f , replace t f in Equation (20) with t and let
{Zrev(t)} be the projection of {Z(t), ζk(t)}, i.e., the thermodynamic states {Zrev(t)} of the
reversible path are related to their counterparts {Z(t), ζk(t)} from the phenomenological
path. With this, the integrals can be estimated via the methods of item 2 of Section 1.2.

4. Sample (Phenomenological) Entropy Generation Calculations

Sliding of copper against steel, shearing of grease, discharge and recharge of a lithium-
ion battery, fatigue of a steel rod, and flow through a pump will illustrate application of the
entropy generation theory.

4.1. Friction Sliding of Copper against Steel at Steady Speed—(Steady State)

During a series of friction and wear tests, a copper rider pressed by 9.7 kg dead
weight against a steel countersurface slid at steady speed

.
x = 3.3 ms−1 under carefully

maintained thermal and lubricated boundary conditions [23]. Measured were friction force
F and temperatures at three locations in the copper, to estimate friction heat generation F

.
x,

heat flow and surface temperature T, all of which were steady during sliding to render
.
T = 0, which when substituted into Equation (18c) yields S′

phen = −
∫ t f

to
F

.
x

T dt. Using
measured values, the integral was evaluated over the test time interval to obtain the
entropy generation plot in Figure 1.

4.2. Mechanical Shearing of Grease—Shear Stress and Shear Strain (Helmholtz Potential)

0.25 kg of Aeroshell 14 aircraft NLGI 4 lithium grease in a cup was sheared by a
rotating impeller. The grease-in-cup system was treated as closed and non-reacting. Tests
and procedures [8] at impeller speed 3 Hz measured impeller power MTω (the product
of torque MT and rotational speed ω) and temperatures (via thermocouples) of grease T
and ambient, which are plotted versus time in Figure 2a. In terms of native grease internal
variables, MTω = Vτ

.
γ gives the shear power as the product of volume V, shear stress τ

and shear strain rate
.
γ. Helmholtz entropy content density SA—the first of Equations (14)
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divided by V—was substituted into Equation (18c) with
.

Nk = 0, Y = τ,
.

X = V
.
γ, to yield

phenomenological entropy density

S′
phen = −

∫ t f

to

SA
.
T

T
dt −

∫ t f

to

τ
.
γ

T
dt. (21)
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With the data of Figure 2a, the integrals in Equation (21) were estimated numerically
via the methods of Section 1.2 to yield the entropy generation versus time plots in Figure 2b,
where the MST entropy density and shear entropy density are the first and second integrals
of Equation (21), respectively.

4.3. Discharge of Lithium-Ion Battery—Voltage and Charge (Helmholtz-Gibbs Coupling)

Four 3.7 V, 11.5 Ah single-cell lithium-ion batteries were discharged at a variable
discharge current of 5 A and recharged at a constant current of 3 A [7]. Figure 3a plots
voltage v, current I, temperatures of battery T and ambient, measured during the battery
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cycle. For a battery, the Helmholtz-Gibbs coupling, Section 2.7, yields ∑ µk
.

Nk = vI, the
Ohmic power. Substituting into Equation (19c) yielded

.
S′

phen =
−S

.
T

T
+

vI
T

. (22)

Via the Gibbs-Duhem formulation, Equation (16), at constant pressure, −S
.
T = q

.
v (applying

Faraday’s electrolysis law, see paragraph after Equation (16)), substituted into Equation (22)
and integrated over time rendered, for discharge and charge,

S′
phen =

t f∫
to

q
.
v

T
dt +

t f∫
to

vI
T

dt. (23)

Here, q =
∫ t f

t0
Idt is the charge content. With the data of Figure 3a, the integrals in

Equation (23) were estimated via the methods of Section 1.2 to yield the entropy generation
versus time plots in Figure 3b, where the ElectroChemicoThermal ECT entropy and Ohmic
entropy are the first and second integrals of Equation (23), respectively.
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4.4. Fatigue of Metals—Stress and Strain (Helmholtz Potential)

A high-resolution infra-red camera monitored the temperature profile of an SS 304
stainless steel rod subjected to a 10 Hz displacement-controlled cyclic bending load until
fatigue failure [24]. See Figure 4a. Here, boundary work Y

.
X = Vσ :

.
ε, where σ is the stress

tensor and ε is the elemental strain rate tensor, both having elastic and plastic components,
viz σ = σe + σp, ε = εe + εp. Existing models [25] estimated the stress and strain. As in the
case of grease shearing, Helmholtz entropy content density SA—the first of Equations (14)
divided by volume V—was substituted into (18c) with

.
Nk = 0 to obtain

S′
phen = −

∫ t f

to

SA
.
T

T
dt −

∫ t f

to

σ :
.
ε

T
dt. (24)

Substituting stress, strain, temperature and material property values, the integrals in
Equation (24) were estimated via the methods of Section 1.2 to render the entropy gen-
eration plots in Figure 4b, where the MST entropy density S′

µT (red plot) and load en-
tropy density S’W (blue plot) are the first and second integrals of Equation (24), respec-
tively. For low-cycle fatigue, with significant plastic deformation, the modulus defined in
Equations (12) and (13), substituted into entropy content density SA in Equation (24), is the
hardness modulus.
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4.5. Pump Flow—Pressure and Flow Rate (Internal Energy)

Water flowed through a three-phase 15-hp 260-gpm centrifugal motor-pump, instru-
mented to measure inlet and exit pump pressures and flow rate [26], which are plotted
versus time in Figure 5a. A valve adjusted the flow rate. Measured volumetric flow
rate was converted to mass flow rate using the density of water (

.
m = ρ

.
V), and pump

power Y
.

X = MTω, the product of torque MT and rotational speed ω. Substituting into
Equation (19), with positive input power, yielded

.
S
′
phen =

CV
.
T

T
+

∑
[( .

mh
)

exit −
( .
mh

)
inlet

]
T

+
MTω

T
. (25)

With no external heat source and assuming negligible rise in flow temperature which
was not measured during this test—hence T is constant ambient temperature—the first
right-side term in Equation (25) vanished. Integrating with respect to time,
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S′
phen =

t f∫
to

∑
[( .

mh
)

exit −
( .
mh

)
inlet

]
T

dt +

t f∫
to

MTω

T
dt. (26)

Substituting the data of Figure 5a, the integrals in Equation (26) yielded Figure 5b plots,
where the flow entropy (measuring the change in the flow between inlet and exit, green
plot) and load entropy (measuring the effect of power input into the pump, blue plot) are
the first and second integrals of Equation (26), respectively.
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5. Discussion

Here, reversible implies thermodynamic reversibility: any real system undergoing
a spontaneous process cannot “revert” back to its original state without work from
an external source, hence is thermodynamically irreversible. The reversible forms of
Equations (9) (wherein δS′ = 0) derived directly from Legendre transforms of entropy by
Francois Massieu are called the Massieu functions [16,27]. Here, by using the irreversible
form of internal energy change (Equation (5)), Equations (9) are termed the irreversible
Massieu functions.

5.1. Phenomenology

In open thermal systems, dS in the internal energy and enthalpy Equations (7) and (9a),
including the heat and mass transfer entropies, is analogous to SdT/T in the Helmholtz
and Gibbs energy Equation (9a,b).

Comparing the entropy Equations (3) and (4) and the corresponding energy counter-
parts in Equations (5), (6) (8) and (9), via the state principle, showed that changes in entropy
and energy between two states are path-independent, whether the process path is reversible
or irreversible, i.e., dS = dSrev = dSirr = δSphen − δS′; dE = dErev = dEirr = δEphen − TδS′,
where E is any of internal energy U, enthalpy H, Helmholtz potential A or Gibbs potential G.

With a transformation representable along the linear and nonlinear paths, most ther-
modynamic characterizations employ energy change dE = dErev and entropy change
dS = dSrev: only end state measurements of system variables (before and after pro-
cess interaction) are required for evaluation; unlike dE = dEirr = δEphen − TδS′ and
dS = dSirr = δSphen − δS′ which require instantaneous account of all active processes.
Note that a system’s energy change dE and entropy change dS during a process can be
negative or positive, depending on the direction of energy or entropy flow across system
boundaries, hence neither dE nor dS measures the permanent changes in the system. On
the other hand, entropy generation, Equations (1a), (7) and (9), evolves monotonically
as stipulated by the second law. Figure 6 depicts the Phenomenological Entropy Generation
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theorem for a loaded or spontaneously transforming system. Equation (1b), which measures
the entropy generated by the system’s internal irreversibilities alone, is in accordance
with experience, appearing similar to the Gouy-Stodola theorem of availability (exergy)
analysis [21,28–30]. Rearranging Equation (1b) renders another statement of the second
law or entropy balance as

dSirr = dSrev = δSphen − δS′, (27)

which replaces entropy transfer in Prigogine’s entropy balance, Equation (3), with phe-
nomenological entropy, from which entropy generation is subtracted.FIGURE CORRECTIONS FOR METHODS TO CALCULATE ENTROPY GENERATION 
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Figure 6. Illustrations of the Phenomenological Entropy Generation theorem, showing reversible
(green) and phenomenological (purple) paths; the vertical difference between the paths (see black
arrows) defines entropy generation or energy dissipation (orange). (a) Rates dSrev, δSphen, δS′ and
(b) Accumulations Srev, Sphen, S′.

As discussed previously, the quasi-reversible terms in the foregoing formulations
proceed at constant, often standardized or predetermined rates for a given transformation,
making them negligible in instantaneous energy dissipation/degradation monitoring for
which the phenomenological terms are used. Table 1 summarizes phenomenological
entropy generations derived in this article for various classes of open and closed systems.

Table 1. Summary of entropy generation formulations for various system categories, with examples.
Here, subscript e, and superscripts r, p and d represent flow, reactants, products and diffusion, respec-
tively. For thermal systems, µ is the molar enthalpy ∂H

∂N . For other (chemical, etc.) reactive/energy
systems, µ is the molar Gibbs energy or chemical potential ∂G

∂N . More information on c, β and λ is in
Section 2.5 and Appendix A.

Category Phenomenological Entropy Generation δSphen Example

Open
Internal Energy

δSU,phen =
CX dT

T + (u+Pv) dNe
T − ∑ Yl dXl

T
Equation (10a) (for a non-reacting system)

Compressor (with temperature rise and boundary work):
.
SU,phen = CV

.
T

T +
∑
[( .

Neh
)

exit
−
( .

Neh
)

inlet

]
T − Y

.
X

T
(Rate form in Equation (19))

Thermal
Enthalpy

δSH,phen =
CY dT

T + ∑ Xl dYl
T + ∑ µkdNk

T
Equation (10b) (for a closed system)

Combustion systems without boundary work:

δSH,phen =
CpdT

T + ∑ µkdNr
k

T − ∑ µkdNp
k

T

Boundary-Loaded
Helmholtz
potential

δSA,phen =
−SAdT

T − ∑ Yl dXl
T + ∑ µkdNk

T
Equation (10c)

Mechanical loading, e.g., shearing without oxidation:

δSA,phen = −(ρcγ lnT + βγ) dT
T − τdγ

T
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Table 1. Cont.

Category Phenomenological Entropy Generation δSphen Example

Reactive/Energy
Gibbs

potential

δSG,phen =

−SGdT
T + ∑ Xl dYl

T + ∑ µk
.

Nk
T

Equation (10d)

Electrochemical energy systems, e.g., batteries:
δSG,phen =

−(ClnT − λYq) dT
T + ∑ µkdNr

k
T − ∑ µkdNp

k
T + ∑ µkdNd

k
T

Via Gibbs-Helmholtz coupling:
δSphen = −(ClnT − λXq) dT

T + vdq
T

Via Gibbs-Duhem formulation:
δSphen = −qdv

T + vdq
T

5.2. Steady vs. Unsteady Systems: Minimum Entropy Generation (MEG) vs.
MicroStructuroThermal (MST) Entropy

According to Onsager and Prigogine, the minimum entropy generation rate for a
system to exist (minimally active) is the quotient of its primary work interaction (or energy

transfer) and boundary temperature, i.e.,
.
S
′
min = Y

.
X

T [5,6,12,13]. The minimum entropy
generation rates for internally reactive non-thermal open systems, including terms that
characterize every significant interaction, can be derived from Equations (18a) and (19). For
systems with boundary-deforming external loads, minimum entropy generation rate

.
S
′
min =

∑
[( .

Neh
)

exit
−

( .
Neh

)
inlet

]
T

− Y
.

X
T

+
∑ µk

.
Nk

T
, (28a)

and from (18b), for open systems without boundary-deforming work,

.
S
′
min =

∑
[( .

Neh
)

exit
−

( .
Neh

)
inlet

]
T

+
X

.
Y

T
+

∑ µk
.

Nk
T

. (28b)

Equations (28) only apply to steady interactions where temperature is controlled or
assumed to be constant (dT ≈ 0). Equations (28) present the minimum conditions for
simultaneous real interactions to occur (i.e., minimum perturbation from equilibrium). The
steady-state frictional wear in Section 4.1 demonstrates minimum entropy generation.

For unsteady anisothermal interactions, often encountered in uncontrolled non-thermal
systems (electronic, structural, mechanical, chemical, etc.), the free energies introduced the
afore-named MicroStructuroThermal (MST) entropy

.
S
′
µT =

−S
.
T

T
. (29)

The MST entropy of Equation (29) accompanies the primary interactions defined by Mini-
mum Entropy Generation (MEG) in Equations (28). This accords with the thermodynamic
state postulate [12,16,31] which requires r + 1 independent, intensive properties to fully
specify the state of a simple system undergoing r primary work interactions. In non-thermal
systems, the MST entropy measures the effects of energy dissipated as heat in the system,
which is therefore unavailable for work. As such, the MST entropy must be minimized
to decelerate degradation of non-thermal systems, the limit of which is the MEG (where
.
S
′
µT = 0). Figure 7 depicts minimum entropy generation, a slight/minimal deviation

from reversibility.
In the sample demonstrations in Figures 3b and 4b, the ECT/MST entropy (red plots)

is significantly lower than the primary interaction entropy or MEG (blue plots), which may
have justified prior approaches neglecting the former via an order of magnitude analysis.
However, recent works [7–10] have shown that the ECT/MST entropy, measuring the free
energy dissipation, contributes significantly to degradation.
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Figure 7. Illustrations of the Minimum Entropy Generation theorem, showing reversible (green) and
minimum (purple) paths; the difference between the paths defines minimum entropy generation
(orange). (a) Rates dSrev, δSmin, δS′ and (b) Accumulations Srev, Smin, S′.

5.3. Dissipation Factor and Entropic Efficiency

To measure a non-thermal system’s dissipation tendencies relative to useful work
output, define the dissipation factor

J =
S′

µT

S′
W + S′

N
, (30)

the ratio of the MicroStructuroThermal MST entropy S′
µT to the sum of boundary work

S′
W and compositional change S′

N entropies, which can consistently characterize system
response to dissipative mechanisms as well as multiple systems undergoing the same
output/input work. A low J (minimal dissipation relative to available work) is desired for
optimum performance and durability.

An examination of entropy Equations (7) and (9) indicates that low entropy generation
( δS′ → 0) would make more useful system energy available, the limit of which is the
reversible system (δS′ = 0). Define entropic efficiency

ηS′ =
S′

W + S′
N

Srev
, (31)

the ratio of the sum of boundary work and compositional change entropies to reversible en-
tropy Srev. With an ideal (reversible or perfect) system—for which S′

W + S′
N =

Srev—establishing 100% efficiency, a high ηS′ is preferred for slow degradation and opti-
mum performance. Equation (31) appears similar to the exergy-based second-law efficiency
which uses reversible work and boundary work at end states (i.e., not instantaneously
determined during process interaction) [31,32].

5.4. Thermal vs. Non-Thermal Systems—Internal Energy and Enthalpy vs. the Free Energies

Internal energy- and enthalpy-based entropy generations, Equations (7) and (9a),
have an entropy change term dS, which includes heat transfer entropy, accentuating the
already known suitability and convenience of internal energy and enthalpy (heat content) in
characterizing primarily heat-based (or thermal) systems. The Helmholtz- and Gibbs-based
entropies of Equation (9b,c) encapsulate the effects of entropy transfers in the observable
evolution of the system’s internal variables (material properties and temperature). This
makes the free energies and the consequent “free entropies” particularly convenient for
non-thermal systems and interactions where heat transfer is not readily measurable and for
which thermal mechanisms primarily emanate from energy dissipation. The free entropies
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are more consistent for assessing system transformations from observable and measurable
system variables, irrespective of surrounding conditions.

Significant increase in temperature reduces available free energy via the MicroStructur-
oThermal MST term, see Equation (8b,c). For non-thermal (mechanical, structural, chemical,
electronic, magnetic, electrical, etc.) systems, this accords with experience, further making
the free entropy formulations derived from the free energies suitable for non-thermal sys-
tem characterizations. Thermal systems are utilized for heat content and typically have high
temperature increase rate. This indicates that a high MST component—which accompanies
high thermal energy—is favorable for thermal systems. Hence, the free energies are subject
to misinterpretation and not recommended for characterizing thermal systems.

6. Summary and Conclusions

Building on the first-principles foundations of modern irreversible thermodynamics
laid by Clausius, Rayleigh, Onsager and Prigogine, this article formulated universally
consistent, instantaneous entropy generations for diverse macroscopic system categories
(see summary in Table 1). Presented was thermodynamic resolution of the active processes
and unsteady system responses during loading using readily evaluated entropy generation.
A Phenomenological Entropy Generation (PEG) theorem was derived and proposed,
expounding the significances of the newly introduced MicroStructuroThermal MST entropy
(or ElectroChemicoThermal ECT entropy for electrochemical power systems) and previously
neglected reversible entropy to characteristic entropy generation. Extending and generaliz-
ing Gibbs theory of thermodynamic stability, the Clausius inequality, Rayleigh’s energy
dissipation principle, Onsager’s reciprocity, and Prigogine’s entropy balance—the hall-
marks of classical and modern irreversible thermodynamics [4–6,12,13,33]—this article,
using results from recently published experimental works [7–10], demonstrated that:

• a combination of the thermodynamic potentials and the irreversible form of the TdS
equation yields the irreversible Massieu functions;

• steady-state systems generate entropy at a minimum rate which, for a boundary-
loaded, internally reactive open system, is the sum of boundary work/load entropy S′

W
and compositional change entropy S′

N rates;
• for unsteady non-thermal systems, a microstructurothermal MST entropy is included to

characterize the accompanying instantaneous transients during system transformation;
• phenomenological entropy generation S′

phen is the sum of boundary work/load en-
tropy S′

W , compositional change entropy S′
N and microstructurothermal MST entropy

S′
µT (ElectroChemicoThermal ECT entropy S′

VT for electrochemical systems);
• entropy generation is the difference between phenomenological S′

phen and reversible
Srev entropies at every instant, named the Phenomenological Entropy Generation
(PEG) Theorem;

• along the phenomenological path, thermodynamic and other states germane to evalu-
ating S′

phen and Srev are observable (measurable), permitting evaluation of entropy
generation δS′;

• entropy generation is always non-negative in accordance with the second law, while
its constituent terms S′

phen and Srev are directional, negative for a loaded system

and positive for an energized system. This implies
∣∣∣S′

phen

∣∣∣ ≤ |Srev| during load

application/work output or active species decomposition, and
∣∣∣S′

phen

∣∣∣ ≥ |Srev| during
energization/work input or active species formation, in accordance with experience
and thermodynamic laws. In plain words, measurable energy obtained from a real
system is always less than the theoretical maximum/reversible energy, and measurable
energy added to a real system is always more than the minimum/reversible energy.
(Modulus signs indicate magnitudes only).
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Abbreviations
Nomenclature Name Unit
A Helmholtz free energy J
B magnetic field T
C Heat capacity J/K
F Faraday’s constant C/mol
G Gibbs free energy J
I discharge/charge current or rate A
m mass kg
n’ number of charge species
M magnetic dipole moment J/T
N, Nk number of moles of substance mol
P pressure Pa
q charge Ah
Q heat J
R gas constant J/mol·K
S entropy or entropy content J/K (Wh/K)
S entropy generation function J/K (Wh/K)
S’ entropy generation or production J/K (Wh/K)
t time sec
T temperature ◦C or K
U internal energy J
v voltage V
V volume m3

W work J
Z thermodynamic state variable
Symbols
µ chemical potential
ζ phenomenological variable
ρ density
Subscripts & acronyms
0 initial
c specific heat capacity
d diffusion
e flow
f final
ECT, VT Electro-Chemico-Thermal
MST, µT Micro-Structuro-Thermal
rev reversible
irr irreversible
phen phenomenological
DEG Degradation-Entropy Generation
PEG Phenomenological Entropy Generation
NLGI National Lubricating Grease Institute
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Appendix A. Generalized Material Properties from First Principles

System analysis is often restricted to established material properties. This appendix de-
rives existing and new material properties for use as performance measures. These material
properties measure a system’s natural response to energy changes via heat, work and/or
internal reactions. Consistent interpretations of the properties are provided, independent
of system and process type. Ref. [22] details an application to lubricant grease.

Entropy content S is determined from a combination of a system’s state variables,
material properties, and process variables, as described in Section 2.5. Maxwell rela-
tions [16]—a manipulation of the three independent mixed second partial derivatives of
the Gibbs and Helmholtz free energies for a pressure-volume PV system (e.g., compressible
systems for which δW = PdV)—yield known material properties such as heat capacity,
isothermal compressibility and thermal expansion coefficient. Here, we generalize the
formulations to all YX macro-systems (including solids, liquids and gases, for which work
δW = YdX [18]), hence applicable to all forms of loading. Recall that Y = generalized force
and dX = generalized displacement (or deformation), hence X = generalized position.

Linear and steady transformation, practically achievable via slow controlled experi-
ments, is approximated by the quasi-static assumption, for which entropy generation is
minimal. Setting δS‘ ≈ 0 in Equations (8c) and (8b) for one active/reactive species (k = 1)
yields, respectively,

dG = −SGdT + XdY + µdN (A1)

and
dA = −SAdT − YdX + µdN. (A2)

Equations (A1) and (A2) are suitable for determining material properties but do not describe
active nonlinear and dissipative transformations encountered in typical system operation,
for which δS’ > 0. Equations (A1) and (A2) indicate that the Gibbs free energy G = G(T,Y,N)
is a function of temperature T, generalized force Y and amount of active species N, while
the Helmholtz free energy A = A(T,X,N) is a function of temperature T, generalized position
X and amount of active species N. Here, active species include open systems through
which active matter flows and chemically reactive systems in which quantity of active
matter changes.

In terms of the partial derivatives of its independent variables, the system’s total Gibbs
energy change is

dG =
∂G
∂T

dT +
∂G
∂Y

dY +
∂G
∂N

dN. (A3)

Direct comparison of Equations (A1) and (A3) suggests

∂G
∂T

∣∣∣∣
Y,N

= −SG;
∂G
∂Y

∣∣∣∣
T,N

= X;
∂G
∂N

∣∣∣∣
T,Y

= µ. (A4)

Similarly, the total Helmholtz energy change, in partial derivative terms, is

dA =
∂A
∂T

dT +
∂A
∂X

dX +
∂A
∂N

dN. (A5)

Direct comparison of Equations (A2) and (A5) suggests

∂A
∂T

∣∣∣∣
X,N

= −SA;
∂A
∂X

∣∣∣∣
T,N

= −Y;
∂A
∂N

∣∣∣∣
T,X

= µ. (A6)

Next, partial derivatives of Equations (A4) and (A6) establish the material properties that
constitute entropy contents SG and SA for evaluating the MicroStructuroThermal (MST)
energy change ”–SdT” (Section 2.5).
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Appendix A.1. Heat Capacities CX and CY

The second partial derivatives of the free energies with respect to temperature define
the heat capacities of a material. Substituting the first equality of Equation (A4) into the
second partial derivative of Gibbs free energy with respect to temperature, we obtain

∂2G
∂T2

∣∣∣∣
Y,N

= −∂SG
∂T

= −CY
T

≤ 0, (A7)

which is rearranged to give the system’s heat capacity at constant generalized force/
strength/potential

CY = T
∂SG
∂T

∣∣∣∣
Y,N

> 0, (A8)

defined as the amount of heat required to change the system’s temperature by 1◦ at constant
force. Substituting the first equality of equation (A6) into the second partial derivative of
the Helmholtz free energy with respect to temperature yields

∂2 A
∂T2

∣∣∣∣
X,N

= −∂SA
∂T

= −CX
T

≤ 0, (A9)

which can be rearranged to give the heat capacity at constant generalized position/displacement

CX = T
∂SA
∂T

∣∣∣∣
X,N

> 0, (A10)

defined as the amount of heat required to change the system’s temperature by 1◦ at
constant position/displacement. As is the case for most fluids and solids, CX ≈ CY over a wide
temperature range. The heat capacities measure the system’s natural and characteristic
response to heat via temperature change, and have universally consistent meaning in all
materials. Equations (A8) and (A10) imply that the system entropy content S, SG or SA
must increase in response to increase in temperature for the system to remain stable. When
the entropy increase is the result of heat transfer δQ into the system only, approximated by
slowly heating the stationary system, Equations (A8) and (A10) are combined and rewritten
for practical purposes as

CX or Y =
δQ
∂T

∣∣∣∣
X or Y,N

> 0. (A11)

For a pressure-volume PV system, CX = CV and CY = CP. The specific heat capacity
c = C/m, where m is mass, is used as a material property.

Appendix A.2. Isothermal Loadability κT and Load Modulus E’

The second partial derivative of the Gibbs free energy with respect to generalized force Y
defines the isothermal loadability κT of a material/system. Substituting the second equality
of Equation (A4) into the second partial Gibbs derivative gives

∂2G
∂Y2

∣∣∣∣
T,N

=
∂X
∂Y

∣∣∣∣
T,N

= −XκT ≤ 0, (A12)

rearranged to obtain the material’s isothermal loadability

κT = − 1
X

∂X
∂Y

∣∣∣∣
T,N

> 0, (A13)

hereby defined as the "cold” mechanical response to load, i.e., generalized position/displacement
response to generalized force at constant temperature. Widely used in compressive systems
is the isothermal compressibility which relates volume response to pressure load. The
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second partial derivative of the Helmholtz free energy with respect to generalized posi-
tion/displacement X defines the load (or strength) modulus E’ of a material. Substituting the
second equality of Equation (A6) into the second partial Helmholtz derivative yields

∂2 A
∂X2

∣∣∣∣
T,N

= − ∂Y
∂X

∣∣∣∣
T,N

=
E′

X
≥ 0, (A14)

rearranged to give the material’s isothermal load modulus

E′ = −X
∂Y
∂X

∣∣∣∣
T,N

> 0, (A15)

the generalized force/strength response to generalized position/displacement, commonly used in
analysis of systems under external boundary load, such as stress-loaded (elastic, shear, hard-
ness moduli) and compressible systems (bulk modulus). A comparison of
Equations (A13) and (A15) shows that E′ = 1

κT
, i.e., the load modulus is the inverse of

the isothermal loadability (as the bulk modulus is the inverse of the isothermal compress-
ibility in compressible systems).

According with the sign convention for a loaded system discussed in Section 2.6,
the negative signs in Equations (A13) and (A15) indicate that an increase in generalized
displacement X corresponds to a decrease in generalized strength/force Y, a stability
condition for all loadable/work-capable systems. For example, as a compressible system
expands (energy extraction or system loading), its accumulated/internal pressure decreases,
i.e., ∂V > 0 ⇒ ∂P < 0, and vice versa for compression (energy addition), to give

(
∂P
∂V

)
< 0.

In mechanical systems, loading reduces component strength or toughness, ∂ε > 0 ⇒ ∂σ < 0
to give

(
∂σ
∂ε

)
< 0. In electrochemical systems such as batteries, discharge (energy extraction

via charge transfer) reduces electrochemical potential or voltage, dq > 0 ⇒ dV < 0 yielding(
∂V
∂q

)
< 0.

The loadability or modulus of most solids and liquids (the latter, to much less extent)
is not significantly affected by temperature over a wide temperature range, yielding κT ≈ κ
for most practical purposes.

Appendix A.3. Thermal Displacement Coefficient α and Thermal Force (Strength) Coefficient β

When the heat generated in or transferred to the system raises the system’s tem-
perature (the amount of heat required determined by the system’s heat capacity), the
system’s microstructure responds to the increasing temperature (in the absence of other
external/internal load). For materials that expand/contract in response to temperature
change, the thermal expansion coefficient quantifies the degree of expansion/contraction.
For stress-strain systems, this property is termed the thermal strain coefficient [8,9,22], to
indicate a microstructural strain response of the system to temperature change at con-
stant stress.

The mixed second partial derivative of the Gibbs free energy with respect to tempera-
ture T and generalized force Y defines the thermal displacement coefficient α of the system.
Substituting the first and second equalities of Equation (A4) into the mixed second partial
Gibbs derivative renders

∂2G
∂T∂Y

∣∣∣∣
N
= − ∂SG

∂Y

∣∣∣∣
T,N

=
∂X
∂T

∣∣∣∣
Y,N

= Xα ≥ 0, (A16)

rearranged to yield the thermal displacement coefficient

α =
1
X

∂X
∂T

> 0, (A17)
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defined for a system as the displacement induced in the system by an increase in tem-
perature at constant force/strength. The thermal displacement coefficient α measures the
system’s natural and characteristic mechanical response to temperature change via dis-
placement change or deformation, and has universally consistent meaning in all systems.
Equation (A16) implies that the system’s Gibbs entropy content SG must increase in re-
sponse to decrease in generalized force Y for process continuity and system stability. It also
establishes that the position/displacement X in the system spontaneously increases (e.g.,
expansion, strain, etc.) with increase in temperature for stability and process continuity.

The second partial derivative of the Helmholtz free energy with respect to temperature
T and generalized displacement X defines the thermal force (strength) coefficient β. Substituting
the first and second equalities of Equation (A6) into the mixed second partial Helmholtz
derivative yields

∂2 A
∂T∂X

∣∣∣∣
N
= − ∂SA

∂X

∣∣∣∣
T,N

= − ∂Y
∂T

∣∣∣∣
X,N

=

∂X
∂T

⌉
Y

∂X
∂Y

⌉
T

= − α

κT
= −αE′ ≤ 0, (A18)

rearranged to give the (solid) system’s thermal force (strength) coefficient

β =
α

κT
= αE′ > 0, (A19)

the ratio of the thermal displacement coefficient to the isothermal loadability or the product
of the thermal displacement coefficient and the load modulus. β is the force/strength/stress
induced by a degree rise in temperature at constant displacement. For stress-strain sys-
tems, β is also called the thermal stress coefficient [22]. Equation (A18) implies that the
system’s Helmholtz entropy content must increase in response to increase in displacement
(or deformation, expansion, etc.) for process continuity. In general, a solid material’s
strength spontaneously decreases with increase in temperature, ∂Y/∂T < 0, whereas for
fluids, ∂Y/∂T > 0 due to the increase in the useful kinetic and thermal energy of fluids
with temperature.

Appendix A.4. Isothermal Chemical Resistances RNY and RNX

The second partial derivative of the Gibbs free energy with respect to number of
active/reactive moles N defines the isothermal chemical resistance at constant force/strength
RNY . Substituting the third equality of Equation (A4) into the second partial Gibbs deriva-
tive yields

∂2G
∂N2

∣∣∣∣
T,Y

=
∂µ

∂N

∣∣∣∣
T,Y

= RNY ≥ 0, (A20)

rearranged to obtain a system’s isothermal chemical resistance at constant force

RNY =
∂µ

∂N

∣∣∣∣
T,Y

> 0, (A21)

which measures the change in the system’s chemical (nuclear, etc.) potential with change
in amount of the reactive constituent in the system. The chemical resistance is named
similar to the electrical resistance due to the similarity in their fundamental formulations
(in electrical/electrochemical systems, Equation (A21) is Ohm’s law R = V/I).

Similarly, substituting the third equality of Equation (A6) into the second partial
Helmholtz derivative yields

∂2 A
∂N2

∣∣∣∣
T,X

=
∂µ

∂N

∣∣∣∣
T,X

= RNX ≥ 0, (A22)
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rearranged to give the system’s isothermal chemical resistance at constant position/
displacement

RNX =
∂µ

∂N

∣∣∣∣
T,X

> 0. (A23)

As with heat capacities, modulus and loadability, RNX ≈ RNY for most solids and liquids at
low forces and displacements.

Appendix A.5. Thermal Chemico-Transport Decay Coefficients λY and λX

Substituting the first and third equalities of Equation (A4) into the mixed second
partial Gibbs derivative with respect to temperature T and number of active/reactive moles
N renders

∂2G
∂T∂N

∣∣∣∣
Y
= − ∂SG

∂N

∣∣∣∣
T,Y

=
∂µ

∂T

∣∣∣∣
Y,N

= λY ≥ 0, (A24)

rearranged to obtain the constant-force thermal (chemico-transport) decay coefficient

λY =
∂µ

∂T

∣∣∣∣
Y
> 0, (A25)

here defined as the chemical potential response to temperature change at constant strength/
force. Substituting the first and third equalities of Equation (A6) into the mixed second
partial Helmholtz derivative with respect to T and N yields

∂2 A
∂T∂N

∣∣∣∣
X
= − ∂SA

∂N

∣∣∣∣
T,X

=
∂µ

∂T

∣∣∣∣
X,N

= λX ≥ 0, (A26)

rearranged to give the system’s constant-displacement thermal decay coefficient

λX =
∂µ

∂T

∣∣∣∣
X
> 0. (A27)

As observed for heat capacities and chemical resistances, at low forces and displacements
and negligible variations of other properties, λX ≈ λY = λ for solids and liquids over a
considerable temperature range.

The conditions for system stability and/or process continuity defined by the above for-
mulations (using the inequalities) obtain from the fundamental—or Gibbs—thermodynamic
stability theory which establishes a monotonic spontaneous evolution (decline) towards
stable equilibrium.

Appendix A.6. Gibbs Properties vs. Helmholtz Properties

Table A1 lists and categorizes all the properties derived herein according to the preva-
lent interaction(s) they characterize.

Table A1. The Gibbs and Helmholtz potential-based material properties derived in Appendix A.

Category Gibbs-Based Helmholtz-Based

Thermal
Constant-Force Heat Capacity

CY = δQ
∂T

∣∣∣
Y,N

Constant-Displacement Heat Capacity

CX = δQ
∂T

∣∣∣
X,N

Thermo-mechanical
Thermal Displacement Coefficient Thermal Force Coefficient

α = 1
X

∂X
∂T β = αE’

Mechanical
Isothermal Loadability Load Modulus

κT = − 1
X

∂X
∂Y

∣∣∣
T,N

E′ = −X ∂Y
∂X

∣∣∣
T,N

Chemical
Isothermal Constant-Force

Chemical Resistance
RNY = ∂µ

∂N

∣∣∣
T,Y

Isothermal Constant-Displacement
Chemical Resistance

RNX = ∂µ
∂N

∣∣∣
T,X
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Table A1. Cont.

Category Gibbs-Based Helmholtz-Based

Thermo-chemical
Constant- Force Thermal

Decay Coefficient
Constant-Displacement Thermal

Decay Coefficient
λY = ∂µ

∂T

∣∣∣
Y,N

λX = ∂µ
∂T

∣∣∣
X,N

Table A2 summarizes the generic interpretations of the material properties.

Table A2. Material properties and their generic physical interpretations.

Property Physical Interpretation

Heat Capacity Material’s ability to withstand heat without an increase in temperature.
Thermal Displacement/Force
Coefficient

Impact of temperature on displacement/force. Physical response to
temperature change.

Load Modulus Physical response to non-thermal load.
Chemical Resistance Resistance to chemical conversion of reactive species.
Thermal Decay Coefficient Chemical response to temperature change.

The foregoing formulations have been applied to grease [22], deriving and experimen-
tally measuring new and existing grease properties for characterizing grease performance
and degradation.
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