
Citation: Moueddene, L. ; Donoso, A.;

Berche, B. Ralph Kenna’s Scaling

Relations in Critical Phenomena.

Entropy 2024, 26, 221. https://

doi.org/10.3390/e26030221

Academic Editor: Katarzyna

Sznajd-Weron

Received: 31 January 2024

Accepted: 27 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Ralph Kenna’s Scaling Relations in Critical Phenomena
Leïla Moueddene 1,2,3, Arnaldo Donoso 4 and Bertrand Berche 1,*

1 Laboratoire de Physique et Chimie Théoriques, CNRS—Université de Lorraine, 54000 Nancy, France;
leila.moueddene@univ-lorraine.fr

2 L4 Collaboration, Leipzig-Lorraine-Lviv-Coventry, Europe
3 Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 5FB, UK
4 Department of Experimental Physics, Maynooth University, R51 A021 Maynooth, Co. Kildare, Ireland;

arnaldoivic2008@gmail.com
* Correspondence: bertrand.berche@univ-lorraine.fr

Abstract: In this note, we revisit the scaling relations among “hatted critical exponents”, which were
first derived by Ralph Kenna, Des Johnston, and Wolfhard Janke, and we propose an alternative
derivation for some of them. For the scaling relation involving the behavior of the correlation function,
we will propose an alternative form since we believe that the expression is erroneous in the work of
Ralph and his collaborators.
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1. In Memory of Our Friend Ralph Kenna

This paper is dedicated to our friend Ralph Kenna, who passed away on 26 October 2023.
Ralph was a close collaborator and a very good friend, and he was the PhD coadvisor of one of
the authors of the present paper (LM). A renowned specialist in the study of phase transitions
through the partition function zeros, he developed this formalism in difficult cases where
critical behaviors are controlled beyond the dominant singularities by logarithmic corrections.

The present work was initiated on the occasion of the ComPhys23 workshop (http://
www.physik.uni-leipzig.de/~janke/CompPhys23/ (accessed on 26 February 2024)) organized
by W. Janke in Leipzig, and dedicated to the memory of Ralph. The opening talk was intended
to highlight some of Ralph’s most important contributions to statistical physics, notably the
derivation of scaling laws between the exponents associated with logarithmic singularities
in the vicinity of second-order phase transitions. Ralph was a well-known physicist in the
statistical physics community, and these new scaling laws were very successful in the field of
critical phenomena. It was by revisiting these scaling laws and their derivation that we noted
that one of these relations was incomplete and that the work undertaken by Ralph and his
coauthors around twenty years ago merited to be completed.

This paper could have been written by Des Johnston or by Wolfhard Janke, the coau-
thors of Ralph on this topic (and in many more works).

2. Scaling Relations and Universal Combinations of Amplitudes: A Short Primer

We assume that the reader is familiar with the notion of critical exponents that describe
the singularities of various thermodynamic functions at the approach of a second-order
phase transition. Otherwise, we can suggest referring, e.g., to the textbook of Kardar [1].

Standard scaling relations among the universal critical exponents are the following:

2β + γ = 2 − α, (1)

β(δ − 1) = γ, (2)

ν(2 − η) = γ, (3)

2 − α = νd. (4)
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They are very useful, not only to obtain the values of all six fundamental critical exponents
within a universality class from the knowledge of two of them, but also because they allow
for the definition of other universal quantities, written as specific combinations of critical
amplitudes. Let us show how this works. For that purpose, we first define the amplitudes
as they enter the expressions of the leading singular behaviors of thermodynamic quantities
in the vicinity of a second-order phase transition:

Specific heat: C±(t, 0) ≃ A±|t|−α, (5)

Low temperature magnetization: m−(t, 0) ≃ B−(−t)β, (6)

Susceptibility: χ±(t, 0) ≃ Γ±|t|−γ, (7)

Critical temperature magnetization: mc(0, h) ≃ Bc|h|1/δ, (8)

Correlation length: ξ±(t, 0) ≃ ξ0±|t|−ν. (9)

Here, the two arguments of the functions at the l.h.s. are, respectively, t = (T − Tc)/Tc and
h = H/Tc, and the indices ± specify the high (t > 0)- and low (t < 0)-temperature phases,
meaning that the field is zero, and the index c, on the contrary implies the field behavior
at the critical temperature. The symbol ≃ stands for the leading singularity (i.e., the most
singular part since there could be regular contributions to the thermodynamic quantities,
power-law corrections to scaling, and multiplicative logarithmic corrections, all these being
omitted in Equations (5)–(9)).

We can also define the singular part of the free energy density in zero field:

f sing
± (t, 0) ≃ F±|t|2−α, (10)

and since the specific heat is the second derivative of f sing with regard to t, F± is not
independent since this requires A± = (1 − α)(2 − α)F±. The Lee–Yang edge is another
quantity of interest in critical phenomena, and we define

hLY
± (t) ≃ h0±|t|∆ (11)

with the so-called gap exponent ∆ = β + γ = βδ.
Universality is the observation that some quantities only depend on very general

properties, like space dimensionality. The critical exponents are such universal quantities,
but the amplitudes are not, although some combinations among them have the property of
universality. To make it clear, let us write Widom’s scaling assumption, i.e., the fact that the
singular part of the free energy density is a homogeneous function of the scaling fields

f sing
± (t, h) = b−dF±(κtbyt t, κhbyh h), (12)

where F±(x(b), y(b)) is a universal scaling function of its arguments, yt and yh are the RG
dimensions of the relevant fields t and h, and κt and κh are non-universal metric factors
that would differ, say, on the square lattice and the triangular lattice in 2d. The amplitudes
defined above depend on these metric factors, and this is why they are not universal, e.g.,

from C±(t, 0) = ∂2 f sing
± (t,0)
∂t2 , setting b = |t|−1/yt in the scaling form (12), one obtains

C±(t, 0) = κ
2+(d−2yt)/yt
t |t|(d−2yt)/yt

(∂2F±(x, 0)
∂x2

)
x=1

. (13)

This identifies the exponent α = (2yt − d)/yt and the amplitude A± = κ2−α
t

(
∂2F±(x,0)

∂x2

)
x=1

.

The other exponents are similarly defined in terms of yt and yh by very famous
relations that we do not repeat here, and the other amplitudes depend on the metric factors
as B− ∼ κhκ

β
t , Γ± ∼ κ2

hκ
−γ
t , Bc ∼ κ1+1/δ

h .
Simple ratios are immediately defined from the fact that the approach to criticality from

above and from below is described by the same exponent for a given quantity (except for the
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magnetization, obviously), for example, in the case of the specific heat C+(|t|) ≃ A+|t|−α

and C−(−|t|) ≃ A−|t|−α′ , where α′ = α. It follows that the metric factors cancel in the
ratio, and

RC(|t|) =
C+(|t|)

C−(−|t|) =
A+|t|−α

A−|t|−α′
→ RC =

A+

A−
(14)

is thus universal. The limit corresponds to the approach to criticality (|t| → 0 here) since
the combination RC(|t|) can be temperature-dependent due to the possible presence of
different values for the amplitudes of the corrections to scaling, which has not been taken
into account in Equations (5) to (9). In the same manner, one defines the universal ratios

Rχ =
Γ+

Γ−
, Rξ =

ξ0+

ξ0−
. (15)

The scaling relations are other examples of relations that allow the definition of new
combinations. For example, the ratio m2

−/χ± eliminates κh, and κt is then eliminated,
thanks to Equation (1), if we further divide by C±. There is still an unwanted |t|2 depen-
dence that needs to be simplified, and for that purpose, we consider the quantity

R(1)
± (t) =

m2
−(−|t|)

C±(t)χ±(t)|t|2
=

B2
−

C±Γ±
|t|2β+γ+α−2 →

B2
−

C±Γ±
. (16)

Thanks to Equation (1), the fact that all metric factors cancel out in this latter quantity makes
the combination B2

−/C±Γ± universal. Proceeding the same way, Equations (2) and (3)
suggest to contemplate the expressions

R(2)
± (t) = χ±(t)mδ−1

− (−|t|)m−δ
c (h)h

∣∣∣
h=hLY

± (|t|)

= Γ±Bδ−1
− B−δ

c |t|−γ+β(δ−1) → Γ±Bδ−1
− B−δ

c , (17)

R(3)
± (t) =

χ±(t)

ξ
2−η
± (t)

=
Γ±

ξ
2−η
0±

|t|−γ+ν(2−η) → Γ±

ξ
2−η
0±

, (18)

that reach their respective universal values. Eventually, Equation (4) leads to consider the
following combination

R(4)
± (t) = ξd

±(t) f sing
± (t) = ξd

0±F±|t|−dν+2−α → ξd
0±F± (19)

as universal also.

3. From the Universal Combinations of Amplitudes to Scaling Laws among
Hatted Exponents

Having the universal combinations of amplitudes at hand, we consider now the case
where the critical behavior is described, besides the leading singularities, by multiplicative
logarithmic corrections. This may happen, for example, for a system at its upper critical
dimension duc, or in the case of the 2d four-state Potts model, or the 2d disordered Ising
model as well. Many examples can be found in Ref. [2–4].

Let us first remind the standard definitions of some exponent combinations that will
occur below: αc = α/βδ, γc = γ/βδ, νc = ν/βδ, ϵc = (1 − α)/βδ. The logarithmic correc-
tions can appear either in the approach to the critical temperature when the magnetic field
is fixed at zero or, on the other hand, right at Tc when the magnetic field approaches zero:
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h = 0, t → 0±, (20)

f sing
± (t, 0) ≃ F±|t|2−α(− ln |t|)α̂, (21)

m−(t, 0) ≃ B−|t|β(− ln |t|)β̂, (22)

e±(t, 0) ≃ A±
(1 − α)

|t|1−α(− ln |t|)α̂, (23)

χ±(t, 0) ≃ Γ±|t|−γ(− ln |t|)γ̂, (24)

C±(t, 0) ≃ A±|t|−α(− ln |t|)α̂, (25)

ξ±(t, 0) ≃ ξ0±|t|−ν(− ln |t|)ν̂, (26)

t = 0, h → 0±, (27)

f sing
c (0, h) ≃ Fc|h|1+1/δ(− ln |h|)δ̂c , (28)

mc(0, h) ≃ Bc|h|1/δ(− ln |h|)δ̂c , (29)

ec(0, h) ≃ Ec|h|ϵc(− ln |h|)ϵ̂c , (30)

χc(0, h) ≃ Γc|h|−γc(− ln |h|)δ̂c , (31)

Cc(0, h) ≃ Ac

αc
|h|−αc(− ln |h|)α̂c , (32)

ξc(0, h) ≃ ξc|h|−νc(− ln |h|)ν̂c . (33)

We can also define at criticality t = h = 0 the logarithmic correction of the correlation
function, defining the exponents η̂ that will play an essential role in the following of
this paper:

G(0, 0, |r|) ≃ g0|r|−(d−2+η)(ln |r|)η̂ . (34)

We mostly use the notations of Refs. [2,5], with quantities (amplitudes and exponents) at
the critical temperature defined with the subscript c, except for δ in (29), which is standard
according to the terminology fixed by Fisher long ago [6].

Ralph Kenna and his coworkers, Des Johnston and Wolfhard Janke, have established
a series of scaling relations [2–4] among “hatted exponents”, as Ralph used to call them.
Their approach was based on the zeros of the partition function, either the Lee–Yang zeros
(in complex magnetic field) or the Fisher zeros (in complex temperature).

Here, we offer an alternative derivation of most of these scaling laws, probably simpler
in its approach. Universality assumes that the previous ratios of amplitudes are still
universal when multiplicative logarithmic corrections are present, i.e.,

R(1)
± (t) =

m2
−(−|t|)

C±(|t|)χ±(|t|)|t|2
=

B2
−

C±Γ±
(− ln |t|)2β̂−α̂−γ̂. (35)

The fact that this quantity must tend to B2
−/C±Γ± now demands that

2β̂ = α̂ + γ̂. (36)

This is the first of Ralph and his coworkers’ scaling relations. Using the same method, the
second ratio easily leads to a second relation:

γ̂ + β̂(δ − 1)− δδ̂ = 0. (37)
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The amplitude of the Lee–Yang edge, h0±, has a non-trivial dependence with the metric
factors, h0± ∼ κ

βδ
t κ−1

h . This can be retrieved from the scaling relation ∆ = βδ, and the
universality of the ratio

R(5)(t) =
mc(hLY

± (t))
m−(t)

=
Bch1/δ

0±
B−

|t|∆/δ−β(− ln |t|)∆̂/δ+δ̂−β̂ →
Bch1/δ

0±
B−

(38)

requires that
∆̂ = (β̂ − δ̂)δ. (39)

The scaling relations (36) and (37) were first derived in Ref. [3]. Instead of (39), Ralph and
his coworkers had ∆̂ = β̂ − γ̂, which is recovered here using (37) and (39).

In the same paper, they also derived

ϙ̂ = ν̂ + να̂/(2 − α) (40)

that we will now consider. This is an analog of the hyperscaling relation for logarithmic
relations since it is derived from the same ratio of amplitudes as the ordinary hyperscaling
relations, even though the space dimension, fixed at its upper critical value, does not
appear explicitly. A new pseudo-critical exponent [3,4,7] appears there, ϙ̂, which describes
the finite-size scaling (FSS) of the correlation length

ξL ≃ L(ln L)ϙ̂. (41)

This behavior is encoded in the scaling hypothesis for the correlation length, appropriately
extended to account for the logarithmic correction:

ξ±(t, h, L−1) = b(ln b)ϙ̂X (κtbyt(ln b)ŷt t, κhbyh(ln b)ŷh h, bL−1). (42)

Like yt (respectively, yh) is the RG eigenvalue associated with the scaling field t (respectively,
h), we denote ŷt (respectively, ŷh) the corresponding exponent of the logarithmic correction.
For the sake of clarity, we will later denote the rescaled variables as x(b) = κtbyt(ln b)ŷt t,
y(b) = κhbyh(ln b)ŷh h, and z(b) = bL−1. Equation (41) follows from the choice b = L at
criticality t = h = 0 in (42). The same scaling form is used in the thermodynamic limit
L → ∞, setting x = 1. This requires iterations

b = (κ|t|)−1/yt(ln b)−ŷt/yt

≃ (κ|t|)−1/yt(− ln |t|)−ŷt/yt
(

1 +
ln(− ln |t|)
(− ln |t|) + higher order correction

)
. (43)

Insertion into the expression of the correlation length leads to the leading order

ξ±(t, 0, 0) ≃ |t|−1/yt(− ln |t|)ϙ̂−ŷt/ytX (1, 0, 0) (44)

and requires the usual relation ν = 1/yt to conform to (26):

ϙ̂ = ν̂ + νŷt. (45)

We now show that this agrees with Ralph’s scaling relation (40). For that purpose, we use
the compatibility with the extension of the phenomenological Widom scaling assumption
for the free energy density (12) to the presence of logarithmic corrections, written as far as
we know for the first time by Ralph Kenna in Ref. [8],

f sing
± (t, h, L−1) = b−dF±(κtbyt(ln b)ŷt t, κhbyh(ln b)ŷh h, bL−1). (46)
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The second derivative with regard to t is the specific heat, and the choice x = 1 at h =
L−1 = 0 then leads (using α = (2yt − d)/yt) to

C±(t, 0, 0) ≃ |t|−α(− ln |t|)2ŷt−αŷtC±(1, 0, 0), (47)

(from now on, we always limit (43) to leading logarithmic order); hence, from (25),

α̂ = (2 − α)ŷt (48)

which completes the proof.

4. Solving a Disagreement with Our Friends

In Ref. [2], Ralph Kenna has given a complete account of these and many more scaling
relations among hatted exponents. This is not our purpose here to be exhaustive, but rather
to show alternative derivations, or to complete what Ralph and his coworkers did not do.
With this perspective in mind, Equations (42) and (46) and an analogous homogeneity form
for the correlation function (discussed later) offer an option to proceed as we show now.

In Ref. [4], two other scaling relations between hatted exponents were derived:

α̂ = d(ϙ̂− ν̂) or α̂ = 1 + d(ϙ̂− ν̂), (49)

η̂ = γ̂ − ν̂(2 − η). (50)

Concerning the first relation (49), the second formula is valid in such circumstances where
the model has α = 0 and an impact angle ϕ ̸= π/4 for the Fisher zeros in the complex
plane (this is the case for the pure two-dimensional Ising model). We will not consider this
case, but rather the more general case of the first formula. It can be rederived by careful use
of the ratio 4 (Equation (19)) in Section 2, and even requires the use of FSS of the correlation
length. From ξ±(t) ≃ |t|−ν(− ln |t|)ν̂, we first reverse to |t| ≃ ξ−1/ν

± (t)(ln ξ±(t))ν̂/ν. This
expression is then incorporated into (21) to obtain

f sing
± (t) ≃ ξ−d

± (t)(ln ξ±(t))dν̂+α̂ (51)

i.e., a modified version of (19):

R(4bis)
± (t) =

ξd
±(t) f sing

± (t)
(ln ξ±(t))dν̂+α̂

→ ξd
0±F±. (52)

Now, inserting (41) into (51) leads to the FSS behavior of the free energy density at criticality

f sing
L (0) ≃ L−d(ln L)−dϙ̂(ln L)α̂+dν̂, (53)

and compatibility with (46) at t = h = 0, b = L then demands

α̂ = dϙ̂− dν̂. (54)

which is Kenna and his coworkers’ relation.
The same derivation can be carried out for the magnetic sector, considering the ap-

proach to criticality at Tc for h → 0, yielding the scaling relation

δ̂ = dϙ̂− dν̂c. (55)

Concerning Equation (50), we believe that this relation is incomplete. Applied to
the four-state Potts model in two dimensions [9–12], which has η̂ = − 1

8 , γ̂ = 3
4 , ν̂ = 1

2 ,
and η = 1

4 , Equation (50) is fulfilled. We believe that this is because ϙ̂ = 0, and that an
additional term ϙ̂γ/ν is missing in the general case. A test is provided in the case of the
Ising model in four dimensions, which has ϙ̂ = 1

4 (models at their upper critical dimensions
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have ϙ̂ = 1/duc [7,13–15]). There, Ralph and his coauthors had anticipated that η̂ = 0 for
Equation (50) to work (γ̂ = 1

3 , ν̂ = 1
6 , and η = 0 for the Ising model in four dimensions), but

according to Luijten [16], η̂ = 1
2 instead, a result that is in contradiction with Equation (50).

Let us examine the problem in more detail. In Ref. [4], the authors have questioned
the relation between the correlation function and the square of the magnetization when the
system decorrelates, i.e., for |r| → ∞:

G(t, h, L−1 → ∞, |r| → ∞) → m2(t, h, L−1 → ∞). (56)

On the contrary, we assume that there is no reason why this would not be valid, so we start
from the homogeneity of the (spin–spin) correlation function with logarithmic corrections as

G(t, h, L−1, |r|) = b−(d−2+η)(ln b)η̂G(x(b), y(b), z(b), |r|/b), (57)

Setting x = 1, y = 0 and the thermodynamic limit z = 0 leads to the following temperature
behavior when |r| → ∞

G(t, 0, 0, ∞) ≃ |t|
d−2+η

yt (− ln |t|)
d−2+η

yt
ŷt+η̂G(1, 0, 0, ∞) = m2(t, 0, 0). (58)

This requires the usual relation 2β = d−2+η
yt

and

η̂ = 2(β̂ − βŷt). (59)

The two examples given above are test grounds. For the four-state Potts model in two
dimensions, we extract immediately η̂ = − 1

8 , which is correct. For the 4d Ising model,
on the other hand, we obtain η̂ = 1

2 , in agreement with Luijten’s result [16], later verified
numerically in Ref. [17], but we are here in contradiction with the prediction of Refs. [2,4].

Since the question is of importance, we want to consider it from other perspectives also.
The correlation function is linked to the susceptibility via the fluctuation–dissipation relation:

χ(0, 0, L−1) =

∫ L

0
ddr |r|−(d−2+η)(ln |r|)η̂G(0, 0, |r|L−1, 1). (60)

Setting ρ = |r|/L, we have

χ(0, 0, L−1) = L2−η(ln L)η̂
∫ 1

0
ddρρ−(d−2+η)

(
1 +

ln ρ

ln L

)η̂
G(0, 0, ρ, 1) ≃ L2−η(ln L)η̂ , (61)

and since the susceptibility obeys, via the second derivative of (46),

χ(t, h, L−1) = κ2
hb−d+2yh(ln b)2ŷhY (x(b), y(b), z(b)), (62)

its FSS compared to (61) demands that 2 − η = 2yd − d = γ/ν and

η̂ = 2ŷh. (63)

Again, this confirms η̂ = 1
2 for the 4d Ising model.

The fluctuation–dissipation theorem has also been used in Refs. [2,4] in the form

χ∞(t) ∼ ξ
2−η
∞ (t)(ln ξ∞(t))η̂ , (64)

from where Equation (50) follows, so there is still some difficulty hidden to solve our
disagreement. Let us set b = ξ∞(t) in (62):

χ∞(t) = ξ
−d+2yh
∞ (t)(ln ξ∞(t))η̂Y (x(ξ∞(t)), 0) (65)
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where the variable x in the scaling function Y is evaluated at ξ∞(t) to give

x(ξ∞(t)) = ξ∞(t)yt(ln ξ∞(t))ŷt |t| = (− ln |t|)ϙ̂/ν. (66)

The scaling function must have the behavior Y (x, 0) ∼ x−γ when |t| → 0 to recover the
temperature singularity of the susceptibility χ∞(t, 0) ∼ |t|−γ(− ln |t|)γ̂. It follows that
instead of (64), one has

χ∞(t) ∼ ξ
2−η
∞ (t)(ln ξ∞(t))η̂−γϙ̂/ν (67)

and instead of Equation (50), one has a third form for the exponent η̂:

η̂ = γ̂ − ν̂(2 − η) + γ
ϙ̂

ν
, (68)

again compatible with η̂ = 1
2 for the 4d Ising model. This suggests to use, instead of the

ratio R(3)
± (t), the modified version

R(3bis)
± (t) =

χ±(t)

ξ
2−η
± (t)(ln ξ±(t))η̂−γϙ̂/ν

=
Γ±

ξ
2−η
0±

(− ln |t|)γ̂−η̂−γϙ̂/ν−ν̂(2−η) → Γ±

ξ
2−η
0±

(69)

which, again, is universal. The four standard scaling laws and the corresponding four
hatted scaling laws are listed in Table 1.

Table 1. The main scaling laws and hatted scaling laws and the associated universal combinations
of amplitudes.

Ratio Scaling Relation Hatted Scaling Relation

m2
−(−|t|)

C±(|t|)χ±(|t|)|t|2
2β + γ = 2 − α 2β̂ = α̂ + γ̂

χ±(t)mδ−1
− (−|t|)h

mδ
c (h)

∣∣∣∣
h=hLY

± (|t|)

β(δ − 1) = γ γ̂ + β̂(δ − 1)− δδ̂ = 0

χ±(t)
ξ

2−η
± (t)(ln ξ±(t))η̂−γϙ̂/ν

ν(2 − η) = γ γ̂ − ν̂(2 − η) + γ ϙ̂ν = η̂

ξd
±(t) f sing

± (t) 2 − α = νd α̂ = dϙ̂− dν̂

So far so good, but the situation is not yet clear since the case of percolation in six
dimensions (its upper critical dimension) is maybe a counterexample. With γ = 1, ν = 1

2 ,
η = 0, and the values of the logarithmic correction exponents γ̂ = 2

7 , ν̂ = 5
42 , and the pseudo-

critical exponent ϙ̂ = 1
duc

= 1
6 , using Equation (68), we predict η̂ = 8

21 , while Kenna and
his coworkers predict η̂ = 1

21 from Equation (50). This latter result conforms to an analytic
prediction from Ref. [18], but on the other hand, our value is supported by an FSS prediction
by Ruiz-Lorenzo [19], χLL−2 ∼ (ln L)8/21. This disagreement demands further analysis.

In Ref. [2], Kenna listed the values of the known hatted critical exponents for a series
of models, and when η̂ was not known, he proposed the expected value from the use of
Equation (50). An interesting model is missing from the list, the tricritical Ising model,
which has logarithmic corrections at its upper critical dimension duc = 3 and has non-zero
ϙ̂ = 1/3. We will now analyze this universality class in more detail.
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5. The Tricritical Ising Universality Class in the Blume–Capel Model at the Upper
Critical Dimension

The spin-1 Blume–Capel model [20,21] is a lattice model defined by the Hamiltonian

H = −J
∑
⟨i,j⟩

σiσj + ∆
∑

i

σ2
i − H

∑
i

σi, (70)

where the spin variables σi = −1, 0,+1, J > 0 denotes the ferromagnetic exchange inter-
action among nearest-neighbor sites (⟨i, j⟩ indicates summation over nearest neighbors),
and ∆ is the crystal-field strength that controls the density of vacancies (the σi = 0 states can
be viewed as vacancies in an ordinary σi = ±1 Ising model) [22]. For ∆ = −∞, vacancies
are suppressed from the partition function, and the Hamiltonian reduces to that of the Ising
ferromagnet. At ∆ = 0 the second-order transition is in the pure Ising model universality
class. When ∆ increases from 0, a perturbation theory shows that the transition temperature
decreases along a line that remains of Ising-like second-order phase transition. On the other
hand, in the vicinity of T = 0, the transition is first order and persists first order at small
values of T until it reaches the second-order line. Right at the limit, there is a tricritical point
characterized by specific values of Tt, ∆t (Figure 1). Tricriticality corresponds to the ϕ6

Landau expansion [23], and the upper critical dimension is thus duc = 3, the case that we
consider now.

Figure 1. Typical phase diagram of the Blume–Capel model in the (T, ∆) plane. The λ line is a line of
second-order phase transition in the Ising model universality class that ends at a tricritical point of
coordinates (Tt, ∆t). The dashed line is a first-order transition line. The most singular even scaling
field at the tricritical point is g, a linear combination of τ and of ∆ − ∆t.

Using appropriate linear combinations of the physical parameters, determined by the
geometry of the phase diagram and the fact that they have to vanish at the tricritical point,
the even scaling fields are τ = (T − Tt)/Tt, g = (∆ − ∆t)/Tt + aτ, and the odd scaling field
is the usual magnetic field h = H/Tt. Lawrie and Sarbach [24] have shown that the free
energy density at the tricritical point in 3d reads, in terms of these scaling fields, as

f sing
tri (τ, g, h) = b−3F±(b1(ln b)

4
15 τ, b2(ln b)

1
3 g(1 − a−1b−1(ln b)−

1
15 τg), b

5
2 (ln b)

1
6 h), (71)

where the non-universal metric factors κi have been omitted. Here, the subscript “tri”
indicates that the expression is valid in the vicinity of the tricritical point where τ = g =
h = 0. The logarithmic corrections are explicitly given in this expression.

The notations in Ref. [24] necessitate to be adapted to be consistent with those that we
have used until now. Leaving aside the logarithmic corrections for a while, let us write

f sing
tri (τ, g, h) = b−dF±(byτ τ, byg g, byh h). (72)
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The dominant even scaling field is g, the usual singularities and critical exponents are
therefore defined by their behaviors with regard to g instead of τ, which brings corrections
to scaling due to crossover. This means that the t and yt of the three previous sections of
this paper will now be replaced by g and yg. At h = 0 and τ = 0, setting b = |g|−1/yg leads

to f sing
tri (0, g, 0) ∼ |g|d/yg . This is compatible with ν = 1/yg. The specific heat measures the

total energy fluctuations. Its most singular part is defined by

C(τ, g, h) =
∂2 f sing

tri
∂g2 = b−d+2ygC±(byτ τ, byg g, byh h) ∼ |g|−α when τ, h = 0 (73)

with α =
2yg−d

yg
. This shows that the exponent d/yg of f sing

tri (0, g, 0) is thus equal to the
usual value 2 − α, and the hyperscaling relation holds.

We can also define less singular exponents with regard to the scaling field τ (with tilde no-
tation), e.g., C(τ, 0, 0) ∼ |τ|−α̃. A similar analysis as above shows that f sing

tri (τ, 0, 0) ∼ |τ|d/yτ

with d/yτ = (d/yg)ϕ = (2 − α)ϕ with ϕ = yg/yτ the crossover exponent. There is a
caveat here since d/yτ is not equal to 2 − α̃, as one can find in the literature [24]. Indeed,
α̃ = (2yg − d)/yτ = αϕ, hence 2 − α̃ = 2 − αϕ ̸= (2 − α)ϕ. This is important to collect
correct expressions, and this is shown in Table 2.

Table 2. Leading and subleading singularities for the most common physical quantities and the
definitions of the associated exponents. Here, the crossover exponent is ϕ = yg/yτ .

Leading even Field, g Subleading even Field, τ Leading Odd Field, h

C(0, g, 0) ∼ |g|−α α =
2yg−d

yg
C(τ, 0, 0) ∼ |τ|−α̃ α̃ = αϕ

m(0, g, 0) ∼ |g|β β =
d−yh

yg
m(τ, 0, 0) ∼ |τ|β̃ β̃ = βϕ m(0, 0, h) ∼ |h|1/δ δ =

yh
d−yh

χ(0, g, 0) ∼ |g|−γ γ =
2yh−d

yg
χ(τ, 0, 0) ∼ |τ|−γ̃ γ̃ = γϕ

This being said, we can now incorporate the logarithmic corrections in Equation (72)
to obtain

f sing
tri (τ, g, h) = b−dF±(byτ (ln b)ŷτ τ, byg(ln b)ŷg g, byh(ln b)ŷh h), (74)

and the comparison with Equation (71) simply leads to

yg = 2, yh =
5
2

, yτ = 1, (75)

ŷg =
1
3

, ŷh =
1
6

, ŷτ =
4

15
, ϙ̂ =

1
3

. (76)

We can now deduce the values of the standard critical exponents and the associated
logarithmic corrections exponents. They are listed in Table 3 for three universality classes,
which all have non-zero values of the pseudo-critical exponent ϙ̂, the Ising model in four
dimensions, the tricritical Ising model in three dimensions, and the problem of percolation
in six dimensions.

In this table, the first six lines are not controversial. The seventh line presents the
correlation function correction exponent η̂, which follows from our scaling law, in any
of the forms given in Equations (59), (63), or (68). These three expressions are mutually
consistent, but they differ from Equation (50) used by Kenna and his coauthors. This latter
formula would, respectively, predict for the three universality classes the values 0, − 1

3 ,
and 1

21 . We have seen that the first value, 0, is falsified in the 4d IM case by Refs. [16,17],
but the results of Ref. [18] invalidates our third value 8

21 , the last entry of in Table 3, while
Ref. [19], on the contrary, supports this value.
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Table 3. Leading and logarithmic correction exponents for the most common physical quantities.

Leading Exponent Logarithmic Correction Exponent
Quantity IM4D Tri. IM Perco. IM4D Tri. IM Perco.

C(t, 0) α =
2yt−d

yt
0 1

2 −1 α̂ = (2 − α)ŷt
1
3

1
2

2
7

m−(t, 0) β =
d−yh

yt

1
2

1
4 1 β̂ = βŷt + ŷh

1
3

1
4

2
7

χ(t, 0) γ =
2yh−d

yt
1 1 1 γ̂ = 2ŷh − γŷt

1
3 0 2

7

mc(0, h) 1
δ =

d−yh
yh

1
3

1
5

1
2 δ̂ = 1

δ ŷh + ŷh
1
3

1
5

2
7

hLY(t, 0) ∆ =
yh
yt

3
2

5
4 2 ∆̂ = ∆ŷt − ŷh 0 1

4 0
ξ(t, 0) ν = 1

yt

1
2

1
2

1
2 ν̂ = ϙ̂− νŷt

1
6

1
6

5
42

G(0, 0, |r|) η = d − 2yh + 2 0 0 0 η̂ = 2ŷh
1
2

1
3

8
21

The case of the tricritical Ising model in three dimensions appears crucial, and we have
to provide numerical results in support of our result. The numerical computation of the
correlation function is known to be a very delicate problem, and we will approach the value
of the exponent η̂ differently, using FSS. Another delicate aspect is also the well-known fact
that extracting logarithmic corrections in the vicinity of a critical point can be extremely
difficult [25]. Recently, it was found that very accurate results can be obtained numerically
in the Blume–Capel model with relatively small system sizes [26] via the analysis of the
zeros of the partition function, and in particular the Lee–Yang zeros [27,28]. The Lee–Yang
zeros are connected to the susceptibility [29] via

χ(g, 0, L−1) ≃ L−d
Ld∑

j=1

h−2
j (g, 0, L−1), (77)

where j labels the zeros in the upper-half complex plane, indexed in order of increasing
distance from the critical point. The sum is dominated by the lowest zero, the Lee–Yang edge
hLY, and at the tricritical point, the FSS of the susceptibility is thus linked to that of hLY:

χ(0, 0, L−1) ≃ L−dhLY(0, 0, L−1)−2 ≃ L2−η(ln L)η̂ . (78)

In the presence of logarithmic corrections, the scaling form of the Lee–Yang edge obeys

hLY(g, h) = b−yh(ln b)−ŷhH±(byτ (ln b)ŷτ τ, byg(ln b)ŷg g, byh(ln b)ŷh h) (79)

compatible with the behavior in terms of the thermal scaling field g, as it can be shown using
the scaling laws of Table 3, hLY(g, 0) ∼ |g|∆(− ln |g|)∆̂. If one sits exactly at the tricritical
point, τ = g = h = 0, we can extract the FSS behavior of the zeros by setting b = L,

hLY(0, 0, L−1) ≃ L−yh(ln L)−ŷh (80)

and it follows that we expect

hLY(0, 0, L−1) ≃ L(η−2−d)/2(ln L)−η̂/2 (81)

which agrees with Equation (78).
As we said, this form can be checked with good accuracy at the price of relatively light

Monte Carlo simulations. The coordinates of the tricritical point of the Blume–Capel model
in 3d are found in Ref. [30], Tt ≃ 1.4182, ∆t ≃ 2.8448, but the value of ∆t does not seem to
be as accurate as that of the temperature and for example Zierenberg et al. Ref [31] report
instead ∆t ≃ 2.8446. Let us first analyze this problem ourselves. In Figure 2, we report
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the FSS of the magnetization at Tt ≃ 1.4182 for several values of ∆ ranging from 2.8440 to
2.8448. The magnetization is expected to follow the FSS behavior

m(0, 0, L−1) ∼ L−d+yh(ln L)ŷh (82)

with d− yh = 1
2 and ŷh = 1

6 . The data points are fitted as m(0, 0, L−1)L
1
2 = a(ln L)b with a, b

free parameters. The closest to the expected result (the black dashed line) is at ∆ = 2.8442,
where we obtain b = 0.155 ± 0.007. We will thus consider this value of ∆ as our estimate
for the coordinate of the tricritical point ∆t.

12 14 16 18 20 22

log L

100

8.8 × 10 1

9 × 10 1

9.2 × 10 1

9.4 × 10 1

9.6 × 10 1

9.8 × 10 1

m
(T

c)L
1/

2

= 2.8440, b=     0.2670 +/-  0.0066
= 2.8442, a|log L|1/6

= 2.8442, b=     0.1547 +/-  0.0066
= 2.8446, b=    -0.0721 +/-  0.0065
= 2.8448, b=    -0.1858 +/-  0.0065

Figure 2. FSS of the magnetization for the tricritical Ising model (Blume–Capel model at its tricritical
temperature) in 3d at Tt = 1.4182 and various values of the crystal-field parameter ∆ for sizes ranging from
L = 12 to 22. The best fit is for ∆ = 2.8442 (χ2/dof = 30.40/4 = 7.6 at ∆ = 2.8440, χ2/dof = 5.39/4 = 1.35
at ∆ = 2.8442, χ2/dof = 28.36/4 = 7.09 at ∆ = 2.8446 and χ2/dof = 76.74/4 = 19.18 at ∆ = 2.8448).

The analysis of the Lee–Yang edge is presented in Figure 3 with a larger choice of
values of ∆ and, again, the best fit is at ∆t = 2.8442, where the estimate of ŷh is now slightly
larger at 0.172 ± 0.008.

0.9102 0.9704 1.0198 1.0614 1.0972 1.1285

log L

2.25 × 100

2.3 × 100

2.35 × 100

2.4 × 100

h 0
L5/

2

= 2.8440, yh=  0.2990 +/-  0.0077
= 2.8441, yh=  0.2361 +/-  0.0078
= 2.8442, yh=  0.1719 +/-  0.0078
= 2.8442, a|log L| 1/6

= 2.8443, yh=  0.1065 +/-  0.0079
= 2.8444, yh=  0.0398 +/-  0.0080

Figure 3. FSS of the Lee–Yang edge for the tricritical Ising model (Blume–Capel model at its tricritical
temperature) in 3d at Tt = 1.4182 and various values of ∆ for sizes ranging from L = 12 to 22.
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The reader could still question the sensitivity of the value of ŷh with the choice of
tricritical temperature Tt. Indeed, when one looks at the FSS of the tricritical magnetization,
for example, the effective exponent of the log term is either positive and close to the
expected value or can differ from the expectation and even be negative, depending on the
values of the crystal field ∆ (see Figure 2). It makes sense to ask whether the role of Tt may
also have a significant influence. We believe that the results presented in this work are
reliable and to support the consistency of the numerical data, we show in Figure 4 that
slight variations of T change the regime from the pure 3d Ising model at T = 1.4197, for
which yh = 2.4815(15) [32] is expected, to first order at T = 1.4170, where an effective
FSS yh = d is expected [33]. T = 1.4182 safely recovers yTri

h = 2.5 to a very good accuracy
and confirms the tricritical value of Tt ≃ 1.4182. Note that the transition line in the phase
diagram in the vicinity of the tricritical point is almost at a fixed value of ∆, this is why the
three regimes are found at the same crystal-field value of ∆ = 2.8442.

12 14 16 18 20 22
L

10 3

6 × 10 4

2 × 10 3

3 × 10 3

4 × 10 3

h 0

T = 1.4197, yh=  2.4815 +/-  0.0029
T = 1.4182, aLyh|log L| 1/6, yh=   2.5021 +/-  0.0028
T = 1.4070, yh=  3.0221 +/-  0.0025

Figure 4. FSS of the Lee–Yang edge in the vicinity of the tricritical point of the Blume–Capel model in
3d, at Tt = 1.4170, 1.4182 and 1.4197 and ∆ = 2.8442 to show the first-order, the tricritical, and the
ordinary second-order regimes from the values of the corresponding RG dimensions yh.

6. Conclusions

The numerical results obtained for the tricritical Ising model universality class in 3d
confirm the prediction that ŷh = 1

6 , hence the prediction η̂ = 1
3 , while the scaling law of

Kenna and his coworkers would have given − 1
3 instead.

In Ref. [2], Ralph Kenna concluded his review with a table collecting the sets of critical
exponents and hatted critical exponents for various models and predicting those that
were still unknown from the use of the newly discovered scaling laws and, in particular
Equation (50), which we scrutinize and propose to replace by Equation (68) or any of the
equivalent forms that we have derived.

In the list, the O(n) model with long-range interactions [34,35] was predicted to have
η̂ = 0. We propose instead η̂ = 1

2 , following from ŷt = (4 − n)/[2(n + 8)], ŷh = 1
4 .

The Lee–Yang edge in 6d [19] was predicted to have η̂ = 1
9 . We rather have ŷt = − 2

9 and
ŷh = 2

9 , hence η̂ = 4
9 .

For lattice animals in 8d [19], Kenna predicted η̂ = 1
9 , and we have ŷt = ŷh = 2

9 and
η̂ = 4

9 .
The case of scale-free networks [36–38] is particular in the sense that Ralph Kenna did not
make any prediction for η̂ because some exponents were missing. From those which are
known, we can deduce that ŷt = − 1

2 and ŷh = − 1
4 , and we deduce thus η̂ = − 1

2 , which is
a new prediction.



Entropy 2024, 26, 221 14 of 15

Eventually, we believe that the n-color Ashkin–Teller model in 2d is still under question
since the exponents collected by Shalaev and Jug [39] do not satisfy the “standard” scaling
laws, e.g., the values reported do not obey α̂ + γ̂ = 2β̂.

To finish this paper, we would like to say that the scaling laws discovered by Ralph
Kenna and his coworkers are invaluable because they make it possible to establish (or
falsify) the consistency of the results obtained for various models. The case of the n-color
Ashkin–Teller model in 2d is such an example where it seems that there are still some
inconsistencies to solve. Although we happened to contradict one of these scaling laws, we
admire the piece of work conducted in Refs. [2–4], where we recognize Ralph’s footprint.
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