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Abstract: The inability of Schrödinger’s unitary time evolution to describe the measurement of a
quantum state remains a central foundational problem. It was recently suggested that the unitarity
of Schrödinger dynamics can be spontaneously broken, resulting in measurement as an emergent
phenomenon in the thermodynamic limit. Here, we introduce a family of models for spontaneous
unitarity violation that apply to generic initial superpositions over arbitrarily many states, using
either single or multiple state-independent stochastic components. Crucially, we show that Born’s
probability rule emerges spontaneously in all cases.
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1. Introduction

How the unitary time evolution prescribed by Schrödinger’s equation can be recon-
ciled with the observation of single measurement outcomes randomly selected according to
Born’s probability distribution remains one of the central foundational problems of modern
science [1–5]. One way to formulate this ‘quantum measurement problem’ is to observe that
one registers a single outcome upon performing a single quantum measurement. Repeating
the measurement with the same initial state might yield a different outcome, in accordance
with Born’s rule [6]. Describing the measurement device as a macroscopic collection of
interacting quantum particles, however, its evolution should be governed by Schrödinger’s
equation. As formalised by Von Neumann [7], the interaction between a measurement
device |M⟩ and microscopic quantum system |S⟩ in the so-called strong measurement
limit then inevitably leads to the prediction of an entangled state between system and
measurement device of the form:(

∑
j

αj
∣∣Sj

〉)
|M⟩ → ∑

j
αj
∣∣Sj

〉∣∣Mj
〉
. (1)

Although ever more massive objects have successfully been put into spatial superposition [8–11],
there is no evidence of truly macroscopic measurement machines ending up in the superpo-
sition of measurement outcomes described by Equation (1) during individual experiments.

Attempts to address the measurement problem theoretically can be grouped into three
broad categories. The first posits that decoherence may be seen as a type of measurement be-
cause it leads to diagonal reduced density matrices after tracing out the environment [12–15].
This approach, however, is explicitly restricted to describing expectation values averaged
over an ensemble of realisations of the environment and hence does not resolve the issue of
a single outcome being observed in a single measurement [1,16–19].

Second are the interpretations of quantum mechanics, which all share the central
assumption that Schrödinger’s equation (and hence unitary dynamics) applies without

Entropy 2024, 26, 131. https://doi.org/10.3390/e26020131 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26020131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4353-9762
https://orcid.org/0000-0002-0135-3559
https://orcid.org/0000-0002-9378-008X
https://doi.org/10.3390/e26020131
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26020131?type=check_update&version=2


Entropy 2024, 26, 131 2 of 24

change to all objects in the universe, large or small [20–24]. These theories then give dif-
ferent interpretations for the physical meaning of the quantum state to explain why the
superposed states of macroscopic objects that are unavoidable under unitary dynamics
are not observed in our everyday experience. Since all interpretations strictly adhere to
Schrödinger’s equation, the predictions from different interpretations for any given experi-
ment are all identical, and they cannot be experimentally distinguished or verified. Notice,
however, that any experimental observation of Schrödinger’s equation being violated
would suffice to falsify all interpretations.

In contrast, the third class of approaches, which introduce objective collapse or dy-
namical quantum state reduction (DQSR) theories, share the common assumption that
the quantum state does represent the actual state of physical objects of any size, and that
the observed emergence of classical physics necessitates a refinement of Schrödinger’s
equation [25–36]. These theories introduce small modifications to quantum dynamics that
have no noticeable effect on the microscopic scale of elementary particles but which begin
to influence the dynamics in a mesoscopic regime (defined differently in different theories,
but roughly understood to involve objects beyond 106 atoms being superposed over dis-
tances comparable to their own size [32]). Beyond the quantum-classical crossover, in the
macroscopic world of human measures, the result is a nearly instantaneous, dynamical
reduction of the quantum state to a single, classical configuration. Because these theo-
ries introduce actual changes to the laws of quantum dynamics at the mesoscopic level,
they provide experimentally testable predictions, which are a target of active and ongoing
investigation [3,37–41].

In this article, we generalise the recently suggested idea that spontaneously broken
unitarity can cause quantum measurement [33,42,43], and show that it gives rise to a family
of objective collapse theories describing the measurement of generic initial states. These
models differ from existing objective collapse theories in two essential ways. First, the
modified quantum state evolution is continuous and (once) differentiable, in contrast to
the evolution encountered in other theories [1], which is either non-differentiable (but
continuous), such as in the Diósi–Penrose or Continuous Spontaneous Localization (CSL)
models [26,27,29–31], or contains discontinuous stochastic jumps such as in the Ghirardi–
Rimini–Weber (GRW) model [28]. Secondly, although any collapse evolution necessarily
involves both a non-linear and a stochastic component [42], these are strictly separated
in the models introduced here, and the distribution of the stochastic term is independent
of the state being measured. This ensures that Born’s rule emerges spontaneously in the
thermodynamic limit without being assumed in the proposed modifications to quantum
dynamics [43]. For a more extensive summary of the general theory of spontaneous
unitarity violation and its relation to spontaneous symmetry breaking, see Appendix C.

In Section 2, we briefly review how Spontaneous Unitarity Violations (SUV) lead
to DQSR in the ideal measurement setup starting from a two-state superposition. In
Sections 3–5, we generalise this initial result and explicitly construct DQSR models for
generic initial states consisting of N-component superpositions. We discuss three ways
of introducing the required stochastic component into the N-state dynamics, leading to
models with either a single, N, or log(N) random variables. We conclude in Section 7 with
a brief comparison and discussion of these models for quantum state reduction resulting
from spontaneous unitarity violation.

2. Quantum State Reduction from Spontaneous Unitarity Violations

In this section, we briefly review the application of spontaneous unitarity violation
to the quantum measurement problem [33,42]. Following Von Neumann [7], we consider
a strong measurement setup in which a microscopic system and macroscopic appara-
tus are instantaneously coupled and brought into the entangled state of Equation (1).
(see Appendix D for a more detailed description of this process). From here on, we will
consider the joint evolution of the system and measurement device and label their com-
bined states |ψi⟩ ≡ |Si⟩|Mi⟩, representing both the microscopic system being in state |Si⟩
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and the measurement apparatus being in state |Mi⟩. Notice that the states of the mea-
surement apparatus in this expression are not arbitrary. As described below, the effect of
the spontaneous unitarity violation will be to always reduce macroscopic objects to states
with a spontaneously broken global symmetry, or equivalently, an order parameter [33].
Only those macroscopic systems that are already susceptible to ordering turn out to be
susceptible to spontaneous unitarity violations. This implies that only objects normally
referred to as “classical objects”, such as tables, chairs, pointers, magnets, and supercon-
ductors [44], act as measurement devices. It also implies that the states |Mi⟩ must be
states with a spontaneously broken symmetry. These include states with a well-defined
position, such as an actual pointer, which breaks translational symmetry. On the other
hand, they exclude states with a well-defined total momentum, which cannot be stabilised
in any natural process of spontaneous symmetry breaking [44]. The observation that only
ordered states are susceptible to unitarity-breaking perturbations (even if all states may
be subjected to such perturbations) thus imposes a preferred basis for the states of the
measurement apparatus. Incidentally, states with broken global symmetry, such as actual
pointers, are stable under interactions with the environment and would be classified as
“pointer states” in the language of the theory of decoherence [45]. Since they represent states
of classical pointers both in the sense of symmetry breaking and in that of decoherence, we
will refer to the states |Mi⟩ simply as pointer states from here on. An evolution starting
from the superposition of pointer states in Equation (1), and ending in a single state |ψi⟩,
then constitutes a description of quantum measurement.

2.1. Requirements

Any theory of DQSR necessarily includes a stochastic element in order to allow for the
same initial state to yield different measurement outcomes in repeated experiments [1,3].
Furthermore, because the probability of finding any particular measurement outcome
depends on the initial state, the DQSR dynamics must also necessarily be a state-dependent
and thus non-linear process [42]. Finally, in order to obtain irreversible single-state dynamics
and stable endpoints of the quantum measurement process, it must be non-unitary [33,42].

A non-unitary measurement process necessarily implies the breakdown of time in-
version symmetry, in the sense that the probabilistic prediction of measurement outcomes
based on the initial state differs from the assignment of initial state likelihoods based on a
given measurement outcome (notice the difference with time-reversal symmetry: a magnet
in equilibrium spontaneously breaks time-reversal symmetry. The magnetised equilibrium
configuration, however, is static and thus evolves the same way under time evolution
forwards and backwards in time. That is, its dynamics still have time inversion symmetry).
The central idea of introducing spontaneous unitarity violations (SUV) is that time inver-
sion symmetry can be broken spontaneously, in the same way that any other symmetry
of nature can be spontaneously broken. That this is possible is signalled by the diverging
susceptibility of Schrödinger dynamics to infinitesimal non-unitary perturbations in the
thermodynamic limit [46]. As usual in descriptions of spontaneous symmetry breaking
(see Appendix C for details), this signals a separation between the behaviour of microscopic
and macroscopic objects. Single, microscopic quantum particles will not be noticeably
affected within the age of the universe by the presence of a small unitarity-breaking per-
turbation to Schrödinger’s equation. On the other hand, in rigid macroscopic objects,
which consist of a macroscopic number of quantum particles that together break a global
symmetry, the effect of even the weakest unitarity-breaking perturbation is large and
nearly instantaneous.

The singular limit describing the dichotomy between the time evolution of microscopic
and macroscopic objects is typical of spontaneous symmetry breaking and emergence in
general. Notice that in contrast to what the name suggests, the breakdown of unitarity,
and symmetry in general, is not actually “spontaneous” [44]. Any large but finite-sized
object requires a small but non-zero perturbation to break a symmetry. The process is
called spontaneous because, for objects on human scales, the number of quantum particles
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collectively forming classical objects is so large that we can never hope to detect or control
the unimaginably weak perturbations that suffice to break their symmetries. As long as
symmetry-breaking perturbations are not forbidden by any physical law, they will be
present in some nearly infinitesimal amount and have a large and unavoidable effect on
macroscopic objects [44].

In the case of SUV, it is known that unitarity is not a fundamental property of our
universe, as testified, for example, by general relativity not being invariant under time in-
version symmetry and not allowing for a description in terms of unitary time evolution [32].
The diverging susceptibility to non-unitary perturbations, therefore, unavoidably causes
sufficiently macroscopic objects to violate the unitarity of Schrödinger dynamics and be
reduced to classical, symmetry-breaking states [47]. The time scale over which the quantum
state reduction takes place scales inversely with the size of the order parameter and can
thus be immeasurably small for macroscopic, ordered objects while remaining longer than
the age of the universe for microscopic or non-rigid objects without an order parameter. In
between these limits, a regime of mesoscopic objects that evolve non-unitarily over human
time scales must then exist.

Finally, adding a stochastic component to the non-unitary perturbation yields an ob-
jective collapse model for quantum measurement, starting from initial state superpositions
of the form of Equation (1) and evolving to different classical measurement outcomes
with different probabilities. In this article, we study the long-time statistics of the classical
states realised in such stochastic models for spontaneous unitarity violation rather than
studying their microscopic origin or making quantitative predictions for the time evolution
during measurement. We show that Born’s rule can spontaneously emerge from stochastic
dynamics in the sense that it arises from a process driven by random variables whose
distribution is independent of the quantum state being measured.

2.2. Modified Schrödinger Equation

To be specific, consider the time evolution generated by the modified Schrödinger
equation:

ih̄
∂|ψ(t)⟩

∂t
= [Ĥ + iϵN Ĝ]|ψ(t)⟩. (2)

Here, Ĥ is the standard Hamiltonian acting on the joint state |ψ⟩ of the microscopic system
and measurement device. The unitarity-breaking perturbation is written as ϵN Ĝ, mak-
ing explicit that it couples to an order parameter of the measurement device and hence
scales extensively with its size N [46]. Moreover, its strength ϵ is taken to be nearly in-
finitesimal, so that it has negligible effect on the dynamics of microscopic systems while
affecting an almost instantaneous evolution in the limit of large system size. The operator
Ĝ := Ĝ(ψ(t), ξ(t)) is Hermitian but non-linear and depends on the state |ψ(t)⟩ as well
as the instantaneous value of a time-dependent stochastic variable ξ(t). Together with a
specification of the dynamics for ξ(t), Equation (2) describes a Markovian quantum state
evolution. Notice, however, that this non-unitary dynamics describes the full state of the
joint system and is not an effective model. It differs in this respect from the standard Gorini–
Kossakowski–Sudarshan–Lindblad (GKSL) master equations, obtained, for example, by
tracing out an environment in open quantum systems [48,49].

In contrast to many other models for DQSR, we do not assume the stochastic variable
ξ(t) to be Gaussian white noise, and ξ(t)dt is not the infinitesimal Wiener measure dWt [1].
Instead, we assume that the stochastic variable has a non-zero correlation time τ, and we
will be mostly interested in the thermodynamic limit N → ∞, in which the state |ψ(t)⟩
evolves much faster than the stochastic variable. In that limit, τ is effectively infinite,
and ξ(t) can be taken to be a time-independent variable that is randomly chosen from a
stationary distribution for each realisation of the quantum measurement process.
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Figure 1. Dynamics of quantum state reduction. (a) The state evolution of superpositions of two
pointer states as given by Equation (5), depicted on the Bloch sphere. The pointer states form
attractive fixed points of the flow on the poles of the Bloch sphere. The position of the dashed red
separatrix is determined by the value of the stochastic variable ξ. (b) Generalisation of the evolution
to superpositions of three pointer states (extreme points in the flow), as given by Equation (10).
(c) Example of an initial state superposed over eight pointer states |j⟩, being dynamically reduced
(for a single value of the stochastic variable) to the final measurement outcome |2⟩. The probability
that the randomly chosen stochastic variable leads to this particular outcome is given by P = |α2|2, in
accordance with Born’s rule.

2.3. Two-State Superpositions

Specialising to initial states superposed over pointer states, as in Equation (1), we can
take the Hermitian part Ĥ to be zero, because all pointer states of a good measurement
device should become degenerate eigenstates of the Hamiltonian in the thermodynamic
limit [44]. Furthermore, the non-unitary contribution to the dynamics, Ĝ, must couple to
the order parameter describing the broken symmetry of the pointer state in order for the
process of spontaneous unitarity violation to take effect [33,46]. It must thus be diagonal
in the pointer state basis and have different eigenvalues for different pointer states. The
minimal way in which all requirements on Ĝ can be implemented for the specific case of a
two-state superposition is to consider the following:

|ψ(t)⟩ = α(t)|0⟩+ β(t)|1⟩

Ĝ|ψ(t)⟩ =
(
⟨σ̂z⟩ + ξ

)
σ̂z|ψ(t)⟩. (3)

In this expression, σ̂z := |0⟩⟨0| − |1⟩⟨1| and ⟨σ̂z⟩ = ⟨ψ|σ̂z|ψ⟩/⟨ψ|ψ⟩ = |α(t)|2−|β(t)|2
|α(t)|2+|β(t)|2 , which is

the usual time-dependent quantum expectation value. The coupling to the order parameter
(⟨σ̂z⟩) appears in a non-linear way (depends on the wave-function), allowing the pointer
states to be stable end states of the non-unitary evolution [42]. The stochastic variable ξ is
taken from a flat, uniform distribution on the interval [−x, x], with x a parameter whose
value will be determined below. Notice that ξ(t) evolves independently from |ψ(t)⟩ and
represents a separate physical process that is not influenced in any way by the quantum
state evolution. That is, the combination of the stochastic term in Equation (3) being
linear and its probability density function not depending on |ψ⟩ ensures that Born’s rule
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is not imposed in the definition of the stochastic evolution and instead has to emerge
spontaneously [43]. This is contrary to other models for DQSR, in which the stochastic
term is multiplied by an expectation value and thus obtains a state-dependent probability
distribution that enforces Born’s rule [1].

The time evolution implied by Equations (2) and (3) does not conserve the norm of |ψ⟩.
This is not a problem as all physically observable expectation values can be defined in a
norm-independent way as ⟨Ô⟩ = ⟨ψ|Ô|ψ⟩/⟨ψ|ψ⟩ [42]. Alternatively, and equivalently, the
time evolution can be augmented with a normalisation of the wave function either at each
time step dt or at the end of a period of evolution, as in other models for DQSR [1]. To be
explicit, a normalisation prescription may be obtained by noting that in the limit of interest,
where the quantum state dynamics is much faster than the noise dynamics, we may consider
ξ to be a time-independent random number sampled once in each measurement. In this
limit, there is no distinction between the Itô and Stratonovich implementations of stochastic
evolution [36,50,51], and the usual rules of calculus apply. Thus, the time evolution can
be made norm-preserving by adding a normalising factor to the time evolution operator.
Written in terms of the generator Ĝ, this implies adding a (non-linear) term proportional to
the identity operator, leading to the explicitly norm-preserving expression:

Ĝ|ψ(t)⟩ =
(
⟨σ̂z⟩ + ξ

)[
σ̂z − ⟨σ̂z⟩

]
|ψ(t)⟩. (4)

Notice that Equations (3) and (4) yield precisely the same predictions for all physically
observable expectation values ⟨Ô⟩ = ⟨ψ|Ô|ψ⟩/⟨ψ|ψ⟩. For situations in which ξ is time-
dependent on the scale of the quantum state evolution, technical details regarding the
so-called quadratic variation of the quantum state dynamics must be taken into account in
order to obtain norm-preserving dynamics. A treatment of this general case may be found
in Ref. [36] but is not required in the present discussion.

Notice that the dynamics given by Equation (4) is distinct from the so-called contin-
uous spontaneous localisation (CSL) models and other related models driven by white
noise [1,26,27,29–31]. Furthermore, it is also distinct from the spontaneous collapse mod-
els proposed in Refs. [34,35,41], which have only stochastic terms while the dynamics in
Equations (3) and (4) crucially depends on both a stochastic term and a purely deterministic
non-linear term.

To generalise Equation (4), the issues of having to define the unobservable norm and
total phase of |ψ(t)⟩ can be circumvented by focusing on only the physical content of the
state |ψ⟩, represented by the Euler angles θ and φ defining its representation on the Bloch
sphere (see Figure 1). In fact, the relative phase φ does not influence the evolution of θ for
the time evolution generated by Equations (3) and (4). We thus restrict attention to only the
dynamics of the relative weights, given by [42]:

h̄ dθ/dt = ϵN sin(θ)(ξ − cos(θ)). (5)

Notice that the change in θ from time t to t + dt is completely specified by the values of θ
and ξ at time t itself. The time evolution is thus a Markovian process without memory [1].
Moreover, because the value of the stochastic variable ξ is newly sampled for every reali-
sation of the measurement process, the time evolution cannot be used for quantum state
cloning, despite being non-linear [52,53].

The non-linear dynamics on the Bloch sphere defined by Equation (5) has stable
fixed points at θ = 0 and θ = π, which represent the two pointer states appearing in the
initial state superposition. It also has an unstable fixed line separating the attractive fixed
points (a separatrix) at θ = cos−1(ξ), as shown in Figure 1. If the value of the randomly
sampled variable ξ is such that the initial value θ(t = 0) ≡ θ0 lies above the separatrix,
the state evolves towards θ = π under the non-unitary time evolution, while it evolves
towards θ = 0 otherwise. The probability of ending up at either pole is thus determined
by the probability for the randomly selected value ξ to be smaller or larger than cos(θ0).
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Choosing the range from which ξ is sampled to be [−1, 1] results in final state statistics
equaling Born’s rule [42,43]. This ensures the emergence of Born’s rules in Equation (5)
and Equation (4) for uniformly distributed ξ, and this property will be utilised to construct
more general models in the following sections. Notice that restricting ξ to be sampled
from a bounded domain restricts the type of underlying physical processes that may give
rise to the stochastic evolution ξ(t). It does not, however, introduce a state-dependence in
the value or probability distribution of ξ(t) and thus does not impose Born’s rule in the
definition of the stochastic variable.

With the choice x = 1, the time evolution of Equation (3) defines a model for DQSR
starting from a two-state superposition in the initial state. The spontaneous breakdown of
unitarity takes place in a time scaling with ϵN so that microscopic objects take arbitrarily
long to be affected by a nearly infinitesimal ϵ, while the collapse process is nearly instanta-
neous in the limit of large N , even for very small non-unitary perturbations. Moreover,
the stable end states of the quantum state reduction are given by the symmetry-breaking
pointer states, and Born’s rule statistics emerge spontaneously.

3. One Random Variable

Having a model for DQSR based on SUV for the specific case of a two-state superposi-
tion of pointer states, we will now generalise the approach to initial superpositions over N
pointer states. Notice the difference between N (the size of the measurement apparatus)
and N (the number of pointer states with nonzero weight in the initial superposition). The
generalisation can be done in multiple ways, differing in the number of required stochastic
variables and the symmetry properties of the non-unitary perturbation.

The mathematically most straightforward extension of the two-state evolution can be
found by first rewriting Equation (5) in the form:

h̄ dθ/dt = ϵN sin(θ)
(

λ − cos2(θ/2)
)

. (6)

Here, the random variable ξ ∈ U[−1, 1] is replaced with λ = (ξ + 1)/2, which corresponds
to a random variable taken from a uniform distribution on the domain [0, 1]. This rewriting
of the time evolution brings to the fore two important points. First, it makes clear why
Born’s rule emerged. The relative weights in the two-state superposition are determined at
any time by θ, with pointer states corresponding to θ = 0 and θ = π. If the value of λ in
Equation (6) is lower than cos2(θ0/2), then the velocity dθ/dt is negative and the value of
θ will decrease, indicating an evolution towards θ = 0. Since θ decreases, λ − cos2(θ/2)
will also decrease, and the sign of the velocity never changes (that is, the evolution in
Figure 1 never crosses the separatrix). Thus, for every value of λ smaller than cos2(θ0/2),
the pointer state at θ = 0 ends up as the final outcome of the DQSR process.

The probability for finding the state |1⟩ (i.e. θ = 0) as the result of the quantum
measurement is now understood to equal the probability for the term λ − |β0|2/(|α0|2 +
|β0|2) to be negative. If λ is randomly taken from U[0, 1] that probability is |β0|2/(|α0|2 +
|β0|2), in agreement with Born’s rule.

Secondly, the set of possible final states and their corresponding probabilities will not
change if all diagonal elements of Ĝ are multiplied by a common factor. Such an overall
multiplicative factor would affect the speed with which components evolve during the
DQSR process but not the locations of fixed points or separatrices.

Having identified these characteristics, we can propose a generalisation. Consider an
initial superposition over N pointer states, written as:

|ψ⟩ =
N−1

∑
j=0

αj|j⟩, with
N−1

∑
j=0

∣∣αj
∣∣2 = 1. (7)
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To avoid imposing normalisation at every time step, we again switch to a representation
of a higher-dimensional generalisation of the Bloch sphere. Introducing angles θm with
m ∈ {1, 2, . . . , N − 1} describing the relative weights of components, we write the following:

|αN−1| =
N−1

∏
m=1

cos
(

θm

2

)

|α0<j<N−1| = sin
(

θj+1

2

) j

∏
m=1

cos
(

θm

2

)
|α0| = sin

(
θ1

2

)
. (8)

In direct analogy with the two-state process, we would like the pointer state to corre-
spond to fixed points of the non-linear time evolution in the state-space spanned by the
variables θm. On the level of the evolution equation, this can be accomplished by having
dθm/dt ∝ sin(θm). The flow lines then end at points in phase space where all θm equal
either zero or π, or equivalently at the states |j⟩ (and not superpositions of them). Notice
that in fact, the state |0⟩ corresponds to θ1 = π, irrespective of the values of θm for m > 1,
because of the factor cos(θ1/2) appearing in all |αj| except |α0|. Similarly, |1⟩ corresponds
to θ1 = 0 and θ2 = π, regardless of the values of θm for m > 2, and so on.

Having ensured that the possible endpoints of evolution coincide with the pointer
states |j⟩, we need to ensure the emergence of Born’s rule. That is, each possible final
state |j⟩ should have probability |αj|2 of being selected by the state dynamics. This can
be achieved by noticing that in a normalised state vector, the squared components of the
wave function add up to one so that we can interpret them as the lengths of line segments
adding up to a line of total length one, as indicated in Figure 2a. The domain of the random
variable λ is [0, 1], so the value of λ can be indicated along the same line in Figure 2a. The
probability for the value of λ to lie within the block of size |αj|2 at t = 0 is equal to the
value of |αj|2 at t = 0 itself. If the evolution ends up with the final state |j⟩ whenever λ

starts out in the block of size |αj|2, Born’s rule is guaranteed to emerge.
The boundary values of λ, at which the evolution should switch from favouring one

final state to another, are defined by:

λ =
n−1

∑
j=0

|αj|2 = 1 −
n

∏
m=1

cos2
(

θm

2

)
. (9)

Notice that these define N − 1 boundary values, one for each value of n ∈ {1, 2, . . . , N − 1}.
They can equivalently be thought of as defining N − 1 hypersurfaces or separatrices in the
space spanned by the angles θm. We will write the N − 1 relations in Equation (9) as Ln = 0
with Ln ≡ 1 − ∏n

m=1 cos2(θm/2)− λ.
To define the evolution of the state, recall from Equation (8) that the pointer state |0⟩

corresponds to θ1 = π, irrespective of the values of θm for m > 1. Repeating the reasoning
that led to Born’s rule in the two-state dynamics, we would thus like to see that θ1 increases
in time and flows towards π whenever λ is smaller than the value of 1 − cos2(θ1/2) at
t = 0, and opposite otherwise. That is, we should demand dθ1/dt ∝ L1.

If θ1 does evolve to π, Equation (8) shows that the remainder of the evolution for the
other θm can be ignored, as it does not influence the final state. In the opposite case, of θ1
evolving to zero, the final state will certainly not be |0⟩. Given that θ1 will become zero,
the final state will be |1⟩ if θ2 evolves towards π, and some other state otherwise. In fact,
as observed before, the state |1⟩ is realised for θ2 = π regardless of the values of θm for
m > 2. If we demand dθ2/dt ∝ L2, we thus end up at the final state |1⟩ if λ is smaller than
1 − cos2(θ1/2) cos2(θ2/2), but larger than 1 − cos2(θ1/2) at t = 0, establishing agreement
with Born’s rule for the second component. Iterating this argument, we find that we should
demand dθn/dt ∝ Ln for all n.
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Figure 2. Quantum state reduction with one random variable. (a) The line interval [0, 1] can be
divided into pieces with lengths corresponding to the weights |αj|2 of pointer states in an initial
state wave function. The probability for a stochastic variable λ randomly chosen from a uniform
distribution on [0, 1] to have a value corresponding to the state |j⟩, is then equal to |αj|2. (b) Example
of an initial (t = 0) state superposed over four pointer states |j⟩, being dynamically reduced according
to Equation (10), for a particular randomly selected value of the stochastic variable, to a single
measurement outcome at late times (t → ∞). (c) The relative deviation from Born’s rule of the
obtained distribution of final states as a function of time for different values of the numerical time step
dt. The relative error equals the absolute difference between |αj|2 at the initial time and the fraction of
simulations ending in state |j⟩, summed over all j. In the continuum limit dt → 0, the agreement with
Born’s rule can be seen to become exact. These curves are for averages over the stochastic variable
starting from the initial state depicted in panel (b). Similar results are obtained both for different
initial state configurations and for initial superpositions over different numbers of pointer states.

These relations are, however, not sufficient to define the dynamics. We ensured
that the hypersurface Ln = 0 separates regions of opposite sign for the evolution of the
parameter θn, but we have not yet ascertained that the total evolution comes to a standstill
at these hypersurfaces such that the evolution does not cross the newfound separatrix.
In other words, we still need to force dθn/dt = 0 on all hypersurfaces Lm with m ̸= n.
This can be done without affecting the sign of the evolution anywhere by demanding
dθn/dt ∝ ∏m ̸=n L2

m. Since Lm goes to zero whenever the state approaches the mth separatrix,
dθn/dt is now guaranteed to go to zero at all separatrices. Moreover, since L2

m is positive
on both sides of the mth separatrix, the sign of dθn/dt is determined solely by which side of
the nth separatrix the state is on.

Putting everything together, we finally find that the time evolution guaranteeing
Born’s rule is given as follows:

h̄
dθn

dt
= ϵN sin(θn)Ln ∏

m ̸=n
L2

m.

In fact, we can simplify this expression by noticing that just as in the two-state case, a single
factor multiplying the time derivative of all angles does not change the fixed points or
separatrices and hence leaves the final states and their probabilities invariant. We thus
absorb the common factor ∏m L2

m in the definition of ϵ, keeping in mind that spontaneous
unitarity violations will emerge in the limit ϵ → 0, and end up with the final expression:

h̄
dθn

dt
= ϵN sin(θn)

1 − ∏n
m=1 cos2(θm/2)− λ

. (10)

These equations define a model for DQSR starting from an N-state superposition in
the initial state. The spontaneous breakdown of unitarity takes place in a time scaling
with ϵN so that the collapse process for a vanishingly small non-unitary perturbation is
effective only in the thermodynamic limit. Moreover, the stable end states of the quantum
state reduction are given by the symmetry-breaking pointer states, and Born’s rule statistics
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emerge spontaneously in the process, using just a single random variable chosen from a
state-independent, uniform distribution.

Figure 2 shows a numerical simulation of the dynamics implied by Equation (10). An
example of a single evolution, with one value for the random variable λ, is displayed in
Figure 2b, where DQSR to a single pointer state can be clearly seen. The state is normalised
at each time step in order to allow visualisation of the time evolution. As argued before,
the normalisation does not influence the final states obtained in the DQSR process or their
probability distribution. The statistics of an ensemble of evolutions starting from the same
initial state by halting each individual realisation of the dynamics whenever the relative
weight of a single component exceeds a threshold value. The corresponding pointer state is
then selected as the final state for that particular evolution. The deviations of the statistics
from Born’s rule are shown in Figure 2c to converge to zero as their numerical simulation
approaches the continuum limit.

4. Multiple Random Variables

In the previous section, we generalised the description of SUV as a model for DQSR
from initial superpositions over two pointer states to an arbitrary number of pointer states
in the initial superposition. The generalisation based on dividing the N-particle phase
space into regions of attraction for the N distinct pointer states is mathematically economic
because it requires only a single random variable. The final form of the time evolution
in Equation (10), however, does not seem to have an obvious interpretation in terms of
physical interactions. In this section and the next, we, therefore, introduce an alternative
generalisation, which more readily allows for physical interpretation. We first introduce
the construction in this section, resulting in a model for DQSR of N-state superpositions
using N − 1 random variables. In the next section, we further refine the approach, resulting
in a model with log2(N) random variables, which can be interpreted as components of a
continuous field.

Rather than directly dividing the N-particle phase space into N domains, we will
partition through a series of binary divisions. The most straightforward way to do this is
to first define a time evolution that causes the weight of just one of the pointer states, say
|α0| = sin(θ1/2) to become either zero or one:

h̄ dθ1/dt = ϵN sin(θ1)
(

λ1 − cos2(θ1/2)
)

. (11)

If θ1 becomes π, all components |αj| with j larger than one will be zero, and Equation (11)
defines the entire DQSR process. If it evolves to zero, on the other hand, we are left with a
superposition over N − 1 pointer states. We can then define the time evolution for the next
component, |α1| = sin(θ2/2) cos(θ1/2) = sin(θ2/2), so that it becomes either zero or one:

h̄ dθ2/dt = ηϵN sin(θ2)
(

λ2 − cos2(θ2/2)
)

. (12)

Notice that we introduce a second random variable in this equation. Moreover, to ensure
that the dynamics of |α0| is effectively completed before |α1| starts evolving, we introduce
the small parameter η. In the limit η → 0, the evolutions of the two components become
independent and sequential.

This procedure can now be iterated, as illustrated in Figure 3a, where an N-state
system undergoes N − 1 steps with effective two-state evolution. At each level of the
partitioning, an independent stochastic component, λm, is introduced, and the evolutions
are guaranteed to be independent by scaling their evolution rate with ηm. We then finally
find the complete definition of the dynamics as follows:

h̄ dθm/dt = ηmϵN sin(θm)
(

λm − cos2(θm/2)
)

. (13)
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Alternatively, the evolution can be specified through the generator Ĝ acting on the state |ψ⟩
as defined in Equations (2) and (7). Its diagonal elements Gj are then given by:

G0 = η0
[
|α0|2 − P1

P0
− ξ0

]
G0<j<N−1 = η j

[
|αj|2 − Pj+1

Pj
− ξ j

]

+
j−1

∑
m=0

ηm
[

ξm − |αm|2 − Pm+1

Pm

]

GN−1 =
N−2

∑
m=0

ηm
[

ξm − |αm|2 − Pm+1

Pm

]
. (14)

Here, we defined Pm = ∑N−1
j=m |αj|2, and we reintroduced the random variables

ξm = 2λm − 1 sampled from U[−1, 1]. Just as in Equations (2) and (3), the time evo-
lution defined by Equation (14) is not norm-conserving. As before, this is not a problem
since it does not affect any physical expectation values [42]. In numerical simulations of
the dynamics, however, it may be convenient to normalise the state either at the end of the
calculation or after every time step. The resulting final state is not affected by this choice.

Notice there is an (arbitrary) hierarchical structure built into the time evolution of
Equation (14). The time evolution first determines whether pointer state |0⟩ will end up as
the final state of the measurement process. This happens with the probability as found in
the two-state evolution of Section 2, sin2(θ1/2) = |α0|2, in agreement with Born’s rule. If
|0⟩ is not the final state, the evolution continues and determines whether pointer state |1⟩
will be the final state. This happens with probability sin2(θ2/2), but because it can only
happen if |0⟩ did not dominate, the total probability for state |1⟩ to be the final state is
cos2(θ1/2) sin2(θ2/2), again in agreement with Born’s rule.

Continuing this way, the probabilities for all pointer states are seen to agree with
Born’s rule. This process only works, however, if the hierarchy is strictly obeyed and the
evolution of |0⟩ is finalised before that of |1⟩ begins, and so on. This is true in the limit
η → 0, but for finite η the final state probabilities will deviate O(η) from Born’s rule.

The hierarchy introduced by the powers of η that is necessary to establish Born’s
rule implies an arbitrary choice for which pointer state is associated with which power
of η. Although this choice does not influence the final state statistics, it does determine
the finite-time dynamics and there is no clear physical reason to favour one choice over
any other. In the next section, we will introduce an alternative hierarchy that results in a
symmetric form of the time evolution generator, as well as a greatly reduced number of
stochastic variables.

Despite these caveats, Equation (13), or equivalently, Equation (14), does define a
model for DQSR starting from an N-state superposition in the initial state. The spontaneous
breakdown of unitarity now takes place in a time scaling with ηN−2ϵN . As in the previous
section, the collapse process is effective for a vanishingly small non-unitary perturbation in
the thermodynamic limit N → ∞ and the stable end states are given by symmetry-breaking
pointer states. This time, Born’s rule statistics emerge spontaneously using N independent
random variables, each of which is chosen from a state-independent, uniform distribution.

The emergence of stable pointer states and Born’s rule can be verified numerically,
as shown in Figure 3. Figure 3b illustrates an individual instance of the time evolution
generated by Equation (13). The deviations of the statistics from Born’s rule obtained from
the ensemble average over many iterations are shown in Figure 3c to converge to zero as
the hierarchy parameter η decreases after approaching the continuum limit. Further details
of the numerical simulations may be found in Appendix A.
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Figure 3. Quantum state reduction with N − 1 random variables. (a) At each stage in the time
evolution defined by Equation (14), the relative weight of one component of the initial N-state super-
position evolves to either one or zero. The different stages are separated in time by the proportionality
of their evolutions to different powers of the small parameter η. (b) Example of an initial (t = 0) state
superposed over three pointer states |j⟩, being dynamically reduced according to Equation (14), for
particular randomly selected values of the stochastic variables, to a single measurement outcome at
late times (t → ∞). (c) The relative deviation from Born’s rule of the obtained distribution of final
states, as a function of time for different values of the small parameter η. The relative error equals the
absolute difference between |αj|2 at the initial time and the fraction of simulations ending in state
|j⟩, summed over all j. In the limit of vanishing η, the agreement with Born’s rule can be seen to
become exact. These curves are for averages over the stochastic variables starting from the initial
state depicted in panel (b). Similar results are obtained both for different initial state configurations
and for initial superpositions over different numbers of pointer states.

5. A Natural Hierarchy

We will now show that the series of sequential bipartite collapse evolutions used in
the previous section to construct a DQSR model based on spontaneous unitarity violations
can be organised in an alternative way. This will both be more mathematically efficient,
using only log2 N random variables rather than N − 1, and more physically appealing, as
it yields a more symmetric form of the generator for time evolution that allows a natural
continuum limit.

We will again consider the initial state of Equation (7) and construct a sequence of
binary collapse processes. Rather than having each process determine the fate of a single
pointer state, however, each stage of the evolution suppresses the weight of half of all
pointer states to zero. As shown in Figure 4a, the first stage suppresses either the weight
of states |j⟩ with j = 0 . . . N/2 − 1, or that of the states with j = N/2 . . . N − 1. In the
second stage, each of these blocks has half of their states suppressed to zero weight, and
subsequent stages likewise divide each of the blocks created by their predecessor.

As before, each stage in this sequential process utilises a separate, independent random
variable ξp ∈ [−1, 1], and has its time evolution scaled by a different power of the small
parameter η. Because all pointer states are involved at all stages, a total of log2(N) partitions
suffice to single out a final state for the measurement process starting from a superposition
of N pointer states.

The form of the time evolution for this sequence of bipartite evolutions is most easily
formulated directly in terms of the generator Ĝ rather than on the generalised Bloch sphere.
To ensure the emergence of Born’s rule, the combined squared weights of half of all pointer
states evolve to either zero or one during each of the stages sketched in Figure 4a, but the
relative weights within each evolving half are not affected. We can thus directly generalise
the result of Equation (3) to write for the first stage:
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Ĝ(0) =
N/2−1

∑
j=0

|j⟩
[

QN/2−1
0 − QN−1

N/2

QN−1
0

− ξ0

]
⟨j|

+
N−1

∑
j=N/2

|j⟩
[

ξ0 −
QN/2−1

0 − QN−1
N/2

QN−1
0

]
⟨j|. (15)

Here, we defined Qn
m = ∑n

j=m |αj|2, and the total generator is divided into stages as

Ĝ = ∑
log2(N)−1
p=0 Ĝ(p), with the power of η increasing in each consecutive stage (here, Ĝ(0)

implicitly includes a factor η0).
Generalising directly to the full expression, we find the following:

Ĝ(p) =
N−1

∑
j=0

|j⟩ηpΘ(j, p)

N−1

∑
j′=0

Θ(j′, p)
|αj′ |2

QN−1
0

− ξp

⟨j|

with Θ(j, p) = (−1)
⌊

j2p+1/N⌋. (16)

Here, ⌊z⌋ is the floor of z, which equals the largest integer smaller than or equal to z. The
value of Θ(j, p) is then either +1 or −1, and this function partitions the pointer states at
each stage of the evolution.

Figure 4. Quantum state reduction with log2(N)− 1 random variables. (a) At each stage in the time
evolution defined by Equation (16), the combined relative weight of one-half of the components of the
initial N-state superposition evolves to either one or zero. At each stage, a more fine-grained division
of the initial pointer states is used. The different stages are separated in time by the proportionality of
their evolutions to different powers of the small parameter η. (b) Example of an initial (t = 0) state
superposed over four pointer states |j⟩, being dynamically reduced according to Equation (16), for
particular randomly selected values of the stochastic variables, to a single measurement outcome at
late times (t → ∞). (c) The relative deviation from Born’s rule of the obtained distribution of final
states as a function of time for different values of the small parameter η. The relative error equals the
absolute difference between |αj|2 at the initial time and the fraction of simulations ending in state
|j⟩, summed over all j. In the limit of vanishing η, the agreement with Born’s rule can be seen to
become exact. These curves are for averages over the stochastic variables starting from the initial
state depicted in panel (b). Similar results are obtained both for different initial state configurations
and for initial superpositions over different numbers of pointer states.

The independence of subsequent stages in the collapse process is guaranteed by η
being a small parameter, as in the previous section. Since Born’s rule was shown to emerge
in the two-state process of Equation (3), it is also guaranteed to emerge from Equation (16)
in the limit of vanishing η. For finite values of η, deviations from Born’s rule of order η
will occur.
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Equation (16) is one of the main results of this article. It defines a model for DQSR
starting from an N-state superposition in the initial state. The spontaneous breakdown
of unitarity takes place in a time scaling with ηlog2(N)ϵN , so that the collapse process is
effective for a vanishingly small non-unitary perturbation in the thermodynamic limit
N → ∞. The stable end states of the quantum state reduction are given by the symmetry-
broken pointer states, and Born’s rule statistics emerge spontaneously in the process, using
log2(N) independent random variables, each of which is chosen from a state-independent,
uniform distribution. Moreover, despite the hierarchy of the collapse process, the form of
Equation (16) is symmetric in the sense that all pointer states evolve during all stages of the
DQSR process.

The division of pointer states into two groups at each stage can be interpreted as a
stepwise fine-graining of the measurement outcome. Since pointer states correspond to
classical symmetry-broken states of matter, they differ in the value or direction of an order
parameter [33,44]. For an actual pointer along a dial, for example, this could be the position
of the tip of the pointer. This means there is a natural ordering of pointer states in the order
parameter space. The states of an actual pointer, for example, could be ordered in real space,
going from one end of the dial to the other. Within this natural ordering, the first stage of
the DQSR process described by Equation (16) then suppresses one connected set of pointer
states, establishing that the measurement outcome will fall within the remaining half. The
second stage suppresses a connected section of the remaining states and establishes the
quarter of all initial states, among which the final state will fall. Continuing this way, each
consecutive stage of the process gives a more fine-grained set of candidates for the final
state. This interpretation of fine-graining in an order parameter space suggests a natural
continuum limit for Equation (16), which we will explore in the following section.

As in previous sections, the emergence of stable pointer states and Born’s rule can
again be verified numerically, as shown in Figure 4. Figure 4b illustrates an individual
instance of the time evolution generated by Equation (16). The deviations of the statistics
from Born’s rule obtained from the ensemble average over many iterations are shown in
Figure 4c to converge to zero as the hierarchy parameter η decreases after approaching the
continuum limit. Further details of the numerical simulations may be found in Appendix A.

6. Towards a Random Field

The final form of the DQSR process with log2(N) random variables in Equation (16)
suggests a natural generalisation to a model for quantum measurement with the initial
state superposed over a continuous set of states. Without loss of generality, consider a line
segment parameterised by the coordinate x ∈ [0, 1]. The initial state is now as follows:

|ψ⟩ =
∫ 1

0
dx ψ(x)|x⟩ with

∫ 1

0
dx |ψ(x)|2 = 1. (17)

Taking the discrete pointer states |j⟩ of the previous section to lie within the continuous
interval parameterised by x and taking the continuum limit N → ∞ after identifying
x = j/N, the contribution to the time evolution generator at stage p becomes the following:

Ĝ(p) =
∫ 1

0
dx |x⟩ηpθ(x, p) ×[∫ 1

0
dx′ θ(x′, p)

|ψ(x′)|2
Q

− ξ(p)
]
⟨x|. (18)

Here, we introduced the generally time-dependent norm Q(t) =
∫ 1

0 dx |ψ(x, t)|2 as well
as the continuum version of the sign distribution function on the interval [0, 1], given

by θ(x, p) = (−1)
⌊

x2p+1⌋. The full generator is given by Ĝ = ∑γ
p=0 Ĝ(p), with γ an

ultraviolet cutoff.
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The full-time evolution generator can be cast in a more suggestive form by defining
the following:

Ĝ|ψ⟩ =
∫ 1

0
dx G(x)ψ(x)|x⟩. (19)

The non-linear components of Ĝ are then given by the following:

G(x) = Λ(x) +
∫ 1

0
dx′

|ψ(x′)|2

Q
Π(x, x′)

= Λ(x) +
〈
Π̂(x)

〉
. (20)

The expectation value ⟨Π̂(x)⟩ resembles a spatial propagator with elements Π(x, x′) =

∑γ
0 ηp θ(x, p)θ(x′, p), while Λ(x) = −∑γ

0 ηpξpθ(x, p) represents the value at location x of a
random field on the line segment [0, 1]. Because the stages labelled by p represent different
levels of fine-graining in the x-space resolution of the final pointer state, the ultra-violet
cut-off γ also defines a minimum separation for which points along the [0, 1] line segment
can be resolved. If the pointer states break a symmetry corresponding to an order parameter
labelled by a real-space coordinate (such as an actual pointer along a dial), the ultraviolet
cutoff could, for example, be set by the Planck length. Measurement outcomes can then
only ever be resolved down to Planck length precision, and the random field Λ(x) takes
independent random values on positions separated by a Planck length.

7. Discussions and Conclusions

In conclusion, we constructed several models for dynamic quantum state reduction
based on the idea that the time inversion symmetry underlying unitarity in quantum
dynamics can be spontaneously broken, like any other symmetry in nature. Although it
has been known for some time that the unitary dynamics of Schrödinger’s equation is
unstable in the thermodynamic limit [33,46], a concrete model for the unitarity-breaking
time evolution starting from a generic initial state and obeying all requirements for a
model of quantum measurement was still lacking. Here, we showed that the measurement
dynamics previously proposed for an initial superposition over two pointer states [42] can
be generalised to arbitrary initial states in several ways, which differ in the way Born’s rule
emerges during the measurement process. Note, however, that in all the generalisations
considered, Born’s rule emerges by construction and not as a result of imposing it.

We first considered a mathematically straightforward generalisation, in which just a
single random variable chosen from a flat, uniform distribution leads to precisely Born’s
rule for an initial superposition of an arbitrary finite number of pointer states. This model,
however, does not have a straightforward physical interpretation.

Next, we constructed a generalisation using as many random variables as there are
pointer states (minus one) in the initial superposition. The emergence of Born’s rule in this
model relies on the presence of separate stages in the measurement dynamics and is perfect
only in the limit of vanishing overlap between these stages. Moreover, the model requires
the introduction of an arbitrary hierarchy among the pointer states.

The final generalisation we introduced removes the arbitrary hierarchy and replaces it
with a natural ordering of the pointer states interpreted as symmetry-breaking states with
a macroscopic order parameter. This way, only log2(N) random variables are required to
model the dynamical quantum state reduction of an initial superposition over N pointer
states. Moreover, the final generator for time evolution in the model has a natural con-
tinuum limit, which can be interpreted in terms of a random field in real space and an
expectation value resembling a real-space propagator.

The final model for the state reduction dynamics meets all requirements for a model
of quantum measurement: its origin in a theory for spontaneous unitarity violation implies
that it has negligible effect on the microscopic scale of elementary particles, even though
it dominates the behaviour of macroscopic, everyday objects and causes them to collapse
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almost instantaneously. The final states in that collapse process are the symmetry-breaking
pointer states that we associate with real-world measurement machines, and after one
of them has been selected in the stochastic measurement dynamics, it remains stable.
Finally, the probability of finding any particular final state is given by Born’s rule, which
emerges spontaneously without being used, assumed, or imposed in the definition of the
stochastic field. The obtained dynamics do not contradict the experimental observation
of Bell inequality violations, as the stochastic noise term acts non-locally on the quantum
dynamics. That is, the described dynamics is of the total, extended and entangled quantum
state as a whole and does not employ any of the local hidden variables that are ruled out
by Bell tests.

The models presented here explicitly demonstrate the possibility of spontaneous uni-
tarity violations giving rise to DQSR dynamics in a way that obeys all basic requirements
for a theory of quantum measurement. The models introduced are non-relativistic and can
be extended in several directions, including, for example, by formulating a field theory
in Fock space or by generalising the basis of sign functions appearing in the continuum
model. Furthermore, it remains to be established whether or not the types of models for
spontaneous unitarity violation introduced here allow for superluminal communication.
Previous criteria for avoiding non-causal dynamics by requiring a quantum dynamical
semigroup with linear dynamics [54,55], were derived for ensemble averages of white-
noise driven Markovian models and did not necessarily apply here. Notice that for specific
situations in which the noise dynamics is appreciably faster than the quantum state dy-
namics, an effective Markovian limit with linear master equations may be achieved by
temporal coarse-graining, also called multi-scale noise homogenisation, which rules out
superluminal signalling in those regimes [36]. We leave the study of these questions in
more general situations for future research and hope the present work will inspire and
lay the foundation for further proposals of dynamic quantum state reduction based on
spontaneous unitarity violation. These may find application in describing the dynamics of
(quantum) phase transitions [44,47] as well as quantum measurement, yield testable experi-
mental predictions [56], and generally shed new light on the crossover regime separating
Schrödinger from Newtonian dynamics.
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Appendix A. Numerical Simulations

In this appendix, we describe the numerical simulations leading to Figures 2b,c, 3b,c
and 4b,c. Convergence in the numerical integration of Equations (10), (14) and (16) is
obtained using sufficiently small time steps dt. In Figure 2c, we show convergence to
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Born’s rule statistics for the decreasing value of the time step. The dynamics defined
in Sections 4 and 5 additionally require a small hierarchical parameter η. For any given
value of η, the size of dt was adjusted to ensure convergent results, with lower values of η
requiring smaller time steps. Therefore, in Figure 3c, the values η = 0.05 and dt = 0.005
were used, while for other values of η taking dt = 0.01 sufficed. The results in Figure 4c
used dt = 0.01 for all cases except for η = 0.05 and η = 0.02, which both utilized dt = 0.005.

To recover Born’s rule statistics, a numerical average must be taken over a dense
and uniform set of values for the stochastic variable. The results in Figure 2c represent
averages over 100 to approximately 25,000 values for the stochastic variable, while up to
60,000 values were sampled in the creation of Figures 3c and 4c.

Appendix B. Continuum Distributions

In this appendix, we discuss the functions Θ(x, p) and Λ(x) emerging in the contin-
uum theory of Section 6. The sign distribution function Θ(x, p) is defined as (−1)⌊x2p+1⌋

with x ∈ [0, 1]. It is shown for the first four values of the discrete parameter p in Figure A1b.
For any given value of p, the function Θ(x, p) is a square wave, with values alternating
between 1 and −1. Notice that any real function on a discrete lattice can be decomposed
into these square wave components, much like a Fourier decomposition. To decompose
continuous functions, a regularisation of the limiting function at p → ∞ will be required.

Finally, the stochastic field Λ(x) was defined in Section 6 as −∑γ
0 ηpξpθ(x, p). The

probability density function for Λ(x) will be independent of x since it is given by a sum
over stochastic variables with coefficients that differ by, at most, a sign. The probability
density function resulting from a numerical evaluation of the sum for 50,000 samples of the
random parameters is displayed in Figure A1a, for an arbitrary value of x. It corresponds
to a type of truncated Gaussian-like distribution for large values of η, while converging
to uniform distribution with tapering edges for smaller values of η. The tapering at the
edges is suppressed as η is increased, and the probability density function approaches a
true uniform distribution, U[−1, 1], as η approaches zero.

Figure A1. (a) The probability distribution function for the random value Λ(x), for arbitrary x,
obtained by numerically averaging over 50, 000 randomly selected values for the stochastic variables
ξp. The results for different values of the small parameter η converge to a uniform distribution on the
interval [−1, 1] for vanishing η. (b) Schematic depiction of the function θ(x, p), for the continuous
variable x ∈ [0, 1] and p discrete.
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Appendix C. Spontaneous Symmetry Breaking

In this appendix, we review some of the central concepts in the theory of spontaneous
symmetry breaking and summarise their use in the models of spontaneous unitarity
violation introduced in the main text. For a more detailed and extensive discussion of the
physics of spontaneous symmetry breaking, see Ref. [44].

Spontaneous symmetry breaking refers to the situation in which the Hamiltonian
governing a system possesses a symmetry, but the actually realised state of the system
has a lower symmetry. The ‘spontaneous’ refers to the fact that symmetry breaking is
unavoidable in practice and that the way in which the symmetry is broken is unpredictable
for all practical purposes. For concreteness, we briefly discuss the example of a harmonic
crystal, but all concepts apply equally to any system spontaneously breaking a symmetry.

Appendix C.1. The Harmonic Crystal

The Hamiltonian describing a harmonic crystal is as follows:

Ĥ = ∑
j

P̂2
j

2m
+ ∑

⟨i,j⟩

1
2

mω2(X̂i − X̂j
)2. (A1)

Here, i and j label neighbouring sites of an atomic lattice where m is the atomic mass and
ω is the natural frequency of the (effective) harmonic forces between neighbouring atoms.
Both the assumption of a short-ranged interaction potential and that of its harmonic nature
can be straightforwardly relaxed in the following.

The harmonic crystal is symmetric under (global) translations of all of its atoms.
Such translations are generated by the total momentum operator P̂tot = ∑j P̂j. Because
this operator commutes with the Hamiltonian, all eigenstates of Ĥ are simultaneously
eigenstates of P̂tot, which are plane wave states with fully delocalised centre of mass. That
is, all eigenstates of Ĥ respect its translational symmetry and not the localised states we
would expect to find for a macroscopic crystal.

The Fourier transform of Equation (A1) can be written as:

Ĥ =
P̂tot

2mN
+ ∑

k ̸=0
Ĥk. (A2)

Here, N is the number of atoms in the harmonic crystal, and k denotes the internal crystal
momentum. Since we are interested in the global properties of the crystal, we will ignore Ĥk
from here on, except for noting that its eigenvalues are all strictly positive and greater than
Eint = h̄ω/N1/d, with d the number of spatial dimensions. At energies or temperatures
lower than Eint, therefore, the first collective term of Equation (A2) dominates.

The form of the Hamiltonian in Equation (A2) clearly shows that the ground state
is non-degenerate and has total momentum P̂tot = 0. Excitations with non-zero total
momentum (up to Ptot ∼

√
N) are separated from the ground state by energies of order

1/N. This so-called tower of low energy states becomes degenerate with the ground state
in the thermodynamic limit N → ∞. In that limit, superpositions of total momentum states
are also ground states of Ĥ, and it becomes possible for a wave packet to be formed in
which the crystal has a localised centre of mass and breaks translational symmetry. For the
more physically relevant case in which N is large but not infinite, forcing the crystal into a
symmetry-breaking, localised state requires the application of an external force:

ĤSB =
P̂tot

2mN
+ ϵN

(
X̂com − x0

)2. (A3)

Here, X̂com is the operator for the centre of mass position, x0 is the centre of the externally
applied potential, and ϵ is its strength. The factor N multiplying ϵ is required for the energy
to be extensive and signals the fact that the applied potential couples to an order parameter



Entropy 2024, 26, 131 19 of 24

of the harmonic crystal [57]. It is straightforwardly shown that the non-degenerate ground
state

∣∣ψgs
〉

of this Hamiltonian is a Gaussian wave function with the limiting behaviour:

lim
N→∞

lim
ϵ→0

∣∣ψgs
〉
= |Ptot = 0⟩

lim
ϵ→0

lim
N→∞

∣∣ψgs
〉
= |Xcom = x0⟩. (A4)

That is, if there is no externally applied potential whatsoever, the ground state of the crystal
is fully delocalised and symmetric. If there is even an infinitesimally small (but non-zero)
perturbation ϵ, however, the crystal ground state is a fully localised symmetry-broken state
in the thermodynamic limit.

Of course, neither of the limits in Equation (A4) are ever realised in nature. What
the non-commuting (or singular) limits signal is a diverging susceptibility of the crystal to
symmetry-breaking perturbations. That is, for large crystals consisting of, say, N = 1023

atoms, the potential required to force it into a symmetry-broken configuration is of the
order of 1/N, which makes it so small as to be completely beyond the reach of anything
we can ever hope to detect, let alone control. For all practical purposes, therefore, there
will always be some potential or perturbation in any experiment or physical situation that
renders the ground states of human-sized harmonic crystals fully localised. Because the
localisation is unavoidable, and because the localisation centre x0 is in practice immeasur-
able, unpredictable, and uncontrollable, we say that symmetry-breaking localisation of the
crystal is spontaneous.

Notice that the symmetry-breaking behaviour emerges as the thermodynamic limit
is approached. Microscopic harmonic crystals consisting of only a few atoms will not
be spontaneously localised, and in fact, the extremely weak perturbations that suffice to
localise macroscopic crystals will not have more than an undetectably small and negligible
effect on microscopic systems.

Furthermore, the emergent localisation is universal, in the sense that the precise shape
and strength of the localising potential are irrelevant to the final localised state. Only
symmetry-breaking perturbations coupling to the order parameter (i.e., localising the
crystal) will have any effect at vanishing strength, and all symmetry-breaking perturbations
lead to the same type of completely localised ground state for the macroscopic crystal.

Appendix C.2. Spontaneous Unitarity Breaking

As shown in Refs. [33,46], the symmetries underlying the unitarity of quantum me-
chanical time evolution can be spontaneously broken in the same way that any other
symmetries of nature are spontaneously broken. That is, the same tower of states with
energies vanishing in the thermodynamic limit that allows systems to spontaneously break
any regular symmetry additionally allows such systems to avoid the unitarity time evolution
dictated by Schrödinger’s equation.

As in the case of regular symmetry breaking, any realistic system of large but finite
size will require a non-zero perturbation to affect the breaking of unitarity. In this case, the
perturbation must cause non-unitary evolution and thus corresponds to a non-Hermitian
addition to the Hamiltonian: ĤSUV = Ĥ + iϵĜ. Here, Ĥ is the Hamiltonian for a system
with a spontaneously broken regular symmetry, ϵ is the strength of the non-unitary pertur-
bation, and Ĝ is a Hermitian operator coupling to the order parameter of Ĥ. For example,
in the case of a harmonic crystal, we may consider the following:

ĤSUV =
P̂2

tot
2mN

+ iϵN
(
X̂com − x0

)2. (A5)

Here, ϵ is the strength of the non-unitary perturbation, and the factor N again arises from
the coupling to the order parameter [57].
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The unitarity breaking field causes the emergence of a singular limit analogous to that
of Equation (A4), but now, in the time evolution of a given initial state rather than in the
definition of the equilibrium ground state is as follows:

lim
N→∞

lim
ϵ→0

e−
i
h̄ tĤSUV |Ptot = 0⟩ = |Ptot = 0⟩ (A6)

lim
ϵ→0

lim
N→∞

e−
i
h̄ tĤSUV |Ptot = 0⟩ = |Xcom = x0⟩ ∀t > 0.

That is, in the complete absence of any non-unitary perturbations whatsoever, the symmet-
ric initial state is stable under the time evolution generated by Schrödinger’s equation. Im-
portantly, this remains true even in the presence of a potential of the form of Equation (A3),
which breaks the spatial translation symmetry but not the unitarity of time evolution [47].

As before, neither of the limits in Equation (A6) needs to actually be realised in any
realistic setting. What the formal existence of these non-commuting, singular limits signal,
is a diverging susceptibility of the crystal to unitarity-breaking perturbations. That is, for
large crystals consisting of, say, N = 1023 atoms, the perturbation required for it to evolve
into a symmetry-broken configuration is of the order of 1/N, which makes it so small as to
be completely beyond the reach of anything we can ever hope to detect, let alone control.
For all practical purposes, therefore, there will always be some potential or perturbation in
any experiment or physical situation that makes it impossible for human-sized harmonic
crystals to avoid being localised as a function of time, even if it starts out from a delocalised
initial state. Because the evolution towards localisation is unavoidable, and because the
localisation centre x0 is in practice unpredictable and uncontrollable, the unitarity of the
time evolution may be said to be violated spontaneously.

Notice that the breakdown of unitarity emerges as the thermodynamic limit is ap-
proached. Microscopic harmonic crystals consisting of only a few atoms will not sponta-
neously evolve away from a delocalised state, and in fact, the extremely weak perturbations
that suffice to localise macroscopic crystals will take longer than the age of the universe to
have a detectable effect on the evolution of microscopic systems.

Furthermore, the emergent localisation is universal, in the sense that the precise shape
and strength of the localising potential are irrelevant to the final localised state. Only
unitarity-breaking perturbations coupling to the order parameter (i.e. localising the crystal)
will have any effect at vanishing strength, and all unitarity-breaking perturbations cause
evolution towards the same type of localised state.

Appendix C.3. Quantum Measurement

For spontaneous unitarity violations to explain quantum measurement, the non-
unitary perturbation in Equation (A5) is not sufficient. As shown in Refs. [33,42,43,58],
Born’s rule can emerge from non-unitary dynamics only if the unitarity breaking term is
both stochastic and non-linear. In the main text, we therefore consider unitarity-breaking
perturbations of the form of Equation (2). These influence the dynamics of superposed
states like that of Equation (A12), resulting from the entanglement of a microscopic system
with the pointer of a macroscopic measurement apparatus. Pointers (of any sort) are
necessarily symmetry-broken objects, and the states resulting from spontaneous symmetry
breaking are necessarily pointer states in the sense of being stable against environmental
decoherence [45].

The time evolution of superposed pointer states has a diverging susceptibility to non-
unitary perturbations in the thermodynamic limit, as signalled by Equation (A6). The
result is a near-instantaneous evolution towards a single pointer state, indicating a single
measurement outcome. As in the standard theory for spontaneous symmetry breaking, the
collapse does not arise from nothing, but the presence of a mathematical divergence in the
thermodynamic limit indicates that for realistic, physical sizes of measurement machines,
exceedingly small non-unitary perturbations suffice to cause collapse dynamics that is for
all practical purposes unpredictable, inevitable, and instantaneous.
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Notice that we do not make predictions in the current work about the precise time
evolution to be expected in any particular mesoscopic experiment. Also, we do not estimate
any values for the model parameters we use. Rather, we show that spontaneous unitarity
violation can give rise to the emergence of Born’s rule, and that it emerges as a collective
effect in the dynamics of very large systems exposed to a very weak non-unitary perturba-
tion. The emergence is spontaneous in the sense that it is unavoidable, yet unpredictable,
due to a formally diverging susceptibility in the limit of large system size. It is universal
in the sense that Born’s rule will arise for sufficiently large systems from their extremely
weak interaction with a non-unitary stochastic field, regardless of the precise interaction
strength. Finally, Born’s rule emerges rather than being imposed or assumed, in the sense
that the stochastic fluctuations leading to it are taken from a flat distribution, without any
knowledge of the state being measured.

Appendix D. Strong Measurement

In this appendix, we suggest the use of Equation (1) in Section 1 by summarising
the strong measurement setup originally introduced by Von Neumann [7]. We consider a
measurement apparatus A, performing a single measurement of an observable ÔS on the
system S. We assume quantum theory applies to the measurement device as well as the
system and consider their combined quantum mechanical time evolution.

For concreteness, we consider a measurement device with a pointer whose centre-of-
mass position x along a dial will indicate the measurement outcome. This does not lead
to any loss of generality, as the pointer can be replaced with any type of classical state
arising from a spontaneously broken symmetry (see Appendix C). In that case, x should
be considered an eigenvalue of the order parameter operator [44], and the corresponding
eigenstates will be classical symmetry-broken states that are guaranteed to be stable under
environmental decoherence and can thus be considered ‘pointer states’ in the general
sense [45]. Notice that the use of pointer states with a spontaneously broken symmetry
is necessitated by the fact that only these states are susceptible to spontaneous unitarity
violation [46]. This introduces a preferred basis for measurement outcomes, which must
always be eigenstates of an order parameter operator.

The state of the measurement apparatus, |ψ⟩A, may be expressed in a basis of states
|x⟩A with fully localised centres of mass x for the pointer as follows:

|ψ⟩A =
∫

dx ψ(x) |x⟩A. (A7)

Considering the pointer to be a macroscopic object in a symmetry-broken coherent state [44],
the initial state of the pointer wave function ψ(x) before measurement will be given by a
sharply peaked Gaussian of the form:

ψ(x) =
(

1
2π∆2

) 1
4
e−x2/4∆2

. (A8)

For a measurement apparatus that is sufficiently large to spontaneously break a sym-
metry, the spread ∆ will be exceedingly small [44]. Wave functions centred at different,
well-separated positions then have an exponentially small overlap and can be used to
unambiguously resolve different measurement outcomes. For simplicity, we consider the
system observable ÔS to have a discrete spectrum of eigenstates |σ⟩S with eigenvalues σ.

For the apparatus to function as a measurement device, the Hamiltonian governing the
interaction between system and apparatus should be such that the initial system states |σ⟩S
with different values of σ cause the pointer to evolve to different centre of mass positions.
This is accomplished by a generic interaction Hamiltonian of the form:

Ĥint = γÔS ⊗ P̂A. (A9)
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Here, γ is the strength of the interaction and P̂A is the canonical momentum operator
conjugate to the pointer position, so that [X̂A, P̂A] = ih̄. The time evolution operator
generated by this Hamiltonian acts as a shift operator on the pointer position, with the size
of the shift determined by the eigenvalue of the system observable as follows:

e−
i
h̄ tĤint |σ⟩S|ψ⟩A =

∫
dx ψ(x − σγt/h̄) |σ⟩S|x⟩A. (A10)

In a generic measurement process, the system will be in a superposition of multiple
eigenstates of ÔS before measurement. The combined initial state of the system and
apparatus is then of the form |Ψ(t = 0)⟩SA = ∑σ ϕσ|σ⟩S|ψ⟩A. Unitarily evolving with the
time evolution generated by the interaction Hamiltonian then causes the formation of
macroscopic entanglement as follows:

|Ψ(t)⟩SA = ∑
σ

∫
dx ϕσ ψ(x − σγt/h̄) |σ⟩S|x⟩A. (A11)

In more quantitative modelling, one may consider a realistic time-dependent impulse
function γ(t) instead of the constant γ used here, but this only affects the speed with which
the evolution unfolds and not the qualitative formation of entanglement between system
and apparatus. Notice that each of the states |σ⟩S becomes entangled with its own pointer
state sharply peaked around the spatial position xσ(t) = σγt/h̄. The qualitative formation
of entanglement is instantaneous, but the amount of entanglement grows with time as the
pointer states centred at different xσ(t) separate from one another.

After some time, the final state obtained in Equation (A11) is of the same form as
Equation (1) in Section 1 of the main text:

|Ψ⟩SA = ∑
σ

ϕσ|σ⟩S|xσ⟩A,

with |xσ⟩A =
∫

dx ψ(x − xσ) |x⟩A. (A12)

According to Born’s rule, |ϕσ|2 gives the probability of obtaining any one of the classi-
cal pointer states |xσ⟩A upon performing the measurement. The models for spontaneous
unitarity violation considered in the main text start from the initial state of Equation (A12)
and explain its probabilistic reduction to just one component |σ⟩S|xσ⟩A.

It would be possible to formally separate the unitary entangling dynamics from the
non-unitary quantum state reduction if either the strength of the non-unitary perturbation
does not depend on the amount of overlap between distinct pointer states or if the entan-
glement dynamics is completed instantaneously. Neither is a realistic assumption for real
measurements. However, since the evolving overlap will only affect the speed at which
the non-unitary time evolution unfolds and not its final state, the assumption of instanta-
neous separation between pointer states does not influence the statistics of measurement
outcomes that are the focus of the current work.
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