
Citation: Huang, Y.; Zhou, S.; Xu, Y.;

Chen, Y.; Cao, K. Ref-MEF:

Reference-Guided Flexible Gated

Image Reconstruction Network for

Multi-Exposure Image Fusion.

Entropy 2024, 26, 139. https://

doi.org/10.3390/e26020139

Academic Editors: Giuliana Ramella

and Isabella Torcicollo

Received: 28 November 2023

Revised: 30 January 2024

Accepted: 1 February 2024

Published: 3 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Ref-MEF: Reference-Guided Flexible Gated Image
Reconstruction Network for Multi-Exposure Image Fusion
Yuhui Huang , Shangbo Zhou * , Yufen Xu , Yijia Chen and Kai Cao

College of Computer Science, Chongqing University, Chongqing 400044, China
* Correspondence: shbzhou@cqu.edu.cn

Abstract: Multi-exposure image fusion (MEF) is a computational approach that amalgamates multiple
images, each captured at varying exposure levels, into a singular, high-quality image that faithfully
encapsulates the visual information from all the contributing images. Deep learning-based MEF method-
ologies often confront obstacles due to the inherent inflexibilities of neural network structures, presenting
difficulties in dynamically handling an unpredictable amount of exposure inputs. In response to this
challenge, we introduce Ref-MEF, a method for color image multi-exposure fusion guided by a reference
image designed to deal with an uncertain amount of inputs. We establish a reference-guided exposure
correction (REC) module based on channel attention and spatial attention, which can correct input
features and enhance pre-extraction features. The exposure-guided feature fusion (EGFF) module com-
bines original image information and uses Gaussian filter weights for feature fusion while keeping the
feature dimensions constant. The image reconstruction is completed through a gated context aggregation
network (GCAN) and global residual learning GRL. Our refined loss function incorporates gradient
fidelity, producing high dynamic range images that are rich in detail and demonstrate superior visual
quality. In evaluation metrics focused on image features, our method exhibits significant superiority
and leads in holistic assessments as well. It is worth emphasizing that as the number of input images
increases, our algorithm exhibits notable computational efficiency.

Keywords: multi-exposure fusion; image processing; computational photography; convolutional
neural networks

1. Introduction

Leveraging high dynamic range (HDR) imaging technology allows for a more intri-
cate and expanded color palette in different media forms, including videos and images.
However, the dynamic range captured by traditional image sensors like CCD or CMOS
deviates significantly from the actual scene due to their ability to capture only low dynamic
range images. Direct acquisition of HDR images imposes the need for more advanced and
costly equipment. As a cost-effective alternative, multi-exposure image fusion (MEF) offers
substantial advantages. It creates a comprehensive exposure map of a scene by merging low
dynamic range (LDR) images obtained under various exposure settings, thereby producing
an HDR image and enhancing visual perception. Moreover, the fused image retrieves and
accentuates details otherwise lost due to underexposure or overexposure.

The extensive study of MEF is attributable to its effectiveness in generating high-
quality images. Traditional MEF techniques [1–3] necessitate the manual creation of feature
extraction methods and fusion rules. However, this process is not only laborious and
intricate but also demonstrates limited robustness under varying input conditions. Recently,
Convolutional Neural Networks (CNNs) have made significant progress in low-level
tasks [4–6], such as image reconstruction and fusion, due to their robust representational
capabilities. DeepFuse [7], a pioneering application of CNNs in the MEF domain, leverages
the Multi-Exposure Structural Similarity Index (MEF-SSIM) [8] as a loss function, thereby
overcoming the constraints of manual feature design.
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Existing MEF algorithms predominantly employ feature concatenation [9,10], which
restricts the input exposure sequence length to the number of input neurons, limiting fusion
to merely two or three images. This insufficiency in exposure sequence numbers hinders
the achievement of comprehensive exposure coverage, highlighting the necessity for MEF
algorithms adept at handling sequences of infinite length. To circumvent this issue, most
methods adopt a model nesting approach, which inadvertently leads to a linear escalation
in model fusion time, undermining real-time performance. Although DeepFuse’s [7] feature
addition method overcomes this numerical limit, it may result in significant value range
discrepancies when dealing with image sequences of varying lengths. The mean or average
method for feature fusion proposed by IFCNN [11] indeed mitigates this issue, but it can
inadvertently lead to significant feature degradation.

MEF-Net [12] proposes a single-input network that eliminates the connection between
images in the same exposure sequence. It calculates weights for each image and uses
a weighted fusion method. However, this approach assumes that the image sequences
are independent of each other, ignoring the redundancy and complementarity of images
captured under the same exposure conditions. Consequently, this assumption results in a
loss of detail and color information.

This paper introduces an MEF method capable of accommodating an uncertain quan-
tity of inputs, facilitating the recovery of static scenes while preserving color information.
The contributions of this paper are outlined as follows:

• We introduce a reference-guided exposure correction (REC) module, rooted in the
reference image, which incorporates both channel and spatial attention. This module
significantly alleviates color discrepancies and artifacts in the fused image.

• Within the reconstruction network, we deploy an exposure-guided feature fusion (EGFF)
module designed to standardize features of varying lengths to a common dimension.
Simultaneously, we enhance the gated context aggregation network (GCAN) to effi-
ciently gather deeper contextual information, preserve spatial resolution, and effectively
suppress grid artifacts.

• An optimized loss function is proposed to uphold lighting and texture informa-
tion, ensuring the comprehensive retention of color information from the exposure
sequence images.

Ultimately, we introduce Ref-MEF, a novel and flexible MEF algorithm, specifically
designed for multi-exposure image fusion with unpredictable input quantities and resolu-
tions. We carry out end-to-end training on static multi-exposure image sequences processed
by registration algorithms [13–15] using the loss function we develop. Several experiments
indicate that, compared to most MEF algorithms, our method displays a significant ad-
vantage, both in subjective visual effects and objective evaluation metrics. Additionally,
our method holds a clear computational time advantage when dealing with an increased
number of exposure sequences.

2. Related Work

In this section, we begin with an explanation of different existing MEF methodologies,
followed by an incisive review of relevant research endeavors closely related to our own work.

2.1. Existing MEF Methods

MEF algorithms are categorized into dynamic and static types based on the inherent
characteristics of the shooting scene. Designing dynamic MEFs requires addressing object
motion and camera shake to minimize ghosting effects. Predominantly, these algorithms
involve motion detection, image registration, and image reconstruction. Image registration
is crucial in counteracting camera shake. Starting with image alignment and registration
enables the conversion of dynamic MEFs into static ones. This paper focuses primarily on
static MEFs.

Static MEF algorithms are categorized into traditional and deep learning-based ap-
proaches. The traditional methods are subdivided into spatial domain-based and transforma-
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tion domain-based methods. Within the spatial domain, the strategies include: (1) Pixel-level
techniques adhere to a paradigm of fusion weighting, at the heart of which lies the devel-
opment of efficacious weighting functions. For example, Liu et al. [16] proposed an MEF
approach that employed dense Scale-Invariant Feature Transform (SIFT) descriptors and
guided filtering. This method constructed a weight map informed by spatial consistency,
exposure quality, and local contrast, leveraging guided filters to refine weights and mitigate
noise. The dense SIFT descriptors gauged activity levels, rendering the method apt for dy-
namic scenes. (2) Patch-based techniques segment images into patches to compose the fused
imagery. A notable method by Ma et al. [2] segmented patches into distinct components
of signal strength, signal structure, and mean intensity. Through assessing patch intensity
and exposure, these components were integrated to form the fused patches, which were
subsequently amalgamated into the final fused image. SPD-MEF [17], developed by Ma’s
team, employed signal structure decomposition of patches to compute consistency maps for
ghosting elimination. APS-MEF [18] improves dynamic contrast by integrating image patch
structure decomposition, image cartoon texture decomposition, and the structural similarity
index. (3) Optimization-based techniques, exemplified by MEF-Opt [8], aimed to optimize the
MEF-SSIMc [8] index within the image domain. Although there is no universally accepted
benchmark for appraising MEF algorithms, this method’s forte is its adaptability to metrics
that more accurately assess fusion outcomes. Notwithstanding, it necessitated extensive
computational time due to its iterative global optimization in the image domain.

Regarding transformation domain-based methods, they typically encompass domain
transformation, fusion within the transformed domain, and the subsequent inverse trans-
formation. Effective fusion strategies are enacted within the transformed domain, with
prevalent techniques involving multi-scale transformations, such as principal component
analysis, wavelets, pyramids, and dense invariant feature transformations. Karakaya et al. [1]
introduced PAS-MEF, grounded in principal component analysis, adaptive exposure, and
saliency maps, harnessing pyramid decomposition for fusion. This preserved the richest
information from each exposure image and boasted a rapid processing speed.

Recent advancements in the application of Convolutional Neural Networks (CNNs) in
the MEF field underscored their remarkable image representation capabilities. These capa-
bilities eliminated the need for complex manual fusion strategy design found in traditional
methods, thus exhibiting high robustness. Deep learning methods predominantly fell into
two categories: unsupervised and supervised. DeepFuse [7], the pioneer in incorporating
deep learning technology in the MEF field, used an unsupervised measure, MEF-SSIM [19],
as the loss function. This breakthrough approach transformed RGB images into YCbCr
color space, focusing fusion design solely on the Y channel, whereas the network struc-
ture remained simple; the concept of unsupervised metric fusion and the design on the Y
channel sparked various subsequent studies. FusionDN [20] and U2Fusion [21] consoli-
dated multiple image tasks into one densely connected network, employing elastic weight
merging. This approach enabled a single network model to tackle multiple image fusion
tasks, inclusive of multi-modal, multi-exposure, and multi-focus. U2Fusion, building on
FusionDN, refined the information preservation distribution strategy and loss function.
FusionDN’s losses comprised structural similarity Index (SSIM), perceptual loss, and gradi-
ent loss. Conversely, U2Fusion replaced the gradient loss with mean squared error (MSE)
loss, effectively reducing the brightness bias in fusion outcomes. ACE-MEF [22] preserves
the texture and environmental light details in the source image by constructing the clarity
preservation network (CPN) network. The illumination adjustment network (IAN) network
corrects locally severe exposure, and a specific MEF loss is built to guide CPN in adaptively
retaining light and detail information in clear areas.

Supervised methods require a significant amount of ground truth for training; how-
ever, a large-scale ground truth dataset in the MEF field is currently non-existent. Con-
sequently, it becomes necessary to either manually generate or simulate “ground truth”.
Wang et al. [23] generated “ground truth” by manipulating the pixel intensities of the
ILSVRC 2012 validation image set [24]. Nevertheless, the authenticity of the ground truth
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generated by this method could be disputable as it may not accurately reflect the actual
shooting effect of real-world scenes. An alternate approach involves the use of outcomes
from prior algorithms to simulate “ground truth”. For instance, the SCIE dataset [25]
not only offered 500 sets of multi-exposure image sequences from static scenes but also
presented fusion results from 13 representative algorithms. IFCNN [11] employed a dual-
branch architecture with shared weights, merged features extracted from convolution
based on element mean, and proceeded to train the model utilizing perceptual loss and the
fundamental loss between the source image sequence and the simulated “ground truth”.
CFMSAN [26] employs a multi-scale attention-guided network to extract features across
various scales, generating attention weight maps of multiple sizes. These weight maps
guide the fusion result generation. The model undergoes training on the SCIE [25] dataset
through a supervised manner.

Apart from CNNS, an alternative category of methodologies based on Generative
Adversarial Networks (GANs) is employed to tackle the MEF issue. Taking inspiration
from the FusionGAN [27] model, which effectively fuses infrared and visible images, GAN-
Fuse [28] enhances adversarial learning by increasing the number of discriminators. This
augmentation facilitates the assimilation of valuable information from pairs of images
with extreme exposure. MEF-GAN [9] and Chen [29] et al. establish a GAN wherein the
generator produces fused images, and the discriminator determines the distinguishability
of the fusion results from the forged “real labels”. To achieve feature fusion based on atten-
tion and long-term dependencies, MEF-GAN [9] incorporates a self-attention mechanism
within the generator. However, the imposed constraints on MEF-GAN (requiring image
dimensions to be multiples of 8,somewhat curtail its versatility, rendering it unsuitable
for arbitrary resolutions. It is noteworthy that Chen [29] et al. integrate a Homography
network into their model to compensate for camera motion. This incorporation renders
their method applicable to dynamic MEF fusion scenes afflicted by camera jitter.

TransMEF [30] presently introduced a self-supervised, multi-task learning framework
premised on the Transform architecture. This framework underwent training on exten-
sive natural datasets, circumventing the need for ground truth. However, the MS-COCO
dataset [31], primarily utilized for object detection and segmentation, fell short of meeting
rigorous requirements due to its inherent image dynamic range and texture detail infor-
mation. The brightness and texture data gathered from the MS-COCO dataset failed to
adhere to the high-quality standards set forth for MEF image reconstruction. Moreover, the
method TransMEF employed for the reconstruction of brightness channels was incapable
of restoring the color information in the scene with precision.

2.2. Most Relevant Work

Our research work is intimately related to MEF-Net [12]. The MEF-Net also has the
ability to solve network flexibility issues and can receive inputs of varying lengths. This
network achieved this by constructing a single-input network, setting the number of input
images equal to the batch size, disconnecting the correlation between image sequences,
independently calculating the weights of each input, and performing image weighting
operations. MEF-Net only used the brightness channel of the image for training, and only
took MEF-SSIM [19] as the loss function, so it cannot retain the chroma information in the
captured scene.

In contrast, our network fully utilizes the relationship between source image sequences
and builds a weight map that has been smoothed by Gaussian after acquiring exposure
information between source sequences, forming regional characteristics. By weighting
and merging the corrected features, we send a fixed number of feature channels into
the reconstruction network for training. Ref-MEF combines MEF-SSIMc [8] and gradient
fidelity items to construct the loss function, not only preserving the chroma information
in the scene as much as possible but also retaining the high-frequency components and
texture integrity of the fusion results.
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It is worth noting that both approaches adopt the context aggregation network (CAN) [32].
The CAN in MEF-Net was used to generate a weight map. Our enhancements to the CAN
include the introduction of separable convolutions before dilated convolutions, thereby sub-
stantially strengthening the interdependence of the input units in the dilated convolutions and
significantly diminishing grid artifacts. Furthermore, we have integrated a gating structure,
combined multi-scale information, and employed global residual learning (GRL) for image
reconstruction learning.

3. Methodology

We present Ref-MEF, a highly flexible and superior multi-exposure image fusion
method. As illustrated in Figure 1, our approach can accommodate multi-exposure image
sequences of varying lengths by first converting them into feature maps through the encoder
section. We then refine these features using the reference-guided exposure correction (REC)
module. In the reconstruction network section, we utilize the exposure-guided feature
fusion (EGFF) module to ensure adaptability to different exposure levels. Additionally,
we employ the reference-guided exposure correction (GCAN) and global residual (GRL)
connections to facilitate efficient network reconstruction and information enhancement,
ultimately improving the quality of image fusion. Finally, the reconstructed feature maps
are decoded back into the original image space, producing a high-quality fused image.

Figure 1. The overall network architecture of Ref-MEF, as proposed, follows a basic autoencoder
framework. It consists of an encoder section with three convolutional layers. The reference-guided
exposure correction (REC) module is responsible for feature correction, exposure-guided feature
fusion (EGFF) handles feature fusion, and gated context aggregation network (GCAN) along with
global residual connections are responsible for feature reconstruction. The decoder section is tasked
with restoring the image to the RGB image space.

3.1. Reference-Guided Exposure Correction

As depicted in Figure 1, initial processing is performed on the input sequence images
of multiple exposures. This procedure is facilitated by a universal encoder, which consists
of three convolution layers and is tasked to map the images from the LDR domain to a
distinct feature space for extraction and pre-processing of image features. For uniform
feature space distribution and semantic information across LDR images, we have utilized a
parameter-sharing approach to facilitate comparisons. This technique uses the identical
encoder for all LDR images, providing superior operational efficiency and substantial
reduction in network parameters compared to multiple autonomous encoders. Despite
the shared-weight encoder’s ability to efficiently extract generic image features, it falls
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short in characterizing the relationships among images with varying exposure levels and
their associated features. Therefore, to improve image feature representation precision
and foster a more profound study of exposure sequence interrelations, we introduce the
reference-guided exposure correction (REC) module.

To determine the reference image essential for the REC module, we utilized the Peak-
to-Average Ratio (PAR) for histogram quantization. The PAR signifies the ratio between
the peak and valley of the histogram, serving as an indicator of the histogram’s uniformity,
specifically the uniform distribution of image brightness. An image with a diminished
PAR generally suggests the absence of conspicuous overexposed or underexposed regions,
as overexposure and underexposure result in abnormally elevated or diminished peaks
and valleys in the histogram. Opting for such an image as a reference mitigates the
introduction of unwarranted distortions during the fusion process. Furthermore, a lower
PAR is frequently linked to superior preservation of image details, contributing to the
overall retention of scene intricacies. We assume that the brightness has been sorted from
low to high, and the reference image’s index is defined as:

r = arg min PARi, for i = 1, 2, . . . , K, (1)

where arg min(·) is a search operator used to locate the index of the image with the smallest
PAR value within the exposure sequence, where K represents the current length of the
exposure sequence. Here, r divides the image sequence into two parts: the underexposed
images Lu and the overexposed images Lo, with the corresponding encoders extracting the
features as Eu and Eo, respectively.

As depicted in Figure 2, the REC module combines spatial attention and channel
attention to adjust the impact of non-reference features on image reconstruction by utilizing
spatial information, exposure intensity information, and channel color information of the
reference image.

Figure 2. Reference-guided exposure correction module (REC).

Consider the underexposed feature Ej, an element of Eu. The RECu(·) refines Ej’s
contribution to image reconstruction by utilizing spatial, exposure, and color information
from the reference image. The module automatically adjusts the weight Aj of the LDR
image, specifically for those images with relatively lower exposure levels. This weight
encapsulates not only the image’s own exposure information but also integrates related
content from the reference image. This integration allows the enhancement of non-reference
images through the reference image’s information, thus uncovering the relationships among
images with differing exposure degrees.

In a similar way, we can also obtain the feature Fo adjusted by RECo(·) in the overex-
posed area. To ensure that the network can cope with the image reconstruction problem of
the exposure sequence of indefinite length, we adopt a parameter-sharing strategy for its
implementation module.

Fj = Ej
⊗

Aj = Ej
⊗

RECi(concat(Ej, Er))

= e(Lj)
⊗

RECi([e(Lj); e(Lr)]).
(2)
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RECi(·), comprising RECu(·) and RECo(·), employs “concat” for channel dimension
concatenation, with e(·) denoting the encoder and

⊗
indicating element-wise multiplication.

3.2. Reconstruction Network
3.2.1. Exposure-Guided Feature Fusion

To integrate the variably quantified correction features derived from the REC module
into the reconstruction network for further processing, it is crucial to amalgamate and
stabilize the features to a designated number of channels. Existing feature-merging meth-
ods, employing average-featured or maximum value selection [11], lead to suboptimal
network flexibility and feature degeneration. Thus, we propose an exposure-guided feature
fusion (EGFF) strategy.

This innovative method is built upon the principle that during the merging process,
the weights corresponding to well-exposed regions should be accentuated, whereas those
associated with poorly exposed regions should be significantly reduced. After establishing
this objective, we use average brightness as a metric, setting the ideal brightness level away
from 0 (indicating underexposure) and 1 (indicating overexposure), specifically at 0.5.

Following a Gaussian curvature measurement, pixel-level weights are derived. Nonethe-
less, given that Fj is a regionally distinctive feature with asymmetric spatial information, a
direct weighting process is not feasible. Instead, we necessitate a subsequent transforma-
tion process to endow the weights with region-centric properties. Concurrently, the unity
of features should maintain receptive fields similar to or the same as Fj. Using Gaussian
curvature as a measuring scale, wgaussianj

are obtained as outlined in Equation (3).

wgaussianj
= exp

(
−
∥Lj − 0.5∥2

F
2σ2

)
, σ = 0.2, 1 ≤ j ≤ K, (3)

wherein Lj denotes the mean brightness of the image, computed as the numeric mean of
the three color channels of the image. The term ∥ · ∥F signifies the computation of the
Frobenius norm, whereas K designates the length of the present exposure sequence.

We implement a Gaussian filtering procedure on the weight map, utilizing a Gaussian
filtering kernel with standard deviation σ∗ and Gaussian convolution kernel Gσ∗ . This
procedure enhances the weight’s regional attributes, redresses its uneven distribution and
smoothness, and enhances its resistance to noise interference. The entire process can be
demonstrated as a convolution operation, with the Gaussian kernel acting as a filter to
enhance the quality of the weight data.

wi = Gσ∗ ∗ wgaussianj
, 1 ≤ j ≤ K. (4)

Finally, we employ a normalization process to the weights, accompanied by a pixel-
level weighting methodology, to accrue a feature map F′ post the feature fusion:

F′ =
K

∑
j=1

ω̃j · Fj, ω̃j =
ωj

∑K
k=1 ωk

. (5)

Incorporating this mapping relationship enables the creation of networks capable of
accommodating input sequences of unlimited length while maintaining fixed-dimensional
features in the results. On the one hand, the network exhibits minimal structural and
parametric expansion as the input image sequence length K increases. On the other hand,
it associates input images with their respective image features, effectively preserving the
original image information alongside the significance of feature maps. Simultaneously, this
module’s operation is straightforward and effectively manages computational complexity.
In comparison to fusion techniques utilizing maximum or minimum values, this training
approach offers superior stability and mitigates gradient truncation concerns. Unlike the
use of the mean value for fusion, it takes into account the allocation of exposure information
weights in input images, thereby averting bias issues stemming from inconsistent exposure
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information. Employing normalization for weight calculation, rather than simple summa-
tion [7], ensures the stability of weight values, preventing abrupt value range expansion
as K increases. Hence, adopting a weighted approach represents the optimal method for
feature fusion. We denote this fusion strategy as ’Exposure-Guided Feature Fusion’ (EGFF).

3.2.2. Gated Context Aggregation Network

The primary objective of the context aggregation network (CAN) [32] is to aggregate
context information at a deeper level without compromising spatial resolution in order to
capture context information at various scales. In their research, they examined multiple
convolutional network architectures and determined that the context aggregation network
based on dilated convolutions has significant advantages in terms of approximate accuracy,
speed, and convergence. Building upon their work, we have adopted a similar CAN
architecture and made enhancements by incorporating a gate fusion structure to extract
features at different levels, which we refer to as GCAN, as shown in Figure 3.

The fundamental component of CAN is dilated convolutions; although dilated convo-
lutions are widely acknowledged as effective, they can generate a phenomenon known as
gridding artifacts [33]. To mitigate this issue, Wang et al. [34] proposed either introducing
interactions between input units before dilated convolutions or appending a convolutional
layer with a kernel size of 2r-1 after dilated convolutions. In this study, we have chosen
to employ a similar approach by incorporating depthwise separable convolutions as a
pre-convolution layer prior to dilated convolutions.

Depthwise separable convolutions typically consist of two stages: depthwise con-
volutions and pointwise convolutions (also referred to as 1 × 1 convolutions), which
independently address spatial and cross-channel correlations in the input. In the depthwise
convolution stage, each input channel undergoes convolution with a distinct set of filters to
effectively capture spatial correlations within each channel. Subsequently, in the pointwise
convolution stage, the output of the depthwise convolution is convolved with 1 × 1 filters,
taking into account cross-channel correlations. These shared filters enable each output
feature to be a function of all input channels, thereby enhancing the dependency of the
output on the input units.

Figure 3. The architecture of gated context aggregation network (GCAN).

In computer vision, the integration of features from diverse layers can foster both
low-level and high-level tasks. With this in mind, we have developed a structure, G, for
gated fusion. Initially, this structure extracts feature mappings from an array of levels
F, subsequently feeding them into a fusion block. The fusion block’s role is to compute
weights for three distinct levels, each corresponding to a unique feature level. This design
aims to achieve gated fusion weights that can efficiently aggregate information across
various levels.

(Wl ,Wm,Wh) = G(Fl , Fm, Fh),

Fo = Wl ∗ Fl +Wm ∗ Fm +Wh ∗ Fh,
(6)

In our proposed GCAN module, Fl , Fm, and Fh denote the feature information at the
low, middle, and high layers, correspondingly. Concurrently, Wl , Wm, and Wh serve as
the output weights of the gated structure. Fo signifies not just the weight post-information
aggregation, but also embodies the outcome of the whole GCAN module.
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Simultaneously, the reconstruction network was enhanced by incorporating a global
residual structure, thereby transforming the feature fusion process into a residual learning
process, which facilitates network training. The inclusion of skip connections not only
enables more comprehensive utilization of image information but also ensures that the
fused image closely resembles the reference image, thereby preserving the color and
brightness relationships within the image. More specifically, this design effectively reuses
shallow features from the reference image, injecting spatial information containing these
shallow features into middle-level features with a larger receptive field. This facilitates
further integration and modulation of spatial and neighborhood information. This reuse of
features can also be interpreted as learning the residual between the fused image features
and the reference image features. Finally, a decoder structure symmetrical to the encoder is
employed to maintain the original resolution and convert the feature maps back into the
original image space, resulting in the successful fusion of multi-exposure images.

3.3. Loss Function

The Multiple Exposure Image Fusion Structural Similarity (MEF-SSIM) [19] evaluates the
quality of image fusion by measuring the local similarity between the input image sequence
and the fused image. This evaluation metric not only inherits the excellent mathematical
properties of Structural Similarity Index (SSIM) but also aligns with people’s subjective
perception of image quality. It also satisfies the requirement of unsupervised learning without
the need for labels, making it widely applicable. However, this operator is only applicable
to brightness information, which weakens the color information of the image to some extent.
Based on this, Ma [8] proposed MEF-SSIMc to extend it to the color space. MEF-SSIMc is
an evaluation index for multiple exposure image fusion that contains rich texture, color, and
spatial structural information. The representation of MEF-SSIMc is:

Q({Lk}, F) =
1
M

M

∑
j=1

(2µL̂µF + C1)(2σL̂F + C2)

(µ2
L̂
+ µ2

F + C1)(σ
2
L̂
+ σ2

F + C2)
. (7)

Among these variables, M denotes the number of patches, and µ̂L and F represent the
expected mean intensity of image sequence patches and the fusion result, respectively. For
brevity, please refer to reference X for the specific calculation formula of the mean intensity. µL̂µF
signifies the covariance between µ̂L and F, whereas C1 and C2 are small constants introduced to
prevent instability when the denominator approaches 0. Formula X is employed to compute the
comprehensive quality measurement of the MEF-SSIMc indicator.

However, experiments have revealed that the use of MEF-SSIMc alone to formulate
the loss function is considerably effective in preserving the main structural and color com-
ponents of the image. Nonetheless, it also introduces blurring to the fused image, leading
to a substantial loss of mid-to-high frequency details. Consequently, it becomes necessary
to incorporate certain constraint terms into the loss function to ensure the preservation
of mid-to-high frequency details in the image. To this end, we strive to introduce a gradi-
ent fidelity term into the loss function. The definition of the gradient fidelity term E∇ is
provided below:

E∇ = |
K

∑
k=1

ω̃k∇Lk −∇F |2, (8)

where ∇ is the gradient operator, ω̃k is the normalized weight. The specific calculation
formula can be referred to in Equation (6). F represents the fused image. Our ultimate
optimization goal is to simultaneously maximize MEF-SSIMc and minimize the gradient
fidelity term. Maximizing MEF-SSIMc is used to optimize the general quality of the fused
image, including spatial information, color information, exposure information, and mid-to-
low frequency components. Minimizing E∇ is used to optimize the details of the mid-to-
high frequency components. Therefore, we can construct the following loss function:

L = α · E∇ − EMEF−SSIMc + 1. (9)
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In this paper, the balance parameter α is set to 0.9.
Throughout the experiments conducted on the window size of MEF-SSIMc, a sig-

nificant improvement in the overall fusion effect was observed as the window size was
increased from 8 to 19. However, surpassing a window size of 35 did not result in the
anticipated performance improvement, but rather led to an increase in computational time.
As a result, for this paper, the window size for MEF-SSIMc has been set to 34.

Consequently, the construction of the loss function involves only the input image
sequence and the output of the algorithm, without any ground truth. Therefore, our
network is trained in an unsupervised manner.

4. Experimental Results and Comparisons

In this section, we conducted experiments to validate the fusion performance of the
proposed Ref-MEF. First, we provided a detailed description of the experimental setup.
Second, we compared Ref-MEF with recent classical MEF methods through subjective
evaluation and objective assessment. Finally, we performed a series of ablation experiments
to assess the effectiveness of the core components.

4.1. Training

We collected a comprehensive dataset for Ref-MEF. Initially, we gathered over 842 exposure
sequences from six different sources [7,8,19,25,35,36]. Additionally, we used handheld
devices and tripods to capture 30 sets of multi-exposure image sequences. We first elimi-
nated sequences containing obvious object movement and retained only those successfully
aligned using existing image registration algorithms [13–15]. After strict screening, a total
of 794 static sequences were preserved. These sequences included rich HDR content, cover-
ing indoor and outdoor environments, static objects, and daytime and nighttime scenes.
Their spatial resolution ranged from 0.2 to 20 million pixels, with exposure counts varying
between three and nine times. Among them, 700 sequences were designated for Ref-MEF
training, whereas the remaining 94 sequences were reserved for testing purposes.

During the training process, we adjusted the dimensions of the exposure sequences to
three different resolutions: 128 s, 512 s, and 1024 s, representing low, medium, and high
resolutions, respectively. Specifically, 128 s denotes resizing the shorter side to 128 while
preserving the aspect ratio. We trained the entire network using the Adam optimizer for
100 epochs, with a learning rate of 10−4. The remaining parameters in the Adam optimizer
were kept at their default values. The batch size was set to match the number of exposures in
the current sequence. To strike a balance between runtime and performance, we configured
the seven dilation rates of GCAN as follows: (2, 2, 2, 4, 4, 4, 1). Additionally, we set the
channel count for all intermediate convolutional layers to 64.

4.2. Main Result

Our study involved a comparative analysis of Ref-MEF with twelve state-of-the-art
MEF techniques. These encompass traditional spatial and transformation domain-based
algorithms such as SPD-MEF [17], MEF-Opt [8], FMMEF [37], and GD [3]. Additionally,
we scrutinized several advanced deep learning methodologies, including DeepFuse [7],
MEFCNN [38], IFCNN [11], FusionDN [20], U2Fusion [21], MEF-GAN [9], MEF-Net [12],
and Trans-MEF [30].

In deep learning methods, aside from MEF-Net [12] which can flexibly handle multiple
inputs, the number of multiple exposure images processed by other networks is fixed. To
ensure the consistency of the comparison, we adopted a nested model strategy, that is; first
selecting two images to merge to obtain an intermediate result, then merging this result
with other LDR images, and repeating this process until the final result is obtained, thus
ensuring that the number of inputs for all networks is the same.

Partial results of our algorithm’s execution are depicted in Figure 4.
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Figure 4. Results from partial execution of the Ref-MEF method.

4.2.1. Qualitative Comparison

The scene depicted in Figure 5 captures the exterior of a 7-Eleven convenience store
during the night, encompassing both nocturnal and illuminative conditions. Under con-
ditions of extreme exposure, the integration of information within the underexposed and
overexposed regions becomes exceedingly challenging, presenting a formidable task for the
algorithm. In contrast to both DeepFuse and our proposed method, alternative approaches
generally prove inadequate in effectively mitigating highlights within the vicinity of street
lamps. Within SPD-MEF, MEF-Opt, and MEF-Net, substantial errors manifest in the region
illuminated by street lamps. Despite these challenges, our algorithm adeptly magnifies
the light bulb in the area illuminated by street lamps. Regarding the section depicting
the convenience store, SPD-MEF, MEF-Opt, MEF-Net, and TransMEF tend to manifest
color deviations or insufficient brightness, resulting in a substantial loss of details. IFCNN
exhibits an overall diminished brightness, and the fusion outcomes of DeepFuse and Fu-
sionDN demonstrate reduced clarity. Upon meticulous examination of the results, our
algorithm excels in preserving the nuanced texture details of ground tiles and the internal
information of the convenience store. Consequently, in the context of the current intricate
scene examination, our algorithm emerges as particularly proficient in both information
preservation and the suppression of highlights.

Figure 6’s environment, atop a shopping mall, presents a wide exposure range chal-
lenge for fusion algorithms. MEF-Opt, FMMEF, MEF-CNN, MEF-Net, and Trans-MEF
suffer from pronounced ghosting artifacts, particularly near windows with direct sunlight,
impacting the overall visual quality. Additionally, SPD-MEF produces an overly bright and
sharp image, whereas GD and DeepFuse yield overall dark results. IFCNN shows signifi-
cant color deviation, with a predominant greenish tint. In contrast, FusionDN, U2Fusion,
and Ref-MEF offer superior subjective visual effects. Notably, Ref-MEF adeptly handles
multiple exposure challenges, such as ghosting, over-sharpening, and color deviation,
providing balanced visuals in the challenging top-floor indoor setting, positioning it among
the best in this context.
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Figure 5. The qualitative performance comparison on the “SevenElevenNight” image sequence.

Figure 6. The qualitative performance comparison on the “Preschool” image sequence.

In Figure 7’s coastal scene, comprising coastline, sunset, clouds, and waves, several
fusion algorithms face hurdles. U2Fusion, MEF-GAN, and TransMEF exhibit notable errors;
MEF-GAN shows clear color deviation, and both MEF-GAN and TransMEF significantly
lose detail, obscuring the coastline. FMMEF, DeepFuse, IFCNN, and FusionDN produce
overall dark images with limited dynamic range. MEF-Net and MEF-CNN struggle with
texture detail degradation, especially in distant clouds and waves. For SPD-MEF, MEF-Opt,
GD, and Re-MEF, the lack of Ground Truth hampers further subjective evaluation, though
they show a high dynamic range.

Figure 8 depicts the “ColorChecker” scenario, wherein the original scene comprises
two color palettes separated by a barrier for light control. One side of the barrier is exposed
to extremely dim light, whereas the other side receives direct illumination. The distribution
of lighting information in the scene is highly variable, presenting a formidable challenge
for the MEF algorithms in recovering authentic scene details. Figure 8 showcases the
outcomes of various algorithms, revealing substantial lens flare errors in SPD-MEF. IFCNN,
FusionDN, U2Fusion, and MFE-GAN demonstrate perceptible shortcomings in restoring
and preserving color palette details within shaded regions. The fusion results of GD, Deep-
Fuse, IFCNN, FusionDN, U2Fusion, MEF-GAN, and Trans-MEF all manifest pronounced
shifts in white balance, significantly diverging from the genuine color information of the
scene. MEF-Opt, FMMEF, and MEFNet produce results more closely aligned with the
authentic color tones of the scene. Regrettably, MEF-Opt yields somewhat blurry images.
Given the current scenario, we posit that the outcomes from FMMEF, MEFNet, and our
approach most faithfully represent the true scene.
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Figure 7. The qualitative performance comparison on the “Sky” image sequence.

Figure 8. The qualitative performance comparison on the “ColorChecker” image sequence.

Figure 9 portrays the nocturnal scene outside Waffle House, featuring a stationary
red car that serves as a focal point in the current context. The comparison of fusion
results is focused on these key elements. In the fusion outcomes, FMMEF manifests
conspicuous errors. The majority of algorithms encounter challenges in rendering visible
details, particularly in the bicycle’s front window and the driver’s cabin, with U2Fusion and
MEF-GAN verging on operational failure. Although IFCNN adeptly retains finer details,
the overall image significantly diverges from human perceptions of a nocturnal setting,
exhibiting excessive brightness and suffering from overexposure in the Waffle House
window area. In this specific scenario, we contend that our algorithm, when juxtaposed
with alternative methods, meticulously preserves details and aligns most closely with the
human perception of a nighttime scene.

Figure 10 illustrates the garden scene. In the current context, the overall outputs of
IFCNN, U2Fusion, MEF-GAN, and TransMEF appear dim, revealing noticeable shortcom-
ings in detail preservation. Notably, MEF-GAN introduces artificial clouds in the sky to
enhance natural color transitions; however, a distinct boundary between the white clouds
and the blue sky should be maintained. MEF-Net exhibits pronounced ghosting effects,
particularly evident in color deviations surrounding the leaves on the right side of the
image. In this scenario, the subjective representations of alternative algorithms are gener-
ally satisfactory, primarily reflecting subjective selection differences rather than significant
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errors. Our algorithm, in this particular scenario, effectively retains both detailed and
color information.

Figure 9. The qualitative performance comparison on the “WaffleHouse” image sequence.

Figure 10. The qualitative performance comparison on the “ChineseGarden” image sequence.

In summary, our algorithm exhibits exceptional robustness in managing intricate
scenes, particularly in the context of sequence fusion. The majority of learning-based
algorithms typically embrace a design that limits the input to a pair of images, achieved
through nested models for sequence image fusion. However, this approach falls short of
fully capitalizing on exposure information across the entire sequence. It is noteworthy
that, in certain relatively uncomplicated scenarios, even when errors are infrequent, there
may be variations in subjective assessment results among individuals. Nevertheless, our
algorithm delves into the correlations within the entire exposure sequence, meticulously
addressing aspects such as color accuracy, image details, and overall effectiveness, with the
aim of attaining satisfactory outcomes in diverse situations.

4.2.2. Quantitative Comparison

Numerous methods primarily utilize MEF-SSIM [19] as an evaluation metric in MEF
research. This metric primarily assesses the structural similarity between the fused image
and the inputted image sequence, correlating with intuitive human cognition. However, this
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method predominantly considers brightness details, partially disregarding color information.
To rectify this limitation, Ma [8] expanded MEF-SSIM into a color space, generating MEF-
SSIMc. This updated evaluation metric simultaneously considers the image’s color, texture, and
spatial structure details, offering a more thorough assessment of the effect of multiple exposure
image fusion.

Table 1 shows the numerical comparison results of MEF-SSIM and MEF-SSIMc. Among
all the compared methods, MEF-Opt [8] performed the best, which is not surprising,
because its algorithm is designed to optimize these two indicators in the global image space.
Compared with other methods, Ref-MEF is close to the best in MEF-SSIMc and ranks third
in MEF-SSIM, which fully proves the effectiveness of our Ref-MEF network training.

Table 1. Comparison of MEF-SSIM and MEF-SSIMc index values for various multi-exposure image
fusion methods.

Metrics SPD-MEF [17] MFE-Opt [8] FMMEF [37] GD [3] DeepFuse citedeepfuse MEFCNN [38] IFCNN [11]

MEF-SSIM 0.9382 0.9762 1 0.9324 0.9645 2 0.8968 0.9364 0.9432
MEF-SSIMc 0.9271 0.9775 1 0.9403 0.9527 3 0.862 0.9126 0.9237

Metrics FusionDN [20] U2Fusion [21] MEF-GAN [9] MEFNet [12] TransMEF [30] Ref-MEF

MEF-SSIM 0.924 0.9304 0.7722 0.9139 0.8972 0.9496 3

MEF-SSIMc 0.9123 0.9203 0.7802 0.9026 0.9032 0.9582 2

x y signifies that the method’s value is ‘x’ under the present indicator, and its ranking stands
at ‘y’.

Furthermore, given that the MEF task remains within the scope of image fusion, sev-
eral prevalent image quality assessment metrics are appropriate for evaluating its outcomes.
Specifically, image fusion results should maximize detail retention and minimize artifact
presence for enhanced visual appeal. Consequently, to evaluate the MEF method compre-
hensively, we have incorporated an expanded set of standard image quality assessment
metrics. As illustrated in Table 2, we utilized 13 standard metrics to perform a thorough
analysis of MEF fusion results, focusing on three domains: information theory-based, image
feature-based, and human perception-inspired.

Table 2. Evaluation metrics used in this paper.

Category Name Meaning +/−

Information theory-based

EN [39] Entropy +
CE [40] Cross entropy −
TE [41] Tsallis entropy +

PSNR [42] Peak signal-to-noise ratio +
NMI [43] Normal mutual information +

Image feature-based

AG [44] Average gradient +
EI [45] Edge intensity +
SD [46] Standard deviation +
SF [47] Spatial frequency +

QAB/F [48] Gradient-based fusion performance +

Human perception-inspired
QCB [49] Chen–Blum metric +
QCV [50] Chen–Varshney metric −
VIF [51] Visual information fidelity +

“+” indicates better performance with larger values, and “−” indicates better performance with smaller values.

Table 3 demonstrates the calculated results derived from our chosen evaluation metrics.
With respect to the image feature-based metrics, the Ref-MEF method exhibits substantial
superiority. Simultaneously, in measurements grounded on information theory and human
visual perception, it ascends to the benchmark level of contemporary algorithms. We apply
an average to the rankings corresponding to each method across varied metrics, subse-
quently organizing them in accordance with their scores. These findings serve to confirm



Entropy 2024, 26, 139 16 of 21

that our methodology secures a leading position, thereby authenticating its preeminent
stature in the realm of objective evaluation metrics.

Table 3. Average results obtained using various evaluation metrics by different MEF methods on the
test dataset.

Methods EN CE TE PNSR NMI AG EI SD SF Q AB/F Q CB Q CV VIF

SPD-MEF 6 7.1811 3.234 17,394 58.5365 0.6984 5.8798 54.6891 56.7475 20.7963 0.6376 0.4546 354.9691 0.774

MFE-OPT 5 7.2264 3.2354 152,840 58.5998 0.5926 5.7986 58.7073 51.5027 19.5281 0.6898 0.4627 729.1273 0.6959

FMMEF 4 7.4264 2.9075 53,255 57.6855 0.4809 5.69 53.4626 53.508 18.9879 0.7006 0.4558 621.063 0.9041

GD 10 7.2257 3.7746 30,000 56.6983 0.5465 5.4076 53.4681 55.8072 17.8313 0.6749 0.4305 336.0762 0.8511

DeepFuse 12 6.8395 3.1395 93,099 57.9744 0.7403 3.4418 35.2964 47.8109 10.6415 0.3866 0.391 361.694 0.5178

MEFCNN 11 7.3061 2.6457 101,951 54.2667 0.5974 4.9264 51.0512 55.7865 17.1608 0.6667 0.4297 750.0043 0.7355

IFCNN 7 7.153 3.3971 47,282 55.3554 0.7796 6.1824 62.1918 51.5826 21.0011 0.5919 0.41 238.3928 0.7146

FusionDN 2 7.4243 2.9392 9673 54.9748 0.7383 6.9693 69.3412 67.7641 21.6542 0.536 0.4355 322.5755 0.9505
U2Fusion 9 6.6785 3.018 20,326 56.0697 0.7639 5.4728 59.3588 65.1615 18.5468 0.5354 0.4159 242.4821 0.8281

MEF-GAN 13 6.9109 2.773 21,360 54.857 0.5699 4.5945 48.5215 63.734 13.9918 0.2829 0.3822 618.3198 0.5859

MEFNet 3 7.3035 3.059 83,157 57.7134 0.6077 5.8818 62.828 58.5405 19.7768 0.6767 0.4863 622.814 0.8342

TransMEF 8 7.2123 3.0568 18,812 56.9614 0.8031 5.5395 54.5106 62.901 18.3247 0.5705 0.4197 281.2867 0.8175

Ref-MEF 1 7.4247 2 2.93 4 97,332 3 58.5548 2 0.7606 4 6.9852 1 67.9798 2 67.103 2 21.7384 1 0.7013 1 0.4474 5 292.275 4 0.8681 3

x y represents that x is ranked as the yth in the column. Here, x can refer to either a method or a specific
evaluation metric. The data highlighted in bold indicates that the current method outperforms all contrastive
methods within the current evaluation Metrics.

4.2.3. Running Time Comparison

In order to compare the computational costs of the MEF algorithm, we demonstrate
the running time with varying numbers of exposure shots, as depicted in Figure 11. These
times are the average fusion times under a scenario with a fixed spatial resolution of 512 s
(resizing the shorter side to 512 while preserving the aspect ratio). Among these algorithms,
MEF-Opt [8] has the longest running time, which is not surprising as it employs iterative
methods to perform global image optimization to satisfy the MEF-SSIM [19] criterion.
Compared to other learning-based methods, Ref-MEF does not require more model layers
due to its unique network structure when the number of exposure shots increases, and
therefore the running time does not change much. However, other deep learning methods
show a linear growth trend when the number of exposure shots increases. Although
the algorithm of MEF-Net [12] is slightly faster than ours, our algorithm significantly
outperforms MEF-Net in both objective and subjective assessments of the fusion results.

Figure 11. The change in the runtime of the MEF algorithms corresponds to an increase in the number
of exposure lenses.
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4.3. Ablation Experiments

To evaluate the significance of each component in Ref-MEF, we conducted an ablation
analysis to explore the impact of different components on network performance. Special
attention was directed towards the REC module, EGFF module, separable convolution, and
gate fusion block in the GCAN, as well as the gradient fidelity term in the loss function. The
influence of each component was systematically assessed by individually removing them. Upon
removal of the REC module, we substitute the original structure with conventional convolution.
For the exclusion of the EGFF module, a strategy akin to the weighted averaging of IFCNN [11]
was employed to compute features. The GCAN was substituted with the CAN baseline network
without separable convolution and gate fusion structures. In the discourse on the loss function,
the gradient fidelity term was omitted, and only MEF-SSIMc was utilized for unsupervised
training. Detailed configurations and experimental metric values can be found in Table 4.

Beyond the gradient fidelity term in the loss function, the removal of these components
during the ablation process resulted in varying degrees of suppression on the performance
of MEF-SSIM [19] and MEF-SSIMc [8]. It is crucial to note that the exclusion of the gradient
fidelity term led to an improvement in the metrics of MEF-SSIM [19] and MEFSSIMc [8].
Nevertheless, we recommend retaining the gradient fidelity term due to its pivotal role in
preserving texture and high-frequency information in images.

Table 4. Specific ablation settings and training configurations were implemented for each component,
which demonstrate the optimal performance achieved by the combination of our designed modules.

component configuration1 configuration2 configuration3 configuration4 configuration5 configuration6

REC ✓ ✓ ✓ ✓ ✓

EGFF ✓ ✓ ✓ ✓ ✓

Spe Conv ✓ ✓ ✓ ✓ ✓

Gated
Fusion ✓ ✓ ✓ ✓ ✓

Loss with
E∇

✓ ✓ ✓ ✓ ✓

MEF-SSIM 0.8633 0.8479 0.8555 0.8958 0.9588 0.9496

MEF-SSIMc 0.8711 0.8578 0.8632 0.9039 0.9673 0.9582

In Figure 12, We showcase fusion outcomes related to scenes involving books, achieved
by adjusting various balance factors, represented as α. Upon closer inspection of the image
text details, it is observed that in the absence of the fidelity term for gradients (α = 0), even
though MEF-SSIMc based on the image structure reaches its maximum, the image details
remain incomplete, resulting in inadequate clarity. Experimental findings reveal that as α
increases to 0.7, there is a notable enhancement in image clarity, as evidenced by metrics
such as average gradient (AG) and edge intensity (EI), describing image features. A further
increment of α to 0.9 leads to a stabilization of image clarity. However, metrics related to image
features, such as AG and EI, exhibit limited improvement at this stage. To achieve a balance
between image features and the preservation of the main image structure, the balance factor α
is set to 0.9. This decision is made with performance considerations in mind, aiming to retain
texture and details while maximizing the maintenance of the image’s primary structure.

It is noteworthy that, following the incorporation of the REC module, a substantial im-
provement in objective evaluation metrics has been achieved, evidenced by an almost 10%
increase in MEF-SSIM and MEF-SSIMc on the test set. Furthermore, after the introduction of
the REC module, notable enhancements in color deviation and scene tone consistency have
been observed in the fusion results, as depicted in Figure 13. The REC module, utilizing an
attention mechanism, thoroughly explores the color and exposure information within the
exposure sequence, playing a pivotal role in providing essential corrective enhancements
to features of other LDR images.

Utilizing separated convolution in CAN significantly strengthens the dependency of the
dilated convolution input unit, aiding in the suppression of grid artifacts [34]. We contrast
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this approach with the classical CAN network [32] and present two examples. As depicted in
Figure 14, in parts (a) near the leaves and railing, and (b) near the clock tower and leaves, grid
artifacts and color deviations are evident at the edges of objects or texture regions. Neverthe-
less, employing separated convolution effectively resolves these issues while preserving the
original fidelity of the image, thus demonstrating the efficacy of our design.

α = 1.0
MEF-SSMIc = 0.9413
AG = 7.04 EI = 69.02

(a)

α = 0.9
MEF-SSMIc = 0.9582
AG = 6.99 EI = 67.98

(b)

α = 0.8
MEF-SSMIc = 0.9617
AG = 6.56 EI = 66.25

(c)

α = 0.7
MEF-SSMIc = 0.9641
AG = 5.28 EI = 65.67

(d)

α = 0.0
MEF-SSMIc = 0.9673
AG = 4.23 EI = 47.57

(e)

Figure 12. The fusion results obtained with different settings of the gradient fidelity term’s balance
factor α in the “ICCV02” scenario. (a) When the balance factor is 1.0, (b) when the balance factor is
0.9, (c) when the balance factor is 0.8, (d) when the balance factor is 0.7, (e) when the gradient fidelity
term is not used, the balance factor is 0.

Figure 13. Subjective experimental results of the ablation of the REC module. In the first row,
item (a) depicts the provided multi-exposure image sequence. The second row, item (b), presents
outcomes in the absence of the REC module, whereas item (c) illustrates enhancements upon the
module’s integration.

Figure 14. Subjective experimental results of the ablation of the separated convolution. The regions
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identified by the red boxes display notable grid artifacts. The first row (a,b) displays the results
absent the use of separated convolution, whereas the effects of applying separated convolution are
exhibited in the second row (c,d).

5. Conclusions

We propose a flexible multi-exposure image fusion method for static scenes, named
Ref-MEF, which can accept an uncertain number of multi-exposure image inputs. To correct
the color difference and inconsistency in hue in the fusion results, we have constructed a
module called reference-guided exposure correction (REC). Using the exposure-guided
feature fusion (EGFF) module, we have realized adaptive weighting to construct a fixed
feature dimension. In addition, we use the reference-guided exposure correction (GCAN) to
aggregate multi-scale contexts, reducing grid artifacts. In the loss function, we introduce a
gradient fidelity term to ensure the completeness of detail information and high-frequency
information in the fusion results. Our method shows excellent performance both qual-
itatively and quantitatively and is more flexible in handling an increasing number of
multi-exposure inputs.
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48. Xydeas, C.; Petrović, V. Objective image fusion performance measure. Electron. Lett. 2000, 36, 308. :20000267. [CrossRef]
49. Chen, Y.; Blum, R.S. A new automated quality assessment algorithm for image fusion. Image Vis. Comput. 2009, 27, 1421–1432.

[CrossRef]
50. Chen, H.; Varshney, P.K. A human perception inspired quality metric for image fusion based on regional information. Inf. Fusion

2007, 8, 193–207. [CrossRef]
51. Han, Y.; Cai, Y.; Cao, Y.; Xu, X. A new image fusion performance metric based on visual information fidelity. Inf. Fusion 2013,

14, 127–135. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIP.2020.2987133
http://www.ncbi.nlm.nih.gov/pubmed/32310768
http://dx.doi.org/10.1109/ICIP.2018.8451689
http://dx.doi.org/10.1117/1.2945910
http://dx.doi.org/10.1016/j.biosystemseng.2009.02.009
http://dx.doi.org/10.1049/el:20060693
http://dx.doi.org/10.1016/j.aqpro.2015.02.019
http://dx.doi.org/10.1049/el:20020212
http://dx.doi.org/10.1016/j.optcom.2014.12.032
http://dx.doi.org/10.1088/0957-0233/8/4/002
http://dx.doi.org/10.1109/26.477498
http://dx.doi.org/10.1049/el:20000267
http://dx.doi.org/10.1016/j.imavis.2007.12.002
http://dx.doi.org/10.1016/j.inffus.2005.10.001
http://dx.doi.org/10.1016/j.inffus.2011.08.002

	Introduction
	Related Work
	Existing MEF Methods
	Most Relevant Work

	Methodology
	Reference-Guided Exposure Correction
	Reconstruction Network
	Exposure-Guided Feature Fusion
	Gated Context Aggregation Network

	Loss Function

	Experimental Results and Comparisons
	Training
	Main Result
	Qualitative Comparison
	Quantitative Comparison
	Running Time Comparison

	Ablation Experiments

	Conclusions
	References

