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Abstract: Graph distance measures have emerged as an effective tool for evaluating the similarity
or dissimilarity between graphs. Recently, there has been a growing trend in the application of
movie networks to analyze and understand movie stories. Previous studies focused on computing
the distance between individual characters in narratives and identifying the most important ones.
Unlike previous techniques, which often relied on representing movie stories through single-layer
networks based on characters or keywords, a new multilayer network model was developed to allow
a more comprehensive representation of movie stories, including character, keyword, and location
aspects. To assess the similarities among movie stories, we propose a methodology that utilizes a
multilayer network model and layer-to-layer distance measures. We aim to quantify the similarity
between movie networks by verifying two aspects: (i) regarding many components of the movie
story and (ii) quantifying the distance between their corresponding movie networks. We tend to
explore how five graph distance measures reveal the similarity between movie stories in two aspects:
(i) finding the order of similarity among movies within the same genre, and (ii) classifying movie
stories based on genre. We select movies from various genres: sci-fi, horror, romance, and comedy.
We extract movie stories from movie scripts regarding character, keyword, and location entities to
perform this. Then, we compute the distance between movie networks using different methods,
such as the network portrait divergence, the network Laplacian spectra descriptor (NetLSD), the
network embedding as matrix factorization (NetMF), the Laplacian spectra, and D-measure. The
study shows the effectiveness of different methods for identifying similarities among various genres
and classifying movies across different genres. The results suggest that the efficiency of an approach
on a specific network type depends on its capacity to capture the inherent network structure of that
type. We propose incorporating the approach into movie recommendation systems.

Keywords: movie; multilayer network; network similarity; movie genre classification; network
quantification; graph distance measure

1. Introduction

A recommendation system is a filtering system that suggests a list of items similar to a
user’s favorites. Nowadays, recommendation systems are integrated everywhere on many
platforms, such as e-commerce, social media, YouTube, etc. A movie recommendation
system, such as Netflix, proposes to users a set of movies based on filtering their data or
recent online activities. Recommendation systems employ filtering techniques [1–4] such as
collaborative-based, content-based, and hybrid-based methods. However, these techniques
rely on algorithms for collecting and analyzing user information or interactions through
web navigation, which leads to security and privacy issues. An alternative way to identify
similar movies without accessing user data is by assessing movie stories represented
as networks.
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Over the last few years, the analysis of movies has increasingly become a crucial aspect
and a challenging issue in complex network analysis. The process involves identifying
different components of a movie story, converting them into networks, and then selecting
appropriate approaches to measure and evaluate these networks. Studies were conducted
to bridge the semantic gap through summarization [5,6] and audiovisual information [7].
Adams et al. (2002) [8] used social networks to sort movies into categories. Weng et al.
(2009) [9] and Jung et al. (2013) [10] investigated movie stories using social networks based
on character interactions. All previous studies have been conducted to analyze characters .
The most widespread method is representing characters in a single or a bipartite graph [11].
However, one component of the story is not sufficiently efficient to give a comprehensive
overview of the story. For this, Mourchid et al. [12] proposed a multilayer network model
to capture more elements of the movie story, including characters, keywords, and locations.

Markovic et al. (2019) [13] conducted a study to construct the character network of
Slovene belles-lettres based on its interaction structures. To evaluate their interactions,
they created a list of main characters and indexed sentences in which they appear. The
distance between characters is then computed based on their frequency of occurrence
in the text. Lv et al. (2018) [14] proposed StoryRoleNet, an algorithm to construct the
character network of a movie from its corresponding video and subtitle. Then, they
identified the main characters using the Louvain algorithm for community detection. In
another study, Chen et al. (2019) [15] suggested using the minimum span clustering
algorithm on community structures and centrality to find the distance between characters
extracted from the novel Dream of the Red Chamber. All these studies aim to calculate the
distance between individual characters in a narrative and identify the most important ones.
Mourchid et al. (2019) [16] proposed visualizing characters, keywords, locations, captions,
and faces in Star Wars using community detection. They identified the top ten nodes within
individual layers by comparing influence scores of their corresponding diameter, number
of nodes, number of edges, clustering coefficient, shortest path, assortativity, number of
communities, and modularity. However, despite considering many components of the
movie story, they also rely on analyzing individual characters by highlighting the main ones.
To the best of our knowledge, there is currently no approach for measuring the similarity
between movie stories, verifying two aspects: (i) regarding many components of the movie
story and (ii) quantifying the distance between corresponding movie networks. Thus, we
aim to quantify the similarity between a couple of movies by assessing the distance of their
corresponding networks considering many elements. We rely on the multilayer network
model [12] to extract three-layer entities, i.e., character, keyword, and location. We then
compute the distance between these layers using graph distance techniques. Determining
the distance between networks is a challenging task in network science, as a distance
measure may work well on one type of graph but not on another, depending on the
network structure and topology. Our primary objective is to investigate the effectiveness of
graph distance measures for estimating movie similarity so that they can be incorporated
into recommendation systems.

Graph distance techniques involve two main steps: (i) extracting network feature
vectors and (ii) computing the distance between them. In the context of network analysis,
many authors rely on techniques such as node degree visualization [17], centrality visu-
alization [18], and community visualization [19]. In general, there are two techniques for
analyzing a network [20]. The first method concerns presenting network data using net-
work visualization such as diagrams, heat maps, or graph displays. The visual comparison
allows us to make a general overview and assumptions about the network. Numerous
visual tools allow for exploring networks, such as Gephi [21]. The second technique in-
volves extracting network properties, such as node degrees, graphlets, or centrality. These
properties help in investigating the structure of a network. In our study, we opt to focus on
the second category due to its precision.

Schieber [22] combined three features of probability distribution functions—node
degree, node dispersion, and node alpha-centrality—into a single vector. He first calculated
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the distribution of each of the three features and then used Jensen–Shannon to compute
the distance between these probability distributions. Ronda [23] (2020) extracted node
connectivity and node similarity features and computed the distance between vectors using
cosine similarity. Saxena [24] (2019) extracted k-core, k-truss, and node degrees to analyze
the hierarchy level and the assortativity. The GRAAL (GRAph ALigner) family (M-GRAAL,
L-GRAAL, C-GRAAL, and H-GRAAL) is used for biological network alignment, except
MI-GRAAL, which can analyze topological features. Brodka [25] (2018) classified distance
measures into three categories: (i) transform property vectors into scalar values and mea-
sure their relative differences; (ii) compute the frequency distributions of the property
vectors and determine the distance between them; (iii) compare the property vector using a
measure of overlapping or correlation.

Two major categories of methods can be distinguished: known node-correspondence
and unknown node-correspondence. The first category involves comparing networks that
require prior knowledge of the nodes, such as graphs with the same size, node labels,
node-set, and edge-set. In contrast, the second category compares networks that do not
necessitate prior knowledge of nodes, providing valuable insights into the structure and
topology of graphs. Our research focuses on node-correspondence methods as we work on
networks of different sizes.

In our previous work [26], we analyzed the similarity in the 6-cycle Star War Saga
(SW) movies. We used the multilayer network model to extract character, keyword, and
location networks. Then, we employed network portrait divergence [27] to compute the
distance between movie layers. Our findings suggest a high similarity among characters
in both the prequel and sequel trilogies and a notable distinction in locations between
both trilogies. Moreover, there is a significant similarity in locations within each of the
prequel and sequel trilogies. The results reveal similarities in the relationships between
topics (keywords) in Star Wars episodes II (SW2) and III (SW3), as well as in episode I (SW1)
with episodes IV (SW4) and VI (SW6). However, other episodes exhibit dissimilarities,
particularly the relationship connecting keywords of episode V (SW5) with episodes II
(SW2) and III (SW3). In recent work [28], we studied the efficiency of NetLSD (network
Laplacian spectral descriptor) in revealing the similarity between the 3-cycle movies of the
Scream Saga (SC). The analysis indicates higher similarity between keywords in episodes I
and II than in episode III. Moreover, the findings validate a degradation in the similarity
among the characters and locations across the episodes. In the current work, we investigate
the performance of more distance measures, namely, the network matrix factorization, the
Laplacian spectra, and the D-measure for comparing movie networks from four categories:
sci-fi, horror, romance, and comedy. Moreover, we investigate the performance of distance
measures in categorizing movie genres.

The rest of this paper is organized as follows. In Section 2, we summarize the mul-
tilayer movie script model and its extraction process. Section 3 describes the approaches
used for comparing movie networks. Section 4 describes the dataset and the ground truth
data. In Section 6, we apply the measures to the movie networks, interpreting the results.
We conclude in Section 7.

2. Multilayer Movie Model

Mourchid et al. [12] proposed a multilayer network model to capture the differ-
ent elements of a movie story and answer the most commonly asked questions in film
narration—Who?, Where?, and What? According to their model, the characters answer
the question Who, the keywords answer the question What, and the locations answer
the question Where. The multilayer network consists of three layers, each representing a
different entity and interaction. In the following, we describe the concept of the constitution
of the network model.
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2.1. Definition

Nodes

Each layer contains nodes belonging to the same category. There are three sets of
nodes (character, location, keyword), which are defined as follows:

• A character refers to an actor in a movie.
• A location is a place where a scene turns.
• A keyword is a significant word uttered by a character during dialogues.

Links

There are two types of links (intralayer and interlayer), which are defined as follows:

• Intralayer link connects nodes of the same entity:

– A link when two characters communicate with each other.
– A link when two locations are consecutive.
– A link when two keywords belong to the same conversation.

• Interlayer link connects nodes of different entities:

– A link between a character and a location if the character appears in the location
in a scene.

– A link between a character and a keyword if the character pronounces the keyword.
– A link between a location and a keyword if the keyword is mentioned in a

conversation taking place in the location.

The multilayer network includes numerous nodes and relationships. However, Figure 1
shows a sample of the multilayer network model for a better understanding of interactions.

Figure 1. Multilayer network model for extracting movie stories. The green line represents intralayer
links connecting nodes of the same entity. The blue dotted line represents interlayer links connecting
nodes of the same entity.

2.2. Network Extraction

We explain in this section how to extract the multilayer network model from a movie
script by identifying entities and their interactions. Firstly, we append a glossary of the
semantic components found in the movie script.
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Term Definition

Script (Screenplay) A document includes technical information about scenes, dialogues, and settings.

Scene heading The start of a scene in a screenplay. A scene heading describes the physical spaces (INT or EXT),
location, and time of the day (DAY or NIGHT).

Scene A piece of the script. Each script is divided into scenes, which are separated by scene headings.

Dialogue The lines of a speech a character must say in a scene.

Conversation An interchange of dialogue between two or more characters in a script.

Action Lines describe visual and audible actions in a scene.

Figure 2 displays a piece from the movie script Revenge of the Sith. Within this snippet,
three scenes are delineated by scene headings, with the latter consistently followed by
action lines. Character names are written in uppercase and positioned before dialogue lines.
Note that some scenes contain only action lines.

Figure 2. A piece of the script extracted from the movie ‘Attack of the Clones’. The figure illustrates
elements of a movie script: Scene Heading, Character, Action, and Dialogue.

The first step of the process is to chunk the script into scenes. Figure 3 provides
an overview of extracting entities from the script. Due to the straightforward structure
of the text, identifying locations and characters is a simple task during analysis. For
instance, consider the first scene. The location MOSTAFAR COLLECTION PANELS in the
scene heading is placed just after the physical space EXT. ANAKIN and OBI-WAN are the
characters. The keywords are retrieved from dialogues using the latent Dirichlet allocation
(LDA) [29] method. Named entity recognition (NER) is a tool used to identify different
types of entities: characters, keywords, and locations within action lines. Figures 4 and 5
provide an example of the extraction of intralayer and interlayer links, respectively.
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Figure 3. The process of extracting the entities: characters, keywords, and locations. First, the script is
divided into scenes. Locations are extracted from scene headings, keywords from dialogues, and characters
from the lines preceding dialogues. Then, named entity recognition is applied to classify them into entities.

Figure 4. Extraction of intralayer links: An intralayer link is established between characters who
communicate in the same scene, keywords that belong to the same conversation, or consecutive locations.
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Figure 5. Extraction of interlayer links: Interlayer links are established between a character and a
location if the character appears in the location, between a character and a keyword if the character
mentions the keyword, or between a location and a keyword if the keyword is discussed in a
conversation within the location.

3. Network Similarity Measures

Unknown-node correspondence can be categorized into three main approaches: spec-
tral, embedding, and statistical. In this section, we present the measures used in exper-
imentation for each category. The Table 1 illustrates the terms and notations used in
this paper.

Table 1. Terms and Notations.

Symbol Description

G Undirected and unweighted network
V, n Set of vertices, Number of nodes
E, m Set of edges, Number of edges
A n × n adjacency matrix
D n × n diagonal matrix
I n × n identity matrix
L Laplacian matrix
L̃ Normalized Laplacian matrix
ρ Orthogonal matrix
ς Graph representation
d Graph’s diameter
λ Eigenvalue
v Feature vector
D̃ Distance
JS Jensen–Shannon divergence

3.1. Spectral Methods

Two graphs are supposed to be isomorphic if they are isospectral; in other words, if
they share the same spectrum [30]. However, this hypothesis is doubtful because two dif-
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ferent networks can have the same spectrum [31]. Nevertheless, numerous investigations
are underway to solve this problem. Given a graph G = (V, E), where V is a set of vertices
and E ⊆ V × V is a set of edges, G can be represented as a square matrix M of size n × n,
where M encodes the structural properties of a graph, such as the node degree. M can
be the adjacent matrix, Laplacian matrix, normalized Laplacian matrix, or heat kernel
matrix. The spectrum of a matrix M, denoted s, is the set of eigenvalues {λ1, λ2, . . . , λ|V|},
where an eigenvalue λi is the root of the characteristic polynomial PM associated with M.
Eigenvalues are obtained by solving the polynomial equation PM(λ) = det(λI − M) = 0,
where I represents the n × n identity matrix.

The matrix representation M can be written as the eigendecomposition M = ρDρ−1, where

D =


λ1 0 · · · 0
0 λ2 · · · 0
...
0 0 · · · λ|V|


is the diagonal matrix whose entry is the eigenvalues and ρ = [ρ1, ρ2, · · · , ρ|V|] is the
orthogonal matrix whose a column ρi is the corresponding eigenvector of the eigenvalue
λi. Thus, it is possible to derive a spectrum from either an eigendecomposition of M or the
characteristic polynomials PM.

3.1.1. Euclidean Distance between Spectra

Wilson and Zhu [30] have demonstrated that the Laplacian matrix is more effective
than the adjacency and normalized Laplacian matrices in clustering and classification.
Furthermore, the Laplacian spectra show a lower occurrence of the isospectrality issue
than the adjacency spectra or normalized Laplacian spectra [30]. Laplacian spectra is
a permutation-invariant and scale-adaptive measure. The distance between the spec-
tra precises if networks are similar or dissimilar. Let vsGA

= (λA1 , λA2 , . . . , λAn) and
vsGB

= (λB1 , λB2 , . . . , λBn) be vectors, including the spectra of the graphs GA and GB, re-
spectively. Euclidean distance between sGA and sGB is determined using the difference
between GA and GB. It is defined as follows:

D̃(sGA , sGB) =
√
(λA1 − λB1)

2 + (λA2 − λB2)
2 + . . . + (λAn − λBn)

2 =

√
n

∑
i=0

(λAi − λBi )
2 (1)

Algorithm 1 shows the steps for computing the distance D̃ between two networks
across Laplacian spectra.

Algorithm 1 Compute the distance between two networks across Laplacian spectra.
input: GA and GB
output: single value

Compute LA = Laplacian_matrix(GA) //Return the Laplacian Matrix of GA
Compute LB = Laplacian_matrix(GB) //Return the Laplacian Matrix of GB
Compute vsGA

= spectra(LA) //Extract Spectra of LA as a vector
Compute vsGB

= spectra(LB) //Extract Spectra of LB as a vector
return D̃(vsGA

, vsGB
) //The output is a single value

3.1.2. Network Laplacian Spectral Descriptor

The network Laplacian spectral descriptor (NetLSD) [32] is a recent method for graph
comparison. Given a graph G with n nodes, NetLSD derives the n-dimensional vector ut

from the heat equation ∂ut
∂t = −L̃ut where ut isthe heat properties of nodes. The closed-form

solution is n × n heat kernel matrix ht, such as
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ht = e−tL̃ (2)

The heat matrix ht verifies three properties: permutation-invariant, scale-adaptive, and
size-invariant. In the following, we will elaborate on these three properties and illustrate
how ht accomplishes them.

• Permutation-invariant: A distance D̃ on a graph representation ς is permutation-
invariant if, despite permuting two given networks GA and GB, their graph represen-
tations ς remain identical:

∀GA, GB GA ≃ GB ⇒ D̃(ς(GA), ς(GB)) = 0 (3)

As seen in Equation (2), we note that the ht inherits properties from L̃. Since the nor-
malized Laplacian spectrum (L̃) verifies the permutation property, the heat matrix(ht)
also verifies the permutation property.

• Scale-adaptive: A graph representation ς is scale adaptive if it contains both local
feature φl and global feature φg:

– Local feature (φl) captures information about the graph structure at the local level:

∀G, ∃ f (.), φl = f (ς(G)) (4)

– Global feature (φg) captures information about the graph structure at the global level:

∀G, ∃ f (.), φg = f (ς(G)) (5)

The heat kernel matrix can encode global and local connectivities thanks to its diagonal ma-
trix.

• Size-invariant: Let ∆ be a domain. A distance D̃ on a graph representation ς is
size-invariant if it verifies:

∀∆ : GA, GB sampled from ∆ ⇒ D̃(ς(GA), ς(GB)) = 0 (6)

Regardless of the shape of GA and GB, if they are sampled from the same domain ∆, the
distance D̃ between their graph representations should be equal to 0. The heat kernel matrix
fulfills the size-invariant property, as demonstrated by the authors [32], who proved the
ability of the heat kernel to output comparable values even for complete and empty graphs.

After extracting heat kernel matrices htA and htB for networks GA and GB, they are
reshaped into vectors vhtA

and vhtB
, respectively. Then, the Euclidean distance (Equation (1))

is used to compute the distance between heat kernel vectors vhtA
and vhtB

. Algorithm 2

shows the steps for computing the distance D̃ between two networks across NetLSD.

Algorithm 2 Compute the distance between two networks across NetLSD.
input: GA and GB
output: single value

Compute htA = NetLSD(GA) //Return the NetLSD of GA as a matrix
Compute htB = NetLSD(GB) //Return the NetLSD of GB as a matrix
ComputevhtA

= Reshape(htA) //Convert heat kernel matrix htA into vector
Compute vhtB

= Reshape(htB) //Convert heat kernel matrix htB into vector
return D̃(vhtA

, vhtB
) //The output is a single value
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3.2. Embedding Methods

In the literature [33–35], the term embedding has been used in two ways: graph
embedding or node embedding. Graph embedding is a technique that involves mapping
the nodes of a network into a low-dimensional vector, while node embedding involves
mapping each node to a particular vector. During the past decade, network embedding
has been extensively used in node classification [36,37], clustering [38–40], community
detection [41], visualization [42], and network comparison [43–45]. Two nodes are regarded
to be similar if they are positioned closer to each other in space. The main important feature
in graph embedding is the order-proximity. An efficient network embedding method should
verify both the first-order proximity, which is determined by the edge weight between two
nodes vi and vj, and the second-order proximity, which is determined by the similarity
between the neighbors of nodes vi and vj. The prominent challenge of graph embedding
techniques is to preserve the network structure [33,34].

A plethora of graph-embedding techniques is available [33]. The matrix factorization
technique is useful in recommendation systems [46]. It is efficient and has important
features. The matrix factorization is related to the singular value decomposition (SVD) [47]
technique which decomposes a matrix M into three matrices M = ρDρT , where ρ is the
orthogonal matrix of M and D is its diagonal matrix. The SVD provides a unique solution
D for the equation M = ρDρT as it extracts unique feature singular values.

NetMF (network embedding as matrix factorization) is a recent permutation-invariant
network representation learning model used for graph embedding. NetMF employs the net-
work matrix-factorization-based technique [46] for embedding DeepWalk [48]. Jiezhong et
al. [49] concluded the closed-form of DeepWalk as matrix factorization ( 1

W ∑W
r=1 Pr)D−1.

They then demonstrated a relationship between the closed form of the DeepWalk and the
normalized Laplacian matrix L̃, such as D−1/2 AD−1/2 = I − L̃.

The NetMF algorithm takes as input a network G and produces as output a matrix
n × n representing the network embedding Q. To compare two networks GA and GB, we
first extract their corresponding matrices QA and QB. Second, we reshape QA and QB
into vectors vQA and vQB . Then, the Euclidean distance (Equation (1)) is used to compute
the distance between embedding vectors vQA and vQB . Algorithm 3 shows the steps for
computing the distance D̃ between two networks across their network embeddings.

Algorithm 3 Compute the distance between two networks across network NetMF.
input: GA and GB
output: single value

Compute QA = NetMF(GA) //Return the Network Embedding of GA as a matrix
Compute QB = NetMF(GB) //Return the Network Embedding of GB as a matrix
Compute vQA = Reshape(QA) //Convert Network Embedding QA into vector
Compute vQB = Reshape(QB) //Convert Network Embedding QB into vector
return D̃(vQA , vQB) //The output is a single value

3.3. Statistical Methods

A statistical method describes a network by probing its characteristic properties. The
primary step in statistical approaches is extracting network features, such as node degrees,
degree distribution, shortest path, etc. Features can be represented as singular values,
vectors, or matrices. The second step consists of computing the distance between them.

3.3.1. Portrait Divergence

Network portrait divergence [50] is a permutation-invariant measure used to com-
pare two complex networks based on the probability distribution feature and the Jenson–
Shannon divergence. The network portrait [27] is a matrix B where each row represents
the probability distribution P(k|l), such as:
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P(k|l) = 1
N
Bl,k (7)

where k is the number of nodes accessible at distance l from a randomly chosen node.
In two steps, the network portrait divergence computes the distance between two

networks GA and GB. First, it calculates the probability distributions PBA and PBB of
GA and GB, relying on Equation (7). At the end of this step, GA and GB are associated
with the network portraits BA and BB, respectively. Second, network portrait divergence
computes the distance between the network portraits BA and BB using the Jensen–Shannon
divergence, such as

D̃JS(GA, GB) =
1
2
(KL(PBA ||P∗) + KL(PBB ||P∗)) (8)

where P∗ =
(PBA

+PBB )

2 , and KL(.||.) is the Kullback–Liebler divergence between two proba-
bility distributions PBA and PBB , such as

KL(PBA(k|l)||PBB(k|l))) = Σmax(dA ,dB)
l=0 ΣN

k=0PBA(k|l)log(
PBA(k|l)
PBB(k|l)

) (9)

Algorithm 4 shows the steps for computing the distance D̃ between two networks
across network portrait divergence.

Algorithm 4 Compute the distance between two networks across portrait divergence.
input: GA and GB
output: single value

Compute BA(GA) //Return the network portrait B of GA as matrix
Compute BB(GB) //Return the network portrait B of GB as matrix
Compute QA = PBA (BA) //Return the Probability Distribution of BA
Compute QB = PBB (BB) //Return the Probability Distribution of BB
Compute vA = Reshape(QA) //Convert PBA into vector
Compute vB = Reshape(QB) //Convert PBB into vector
return D̃JS(vA,vB) //The output is a single value

3.3.2. D-Measure

D-measure [22], a permutation-invariant and scale-adaptive approach, has been pro-
posed to compare networks by quantifying their structures. D-measure incorporates three
features related to probability distribution functions (PDFs): node distance distribution,
node dispersion, and alpha centrality.

The D-measure between two given networks GA ad GB is defined as follows [22]:

D̃(GA, GB) = w1

√
JS(vPnA

, vPnB
)

log(2)
+ w2|

√
NND(GA)−

√
NND(GB)|

+
w3

2
(

√
JS(PGA , PGB)

log(2)
+

√
JS(Pα

Gc
A

, Pα
Gc

B
)

log(2)
)

(10)

where Gc is the complement of G, and w1, w2, and w3 are arbitrary weights, such as
w1 + w2 + w3 = 1.

In the first term

√
J(vPnA

,vPnB
)

log(2) , the vectors vPnA
and vPnB

describe the node distance

distributions PnA and PnB of graphs GA and GB, respectively. Node distance distribution
Pn measures the probability that a randomly chosen pair of nodes has a shortest path of
length d, such as Pn = pd(i), where {pd(i)} is a set of nodes connected with node i at the
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distance d. Then, Jensen–Shannon divergence JS is applied between the vectors vPnA
and

vPnB
in order to estimate the distance.

The second term |
√

NND(GA)−
√

NND(GB)| measures network node dispersion
by applying Jensen–Shannon divergence on node distance distribution vPnA

(resp. vPnB
)

of GA (resp. GB) and normalizes it by log(network diameter + 1). Node dispersion (ND)
measures the distribution of nodes within a cluster C by quantifying how close the nodes
are to each other, such as ND = ∑ mC

n(n−1) where mC is number of edges in a cluster C.

The third term

√
J(Pα

GA
,Pα

GB
)

log(2) +

√
J(Pα

Gc
A

,Pα
Gc

B
)

log(2) extracts nodes alpha-centrality (average

length of the shortest paths connecting node i with other nodes) of networks GA, GB, Gc
A,

and Gc
B. Then, nodes’ alpha-centrality values are stored into vectors vPα

GA
, vPα

GB
, vPα

Gc
A

, and

vPα
Gc

B
. The Jensen–Shannon divergence has been used to estimate the distance between

alpha-centrality vectors vPα
GA

, vPα
GB

, vPα
Gc

A
, and vPα

Gc
B

.

D-measure refers to the second class of comparison in [25].
Algorithm 5 shows the steps for computing the distance D̃ between two networks

across D-measure.

Algorithm 5 Compute the distance between two networks across D-measure.
input: GA, GB, w1, w2, and w3 //w1 = w2 = 0.35 and w3 = 0.3
output: single value

Compute PnA //Return network node distribution of GA as matrix
Compute PnB //Return network node distribution of GB as matrix
Compute vPnA

= Reshape(PnA ) //Convert PnA into vector
Compute vPnB

= Reshape(PnB ) //Convert PnB into vector
Compute D̃Pn (vPnA

, vPnB
) //Distance between vPnA

and vPnB

Compute NNDGA //Return network node dispersion of GA as vector
Compute NNDGB //Return network node dispersion of GB as vector
Compute D̃NND(vNNDA , vNNDB ) //Distance between vNNDA and vNNDB

Compute PGA //Return alpha-centrality distribution of GA as matrix
Compute PGB //Return alpha-centrality distribution of GB as matrix
Compute Pα

Gc
A

//Return alpha-centrality distribution of Gc
A as matrix

Compute Pα
Gc

B
//Return alpha-centrality distribution of Gc

B as matrix

Compute vPα
GA

= Reshape(Pα
GA

) //Convert PGA into vector

Compute vPα
GB

= Reshape(Pα
GB
) //Convert PGB into vector

Compute vPα
Gc

A
= Reshape(Pα

Gc
A
) //Convert Pα

Gc
A

into vector

Compute vPα
Gc

B
= Reshape(Pα

Gc
B
) //Convert Pα

Gc
B

into vector

Compute D̃(vPα
Gc

A
, vPα

Gc
B
) + D̃(vPGA

, vPGB
) //Compute the distance between Pα

GA
, Pα

GB
, Pα

Gc
A

,

and Pα
Gc

B

return D̃ = w1D̃Pn (vPnA
, vPnB

) + w2D̃NND(vNNDA , vNNDB ) + w3D̃(vPα
Gc

A
, vPα

Gc
B
) //The out-

put is a single value

4. Data

In this research, we aim to examine the effectiveness of various distance measures in
identifying the similarity between movie networks and categorizing movies based on their
genres. To conduct this investigation, we handpicked at least three movies from each of
the following genres: horror, sci-fi, romance, and comedy. Since extracting the multilayer
network from each movie script requires manual intervention, which takes much time, we
limited our selection to only 15 movies presented in Table 2. To obtain movie scripts, we
referred to the IMSDb database through the website at https://imsdb.com/.

https://imsdb.com/
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Table 2. Movie Dataset.

Categories Movies

Horror Scream: Episode I (SC1) in 1995
Scream: Episode II (SC2) in 1997
Scream: Episode III (SC3) in 1999

Romance Twilight: Fascination (TW1) in 2008
Twilight: New Moon (TW2) in 2009
Titanic in 1997

Comedy 500 Days of Summer in 2009
Ten Things I Hate About You in 1997
Airplane in 1979

Sci-Fi Star Wars: A New Hope (SW1) in 1977
Star Wars: The Empire Strikes Back (SW2) in 1980
Star Wars: Return of the Jedi (SW3) in 1983
Star Wars: The Phantom Menace (SW4) in 1999
Star Wars: Attack of the Clones (SW5) in 2002
Star Wars: Revenge of the Sith (SW6) in 2005

To support our study, we had to compare our approach’s outputs with ground truth
data, which consist of movies ranked according to their similarities. As far as we know, no
pre-existing ground truth data exist that classifies movies based on their similarity. There-
fore, we had to build our ground truth data. To achieve this, we surveyed 100 participants,
asking them to rank the similarity between different pairs of movies on a scale of 0 (indicat-
ing less similarity) to 10 (indicating high similarity). Table 3 shows the collected survey
data, presenting the order of similarity for each pair of movies.

Table 3. Ground truth data.

Categories Movies Rank of Similarity

Characters Keywords Locations

Horror SC1 & SC2 order 1 order 1 order 1
SC2 & SC3 order 2 order 2 order 2
SC1 & SC3 order 3 order 3 order 3

Romance TW1 & TW2 order 1 order 1 order 1
TW1 & Titanic order 2 order 2 order 2
TW2 & Titanic order 2 order 2 order 2

Sci-Fi SW5 & SW6 order 1 order 1 order 1
SW4 & SW5 order 2 order 2 order 2
SW4 & SW6 order 3 order 3 order 3
SW2 & SW3 order 4 order 4 order 4
SW1 & SW2 order 5 order 5 order 5
SW1 & SW3 order 6 order 6 order 6
SW3 & SW4 order 7 order 7 order 7
SW3 & SW5 order 8 order 8 order 8
SW2 & SW4 order 9 order 9 order 9
SW2 & SW5 order 10 order 10 order 10
SW1 & SW4 order 11 order 11 order 11
SW3 & SW6 order 12 order 12 order 12
SW1 & SW5 order 13 order 13 order 13
SW2 & SW6 order 14 order 14 order 14
SW1 & SW6 order 15 order 15 order 15

Comedy Airplane & Ten Things I Hate About You order 3 order 3 order 2
500 Days of Summer & Ten Things I Hate
About You

order 3 order 2 order 1

Airplane & 500 Days of Summer order 3 order 1 order 2

Figures A1–A3 illustrate movie networks, where every figure depicts a character,
keyword, or location entity across various movie genres (sci-fi, romance, horror, and
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comedy). Figure A1 enables the visualization of similarities between characters within
the same genre and dissimilarities between character networks belonging to different
categories. The movie networks presented in Figures A1–A3 were generated using Gephi
software. For illustration, we provide movie stories in Appendix A.1.

Overall, movie network visualizations, movie stories, and survey data serve as a robust
foundation for our research, leading to significant insights and valuable contributions to
the field of movie analysis. Indeed, researchers can rely on the ground truth data collected
in Table 3 to analyze similarities among movies and turn to the movie networks illustrated
in Figures A1–A3 for visual comparisons.

5. Methodology

This work aims at measuring the similarity between a pair of movies. To this end,
we propose a methodology composed of three main steps: (1) extracting the multilayer
network from a movie script; (2) extracting the network features; (3) computing the distance
between a pair of movie networks. Figure 6 shows the pipeline process.

Figure 6. The proposed methodology pipeline outlines the process for measuring the similarity
between movies A and B. Pink denotes the process applied to movie A, while purple denotes the
process applied to movie B. Firstly, after extracting movie multilayer networks of movies A and
B, the distance is computed between monolayers belonging to the same entity (character layer of
movie A with character layer of movie B, keywords layer of movie A with keyword layer of movie B,
and location layer of movie A with movie layer of movie B). The second step involves associating
features with movie networks and extracting feature matrices and vectors. Finally, the difference
between feature vectors is computed using a distance measure. Then, the output is a single value
that indicates the distance between movies A and B.

In the first step of our methodology, we extract a multilayer network for each movie.
Section 2.2 presents, in detail, the process of multilayer extraction. At the end of this level, we
obtain for each movie three layers (character, keyword, and location) and their relationships.
In this work, we compare layers of the same entity, considering monolayers and intralayer
links, ignoring the interlayer relationships. For example, we compare the character network
of the first movie with the character network of the second movie. We provide a schema in
Figure 6 to illustrate the process. The inputs consist of character layers A and B. Character
layer A is associated with movie A, whereas character layer B is associated with movie B.
Alternatively, the input could be a pair of keywords or location layers.
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The second step consists of extracting the features of networks A and B. Network prop-
erties are crucial in network analysis as they provide us with precise information about the
network’s structure and characteristics. The features investigate nodes, edges, and neighbor-
hood topology. Generally, there are two levels of network features: global and local. (i) Local
features associate with each node a specific property, such as node degrees. (ii) Global features
capture the overall graph, such as graph diameter. Several extraction techniques are available
for extracting the global or local properties. Table 4 summarizes the features integrated into the
methods that we used for our study. A vector, matrix, or single value could represent features.
Figure 6 shows feature matrices extracted from movie networks A and B, respectively. Then,
feature vectors A and B are extracted or reshaped from feature matrices.

The third step relies on investigating the difference between the structural features of
layers A and B. Quantifying the similarity between a pair of networks involves finding
the difference between their structural information. In other words, finding the distance
between a pair of layers is computing the difference between their feature vectors. Once
the computation is complete, a single output value is obtained, representing the distance
between networks A and B.

Table 4. Methods and their features.

Methods Local Feature Global Feature Distance

NetLSD Permutation-invariance
Scale-adaptivity

Size-invariant
Scale-adaptivity

Euclidean

Laplacian spectra ✗ Eigenvalue spectrum of the Laplacian matrix Euclidean

NetMF Random walks ✗ Euclidean

D-measure Node dispersion Node distance distribution
Alpha centrality

Jensen–Shannon

Network portrait di-
vergence

✗ Node degree distribution
Shortest path length distribution
Next-nearest neighbors distribution

Jensen–Shannon

If A and B have identical structural information, the distance between their feature
vectors should be 0. The more the output value approaches 0, the higher the similarity
between networks A and B. On the other hand, the further away the output is from 0 and
the closer to 1, the more A and B are dissimilar.

Note that all the distance measures used in this study follow steps 2 and 3. We selected
a set of approaches that calculates the distance between a pair of networks (Section 3). Then,
we applied the measures to the movie networks. To provide an overview of the distance
between a set of movies, we present the output values in a heat map, as shown in Section 6.

6. Experimental Evaluation

In this section, we discuss and analyze the results obtained. Table 5 illustrates the
performance of different approaches in comparing character layers of horror, romance, sci-fi,
and comedy movies. Idem, Table 7 shows the distance between the keyword layers, while
Table 9 displays the distance between the location layers. We summarize in Tables 6, 8, and 10
the performance of the approaches in estimating the distance between the layers in different
categories. Umap in Figures 7–9 displays the classification of characters, keyword, and location
networks across various movie genres by applying the five distance measures.

6.1. What Is the Best Measure for Comparing Horror Movies?

According to the ground truth data, the most similar chapters in the Scream Saga are
I and II. Episodes II and III are on the second level. Then, episodes I and III are on the
third level. Regarding the character layer divergence in Table 5, we notice that NetLSD is
the unique measure verifying the order of similarity of movies as the ground truth data.
Conversely, NetMF detected a high similarity between episodes I and II as the ground truth
data. However, it failed to determine the proper order of similarity for the other chapters.
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Network portrait divergence, Laplacian spectra, and D-measure cannot improve the correct
order of similarity of episodes according to the ground truth data. Indeed, they detected a
high similarity between episodes II and III and less similarity between episodes I and II. In
addition, the network portrait divergence outputs approximate values comparing chapters I
and II (DJS = 0.98) and I and III (DJS = 0.97). In other words, the network portrait divergence
predicts the same order of similarity of episode I with episodes II and III. Despite that, 0.97
and 0.98 are too far from 0, which means a high dissimilarity between episodes. All in all,
NetLSD is the best measure for comparing character layers in horror movies.

Regarding Table 7, Laplacian spectra, NetLSD, network portrait divergence, and D-
measure show high similarity between episodes I and II of the Scream Saga. Indeed, according
to the ground truth data in Table 3, episodes I and II are the most similar. As shown in Table 7,
the Laplacian spectra ranks the similarity between Scream Saga chapters in the same order as
presented in the ground truth data. In opposition to the other measures, they ordered episodes
I and III to be more similar to those II and III. As a result, they did not classify the movies in
the proper order. However, episode III turns around Stab, a movie parody of episode I. Maybe
these measures find a high similarity between both episodes. Therefore, Laplacian spectra is the
best measure for comparing the keyword layers of horror movies.

As shown in the ground truth data in Table 3, episodes I and II are more similar than
episodes II and III, and episodes II and III are more comparable than episodes I and III. Con-
versely, most scenes in the Scream Saga take place in houses, gardens, streets, and schools.
Accordingly, the similarity of locations between the three episodes is about 90%. NetLSD is the
unique measure ranking the similarity between location layers in the proper order, as shown
in the ground truth data. Thus, NetLSD outperforms the other approaches (Table 9). In brief,
NetLSD is the best measure for estimating the distance between location layers in horror movies.

6.2. What Is the Best Measure for Comparing Romance Movies?

According to the ground truth data in Table 3, the Twilight Saga episodes I and II
share the most similarities, whereas Titanic and the Twilight episodes share the least. When
comparing the romance character layers in Table 3, only the network portrait divergence
outputs a high similarity between episode I and episode II of Twilight, as shown in the
ground truth data. In opposition, NetMF and D-measure rank Titanic and the first chapter
of Twilight in the first order. On the other hand, Laplacian spectra and NetLSD rank Titanic
and the second chapter of Twilight in the first order. Thus, NetLSD, NetMF, network
Laplacian, and D-measure did not perform well in comparing character layers of romance
movies. In brief, the network portrait divergence seems to be the best measure for comparing
character layers in romance movies.

When comparing keyword relationships in romance movies, the network portrait diver-
gence, the D-measure, and the NetMF assume high similarities between Titanic and episode
II of Twilight. The NetLSD, on the other hand, finds a high similarity between Titanic and
episode I of Twilight. According to the ground truth data, episode I and episode II of Twilight
are the most similar. However, love is the play’s dominant theme and the most important in
romance movies. Thus, there are common keywords between the Twilight and Titanic stories.
NetLSD reveals high similarity between Titanic and episode I of Twilight, but it also shows
a high similarity between Titanic and episode II of Twilight. Because of this ambiguity, we
cannot consider NetLSD as an appropriate metric for comparing keyword layers in romance
films. In summary, no method effectively compares keyword layers in romance films.

According to the ground truth data (Table 3), the similarity between Twilight episodes
is in the first rank, while the similarities between Titanic and Twilight chapters are in the
second order. Regarding the results in Table 9, the Laplacian spectra is the unique measure
that detected the similarity between location layers of the romance movies in the same order
as the ground truth data. Indeed, the Laplacian spectra classed Twilight chapters in the first
order with a distance of 3.74, whereas it classed the similarities between Twilight chapters and
Titanic in the second order with a value of 18.82. In brief, the Laplacian spectra is the proper
measure for comparing location layers in romance movies.
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6.3. What Is the Best Measure for Comparing Sci-Fi Movies?

Regarding the ground truth data, the Star Wars Saga’s episodes V and VI are the most
similar (order 1), followed by episodes IV and V (order 2), and episodes I and VI are the
least similar (order 15). The network portrait divergence detected that episodes V and VI
are the most similar, and episodes I and VI are the least, as shown in the ground truth data,
but it could not reveal the proper order for the other episodes. However, it finds that some
episodes are more similar than others, such as episodes III and IV being more similar than
III and V, episodes I and II being more alike than I and III, and episodes II and V being more
similar than II and VI. D-measure also reveals that episodes V and VI are the most similar,
and episodes I and VI are the least. Furthermore, D-measure ranked episodes II and VI in
the same order as episodes I and VI. That is because it outputs a distance of 0.25 between
each of them. Indeed, in the ground truth data, episodes II and VI are placed in the order
14 just before episodes I and VI. On the other hand, D-measure placed some episodes in
the same order, such as episodes I and II with episodes III and IV, and episodes II and IV
with episodes I and IV. Regarding the ground truth data, those episodes are placed near
each other. The other approaches did not reveal the proper order of episodes or at least
return the higher and lower distance as the ground truth data. In brief, the network portrait
divergence and D-measure are the best measures for comparing characters in sci-fi movies.

All of the measures did not rank the keyword layers in the correct order. Furthermore,
they show a very high dissimilarity between episodes. Except for the D-measure, the
distance between movies does not surpass 0.3. In conclusion, no measure was selected to
be the most effective to compare keyword layers in sci-fi movies.

Similar to keyword layers, no measure orders the similarity between location networks
of Star Wars movies in the same order as the ground truth data. However, the D-measure
shows less dissimilarity between episodes (0.2), while NetMF shows less similarity (0.59).
In brief, no measure can reveal sci-fi movies’ most similar location layers.

6.4. What Is the Best Measure for Comparing Comedy Movies?

According to the ground truth data in comedy movies, similarities between characters
are in the third order. That explains the high difference between characters and their
relationships in the three films: Airplane, Ten Things I Hate About You, and 500 Days of Summer.
The network portrait divergence shows high distances between the three movies. That is,
it outputs a distance of 0.81 between Airplane and Ten Things I Hate About You, a distance
of 0.90 between Airplane and 500 Days of Summer, and a value of 0.94 between 500 Days of
Summer and Ten Things I Hate About You. The values are far from 0 and near to 1, which
justifies the high divergence between the character layers. Likewise, Laplacian spectra
and NetMF show high distances through the three movies. In opposition, D-measure and
NetLSD show close distances between character layers. In summary, the network portrait
divergence, D-measure, and NetLSD seem to be proper measures for comparing character
relationships in comedy movies.

Regarding the ground truth data in keyword layers, the similarity between Airplane
and 500 Days of Summer is in the first rank, followed by 500 Days of Summer and Ten Things
I Hate About You, then Airplane and Ten Things I Hate About You. The network portrait
divergence and the Laplacian spectra perform exceptionally well in comparing keyword
layer relationships. Indeed, they ranked the movies in the same order as the ground truth
data. In opposition, NetMF, NetLSD, and D-measure did not find the correct similarity
between keyword layers. In conclusion, network portrait divergence and the Laplacian spectra
are the proper approaches for comparing keyword relationships in comedy movies.

The ground truth data show a high similarity between location layers of the movies
500 Days of Summer and Ten Things I Hate About You, followed by Airplane and Ten Things I
Hate About You, and Airplane and 500 Days of Summer in the second order. The approaches
NetMF and NetLSD reveal the high similarity between 500 Days of Summer and Ten Things I
Hate About You, but they did not find the proper order for the other layers. NetLSD outputs a
value of 6.74 comparing the movies Airplane and 500 Days of Summer, and a value of 7.06 for
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the movies Airplane and Ten Things I Hate About You. However, the interval distance between
both values is not far. In opposition to NetMF, it finds incomparable distances: 5.56 between
the movies Airplane and 500 Days of Summer, and 17.12 between Airplane and Ten Things I Hate
About You. D-measure shows a high similarity between Airplane and both movies 500 Days of
Summer and Ten Things I Hate About You, and a lower similarity between 500 Days of Summer
and Ten Things I Hate About You. Thus, we can consider NetLSD as a proper measure for
comparing the relationship between location layers of the comedy movies.

6.5. What Is the Best Measure for Measuring the Similarity between Character Layers?

From Table 6, the network portrait divergence outperforms the other approaches in com-
paring the relationship between characters in the romance and sci-fi categories. Furthermore,
it gives good results comparing comedy movies, but it cannot analyze character relationships
in the horror category. On the other hand, the NetLSD is a good measure for comparing
the horror category. Moreover, NetLSD and D-measure can compare character relationships
in comedy movies. However, they cannot give good results in analyzing the other genres.
Laplacian spectra and NetMF can not reveal proper relationships between character layers in
opposition. In brief, the network portrait divergence would be a good measure for comparing
character layers if it could compare horror movies. However, we can select the network
portrait divergence as a proper measure for comparing romance, sci-fi, and comedy movies.
Then, we choose NetLSD as a good measure for comparing horror movies.

Table 5. The distance between character layers using Laplacian spectra, network portrait divergence,
NetLSD, NetMF, and D-measure. Distance values are scaled between 0 and 1. Bold text indicates the
most similar movies within a genre. In the Laplacian spectra, NetLSD, and NetMF columns, values
are normalized by dividing each value by the maximum value in its corresponding column.

Categories Movies Methods

Laplacian
Spectra
Distance

Network
Portrait
Divergence

NetLSD NetMF D-Measure

Horror
SC1 & SC2
SC2 & SC3
SC1 & SC3

192.60 (0.99)
90.15 (0.46)
177.85 (0.92)

0.98
0.890
0.97

2.27 (0.45)
2.34 (0.46)
4.60 (0.92)

3.50 (0.18)
11.42 (0.6)
8.45 (0.44)

0.67
0.31
0.44

Romance
TW1 & TW2
TW1 & Titanic
TW2 & Titanic

11.90 (0.06)
11.14 (0.05)
5.73 (0.02)

0.91
0.96
0.98

3.18 (0.63)
4.88 (0.97)
1.70 (0.34)

15.28 (0.8)
11.68 (0.61)
14.70 (0.77)

0.13
0.07
0.12

Sci-Fi

SW5 & SW6
SW4 & SW5
SW4 & SW6
SW2 & SW3
SW1 & SW2
SW1 & SW3
SW3 & SW4
SW3 & SW5
SW2 & SW4
SW2 & SW5
SW1 & SW4
SW3 & SW6
SW1 & SW5
SW2 & SW6
SW1 & SW6

21.25 (0.11)
27.75 (0.14)
13.25 (0.06)
30.53 (0.15)
46.10 (0.23)
23.84 (0.12)
36.59 (0.18)
27.00 (0.13)
46.51 (0.24)
29.90 (0.15)
43.10 (0.22)
29.36 (0.15)
35.92 (0.18)
28.00 (0.14)
41.67 (0.21)

0.13
0.19
0.22
0.27
0.28
0.30
0.13
0.15
0.26
0.32
0.34
0.21
0.37
0.33
0.39

0.65 (0.13)
0.04 (0.008)
0.69 (0.14)
0.62 (0.12)
0.42 (0.08)
1.04 (0.2)
0.19 (0.4)
0.23 (0.05)
0.80 (0.16)
0.84 (0.17)
1.22 (0.24)
0.88 (0.18)
1.26 (0.25)
1.50 (0.3)
1.92 (0.38)

15.56 (0.82)
14.82 (0.78)
14.23 (0.74)
16.55 (0.87)
15.46 (0.81)
16.88 (0.89)
18.08 (0.95)
14.80 (0.78)
16.53 (0.87)
15.17 (0.79)
18.01 (0.94)
14.32 (0.75)
13.50 (0.71)
15.19 (0.8)
13.30 (0.7)

0.06
0.1
0.12
0.13
0.07
0.11
0.07
0.16
0.15
0.23
0.15
0.18
0.22
0.25
0.25

Comedy

Airplane & 10 Things I Hate
About You
500 Days of Summer & 10 Things I
Hate About You
Airplane & 500 Days of Summer

64.30 (0.33)

72.90 (0.37)

80.59 (0.41)

0.81

0.94

0.90

2.26 (0.45)

0.10 (0.02)

2.16 (0.43)

16.35 (0.86)

11.18 (0.59)

12.59 (0.66)

0.12

0.25

0.30
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Table 6. A comprehensive character checklist table: Evaluating measures in revealing the similarity
between character networks from different movie genres with checkmarks.

Type of Methods Measures Horror Romance Sci-Fi Comedy

Spectral
NetLSD ! ✗ ✗ !

Laplacian Spectra ✗ ✗ ✗ ✗

Embedding NetMF ✗ ✗ ✗ ✗

Statistical
D-measure ✗ ✗ ! !

Network Portrait Divergence ✗ ! ! !

6.6. What Is the Best Measure for Measuring the Similarity between Keyword Layers?

From Table 8, no approach seems to be a proper choice for comparing keyword layers
in four categories. The Laplacian spectra gives a good result in comparing keywords
in horror and comedy categories, but it fails to analyze keywords in romance and sci-fi
categories. On the other hand, the network portrait divergence can only compare comedy
movies. However, we can select the Laplacian spectra as a proper measure to compare
keyword relationships in horror and comedy movies.

Table 7. The distance between keyword layers using Laplacian spectra, network portrait divergence,
NetLSD, NetMF, and D-measure. Distance values are scaled between 0 and 1. Bold text indicates the
most similar movies within a genre. In the Laplacian spectra, NetLSD, and NetMF columns, values
are normalized by dividing each value by the maximum value in its corresponding column.

Categories Movies Methods

Laplacian
Spectra

Network
Portrait
Divergence

NetLSD NetMF D-Measure

Horror
SC1 & SC2
SC2 & SC3
SC1 & SC3

2.68 (0.006)
4.68 (0.01)
9.43 (0.02)

0.23
0.89
0.81

1.20 (0.15)
7.99 (0.99)
6.79 (0.85)

25.91 (0.63)
24.42 (0.6)
25.27 (0.61)

0.10
0.69
0.61

Romance
TW1 & TW2
TW1 & Titanic
TW2 & Titanic

11.14 (0.02)
11.89 (0.03)
11.14 (0.02)

0.69
0.71
0.44

3.75 (0.47)
0.78 (0.09)
2.97 (0.38)

29.99 (0.73)
29.72 (0.72)
28.84 (0.7)

0.43
0.47
0.12

Sci-Fi

SW5 & SW6
SW4 & SW5
SW4 & SW6
SW2 & SW3
SW1 & SW2
SW1 & SW3
SW3 & SW4
SW3 & SW5
SW2 & SW4
SW2 & SW5
SW1 & SW4
SW3 & SW6
SW1 & SW5
SW2 & SW6
SW1 & SW6

200.77 (0.52)
136.05 (0.35)
142.04 (0.37)
139.77 (0.36)
271.94 (0.7)
377.72 (0.98)
124.80 (0.32)
102.60 (0.27)
125.14 (0.32)
211.24 (0.55)
316.06 (0.82)
203.02 (0.53)
383.35 (0.99)
142.34 (0.37)
213.98 (0.55)

0.72
0.46
0.54
0.29
0.61
0.61
0.65
0.81
0.68
0.82
0.41
0.56
0.66
0.59
0.33

1.13 (0.14)
0.64 (0.08)
0.48 (0.06)
0.06 (0.007)
2.00 (0.25)
2.06 (0.26)
1.91 (0.23)
2.55 (0.31)
1.86 (0.23)
2.49 (0.31)
0.15 (0.02)
1.43 (0.17)
0.51 (0.06)
1.37 (0.17)
0.63 (0.08)

37.50 (0.91)
39.13 (0.95)
36.49 (0.89)
32.57 (0.79)
35.55 (0.87)
36.19 (0.88)
37.62 (0.92)
35.64 (0.87)
37.18 (0.76)
34.56 (0.84)
40.05 (0.98)
32.96 (0.8)
38.49 (0.94)
31.56 (0.76)
35.68 (0.87)

0.26
0.14
0.15
0.04
0.12
0.11
0.16
0.28
0.18
0.30
0.11
0.06
0.23
0.06
0.09

Comedy

Airplane & 10 Things I Hate
About You
500 Days of Summer & 10 Things I
Hate About You
Airplane & 500 Days of Summer

17.05 (0.04)

14.67 (0.03)

12.73 (0.03)

0.56

0.47

0.43

2.12 (0.26)

6.58 (0.82)

4.46 (0.56)

29.30 (0.71)

28.47 (0.7)

29.63 (0.72)

0.19

0.09

0.15
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Table 8. A comprehensive keyword checklist table: Evaluating measures in revealing the similarity
between keyword networks from different movie genres with checkmarks.

Type of Methods Measures Horror Romance Sci-Fi Comedy

Spectral
NetLSD ✗ ✗ ✗ ✗

Laplacian Spectra ! ✗ ✗ !

Embedding NetMF ✗ ✗ ✗ ✗

Statistical
D-measure ✗ ✗ ✗ ✗

Network Portrait Divergence ✗ ✗ ✗ !

6.7. What Is the Best Measure for Measuring the Similarity between Location Layers?

From Table 10, no approach seems to be a proper choice for comparing keyword layers
in four categories. The NetLSD gives a good result in comparing location layers in horror
and comedy categories, but it fails to analyze locations in romance and sci-fi categories. On
the other hand, the Laplacian spectra can only compare the similarity through romance
movies. However, we can select the NetLSD as a proper measure to compare location
relationships in horror and comedy movies, and choose the Laplacian spectra as a measure
to analyze location layers in the romance category.

Table 9. The distance between location layers using Laplacian spectra, network portrait divergence,
NetLSD, NetMF, and D-measure. Distance values are scaled between 0 and 1. Bold text indicates the
most similar movies within a genre. In the Laplacian spectra, NetLSD, and NetMF columns, values
are normalized by dividing each value by the maximum value in its corresponding column.

Categories Movies Methods

Laplacian
Spectra

Network
Portrait
Divergence

NetLSD NetMF D-Measure

Horror
SC1 & SC2
SC2 & SC3
SC1 & SC3

5.76 (0.11)
5.03 (0.1)
5.46 (0.1)

0.87
0.33
0.85

3.57 (0.39)
5.02 (0.56)
8.59 (0.95)

17.74 (0.55)
16.23 (0.5)
15.73 (0.49)

0.65
0.12
0.67

Romance
TW1 & TW2
TW1 & Titanic
TW2 & Titanic

3.74 (0.07)
18.82 (0.38)
18.82 (0.38)

0.59
0.62
0.37

0.44 (0.05)
0.46 (0.05)
0.05 (0.005)

24.16 (0.75)
19.74 (0.62)
20.56 (0.64)

0.35
0.31
0.19

Sci-Fi

SW5 & SW6
SW4 & SW5
SW4 & SW6
SW2 & SW3
SW1 & SW2
SW1 & SW3
SW3 & SW4
SW3 & SW5
SW2 & SW4
SW2 & SW5
SW1 & SW4
SW3 & SW6
SW1 & SW5
SW2 & SW6
SW1 & SW6

22.08 (0.44)
49.91 (0.99)
18.21 (0.36)
8.05 (0.16)
5.80 (0.12)
13.73 (0.27)
10.34 (0.2)
9.73 (0.19)
5.60 (0.11)
10.90 (0.21)
10.35 (0.2)
19.71 (0.39)
16.55 (0.33)
16.75 (0.33)
15.40 (0.31)

0.08
0.23
0.26
0.00
0.01
0.02
0.58
0.30
0.55
0.26
0.50
0.15
0.20
0.13
0.10

1.16 (0.13)
0.76 (0.08)
1.92 (0.21)
0.33 (0.04)
0.20 (0.02)
0.53 (0.06)
2.91 (0.32)
2.15 (0.23)
2.58 (0.28)
1.82 (0.2)
2.38 (0.2)
0.99 (0.11)
1.61 (0.18)
0.66 (0.07)
0.46 (0.05)

20.56 (0.64)
31.64 (0.98)
21.85 (0.68)
23.24 (0.73)
25.22 (0.78)
23.37 (0.73)
28.50 (0.89)
29.38 (0.92)
27.30 (0.85)
25.91 (0.8)
27.44 (0.85)
18.93 (0.59)
26.21 (0.81)
19.96 (0.62)
20.13 (0.62)

0.12
0.09
0.16
0.07
0.08
0.07
0.18
0.15
0.20
0.18
0.16
0.11
0.12
0.13
0.06

Comedy

Airplane & 10 Things I Hate
About You
500 Days of Summer & 10 Things I
Hate About You
Airplane & 500 Days of Summer

15.45 (0.3)

11.14 (0.22)

10.80 (0.22)

0.57

0.61

0.67

7.06 (0.78)

0.33 (0.03)

6.74 (0.75)

17.12 (0.53)

5.20 (0.16)

5.56 (0.17)

0.25

0.32

0.25
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Table 10. A comprehensive keyword checklist table: Evaluating measures in revealing the similarity
between keyword networks from different movie genres with checkmarks.

Type of Methods Measures Horror Romance Sci-Fi Comedy

Spectral
NetLSD ! ✗ ✗ !

Laplacian Spectra ✗ ! ✗ ✗

Embedding NetMF ✗ ✗ ✗ ✗

Statistical
D-measure ✗ ✗ ✗ ✗

Network Portrait Divergence ✗ ✗ ✗ ✗

6.8. What Is the Best Measure for Comparing the Similarity between Movies from
Different Categories?

In this section, we compare the similarity between film genres. We applied five
graph distance measures to the character, keyword, and location layers of movies from
different genres. Then we visualized, using Umap, the performance of distance measures in
classifying movie genres. Figures 7–9 show the interpretation of graph distance measures
in categorizing character, keyword, and location networks from different movie genres.

Comparing character layers in Figure 7, NetMF (Figure 7b), and D-measure (Figure 7e)
failed to detect the dissimilarity between character layers in different movie genres. That is
because NetMF mapped almost all movies from different categories closed to each other,
and D-measure mapped movies from the same genre so far from each other. The Laplacian
spectra (Figure 7a) grouped episodes I, II, and III in one space and episodes IV, V, and
VI together, preserving a close distance between the two groups. Indeed, the Star Wars
Saga consists of two trilogies: prequel (episodes I, II, and III) and sequel (episodes IV,
V, and VI). Laplacian spectra placed episode III of Scream closer to two comedy movies.
That is because episode III of Scream has a comedy aspect, too. The network portrait
divergence (Figure 7c) embedded Ten Things I Hate About You and Airplane in the same
space as episodes I and II of Twilight. Indeed, the movies Ten Things I Hate About You and
Airplane are comedies, but they have a romantic side. The network portrait divergence
placed episodes I, II, III, and IV in the same space. However, it kept episodes V and VI far
from them. Also, the network portrait divergence placed episodes I and II of Scream close
to romance and comedy movies, while they are not similar. NetLSD (Figure 7d) shows a
high similarity between the four movies from the sci-fi genre. Indeed, it embedded the
four sci-fi movies at a close distance. Also, NetLSD mapped two horror movies at a close
distance. Idem for romance and comedy movies. NetLSD classifies horror movie genres in
a high space from comedy movies. Also, it showed a far distance between the four sci-fi
movies, the two romance movies, and the two horror movies. In opposition, it mapped two
comedy movies and four sci-fi movies simultaneously. As airplane and "Ten Things I Hate
About You" do not belong to the sci-fi category, NetLSD failed to classify the comedy movie
genre. Furthermore, it showed a high similarity between one movie in horror, romance, and
sci-fi genres. However, observing the performance of the other measures, NetLSD attained
just a few errors in classifying character networks by category. Table 11 summarizes how
distance measures perform in categorizing movie genres using character networks.

Regarding Figure 8, we observe the efficiency of the Laplacian spectra (Figure 8a)
in embedding all the sci-fi movies in the same class, preserving a close distance between
the prequel and sequel trilogies. Furthermore, it detects a high difference between sci-fi
movies and other film genres. That is because it mapped sci-fi movies in a far distance
from the others. The Laplacian spectra embedded episodes I and II of the Scream Saga
close to each other and far from the remaining movie genres. Furthermore, it embedded
romance movies close to each other. However, the Laplacian spectra placed episode III of
Scream close to romance movies even though this episode does not tell a love story. The
network portrait divergence (in Figure 8c) outperforms other measures in classifying the
comedy genre. That is because it embedded the three comedies in the same space. The
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network portrait divergence reveals a high distance between comedy movies and other
movie categories. However, the network portrait divergence showed an error in mapping
one romance movie with comedy movies. Furthermore, it failed in embedding romance
movies at a high distance from horror movies. Again, the NetMF (Figure 8b) failed to detect
the dissimilarity between movie genres. In opposition, D-measure (Figure 8e) mapped five
sci-fi movies far from other movie categories. All of the measures, excluding NetMF, placed
episodes I and II of the Scream Saga close to each other and far from episode III. That is
because episode III of Scream has fewer crimes than episodes I and II on one side, and
episode III has an aspect of the comic on another side. Table 12 summarizes how distance
measures perform in categorizing movie genres using keyword networks.

(a) (b) (c)

(d) (e)

Figure 7. Visualization of 5 graph distance measures applied to character movie networks from
sci-fi, romance, horror, and comedy genres. (a) Laplacian spectra. (b) NetMF. (c) Portrait divergence.
(d) NetLSD. (e) D-measure. Similar movies are grouped at a close point in space, while dissimilar
movies appear farther apart. Each color represents a movie genre, which makes it easy to visualize
the performance of distance measures in grouping movies belonging to the same genre: red for sci-fi,
blue for romance, green for horror, and pink for comedy.

Table 11. Table of character-based movie classification checklist.

Measures Horror Romance Sci-fi Comedy
Horror

vs.
Romance

Horror
vs.

Sci-fi

Horror
vs.

Comedy

Romance
vs.

Sci-fi

Romance
vs.

Comedy

Sci-fi
vs.

Comedy

NetLSD ! ! ! ! ! ! ! ! ! ✗

Laplacian Spectra ✗ ! ! ! ✗ ✗ ! ! ! !

NetMF ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

D-measure ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Network Portrait
Divergence ! ! ! ! ✗ ! ✗ ! ! !
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(a) (b) (c)

(d) (e)

Figure 8. Visualization of 5 graph distance measures applied to keyword movie networks from
sci-fi, romance, horror, and comedy genres. (a) Laplacian spectra. (b) NetMF. (c) Portrait divergence.
(d) NetLSD. (e) D-measure. Similar movies are grouped at a close point in space, while dissimilar
movies appear farther apart. Each color represents a movie genre, which makes it easy to visualize
the performance of distance measures in grouping movies belonging to the same genre: red for sci-fi,
blue for romance, green for horror, and pink for comedy.

Table 12. Table of keyword-based movie classification checklist

Measures Horror Romance Sci-fi Comedy
Horror

vs.
Romance

Horror
vs.

Sci-fi

Horror
vs.

Comedy

Romance
vs.

Sci-fi

Romance
vs.

Comedy

Sci-fi
vs.

Comedy

NetLSD ! ! ! ✗ ✗ ✗ ✗ ! ✗ !

Laplacian Spectra ! ! ! ! ✗ ! ! ! ! !

NetMF ! ! ✗ ! ✗ ✗ ✗ ✗ ✗ ✗

D-measure ! ✗ ! ! ✗ ! ! ! ✗ !

Network Portrait
Divergence ! ✗ ✗ ! ✗ ! ! ✗ ✗ !

Observing location layers in Figure 9, the Laplacian spectra (Figure 9a) mapped sci-fi
and romance movies at a high distance from comedy and horror movies. But, it showed a
strong connection between sci-fi and romantic films on one side and horror and comedy
movies on the other. Thus, the Laplacian spectra failed to reveal the difference between
horror and comedy genres. Idem for romance and sci-fi genres. NetMF (Figure 9b) still
failed in categorizing movies. D-measure (Figure 9e) plotted comedy movies in the same
spot. The network portrait divergence (Figure 9c), again, performed well in classifying
comedy movies. Indeed, the network portrait divergence embedded the three comedy
genres in the same place. Furthermore, it revealed a high distance when comparing comedy
movies to horror and sci-fi genres. The network portrait divergence grouped the prequel
trilogy of the Star Wars Saga in one space and the sequel trilogy in another, preserving a
close distance between both trilogies. The network portrait divergence mapped comedy
movies closer to two romance movies. Note that Ten Things I Hate About You and Airplane
have a romance aspect, too. Table 13 summarizes how distance measures perform in
categorizing movie genres using location networks.
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(a) (b) (c)

(d) (e)

Figure 9. Visualization of 5 graph distance measures applied to location movie networks from sci-fi,
romance, horror, and comedy genres. (a) Laplacian spectra. (b) NetMF. (c) Portrait divergence.
(d) NetLSD. (e) D-measure. Similar movies are grouped at a close point in space, while dissimilar
movies appear farther apart. Each color represents a movie genre, which makes it easy to visualize
the performance of distance measures in grouping movies belonging to the same genre: red for sci-fi,
blue for romance, green for horror, and pink for comedy.

Table 13. Table of location-based movie classification checklist.

Measures Horror Romance Sci-fi Comedy
Horror

vs.
Romance

Horror
vs.

Sci-fi

Horror
vs.

Comedy

Romance
vs.

Sci-fi

Romance
vs.

Comedy

Sci-fi
vs.

Comedy

NetLSD ✗ ! ✗ ✗ ✗ ✗ ✗ ! ✗ ✗

Laplacian Spectra ! ! ! ! ! ! ✗ ✗ ! !

NetMF ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

D-measure ✗ ✗ ! ! ✗ ! ! ! ✗ !

Network Portrait
Divergence ! ✗ ! ! ! ✗ ! ! ! !

7. Discussion and Conclusions

The impact of network features on similarities between movie networks in terms of
their entities and structures is an interesting area of research. Depending on a network
entity or a movie category, a measure may be performant. Understanding network patterns
can provide valuable insights into the entities and structures present within these networks.
According to our previous study [26], character layers are small-world networks, keyword
layers are typically scale-free networks, and location layers are chain-type networks. This
observation highlights the importance of exploring network patterns to better understand
movie networks and their underlying structures.

When comparing movies of the same genre, the network portrait divergence is a
reliable approach for analyzing character layers of comedy, romance, and sci-fi. However,
it is not suitable for comparing characters in horror movies. Instead, spectral methods
are more appropriate for measuring similarity within the horror genre. In particular,
the NetLSD method outperformed other approaches in analyzing character and location
layers, while the Laplacian spectra method was superior in comparing keyword layers.
D-measure revealed the correct order between character layers in sci-fi and comedy genres.
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Despite not ranking the remaining movies and network entities in the same order as the
dataset, D-measure showed a high similarity between films of the same genre for sci-fi,
romance, and comedy. The embedding approach, NetMF, was not a performant measure
as it did not perform any movie genre or network entity. Neither measure gave good
results in comparing keyword and location layers in sci-fi movies. Furthermore, none
of the approaches produced efficient results when comparing keywords of the romance
category. However, the Laplacian spectra was the unique measure that performed better in
investigating location layers of romance movies.

Regarding movie genre classification, NetLSD performed well in classifying charac-
ter layers across all movie genres, except for distinguishing between sci-fi and comedy
networks. The network portrait divergence accurately categorized overall movies based
on their character and location layers, with few exceptions. The Laplacian spectra outper-
formed the other measures in classifying movies through keyword and location layers.
Again, NetMF and D-measure provided ambiguous results. In brief, the Laplacian spectra
was the most effective method for classifying movie genres and identifying similarities
and differences between movies based on keyword and location networks. In scale-free
networks, most nodes follow power-law (nodes have very few connections) distribution for
their degree, while only a few nodes form hubs (a small number of highly connected nodes).
This network structure generates a unique eigenvalue pattern in their Laplacian spectra,
where the eigenvalues associated with the low-degree nodes tend to be negligible, and the
eigenvalues associated with hubs are significantly larger. Nodes in chain-type networks
are often connected without forming loops, giving them a linear and acyclic structure. The
eigenvalues of Laplacian spectra can provide valuable insights into the interconnectivity
between nodes and the chain length. Small-world networks exhibit two main properties.
Firstly, they tend to have a relatively short average path length between any two nodes,
even in large networks. Secondly, they exhibit high clustering due to the significant con-
nection between nodes. Based on our research findings, NetLSD and network portrait
divergence are the most suitable methods for comparing small-world topology. On the one
hand, NetLSD captures connectivity between nodes by inheriting properties of Laplacian
spectra. On the other hand, it verifies global and local properties, including size-invariant,
permutation-invariant, and scale-adaptivity. These qualities make it ideal for analyzing
large and highly connected networks, such as small-world networks. Network portrait
divergence extracts node degree distribution, shortest path distribution, and next-nearest
neighbors distribution, making it consistent for small-world network properties.

Therefore, global features such as eigenvalues of the Laplacian spectra, size-invariant,
scale-adaptivity, degree distribution, shortest path distribution, and next-nearest neighbors
distribution appear to be more effective in identifying network similarities. That is thanks to
the information that global properties provide about the overall structure and characteristics
of the graph, such as the connection between nodes and the features of neighboring nodes.

In this paper, we conducted a study to evaluate statistic, embedding, and Laplacian
unknown node-correspondence approaches for comparing movie similarities. We found
that the network portrait divergence, the NetLSD, the NetMF, the D-measure, and the
Laplacian spectra performed well in determining the similarity between movies in horror,
romance, sci-fi, and comedy categories. To represent movie stories as networks, we used
a multilayer network model that extracts three layers from each movie script: character,
keyword, location, and their interactions. We compared monolayers belonging to the
same entity (characters with characters, keywords with keywords, etc.). We analyzed the
similarity between movie networks by studying their structural information based on the
distance between their feature vectors.

To assess the performance of measures in comparing movies, we gathered our dataset
by asking people to rank the similarity between films according to their points of view. We
then compared the results generated with the dataset. A measure is efficient if it produces
the same results as the dataset.
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According to our analysis, portrait divergence is an effective method for character
layer analysis in comedy, romance, and sci-fi movies. Spectral methods, especially NetLSD,
are ideal for evaluating similarity within the horror genre, particularly in character and
location layers. Laplacian spectra outperformed other measures in comparing keyword
layers for horror movies. NetLSD is a highly effective method for comparing movies of
different genres and classifying them based on their genre. Network portrait divergence
accurately categorized movies based on character and location layers, with some exceptions.
Laplacian spectra excelled in comparing and classifying movies through keyword and
location layers. However, NetMF and D-measure are ambiguous methods.

In general, depending on the ability of an approach property to extract network fea-
tures, it can be efficient for a network type. We found that the network portrait divergence
and NetLSD were effective measures for comparing character layers across various genres,
and the Laplacian spectra was an effective measure for comparing keyword and location
layers. Global properties are more effective than local features in capturing the connectivity
between nodes, a crucial characteristic of networks. Node degree distribution, shortest-
path distribution, next-nearest neighbors distribution, size-invariant, and scale-adaptivity
are efficient for comparing small-world networks. On the other hand, eigenvalues of the
Laplacian spectra are efficient in comparing scale-free and chain-type networks. In our
future work, we will introduce an approach considering interactions between entities of
the same and different entities. This approach will consider multilayers without ignoring
interlayers. In other words, it will calculate the distance between multilayers based on
their interrelationships and intrarelationships. Moreover, we will conduct a comparative
analysis of our movie networks with a benchmark.
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Appendix A

Appendix A.1. Movie Stories

The Phantom Menace: The story follows Master Qui-Gon-Jinn and his student Obi-
One to protect queen Amidala (Padme) from the dark side. Queen Amidala lived on Naboo
planet with her federation. In Tatooine, Qui-Gon discovered Anakin Skywalker, a young
child in servitude with exceptional supernatural power. Darth Maul is an antagonist from
the dark side, who killed Qui-Gon, and was killed by Obi-One. While dying, Qui-Gon
requests Obi-Wan to train Anakin to become a Jedi.

The Attack Of The Clones: Ten years later, Anakin Skywalker was assigned to protect
Amidala during a mission. They developed a romantic relationship and married in secret.
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During the assignment, Anakin envisioned his mother in pain and decided to return to
Tattoine to rescue her. Anakin Skywalker and his Master Obi-one were assigned to save
the galaxy. Obi-One discovered the trick of Count Dooku, a leader from the dark side
who ordered his gathering to kill Padme. Count Dooku asked Obi-One to join him, but he
refused. Anakin and Padmé tried to rescue Obi-Wan from Count Dooku, but they failed
and were sentenced to death. Fortunately, Masters Yoda and Mince Windu saved them
from the assessment.

Revenge of the Sith: Palpatine assured Anakin to save Padme’s life if he returned to
the dark side. As the poor Anakin was convinced and converted to the dark side, Padme
and Obi-One attempted to turn Anakin to the light side, but he refused. Moreover, Anakin
strangled Padme to oblivion. Obi-One raised a lightsaber battle against Anakin on Mustafar.
The fight ended with Obi-One cutting Anakin’s arm and legs. Obi-One watched Anakin in
horror as he was burning inside a volcano and left him for dead. Palpatine saved Anakin’s
life and transformed him into a cyborg (Darth Vader). Padme died giving birth to two
twins: Luke and Lea.

A New Hope: Nineteen years after the Revenge of the Sith, Darth Vader imprisoned
Princess Lea. Luke and Obi-One were trying to save Lea. Vader was trying to stop a rebellion,
using the Death Star. Luke Skywalker and Han Solo were working to destroy the Death Star.
The robots C3-PO and R2-D2 were helping the trio Lea, Luke, and Han Solo. Vader (Anakin)
fought again with his Master Ben (Obi-One) and destroyed him with his lightsaber.

The Empire Strikes Back: Luke returned to Master Yoda to learn more about the Force
obscure to destroy Vader. But, when Vader informed his son Luke about their relationship,
Luke refused to kill his father (Vader). Moreover, Vader tried to convince Luke to return
to the dark side and destroy the Emperor (Palpatine). Luke refused. Vader fought his son
Luke and cut his hand. Lando, a friend of Han Solo, tracked down Luke, Han Solo, and
Lea to surrender them to Palpatine. Vader froze Han-Solo. Lando freed Leia.

Return of the Jedi: The emperor constructed a new Death Star protected by a potential
shield. Han Solo, Lea, and Chewbacca were searching for the shield inside a forest. Luke
tried to turn Vader to the light side while Vader forced Luke to return to the dark side. In
a battle between Vader and Luke, Luke removed the lightsaber from Vader and was at the
point of killing him. At that moment, Palpatine encouraged Luke to kill his father and take
his place, but Luke refused to destroy him, so the Emperor (Palpatine) tortured Luke with
Force lightning. Vader saw his son dying. Quickly, he was thrown down in Palpatine and
saved his son Luke. Unfortunately, Anakin (Vader) was dying because of electrocution. While
dying, Anakin asked Luke to remove his mask to see him with his own eyes for the first time.
Lando and the rebel pilot destroyed the Death Star. While Rebel fighters were celebrating their
victory, Luke was looking brightly upon the Force spirits of Obi-Wan, Yoda, and his father.

Fascination: The story revolves around Bella and Edward, teens who met in a high
school and developed a romantic relationship. Bella was fascinated by Edward and his
family (Rene, Rosalie, Charlie). Edward and his family were vampires and had the power
of reading people’s ideas, except Bella. They decided to hide this secret from Bella, though
Bella searched and found their secret.

New Moon: Edward and his family traveled to protect Bella’s life. Bella had depression
and decided to isolate herself. Jacob, Bella’s friend who has the power to convert to a wolf,
helped Bella out of her depression. Alice saw Bella jumping off in a vision. She informed
Edward about her nightmare. Edward thought Bella was dead and decided to end his life.
To do so, he went to the Volturi. Alice informed Bella about Edward’s plan, so Bella went to
stop Edward from dying. Bella had to be transformed into a vampire to save Edward’s life.

Titanic: The story takes place on a ship called the Titanic. Rose was traveling in the
first-class section of the Titanic with her family and fiance (Caledon). Jack and his friend
(Fabrizio) were traveling in the third class. Rose’s mother (Ruth) was forcing Rose to marry
Caledon. Rose refused and decided to end her life. Jack noticed that Rose was at the point
of jumping off the boat, and he saved her. Rose’s family invited Jack to dinner to thank
him. Rose and Jack developed a romantic relationship. Caledon accused Jack of stealing
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a piece of jewelry, and he had him arrested. That same day, at night, the Titanic collided
with an iceberg and was slowly flooding, so Rose looked for Jack to save him and escape.
Unfortunately, when they reached the last part of the ship, the Titanic was completely
drowned, so they found themselves in the cold water. Jack sacrificed his life to save Rose.
Indeed, Jack agreed to die under the cold water to let Rose lie on a piece of wood.

“The Scream Saga follows a series of murders, where killers wear a ghost face.

Scream 1 : The first part of the story follows Casey, a young student in a Woods-
boro High School. Casey was in her house when the phone rang for the first time.
Casey answered the phone and thought the man’s voice (Stu) had the wrong
number. The phone rang again when Casey was in the kitchen. The man’s voice
asked her for her favorite scary movie. When Casey answered the question, he
asked her to see her boyfriend dead in the front yard. The killer(Stu) followed
Casey and killed her in the front yard. When Casey’s parents returned home,
they tried to call the police but failed. Casey’s mother was screaming when she
found her daughter dead. The second part follows Sidney, a teenage student in
Woodsboro high school. Billy Loomis, the boyfriend of Sidney, had killed her
mother with the help of Stu. That is because Sidney’s mother was the cause of
the separation of Billy’s parents. One year later, Billy informed Casey about her
mother’s murder and killed Stu. Sidney survived under her fight with Billy and
Stu. Finally, Sidney killed Billy by shooting him with a gun.

Scream 2: The events of the screams reached in theatres. Luke Wilson played the role
of Billy Loomis, and Tori Spelling played Sidney’s character. A series of murders
began. Sidney survived again by confronting the new Ghostface killers. With the
help of Mickey(Sidney’s friend), Mrs. Loomis(Billy’s mother) tried to avenge her
son’s died. Mickey killed Derek, the new boyfriend of Sidney. Mrs. Loomis killed
Randy(Sidney’s friend) because he bad-mounted Billy. Then, she killed Mickey
because she found him useless. Mrs. Loomis confronted Sidney. Mrs. Loomis was
killed by Cotton Weary, who was accused of murdering Sidney’s mother.

Scream 3: Sidney went to the mountain to hide from the killers. She received a
call from the Ghostface(Roman). First, she was thinking the caller’s voice was
of her mother. Roman, Ghostface’s new killer, had executed a series of murders.
He killed Cotton, Steven, and others. In the end, he was killed by Sidney and
Dewey.” [28]

500 Days of Summer: The movie follows the relationship between Summer and Tom
during 500 days. On day 1, Summer started working in the same company as Tom. On
day 28, Tom fell in love with Summer and believed she was the right person, but Summer
refused to engage in a relationship. After some months, they had a fake relationship.
Summer decided to break it off on day 290 and quit her job to let Tom live his life. On day
476, Summer got married to Seth. Tom felt depressed, but he wished her happiness. On
day 500, Tom met another woman named Automne.

Ten Things I Hate About You: The story follows the sisters Bianca and Kat. Their father
was controlling their lives. Kat, the older sister of Bianca, has been accepted into a school
far from home. But her father refuses to let her go to the school, to keep her close to home.
Kat failed in making relationships with school friends because of her antisocial personality.
The father prevented Bianca from dating her boyfriend (Cameron) until her older sister got a
boyfriend. Cameron paid Joey to date Kat so that her father would allow Bianca to date him.

Airplane: The story follows Striker, an ex-fighter pilot, and a taxi driver. Elaine, his
girlfriend during the war, became a flight attendant and broke up with him. Despite his
flying phobia, Striker bought a ticket and flew on the same airplane as Elaine. Striker had
the intention to get Elaine back, but she refused. All the passengers were crying because
of fish poisoning. Elaine called a supervisor (McCroskey) to activate the autopilot. As the
airplane pilot failed in controlling the plane, Elaine and Dr. Rumack persuaded Striker to
drive the airplane. McCroskey called Kramer to help Striker in control, but Striker was
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uncomfortable with McCroskey’s orders and lost control. Fortunately, Dickinson and Dr.
Rumack encouraged Striker to maintain airplane control again. Despite the weather being
worse near Chicago, Striker landed the airplane safely. Elaine was impressed by Striker’s
courage and went back to him.

Appendix A.2. Movie Networks Visualization

SW, episode I SW, episode II SW, episode III

SW, episode IV SW, episode V SW, episode VI

Titanic TW, episode I TW, episode II

SC, episode I SC, episode II SC, episode III

Airplane 500 Days of Summer 10 Things I Hate About
You

Figure A1. Visualization of character networks in sci-fi, romance, horror, and comedy movies.
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SW, episode I SW, episode II SW, episode III

SW, episode IV SW, episode V SW, episode VI

Titanic TW, episode I TW, episode II

SC, episode I SC, episode I SC, episode I

Airplane 500 Days of Summer 10 things I Hate About
You

Figure A2. Visualization of keyword networks in sci-fi, romance, horror, and comedy movies.
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SW, episode I SW, episode II SW, episode III

SW, episode IV SW, episode V SW, episode VI

Titanic TW, episode I TW, episode II

SC, episode I SC, episode II SC, episode III

Airplane 500 Days of Summer 10 Things I Hate About You

Figure A3. Visualization of location networks in sci-fi, romance, horror, and comedy movies.
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13. Markovič, R.; Gosak, M.; Perc, M.; Marhl, M.; Grubelnik, V. Applying network theory to fables: Complexity in Slovene
belles-lettres for different age groups. J. Complex Netw. 2019, 7, 114–127. [CrossRef]

14. Lv, J.; Wu, B.; Zhou, L.; Wang, H. Storyrolenet: Social network construction of role relationship in video. IEEE Access 2018,
6, 25958–25969. [CrossRef]

15. Chen, R.G.; Chen, C.C.; Chen, C.M. Unsupervised cluster analyses of character networks in fiction: Community structure and
centrality. Knowl.-Based Syst. 2019, 163, 800–810. [CrossRef]
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