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Abstract: The identity-based encryption with equality test (IBEET) has become a hot research topic in
cloud computing as it provides an equality test for ciphertexts generated under different identities
while preserving the confidentiality. Subsequently, for the sake of the confidentiality and authenticity
of the data, the identity-based signcryption with equality test (IBSC-ET) has been put forward.
Nevertheless, the existing schemes do not consider the anonymity of the sender and the receiver,
which leads to the potential leakage of sensitive personal information. How to ensure confidentiality,
authenticity, and anonymity in the IBEET setting remains a significant challenge. In this paper, we
put forward the concept of the identity-based matchmaking encryption with equality test (IBME-ET)
to address this issue. We formalized the system model, the definition, and the security models of the
IBME-ET and, then, put forward a concrete scheme. Furthermore, our scheme was confirmed to be
secure and practical by proving its security and evaluating its performance.
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1. Introduction

The swift progress in cloud computing featured by the outsourcing of data to the cloud
has given rise to a growing trend among organizations and individuals, enabling entities to
benefit from the ultra-large capacity and calculating services provided by cloud providers.
The maintenance of data confidentiality is a fundamental security requirement of cloud
storage, which is generally achieved by employing existing cryptographic mechanisms.
Nonetheless, how to perform efficient searches on ciphertexts is a practical problem. In
order to protect data confidentiality and, meanwhile, support privacy-preserving key-
word searching on ciphertexts, public key encryption with keyword search (PEKS) has
been presented [1]. Nevertheless, PEKS is limited to searching on ciphertexts generated
under a single public key, rendering it unsuitable for cloud storage scenarios involving
multiple users.

To provide privacy-preserving equality searching on ciphertexts encrypted under
distinct public keys without losing the data confidentiality, Yang et al. [2] put forward an
extension of PEKS known as the public key encryption with equality test (PKEET). However,
in Yang et al.’s construction, anyone can conduct the equality test without authorization,
which infringes on the data owner’s privacy. Hence, the authorization mechanism was
introduced into the PKEET to guarantee that no one except the data owner can enable the
cloud server to test its ciphertexts with the others’.

Subsequently, Ma [3] proposed the identity-based encryption with equality test (IBEET)
to eliminate the certificate management problem of the PKEET. In this primitive, the
identities of the sender and receiver were exploited to denote the public keys, eliminating
the need for certificate management. Owing to the equality test function, the IBEET has been
applied in various practical applications, such as personal health record (PHR) systems [4,5]
and Internet of Vehicles (IoV) road monitoring [6].
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Ensuring the authenticity of data is another fundamental security requirement of cloud
storage. For the sake of the confidentiality and authenticity of data while supporting the
privacy-preserving equality test for ciphertexts generated from different identities, Xiong
et al. [7] presented the identity-based signcryption with equality test (IBSC-ET). Afterwards,
several related signcryption schemes supporting the equality test have been conceived of.
Nevertheless, the existing studies have not considered the anonymity of the sender and the
receiver, which leads to the potential leakage of sensitive personal information.

1.1. Motivation

As depicted in Figure 1, in a PHR system, the patients’ PHRs contain as much relevant
health data as possible from various healthcare providers over their lifetime. To ensure
patients’ privacy, it is essential to store the health data in the cloud in ciphertext form. To
find patients having similar illnesses, a patient (e.g., Alice or Bob) can authorize the cloud
server to compare his/her ciphertexts sent by a specified healthcare provider with the
others’ ciphertexts, so that the patients can help each other by sharing their experiences or
mental processes.

Figure 1. PHR system model.

However, by employing the existing signcryption schemes with equality test (to
guarantee the confidentiality and authenticity of health data while supporting the privacy-
preserving equality test on ciphertexts), the patients are unable to prevent sensitive personal
information from being leaked to the cloud server. That is because the existing schemes do
not consider the anonymity of the sender and receiver of the ciphertext. Consequently, the
cloud server can know the healthcare provider of the ciphertext, e.g., MD Anderson Cancer
Center. Likewise, from the ciphertext and the authorization trapdoor, the cloud server can
learn whose identity the ciphertext is encrypted under, namely who is the receiver of the
ciphertext, in this way to identify the patient associated with the ciphertext. Obviously, this
seriously infringes upon the patient’s privacy.

Hence, during the equality testing procedure, there are three security aspects that
should be guaranteed against the cloud server:

1. Confidentiality: The cloud server has no knowledge about the health data concealed
in the ciphertext.

2. Authenticity: The cloud server is unable to fake any legitimate ciphertext pertaining
to the sender and the receiver.

3. Anonymity: The cloud server has no knowledge about the identities of the sender
and the receiver concealed in the ciphertext.

Therefore, we propose a new primitive, which not only offers the confidentiality,
authenticity, and anonymity of data stored in the cloud, but also provides equality test
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functionality for ciphertexts generated under different identities without losing the confi-
dentiality, authenticity, and anonymity of the data.

1.2. Related Works

Search on ciphertexts: Searchable encryption (SE) [8] was put forward to offer secure
search functionality over ciphertexts encrypted under single public key. There are two
categories of SE: public key encryption with keyword search (PEKS) [1,9,10] and symmetric
searchable encryption (SSE) [11,12]. PEKS was conceived of by Boneh et al. [1] to support
keyword searching over ciphertexts in public key settings by using the corresponding
trapdoors without retrieving messages. After that, a variety of PEKS schemes have been
presented for enhanced functionalities and different application requirements [9,10]. How-
ever, SE cannot offer equality test functionality for ciphertexts generated under different
identities, which differs from our proposal.

Equality test on ciphertexts: The primitive of the PKEET was put forward to verify
whether the identical message is concealed in two ciphertexts, where the ciphertexts
may be encrypted under distinct public keys [2]. Then, the authorization mechanisms
were introduced into the PKEET, and a series of PKEET schemes supporting various
authorizations were proposed [13,14]. Ma [3] first introduced the primitive of the IBEET, to
eliminate the certificate management problem of the traditional PKEET. A semi-generic
IBEET scheme was conceived of by Lee et al. [15] to achieve CCA security. Then, several
IBEET schemes supporting various authorizations were introduced [16,17]. Although the
above schemes offer equality test functionality while preserving the confidentiality, the data
authenticity is not guaranteed. To address this challenge, Xiong et al. [7] established the
notion of the IBSC-ET by combining identity-based signcryption (IBSC) [18] and the IBEET.
Afterwards, several signcryption schemes with equality test functionality for heterogeneous
systems were proposed [19–21]. However, the existing studies have not considered the
anonymity of the sender and the receiver, which leads to the potential leakage of sensitive
personal information, which differs from our proposal.

Identity-based matchmaking encryption: In CRYPTO 2019, Ateniese et al. [22] put
forward the primitive of identity-based matching encryption (IB-ME) to logically ensure
the confidentiality, authenticity, and anonymity of data in one step. The guarantee of
IB-ME is as follows: the recipient obtains the message when the match happens (both
parties’ identities match the identity specified by the other party); in case the match does
not happen, no information is disclosed other than the fact of the mismatch. Then, by
extending IB-ME, a secure access control scheme was conceived of by Xu et al. [23] for
cloud–fog computing, and a secure access control scheme was suggested by Sun et al. [24]
for cloud-enabled industrial IoT healthcare systems. Chen et al. [25] suggested an IB-ME
scheme on the basis of standard assumptions. Wu et al. [26] conceived of a Fuzzy IB-
ME scheme. Yan et al. [27] conceived of an IB-ME scheme supporting proxy decryption.
Sun et al. [28] suggested an IB-ME scheme supporting a broadcast mechanism. However,
although IB-ME can ensure the confidentiality, authenticity, and anonymity of data, all
of these related schemes cannot offer equality test functionality for ciphertexts without
losing the confidentiality, authenticity, and anonymity of the data, which differs from
our proposal.

1.3. Contributions

We emphasize here again that the existing cryptographic schemes with the equal-
ity test do not consider the anonymity of the sender and the receiver, which leads to
the potential leakage problem of sensitive personal information. Hence, we put forward
a novel primitive, called the identity-based matchmaking encryption with equality test
(IBME-ET), by combining IB-ME and the IBEET. This primitive not only offers the confiden-
tiality, authenticity, and anonymity of data stored in the cloud, but also provides equality
test functionality for ciphertexts generated under different identities without losing the
confidentiality, authenticity, and anonymity of the data.
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Our proposed IBME-ET can advance the anonymity of existing applications. For
example, in a PHR system [4,5], the patient can permit the cloud server to compare his/her
encrypted health data sent by a specified healthcare provider with the others’, in this way
to make friends with the patients having a similar illness. Our proposal can simplify the
leakage problem of the real identities of the healthcare provider and the patient, which
exists in current cryptographic schemes with the equality test, thereby guaranteeing the
confidentiality, authenticity, and anonymity of the patients’ health data.

The equality testing process in the IBME-ET can be succinctly outlined as follows:
Let C(σA ,rcvA)

denote a ciphertext generated on (ekσA , rcvA, mA) and C(σB ,rcvB)
denote a

ciphertext generated on (ekσB , rcvB, mB), where ekσA and ekσB are the encryption keys of
the senders with identities σA and σB and rcvA and rcvB are the identities of the specified
receivers, respectively. Furthermore, let td(sndA ,ρA)

be a trapdoor generated on (sndA, dkρA)
and td(sndB ,ρB)

be a trapdoor generated on (sndB, dkρB), where sndA and sndB are the identi-
ties of the specified senders and dkρA and dkρB are the decryption keys of the receivers with
identities ρA and ρB, respectively. Given (C(σA ,rcvA)

, td(sndA ,ρA)
) and (C(σB ,rcvB)

, td(sndB ,ρB)
),

two conditions are involved:

• Match (i.e., σA = sndA ∧ rcvA = ρA ∧ σB = sndB ∧ rcvB = ρB ∧ mA = mB): the
cloud server returns 1, and no further information is revealed other than the fact that
the match happened, that is the cloud server learns neither the messages mA = mB
nor the identities σA = sndA, rcvA = ρA, σB = sndB, rcvB = ρB.

• Mismatch (i.e., σA ̸= sndA ∨ rcvA ̸= ρA ∨ σB ̸= sndB ∨ rcvB ̸= ρB ∨ mA ̸= mB):
the cloud server returns 0, and no further information is revealed other than the fact
of the mismatch, that is the cloud server learns neither the messages mA, mB nor the
identities σA, sndA, rcvA, ρA, σB, sndB, rcvB, ρB.

The principal contributions can be succinctly outlined as follows:

1. We present the notion of the IBME-ET, which not only offers the confidentiality,
authenticity, and anonymity of data stored in the cloud, but also provides equality
test functionality for ciphertexts generated under different identities without losing
the confidentiality, authenticity, and anonymity of the data.

2. We put forward the system model and definition of the IBME-ET. With respect to the
confidentiality, authenticity, and anonymity, we formulated four security models for
the IBME-ET by taking four types of adversaries into account.

3. We constructed a concrete IBME-ET scheme on the basis of the BDH assumption and
the Gap-BDH assumption. Our scheme was confirmed to be secure and practical by
proving its security and evaluating its performance.

1.4. Organization

In general: Section 2 introduces the preliminaries while Section 3 presents IBME-ET
by displaying its system, definition and four security models. Sections 4 and 5, respec-
tively, focus on the detailed scheme and analysis of security. Then, Section 6 focuses on
performance evaluation, Section 7 arrives at a conclusion.

2. Preliminaries
2.1. Asymmetric Bilinear Groups

G, Ĝ, and GT indicate three multiplicative cyclic groups with prime order q. g and ĝ
are the generators of G and Ĝ, respectively. An asymmetric bilinear map e : G× Ĝ → GT
includes the following characteristics:

1. Bilinearity: ∀x ∈ G, ∀y ∈ Ĝ and ∀u, v ∈ Z∗
q , e(xu, yv) = e(x, y)uv.

2. Non-degeneracy: ∃g ∈ G, ĝ ∈ Ĝ, e(g, ĝ) ̸= 1.

Note that the group operations and asymmetric bilinear map e can be computed
efficiently. However, if no efficiently computable isomorphisms are found between G and
Ĝ, then G, Ĝ and GT do not possess efficiently computable isomorphisms.



Entropy 2024, 26, 74 5 of 26

2.2. Assumptions

1. Bilinear Diffie–Hellman (BDH) assumption: When a tuple (g, ga, gc, ĝ, ĝa, ĝb) ∈ G3 × Ĝ3

is given, no PPT algorithm A calculates e(g, ĝ)abc ∈ GT with non-negligible advantage.
Define A’s advantage as

AdvABDH(λ) = Pr[A(g, ga, gc, ĝ, ĝa, ĝb) = e(g, ĝ)abc].

2. Gap-bilinear Diffie–Hellman (Gap-BDH) assumption: When a tuple (g, ga, gc, ĝ, ĝa, ĝb) ∈
G3 × Ĝ3 is given, even with the decision BDH oracle ODBDH, no PPT algorithm A
calculates e(g, ĝ)abc ∈ GT with non-negligible advantage [29]. Tuples of the form
(g, ga, gc, ĝ, ĝa, ĝb, e(g, ĝ)abc) are known as “BDH tuples”. With (g, ga, gc, ĝ, ĝa, ĝb, T),
ODBDH is able to check T = e(g, ĝ)abc or not. ODBDH outputs 1 when T = e(g, ĝ)abc;
otherwise, ODBDH outputs 0. Define A’s advantage as

AdvAGap-BDH(λ) = Pr[A(g, ga, gc, ĝ, ĝa, ĝb,ODBDH) = e(g, ĝ)abc].

3. Definitions of IBME-ET
3.1. System Model

In Figure 2, our proposed IBME-ET comprises four distinct entities.

Figure 2. IBME-ET system model.

• KGC: This entity’s responsibility is to securely generate and distribute encryption keys
and decryption keys.

• Sender: This entity’s responsibility is to generate ciphertexts, ensuring the confidential-
ity, authenticity, and anonymity of the data.

• Receiver: This entity is responsible for collecting and outsourcing ciphertexts from
potential senders secretly. It permits the cloud server to test ciphertexts sent by a
specific sender without compromising the confidentiality, authenticity, and anonymity
of the data.

• Cloud server: This entity’s responsibility is to store the ciphertexts and perform equality
tests based on the receivers’ authorizations.

Our workflow is succinctly outlined as follows:

1. The KGC utilizes the algorithm SKGen to calculate the encryption key ekσ in ac-
cordance with the identity of the sender σ and securely delivers this to the sender.
Similarly, the KGC utilizes the algorithm RKGen to calculate the decryption key dkρ in
accordance with the identity of the receiver ρ and securely delivers this to the receiver.
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2. A sender identified as σ executes the algorithm Enc to conceal the message m using
encryption key ekσ along with a target receiver’s identity rcv, delivering it to the
receiver with the ciphertext C(σ,rcv).

3. A receiver identified as ρ executes the algorithm Decc to decrypt the ciphertexts by
employing the receiver’s decryption key dkρ and the identity of the target sender snd,
delivering the desirable ciphertexts to the cloud server. Specifically, given C(σ,rcv), dkρ,
and snd, the guarantee in the decryption procedure is as follows:

• Match (i.e., σ = snd ∧ ρ = rcv): the message m is obtained by the receiver.
• Mismatch (i.e.,σ ̸= snd ∨ ρ ̸= rcv): the receiver obtains neither the message m

nor the identities σ, rcv.

4. To test the ciphertexts offered by a target sender, the receiver identified as ρ executes
the algorithm Auth to calculate a trapdoor td(snd,ρ) with the identity of the target
sender snd and its decryption key dkρ and delivers the trapdoor to the cloud server.

5. Utilizing the receivers’ trapdoors, the cloud server executes the algorithm Test to
test the ciphertexts sent by the specified senders without learning the messages and
identities. Specifically, given (C(σA ,rcvA)

, td(sndA ,ρA)
) and (C(σB ,rcvB)

, td(sndB ,ρB)
), the

guarantee in equality testing procedure is as follows:

• Match (i.e., σA = sndA ∧ rcvA = ρA ∧ σB = sndB ∧ rcvB = ρB ∧ mA = mB):
the cloud server returns 1, and the cloud server learns neither the messages
mA = mB nor the identities σA = sndA, rcvA = ρA, σB = sndB, rcvB = ρB.

• Mismatch (i.e., σA ̸= sndA ∨ rcvA ̸= ρA ∨ σB ̸= sndB ∨ rcvB ̸= ρB ∨mA ̸= mB):
the cloud server returns 0, and the cloud server learns neither the messages mA,
mB nor the identities σA, sndA, rcvA, ρA, σB, sndB, rcvB, ρB.

3.2. IBME-ET Definition

An IBME-ET scheme comprises the subsequent algorithms:

• Setup(λ) → (pp, mk): The system parameters pp along with the master key mk
are answered.

• SKGen(pp, mk, σ) → ekσ: The encryption key ekσ for the sender identified as σ
is answered.

• RKGen(pp, mk, ρ) → dkρ: The decryption key dkρ for the receiver identified as ρ
is answered.

• Enc(pp, ekσ, rcv, m) → C: Given the system parameters pp, an encryption key of the
sender ekσ, and an identity of the target receiver rcv along with the message m, the
corresponding ciphertext C is answered.

• Dec(pp, dkρ, snd, C) → m/⊥: Given the system parameters pp, a decryption key of
the receiver dkρ, and an identity of the target sender snd along with the ciphertext C,
the corresponding message m is answered or the symbol ⊥ to signal the failure of the
decryption is answered.

• Auth(pp, snd, dkρ) → td(snd,ρ): Given the system parameters pp and an identity of the
target sender snd along with a decryption key of the receiver dkρ, the corresponding
trapdoor td(snd,ρ) is answered.

• Test(pp, C(σA,rcvA)
, td(sndA,ρA)

, C(σB,rcvB)
, td(sndB,ρB)

) → 0/1: Given the system parameters
pp, two pairs of ciphertext/trapdoors (C(σA,rcvA)

, td(sndA,ρA)
) and (C(σB,rcvB)

, td(sndB,ρB)
),

if σA = sndA ∧ rcvA = ρA ∧ σB = sndB ∧ rcvB = ρB ∧ C(σA,rcvA)
and C(σB,rcvB)

are
generated using the identical message, it answers 1. Otherwise, it answers 0.

Correctness: An IBME-ET scheme is correct when the subsequent conditions are met:

1. When σ = snd ∧ ρ = rcv, Dec(pp, dkρ, snd, Enc(pp, ekσ, rcv, m)) = m always holds.
2. Let C(σA,rcvA)

= Enc(pp, ekσA , rcvA, mA), C(σB,rcvB)
= Enc(pp, ekσB , rcvB, mB),

td(sndA,ρA)
= Auth(pp, sndA, dkρA), and td(sndB,ρB)

= Auth(pp, sndB, dkρB). If
σA = sndA ∧ rcvA = ρA ∧ σB = sndB ∧ rcvB = ρB ∧ mA = mB, Test(pp, C(σA,rcvA)

,
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td(sndA,ρA)
, C(σB,rcvB)

, td(sndB,ρB)
) = 1; otherwise, Pr[Test(pp, C(σA,rcvA)

, td(sndA,ρA)
,

C(σB,rcvB)
, td(sndB,ρB)

) = 1] is negligible.

3.3. Security Definitions

With respect to the confidentiality, authenticity, and anonymity of the IBME-ET, it is
crucial to consider four distinct types of adversaries:

• Type-I adversary A1: Without the trapdoor and decryption key of the receiver, A1 is
unable to determine which message the challenge ciphertext is computed from. For
A1, define the security model IND-ID-CCA.

• Type-II adversary A2: Without the decryption key of the receiver, A2 is unable to
obtain the message concealed in the challenge ciphertext. For A2, define the security
model OW-ID-CCA.

• Type-III adversary A3: Without the decryption key of the receiver and the encryption
key of the sender, A3 is unable to determine the corresponding sender and receiver,
even if A3 has the trapdoor. For A3, define the security model ANON-ID-CCA.

• Type-IV adversary A4: Without the decryption key of the receiver and the encryption key
of the sender, A4 is unable to fake any legitimate ciphertext delivered by the sender to
the receiver, even if A4 has the trapdoor. For A4, define the security model sUF-ID-CMA.

Let C be the challenger. We have the following oracles:

• OSKGen(σi): Once the identity of the sender σi is received, C answers the encryption
key ekσi .

• ORKGen(ρj): Once the identity of the receiver ρj is received, C answers the decryption
key dkρj .

• OEnc(σi, rcv, m): Once the identity of the sender σi, the identity of the target receiver
rcv, and a message m are received, C answers the result of Enc(pp, ekσi , rcv, m).

• ODec(ρj, snd, C): Once the identity of the receiver ρj, the identity of the target sender
snd, and a ciphertext C are received, C answers the result of Dec(pp, dkρj , snd, C).

• OAuth(snd, ρj): Once the identity of the target sender snd and the identity of the receiver
ρj are received, C answers the corresponding trapdoor td(snd,ρj)

= Auth(pp, snd, dkρj).

Definition 1 (IND-ID-CCA). Regarding A1, the IBME-ET scheme meets IND-ID-CCA security
when no PPT A1 is winning the game below with a non-negligible advantage:

1. Setup: C utilizes the algorithm Setup to calculate the master key mk and the system parameters
pp and delivers pp to A1.

2. Phase 1: A1 can issue queries to the oracles: OSKGen, ORKGen, OAuth, ODec.
3. Challenge: A1 sends identities σ∗, rcv∗ and equal-length messages m∗

0 , m∗
1 to C. Subse-

quently, C randomly selects x ∈ {0, 1} and answers A1 with the challenge ciphertext
C∗ = Enc(pp, ekσ∗ , rcv∗, m∗

x).
4. Phase 2: A1 makes queries like in Phase 1.
5. Guess: A1 answers a guess x′ ∈ {0, 1} and is winning when x = x′. A1’s advantage is

defined as AdvIND−ID−CCA
IBME−ET,A1

(λ) = |Pr[x = x′]− 1
2 |.

In the above game, the constraint is thatA1 cannot ask the following queries:ORKGen(rcv∗),
OAuth(σ

∗, rcv∗), ODec(rcv∗, σ∗, C∗).

Definition 2 (OW-ID-CCA). Regarding A2, the IBME-ET scheme meets OW-ID-CCA security
when no PPT A2 is winning the game below with a non-negligible advantage:

1. Setup: Same as Definition 1.
2. Phase 1: A2 can issue queries to the oracles: OSKGen, ORKGen, OAuth, ODec.
3. Challenge: A2 sends identities σ∗, rcv∗ to C. Subsequently, C randomly chooses a message

m∗ ∈ {0, 1}λ and answers to A2 with the challenge ciphertext C∗ = Enc(pp, ekσ∗ , rcv∗, m∗).
4. Phase 2: A2 makes queries like in Phase 1.
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5. Guess: A2 answers a guess m′ and is winning when m∗ = m′. A2’s advantage is defined as
AdvOW−ID−CCA

IBME−ET,A2
(λ) =Pr[m∗ = m′].

In the above game, the constraints is that A2 cannot ask the following queries:
ORKGen(rcv∗), ODec(rcv∗, σ∗, C∗).

Definition 3 (ANON-ID-CCA). Regarding A3, the IBME-ET scheme meets ANON-ID-CCA
security when no PPT A3 is winning the game below with a non-negligible advantage:

1. Setup: Same as Definition 1.
2. Phase 1: A3 can issue queries to the oracles: OSKGen, ORKGen, OAuth, OEnc, ODec.
3. Challenge: A3 sends identities (snd∗0 , ρ∗0), (snd∗1 , ρ∗1) and a message m∗ to C. Subse-

quently, C randomly chooses x ∈ {0, 1} and answers to A3 with the challenge ciphertext
C∗ = Enc(pp, eksnd∗x , ρ∗x, m∗) and the challenge trapdoor td(snd∗x,ρ∗x) = Auth(pp, snd∗x, dkρ∗x).

4. Phase 2: A3 makes queries like in Phase 1.
5. Guess: A3 answers a guess x′ ∈ {0, 1} and is winning when x = x′. A3’s advantage is

defined as AdvANON−ID−CCA
IBME−ET,A3

(λ) = |Pr[x = x′]− 1
2 |.

In the above game, the constraint is that A3 cannot ask the following queries:

• OSKGen(snd∗0), OSKGen(snd∗1), OEnc(snd∗0 , ρ∗0 , ∗) and OEnc(snd∗1 , ρ∗1 , ∗).
• ORKGen(ρ

∗
0), ORKGen(ρ

∗
1), OAuth(snd∗0 , ρ∗0) and OAuth(snd∗1 , ρ∗1).

• ODec(ρ
∗
0 , snd∗0 , C∗), ODec(ρ

∗
1 , snd∗1 , C∗).

Definition 4 (sUF-ID-CMA). Regarding A4, the IBME-ET scheme meets sUF-ID-CMA security
when no PPT A4 is winning the game below with a non-negligible advantage:

1. Setup: Same as Definition 1.
2. Queries: A4 can issue queries to the oracles: OSKGen, ORKGen, OAuth, OEnc, ODec.
3. Forgery: A4 answers a triple (snd∗, ρ∗, C∗). A4 is winning when m∗ = Dec(pp, dkρ∗ ,

snd∗, C∗) ̸=⊥. A4’s advantage is defined as AdvsUF−ID−CMA
IBME−ET,A4

(λ) =Pr[A4 wins].

In the above game, the constraint is that A4 cannot make the following queries:
OSKGen(snd∗) and ORKGen(ρ

∗). Furthermore, C∗ cannot be an output of OEnc(snd∗, ρ∗, ∗).

4. Our Construction

The IBME-ET scheme is concretely constructed as below:

• Setup(λ): The following steps are taken:

1. Randomly select the generators g ∈ G along with ĝ ∈ Ĝ.
2. Randomly select numbers s, α, β0, β1 ∈ Z∗

q , and set g1 = gα, f = gβ0 , f̂ = ĝβ0 ,
h = gβ1 , ĥ = ĝβ1 .

3. Secure hash functions are defined: H : GT → Z∗
q , H1 : {0, 1}∗ → G,

H2 : {0, 1}∗ → Ĝ, H3 : {0, 1}∗ → Ĝ, H4 : GT → Z∗
q , H5 : {0, 1}λ+l → Z∗

q ,
H6 : G2

T ×G3 → {0, 1}λ+l , H7 : {0, 1}λ → Ĝ, and H8 : GT → Ĝ.
4. Return the master key mk along with the system parameters pp, where

mk = (s, α),

pp = (G, g, ĝ, g1, f , h, f̂ , ĥ, H, H1, H2, H3, H4, H5, H6, H7, H8).

• SKGen(pp, mk, σ): Let mk = (s, α). This algorithm produces the encryption key
ekσ = H1(σ)

s.
• RKGen(pp, mk, ρ): Let mk = (s, α). This algorithm produces the decryption key

dkρ = (d1, d2, d3) = (H3(ρ)
s, H2(ρ)

α, H3(ρ)
α).

• Enc(pp, ekσ, rcv, m): Let rcv = ρ and m ∈ {0, 1}λ. The ciphertext C = (C0, C1, C2, C3, C4)
is calculated as below:
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1. Randomly select r ∈ Z∗
q and k ∈ {0, 1}l , and calculate R = H5(m, k).

2. Calculate η = e(ekσ, H3(ρ)), ω1 = e(g1, H2(ρ))
r·H4(η) and ω2 = e(g1, H3(ρ))

r·H4(η).
3. Calculate the following numbers:

C0 = gR,
C1 = gr,
C2 = ( f hH(η))r,
C3 = (m ∥ k)⊕ H6(ω1, η, C0, C1, C2),
C4 = H7(m)R · H8(ω2).

• Dec(pp, dkρ, snd, C): Let dkρ = (d1, d2, d3), snd = σ. The following steps are taken:

1. Calculate η = e(H1(σ), d1), ω1 = e(C1, dH4(η)
2 ) and ω2 = e(C1, dH4(η)

3 ).
2. Obtain m′ ∥ k′ by computing C3 ⊕ H6(ω1, η, C0, C1, C2).
3. Calculate R′ = H5(m′, k′).
4. If C0 = gR′

and C4 = H7(m′)R′ · H8(ω2) hold, answer m′; otherwise, answer ⊥.

• Auth(pp, snd, dkρ): Let dkρ = (d1, d2, d3) and snd = σ. The following steps are taken:

1. Randomly select y ∈ Z∗
q , and calculate η = e(H1(σ), d1).

2. Return the trapdoor td(snd,ρ) = (y1, y2) = (dH4(η)
3 ( f̂ ĥH(η))y, ĝy).

• Test(pp, C(σA,rcvA)
, td(sndA,ρA)

, C(σB,rcvB)
, td(sndB,ρB)

): Let C(σA,rcvA)
= (CσA,rcvA,0, CσA,rcvA,1,

CσA,rcvA,2, CσA,rcvA,3, CσA,rcvA,4), td(sndA,ρA)
= (ysndA,ρA,1, ysndA,ρA,2), C(σB,rcvB)

= (CσB,rcvB,0,
CσB,rcvB,1, CσB,rcvB,2, CσB,rcvB,3, CσB,rcvB,4) and td(sndB,ρB)

) = (ysndB,ρB,1, ysndB,ρB,2). The fol-
lowing steps are taken:

1. Calculate
ωA,2 = e(CσA ,rcvA ,1, ysndA ,ρA ,1)/e(CσA ,rcvA ,2, ysndA ,ρA ,2),

ωB,2 = e(CσB ,rcvB ,1, ysndB ,ρB ,1)/e(CσB ,rcvB ,2, ysndB ,ρB ,2).

2. Calculate
KA = CσA ,rcvA ,4/H8(ωA,2),

KB = CσB ,rcvB ,4/H8(ωB,2).

3. Check whether e(CσA ,rcvA ,0, KB) = e(CσB ,rcvB ,0, KA) holds. When it holds, answer
1 or 0 otherwise.

Correctness: The proposed scheme is correct in accordance with the
correctness definition:

1. Regarding Condition 1, when σ = snd and ρ = rcv, we have

η = e(ekσ, H3(ρ)) = e(H1(σ), H3(ρ))
s = e(H1(σ), d1),

ω1 = e(g1, H2(ρ))
r·H4(η) = e(g, H2(ρ))

rα·H4(η) = e(C1, dH4(η)
2 ),

C3 ⊕ H6(ω1, η, C0, C1, C2) = (m ∥ k)⊕ H6(ω1, η, C0, C1, C2)⊕ H6(ω1, η, C0, C1, C2) = m ∥ k.

Thus, when σ = snd and ρ = rcv, Dec(pp, dkρ, snd, Enc(pp, ekσ, rcv, m)) = m al-
ways holds.

2. Regarding Condition 2, if σA = sndA ∧ rcvA = ρA ∧σB = sndB ∧ rcvB = ρB ∧mA =
mB, we have
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e(CσA ,ρA ,1, yσA ,ρA ,1)

e(CσA ,ρA ,2, yσA ,ρA ,2)
=

e(grA , dH4(ηA)
A,3 ( f̂ ĥH(ηA))yA)

e(( f hH(ηA))rA , ĝyA)
=

e(grA , dH4(ηA)
A,3 ) · e(g, f̂ ĥH(ηA))rAyA

e( f hH(ηA), ĝ)rAyA

=
e(grA , dH4(ηA)

A,3 ) · e(g, ĝβ0+β1 H(ηA))rAyA

e(gβ0+β1 H(ηA), ĝ)rAyA
= e(grA , dH4(ηA)

A,3 )

= e(g, H3(ρA))
rAα·H4(ηA) = e(g1, H3(ρA))

rA ·H4(ηA) = ωA,2,

e(CσB ,ρB ,1, yσB ,ρB ,1)

e(CσB ,ρB ,2, yσB ,ρB ,2)
=

e(grB , dH4(ηB)
B,3 ( f̂ ĥH(ηB))yB)

e(( f hH(ηB))rB , ĝyB)
=

e(grB , dH4(ηB)
B,3 ) · e(g, f̂ ĥH(ηB))rByB

e( f hH(ηB), ĝ)rByB

=
e(grB , dH4(ηB)

B,3 ) · e(g, ĝβ0+β1 H(ηB))rByB

e(gβ0+β1 H(ηB), ĝ)rByB
= e(grB , dH4(ηB)

B,3 )

= e(g, H3(ρB))
rBα·H4(ηB) = e(g1, H3(ρB))

rB ·H4(ηB) = ωB,2.

KA =
CσA ,ρA ,4

H8(ωA,2)
=

H7(mA)
RA · H8(ωA,2)

H8(ωA,2)
= H7(mA)

RA ,

KB =
CσB ,ρB ,4

H8(ωB,2)
=

H7(mB)
RB · H8(ωB,2)

H8(ωB,2)
= H7(mB)

RB ,

e(CσA ,ρA ,0, KB) = e(gRA , H7(MB)
RB) = e(g, H7(MB))

RARB ,

e(CσB ,ρB ,0, KA) = e(gRB , H7(MA)
RA) = e(g, H7(MA))

RARB .

If σA = sndA ∧ rcvA = ρA ∧ σB = sndB ∧ rcvB = ρB ∧ mA = mB, then e(CσA,ρA,0, KB) =
e(CσB,ρB,0, KA), so Test(pp, C(σA,rcvA)

, td(sndA,ρA)
, C(σB,rcvB)

, td(sndB,ρB)
) = 1; otherwise,

Pr[Test(pp, C(σA,rcvA)
, td(sndA,ρA)

, C(σB,rcvB)
, td(sndB,ρB)

) = 1] is negligible due to the hash
functions H7 and H8 being collision-resistant.

5. Security Analysis

In the random oracle model, we used the method of proof by contradiction to show
that if the BDH assumption and Gap-BDH assumption introduced in the preliminaries (see
Section 2) hold, and our proposed IBME-ET scheme can meet confidentiality, authenticity,
and anonymity in cryptography [30–32].

According to our IBME-ET scheme, given the ciphertext C, we have the following
observations:

• To reveal the message m, it is necessary to calculate ω1 = e(g1, H2(ρ))
r·H4(η).

• To obtain H7(m)R, which is used for the equality test, it is necessary to calculate

ω2 = e(g1, H3(ρ))
r·H4(η).

• To distinguish the identities of the sender and the receiver concealed in the ciphertext,
it is necessary to calculate η = e(ekσ, H3(ρ)) = e(H1(σ), H3(ρ))

s.
• To fake any legitimate ciphertext pertaining to the sender σ and the receiver ρ, it is

necessary to calculate η = e(ekσ, H3(ρ)) = e(H1(σ), H3(ρ))
s.

Note that, regarding to the confidentiality, anonymity, and authenticity of the IBME-ET,
four security models are defined by considering four distinct types of adversaries (see
Section 3.3). The security proof of our scheme can be outlined as follows:

As for the confidentiality, we first used the BDH assumption to prove that our proposal
meets IND-ID-CCA security regarding the Type-I adversary A1. Given a BDH assumption
instance (g, ga, gc, ĝ, ĝa, ĝb), we generated a simulated scheme B and interacted with A1
by following the IND-ID-CCA security model defined in Section 3.3. B simulates the
oracles OSKGen, ORKGen, OAuth, and ODec to answer A1’s queries and preserves the LH and
LHi (i = 1, 2, 3, 5, 6, 7, 8) lists to simulate the random oracles OH and OHi (i = 1, 2, 3, 5, 6, 7, 8).
In the challenge phase, A1 sends identities σ∗, rcv∗ and equal-length messages m∗

0 , m∗
1 to

B. Let rcv∗ = ρ∗. B randomly selects x ∈ {0, 1} and answers the challenge ciphertext
C∗ = (C∗

0 , C∗
1 , C∗

2 , C∗
3 , C∗

4 ) = Enc(pp, ekσ∗ , ρ∗, m∗
x) to A1. In the simulation, the challenge

ciphertext implicitly sets ω∗
1 = e(g, ĝ)abcv∗ ·H4(η

∗), ω∗
2 = e(g, ĝ)abct∗ ·H4(η

∗), H6(ω
∗
1 , η∗, C∗

0 ,
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C∗
1 , C∗

2 ) = (mx ∥ k) ⊕ C∗
3 , H8(ω

∗
2 ) =

C∗
4

H7(mx)R , where g1 = ga, H2(ρ
∗) = ĝbv∗ , H3(ρ

∗) =

ĝbt∗ , H1(σ
∗) = gu∗

, ekσ∗ = gsu∗
, η∗ = e(g, ĝ)bsu∗t∗ , C∗

0 = gR, C∗
1 = gc, and C∗

2 = gβ′0c.
Finally, in the guess phase, A1 outputs a guess x′ ∈ {0, 1}. The advantage of A1 for
breaking our proposal is defined as ϵ = |Pr[x = x′]− 1

2 |. If ϵ is non-negligible, then the
tuple [ω∗

1 , η∗, C∗
0 , C∗

1 , C∗
2 , δ∗] is documented in LH6 with non-negligible probability. If B

selects the right tuple from LH6 , B can return the BDH instance solution ω∗
1
(v∗H4(η

∗))−1

(= e(g, ĝ)abc). As a result, the BDH assumption can be addressed by B with non-negligible
advantage if A1 is able to break our proposal with non-negligible advantage.

Subsequently, as for the confidentiality, we used the BDH assumption to prove that
our proposal meets OW-ID-CCA security regarding the Type-II adversary A2. Given a BDH
assumption instance (g, ga, gc, ĝ, ĝa, ĝb), we generated a simulated scheme B and interacted
with A2 by following the OW-ID-CCA security model defined in Section 3.3. B simulates the
oracles OSKGen, ORKGen, OAuth, and ODec to answer A2’s queries and preserves the LH and
LHi (i = 1, 2, 3, 5, 6, 7, 8) lists to simulate the random oracles OH and OHi (i = 1, 2, 3, 5, 6, 7, 8).
In the challenge phase, A2 sends identities σ∗, rcv∗ to B. Let rcv∗ = ρ∗. B randomly chooses
a message m∗ ∈ {0, 1}λ and answers the challenge ciphertext C∗ = (C∗

0 , C∗
1 , C∗

2 , C∗
3 , C∗

4 ) =
Enc(pp, ekσ∗ , ρ∗, m∗) to A2. In the simulation, the challenge ciphertext implicitly sets
ω∗

1 = e(g, ĝ)abcv∗ ·H4(η
∗), H6(ω

∗
1 , η∗, C∗

0 , C∗
1 , C∗

2 ) = (m∗ ∥ k)⊕ C∗
3 , where g1 = ga, H2(ρ

∗) =

ĝbv∗ , H3(ρ
∗) = ĝt∗ , H1(σ

∗) = gu∗
, ekσ∗ = gsu∗

, η∗ = e(g, ĝ)bsu∗t∗ , C∗
0 = gR, C∗

1 = gc, C∗
2 =

gβ′0c, and C∗
4 = H7(m∗)R · H8(e(gc, ĝat∗ ·H4(η

∗))). Finally, in the guess phase, A2 outputs a
guess m′. The advantage of A2 for breaking our proposal is defined as ϵ = |Pr[m∗ = m′]|.
If ϵ is non-negligible, then the tuple [ω∗

1 , η∗, C∗
0 , C∗

1 , C∗
2 , δ∗] is documented in LH6 with

non-negligible probability. If B selects the right tuple from LH6 , B can return the BDH

instance solution ω∗
1
(v∗H4(η

∗))−1
(= e(g, ĝ)abc). As a result, the BDH assumption can be

addressed by B with non-negligible advantage if A2 is able to break our proposal with
non-negligible advantage.

As for the anonymity, we used the Gap-BDH assumption to prove that our proposal
meets ANON-ID-CCA security regarding the Type-III adversary A3. Given a Gap-BDH
assumption instance (g, ga, gc, ĝ, ĝa, ĝb, ODBDH), we generated a simulated scheme B and
interacted with A3 by following the ANON-ID-CCA security model defined in Section 3.3.
B simulates the oracles OH , OHi (i = 1, 2, 3, 4, 5, 6, 7, 8), OSKGen, ORKGen, OAuth, OEnc,
and ODec to answer A3’s queries. In the challenge phase, A3 sends identities (snd∗0 , ρ∗0),
(snd∗1 , ρ∗1) and a message m∗ to B. Let snd∗0 = σ∗

0 , snd∗1 = σ∗
1 . B randomly chooses x ∈ {0, 1}

and answers the challenge ciphertext C∗ = (C∗
0 , C∗

1 , C∗
2 , C∗

3 , C∗
4 ) = Enc(pp, ekσ∗

x , ρ∗x, m∗) and
the challenge trapdoor td(σ∗

x ,ρ∗x) = (y1, y2) = Auth(pp, σ∗
x , dkρ∗x ) to A3. In the simulation,

the challenge ciphertext implicitly sets η∗ = e(g, ĝ)abcu∗
xt∗x , ω∗

1 = e(gaα′ , ĝb)rΩv∗x , C∗
3 = (m∗ ∥

k) ⊕ H6(ω
∗
1 , η∗, C∗

0 , C∗
1 , C∗

2 ), where g1 = gaα′ , H1(σ
∗
0 ) = gcui∗x , H2(ρ

∗
x) = ĝ

bvj∗t , H3(ρ
∗
x) =

ĝbvt∗x , ω∗
2 = e(gaα′ , ĝb)rΩ̃xx , H(η∗) = I = Ixx, H4(η

∗) = Ω = Ω̃xx
t∗x

, C∗
0 = gR, C∗

1 = gr,
C∗

2 = ( f hI)r, and C∗
4 = H7(m∗)R · H8(ω

∗
2 ) Furthermore, the challenge trapdoor implicitly

sets y = ỹ − bz, where z = txα′Ω
β1 I = α′Ω̃xx

β1 I , y1 = ĝβ0(ỹ−bz) ĝaβ1 Iỹ, y2 = ĝỹ−bz. Finally, in the
guess phase, A3 outputs a guess x′ ∈ {0, 1}. The advantage of A3 for breaking our proposal
is defined as ϵ = |Pr[x = x′]− 1

2 |. If ϵ is non-negligible, η∗ = e(g, ĝ)abcu∗
xt∗x has been queried

to OH with non-negligible probability. With ODBDH(g, ga, gc, ĝ, ĝa, ĝb, η∗(ui∗x tj∗x )
−1
) = 1,

B can return the Gap-BDH instance solution η∗(ui∗x tj∗x )
−1

(= e(g, ĝ)abc). As a result, the
Gap-BDH assumption can be addressed by B with non-negligible advantage if A3 is able
to break our proposal with non-negligible advantage.

As for the authenticity, we used the Gap-BDH assumption to prove that our proposal
meets sUF-ID-CMA security regarding the Type-IV adversary A4. Given a Gap-BDH
assumption instance (g, ga, gc, ĝ, ĝa, ĝb, ODBDH), we generated a simulated scheme B and
interacted with A4 by following the sUF-ID-CMA security model defined in Section 3.3.
B simulates the oracles OH , OHi (i = 1, 2, 3, 4, 5, 6, 7, 8), OSKGen, ORKGen, OAuth, OEnc, and
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ODec to answer A4’s queries. In the simulation, the following numbers are implicitly set
η∗ = e(g, ĝ)abc, where H1(σ

∗) = gc, H3(ρ
∗) = ĝb, H(η∗) = I∗, H4(η

∗) = Ω∗. In the forgery
phase, A4 outputs a triple (snd∗, ρ∗, C∗), where snd∗ = σ∗ and C∗ = (C∗

0 , C∗
1 , C∗

2 , C∗
3 , C∗

4 ). If
m∗ = Dec(pp, dkρ∗ , σ∗, C∗) ̸=⊥, A4 wins. The advantage of A4 for breaking our proposal is
defined as ϵ = Pr[A4 wins]. With ϵ and the lemma on the relationship between the chosen-
identity attack and given identity attack [33], if ϵ is non-negligible, η∗ = e(g, ĝ)abc has been
queried to OH with non-negligible probability. Then, ODBDH(g, ga, gc, ĝ, ĝa, ĝb, η∗) = 1,
B can return the Gap-BDH instance solution η∗ (= e(g, ĝ)abc). As a result, the Gap-BDH
assumption can be addressed by B with non-negligible advantage if A4 is able to break our
proposal with non-negligible advantage.

Theorem 1. For any A1, our IBME-ET scheme meets IND-ID-CCA security on the basis of the
BDH assumption.

More precisely, if A1 is able to break our proposal with the advantage ϵ, we can conceive of a
PPT algorithm B to address the BDH assumption with the advantage ϵ′ ≥ 1

qH6
( ϵ

qH1 qH2
− qD

2λ+l −
qH8

q ), where qHi (i = 1, 2, 6, 8) and qD denote the numbers of different queries to OHi (i = 1, 2, 6, 8)
and ODec, respectively.

Proof. Given a BDH assumption instance (g, ga, gc, ĝ, ĝa, ĝb), the task of B is to calculate
e(g, ĝ)abc by interacting with A1 as below:

(1) Setup: B randomly selects i∗ ∈ {1, 2, · · · , qH1}, j∗ ∈ {1, 2, · · · , qH2}. B randomly
chooses I∗, s, β′

0, β′
1 ∈ Z∗

q , calculates g1 = ga, f = gβ′0−aβ′1 I∗ , h = gaβ′1 , f̂ = ĝβ′0−aβ′1 I∗ ,

and ĥ = ĝaβ′1 , sets pp = (G, g, ĝ, g1, f , h, f̂ , ĥ, H, Hi(i = 1, 2, 3, 4, 5, 6, 7, 8)), and delivers
this to A1 with pp. B implicitly sets mk = (s, a), because B has no knowledge
about a. B preserves the LH and LHi (i = 1, 2, 3, 5, 6, 7, 8) lists to simulate OH and
OHi (i = 1, 2, 3, 5, 6, 7, 8). Afterwards, B randomly selects u∗, v∗, t∗ ∈ Z∗

q .
(2) Phase 1: B answers A1’s queries.

• OH(η): When η ̸= e(g, ĝ)bsu∗t∗ , B randomly selects I ∈ Z∗
q , inserts a tuple [η, I]

into LH , and answers I. Otherwise, B answers I∗.
• OH1(σi): Suppose σi as the i-th different query. When i ̸= i∗, B randomly selects

ui ∈ Z∗
q , inserts a tuple [σi, ui] into LH1 , and returns gui . Otherwise, B has

ui∗ = u∗, inserts a tuple [σi∗ , ui∗ ] into LH1 , and returns gui∗ .
• OH2(ρj): Suppose ρj as the j-th different query. When j ̸= j∗, B randomly

selects vj ∈ Z∗
q , inserts a tuple [ρj, vj] into LH2 , and returns ĝvj . Otherwise, B has

vj∗ = v∗, inserts a tuple [ρj∗ , vj∗ ] into LH2 , and returns ĝbvj∗ .
• OH3(ρj): B performs a simulation algorithm to query OH2(ρj). Subsequently, B

searches the tuple [ρj, vj] in LH2 . When j ̸= j∗, B selects tj ∈ Z∗
q randomly, inserts

a tuple [ρj, tj] into LH3 , and returns ĝtj . Otherwise, B has tj∗ = t∗, inserts a tuple

[ρj∗ , tj∗ ] into LH3 , and returns ĝbtj∗ .
• OH5(m, k): B randomly chooses R ∈ Z∗

q , inserts a tuple [m, k, R] into LH5 , and
answers R.

• OH6(ω1, η, C0, C1, C2): B randomly chooses δ ∈ {0, 1}λ+l , inserts a tuple
[ω1, η, C0, C1, C2, δ] into LH6 , and answers δ.

• OH7(m): B randomly selects h7 ∈ Ĝ, inserts a tuple [m, h7] into LH7 , and re-
turns h7.

• OH8(ω2): B randomly selects π ∈ Ĝ, inserts a tuple [ω2, π] into LH8 , and re-
turns π.

• OSKGen(σi): B performs a simulation algorithm to query OH1(σi). There is a
tuple [σi, ui] in LH1 . Next, B returns ekσi = gsui .

• ORKGen(ρj): B performs a simulation algorithm to query OH3(ρj). There are a tu-
ple [ρj, vj] in LH2 and a tuple [ρj, tj] in LH3 . When j ̸= j∗, B returns
dkρj = (d1, d2, d3) = (ĝstj , ĝavj , ĝatj). Otherwise, B is aborted by failure.
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• ODec(ρj, snd, C): Let snd = σi. B performs a simulation algorithm to query
OH3(ρj) and OH1(σi).

- When j ̸= j∗, B can query ORKGen(ρj) to obtain dkρj and returns the outcome
of the algorithm Dec(pp, dkρj , σi, C).

- Otherwise, B can query OSKGen(σi) to obtain ekσi and calculates η = e(ekσi ,
H3(ρj)). For each tuple [ω1, η, C0, C1, C2, δ] in LH6 , B calculates m′ ∥ k′ =
C3 ⊕ δ and calculates R′ = H5(m′, k′). If C0 = gR′

and there exists a tuple
[ω2, π] in LH8 such that C4 = H7(m′)R′ · π holds, it outputs m′. Once LH8

has no such tuple, B outputs ⊥.

• OAuth(snd, ρj): Let snd = σi. B performs a simulation algorithm to query OH3(ρj)
and OH1(σi). When j ̸= j∗, B can query ORKGen(ρj) to obtain dkρj , returns
td(σi ,ρj)

= Auth(pp, σi, dkρj). Otherwise, B executes the following operations:

- When (i, j) = (i∗, j∗), B is aborted by failure.
- Otherwise, LH2 has a tuple [ρj∗ , vj∗ ] and LH3 has a tuple [ρj∗ , tj∗ ], and B can

query OSKGen(σi) to obtain ekσi , calculates η = e(ekσi , H3(ρj)), I = H(η) and

Ω = H4(η), randomly selects ỹ ∈ Z∗
q , calculates z =

tj∗Ω
β′1(I−I∗) , implicitly sets

y = ỹ − bz, and returns td(σi ,ρj∗ )
= (y1, y2) = (ĝβ′0(ỹ−bz) ĝaβ′1(I−I∗)ỹ, ĝỹ−bz).

td(σi ,ρj∗ )
= (y1, y2) is a valid random trapdoor according to ρj∗ and σi, where

y1 = ĝβ′0(ỹ−bz) ĝaβ′1(I−I∗)ỹ = ĝabtj∗ ·Ω ĝβ′0y ĝaβ′1(I−I∗)y = dΩ
3 ĝ(β′0−aβ1 I∗+aβ′1 I)y = dΩ

3 ( f̂ ĥI)
y
,

y2 = ĝỹ−bz = ĝy.

(3) Challenge: A1 offers equal-length messages m∗
0 , m∗

1 ∈ {0, 1}λ along with the pair of
sender/receiver identities (σ∗, rcv∗) to B. Let rcv∗ = ρ∗. Afterwards, B utilizes a
simulation algorithm to query OH1(σ

∗) and OH3(ρ
∗).

- When the i∗-th tuple in LH1 is [σ∗, u∗] and the j∗-th tuple in LH2 is [ρ∗, v∗], B
randomly selects x ∈ {0, 1}, C∗

3 ∈ {0, 1}λ+l , C∗
4 ∈ Ĝ and k ∈ {0, 1}l , calculates

ekσ∗ = gsu∗
, η∗ = e(g, ĝ)bsu∗t∗ , R = H5(mx, k), C∗

0 = gR, C∗
1 = gc, and C∗

2 = gβ′0c,
and then, sends the challenge ciphertext C∗ = (C∗

0 , C∗
1 , C∗

2 , C∗
3 , C∗

4 ) to A1.
The above construction implicitly sets ω∗

1 = e(g, ĝ)abcv∗ ·H4(η
∗), ω∗

2 =

e(g, ĝ)abct∗ ·H4(η
∗), H6(ω

∗
1 , η∗, C∗

0 , C∗
1 , C∗

2 ) = (mx ∥ k) ⊕ C∗
3 , H8(ω

∗
2 ) =

C∗
4

H7(mx)R ,

where gu∗
= H1(σ

∗), ĝbv∗ = H2(ρ
∗), ĝbt∗ = H3(ρ

∗).
- Otherwise, B is aborted by failure.

(4) Phase 2: A1 makes queries like in Phase 1.
(5) Guess: A1 answers a guess x′ ∈ {0, 1}. B randomly selects a tuple [ω∗

1 , η∗, C∗
0 , C∗

1 , C∗
2 , δ∗]

from LH6 and returns the BDH instance solution ω∗
1
(v∗H4(η

∗))−1
(= e(g, ĝ)abc).

Analysis: It is obvious that the simulations of OH , OH1 , OH2 , OH3 , OH5 , and OH7 are
perfect. Denote the query OH6(e(g, ĝ)abcv∗ ·H4(η

∗), η∗, C∗
0 , C∗

1 , C∗
2 ) as the event AskH∗

6 . Denote
the query OH8(e(g, ĝ)abct∗ ·H4(η

∗)) as the event AskH∗
8 . Denote the failure of B to decrypt

the legitimate ciphertext in ODec as the event Derr. Thus, Pr[Derr] ≤ qD
2λ+l . Let rcv∗ =

ρ∗. Suppose AbortRK as the event in which B terminates upon the query ORKGen(ρ
∗)

being issued, AbortAuth as the event in which B terminates upon the query OAuth(σ
∗, ρ∗)

being issued, and AbortCh as the event in which B terminates in the challenge phase.
Clearly, ¬AbortCh implies ¬AbortRK and ¬AbortAuth, because the queries ORKGen(ρ

∗)
and OAuth(σ

∗, ρ∗) cannot be issued. We obtain Pr[¬AbortCh] ≥ 1
qH1 qH2

.

Define E = (AskH∗
6 ∨ AskH∗

8 ∨ Derr)|¬AbortCh. There is no greater over 1
2 advantage

that A1 will gain in guessing x when E does not happen because OH6 and OH8 are random
oracles. Pr[x = x′|¬E] = 1

2 . Hence,
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Pr[x = x′] = Pr[x = x′|¬E]Pr[¬E] + Pr[x = x′|E]Pr[E] ≤ 1
2

Pr[¬E] + Pr[E] =
1
2
+

1
2

Pr[E].

With ϵ, we obtain

ϵ = |Pr[x = x′]− 1
2
| ≤ Pr[E] ≤

Pr[AskH∗
6 ] + Pr[AskH∗

8 ] + Pr[Derr]
Pr[¬AbortCh]

.

Subsequently, we obtain

Pr[AskH∗
6 ] ≥ ϵPr[¬AbortCh]− Pr[Derr]− Pr[AskH∗

8 ] ≥
ϵ

qH1 qH2

− qD

2λ+l −
qH8

q
.

When AskH∗
6 happens, A1 can distinguish the simulation of the challenge cipher-

text C∗. Because OH6(e(g, ĝ)abcv∗ ·H4(η
∗), η∗, C∗

0 , C∗
1 , C∗

2 ) has been documented in LH6 with
non-negligible probability, B is winning when the right element is selected from LH6 .
Thus, the BDH assumption can be addressed by B with advantage ϵ′ ≥ 1

qH6
Pr[AskH∗

6 ] ≥
1

qH6
( ϵ

qH1 qH2
− qD

2λ+l −
qH8

q ).

Theorem 2. For any A2, our IBME-ET scheme meets OW-ID-CCA security on the basis of the
BDH assumption.

More precisely, if A2 is able to break our proposal with the advantage ϵ, we are able to conceive

of a PPT algorithm B to address the BDH assumption with the advantage ϵ′ ≥ 1
qH6

(
ϵ− 1

2λ

qH1 qH2
− qD

2λ+l ),

where qHi (i = 1, 2, 6) and qD denote the numbers of different queries to OHi (i = 1, 2, 6) and
ODec, respectively.

Proof. Given a BDH assumption instance (g, ga, gc, ĝ, ĝa, ĝb), the task of B is to calculate
e(g, ĝ)abc by interacting with A2 as below:

(1) Setup: B executes like in the proof of Theorem 1.
(2) Phase 1: B answers A2’s queries.

• For OH(η), OH1(σi), OH2(ρj), OH5(m, k), OH6(ω1, η, C0, C1, C2), OH7(m), and
OH8(ω2), B executes like in the proof of Theorem 1.

• OH3(ρj): B performs a simulation algorithm to query OH2(ρj). Subsequently, B
searches the tuple [ρj, vj] in LH2 . When j ̸= j∗, B randomly selects tj ∈ Z∗

q , inserts
a tuple [ρj, tj] into LH3 , and returns ĝtj . Otherwise, B sets tj∗ = t∗, inserts a tuple
[ρj∗ , tj∗ ] into LH3 , and returns ĝtj∗ .

• OSKGen(σi): B performs a simulation algorithm to query OH1(σi). There is a
tuple [σi, ui] in LH1 . Next, B returns ekσi = gsui .

• ORKGen(ρj): B performs a simulation algorithm to query OH3(ρj). There are a tuple
[ρj, vj] in LH2 and a tuple [ρj, tj] in LH3 . When j ̸= j∗, B returns dkρj = (d1, d2, d3) =

(ĝstj , ĝavj , ĝatj). Otherwise, B is aborted by failure.
• ODec(ρj, snd, C): Let snd = σi. B performs a simulation algorithm to query

OH3(ρj) and OH1(σi).

- When j ̸= j∗, B can query ORKGen(ρj) to obtain dkρj and returns the outcome
of the algorithm Dec(pp, dkρj , σi, C).

- Otherwise, B can query OSKGen(σi) to obtain ekσi and calculates
η = e(ekσi , H3(ρj)). For each tuple [ω1, η, C0, C1, C2, δ] in LH6 , B calculates
m′ ∥ k′ = C3 ⊕ δ and calculates R′ = H5(m′, k′). If C0 = gR′

and there
exists a tuple [ω2, π] in LH8 such that C4 = H7(m′)R′ · π holds, it outputs m′.
When LH8 has no such tuple, B outputs ⊥.

• OAuth(snd, ρj): Let snd = σi. B performs a simulation algorithm to query OH3(ρj)
and OH1(σi).
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- When j ̸= j∗, B can query ORKGen(ρj) to obtain dkρj and returns
td(σi ,ρj)

= Auth(pp, σi, dkρj).

- Otherwise, there are a tuple [ρj∗ , vj∗ ] in LH2 and a tuple [ρj∗ , tj∗ ] in LH3 ,
and B can query OSKGen(σi) to obtain ekσi , calculates η = e(ekσi , H3(ρj)),
I = H(η), Ω = H4(η), and d3 = H3(ρj∗)

a = ĝavj∗ , randomly selects y ∈ Z∗
q ,

and returns td(σi ,ρj∗ )
= (y1, y2) = (dΩ

3 ( f̂ ĥI)
y
, ĝy).

(3) Challenge: A2 submits a pair of sender/receiver identities (σ∗, rcv∗) to B. Let rcv∗ = ρ∗.
Afterwards, B chooses a message m∗ ∈ {0, 1}λ randomly and executes a simulation
algorithm to query OH1(σ

∗) and OH3(ρ
∗).

- When the i∗-th tuple in LH1 is [σ∗, u∗] and the j∗-th tuple in LH2 is [ρ∗, v∗], B ran-
domly selects k ∈ {0, 1}l , C∗

3 ∈ {0, 1}λ+l , calculates ekσ∗ = gsu∗
,

η∗ = e(g, ĝ)bsu∗t∗ , R = H5(mx, k), C∗
0 = gR, C∗

1 = gc, C∗
2 = gβ′0c, and

C∗
4 = H7(m∗)R · H8(e(gc, ĝat∗ ·H4(η

∗))), and delivers this to A2 with the challenge
ciphertext C∗ = (C∗

0 , C∗
1 , C∗

2 , C∗
3 , C∗

4 ).
The above construction implicitly sets ω∗

1 = e(g, ĝ)abcv∗·H4(η
∗), H6(ω

∗
1 , η∗, C∗

0 , C∗
1 , C∗

2)

= (m∗ ∥ k)⊕ C∗
3 , where gu∗ = H1(σ

∗), ĝbv∗ = H2(ρ
∗), ĝt∗ = H3(ρ

∗).
- Otherwise, B is aborted by failure.

(4) Phase 2: A2 makes issues like in Phase 1.
(5) Guess: A2 answers a guess m′. B randomly chooses a tuple [ω∗

1 , η∗, C∗
0 , C∗

1 , C∗
2 , δ∗]

from LH6 and answers the BDH instance solution ω∗
1
(v∗H4(η

∗))−1
(= e(g, ĝ)abc).

Analysis: It is obvious that the simulations of OH , OH1 , OH2 , OH3 , OH5 , OH7 , and OH8

are perfect. Denote the query OH6(e(g, ĝ)abcv∗ ·H4(η
∗), η∗, C∗

0 , C∗
1 , C∗

2 ) as the event AskH∗
6 .

Denote the failure of B to decrypt the legitimate ciphertext in ODec as the event Derr.
Hence, we have, Pr[Derr] ≤ qD

2λ+l . Let rcv∗ = ρ∗. Suppose AbortRK as the event in which
B terminates upon the query ORKGen(ρ

∗) being issued and AbortCh the event in which
B terminates in the challenge phase. Clearly, ¬AbortCh implies ¬AbortRK, because the
query ORKGen(ρ

∗) cannot be issued. We obtain Pr[¬AbortCh] ≥ 1
qH1 qH2

.

Define E = (AskH∗
6 ∨ Derr)|¬AbortCh. There is no greater over 1

2λ advantage that
A2 will gain in guessing m when E does not happen, because OH6 is a random oracle.
Pr[m = m′|¬E] ≤ 1

2λ . Hence,

Pr[m = m′] = Pr[m = m′|¬E]Pr[¬E] + Pr[m = m′|E]Pr[E]

≤ 1
2λ

Pr[¬E] + Pr[E] =
1

2λ
+

1
2

Pr[E]

= (1 − 1
2λ

)Pr[E] +
1

2λ
.

With ϵ, we obtain

ϵ = |Pr[m = m′]| ≤ (1 − 1
2λ

)Pr[E] +
1

2λ
≤ (1 − 1

2λ
)

Pr[AskH∗
6 ] + Pr[Derr]

Pr[¬AbortCh]
+

1
2λ

.
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Subsequently, we obtain

Pr[AskH∗
6 ] ≥

ϵ − 1
2λ

1 − 1
2λ

Pr[¬AbortCh]− Pr[Derr] ≥
ϵ − 1

2λ

qH1 qH2

− qD

2λ+l .

When AskH∗
6 happens, A2 can distinguish the simulation of the challenge ciphertext C∗.

Because [e(g, ĝ)abcv∗·H4(η
∗), η∗, C∗

0 , C∗
1 , C∗

2 , δ∗] has been documented in LH6 with non-negligible
probability, B is winning when the right element is selected from LH6 . Thus, the BDH

assumption can be addressed by B with advantage ϵ′ ≥ 1
qH6

Pr[AskH∗
6 ] ≥ 1

qH6
(

ϵ− 1
2λ

qH1 qH2
− qD

2λ+l ).

Theorem 3. For any A3, our IBME-ET scheme meets ANON-ID-CCA security on the basis of the
Gap-BDH assumption.

More precisely, if A3 is able to break our proposal with the advantage ϵ, we are able to conceive of a
PPT algorithm B to address the Gap-BDH assumption with the advantage ϵ′ ≥ ϵ

q2
H1

q2
H2

− qD
2λ+l , where

qHi(i = 1, 2) and qD denote the numbers of different queries to OHi(i = 1, 2) and ODec, respectively.

Proof. Given a Gap-BDH assumption instance (g, ga, gc, ĝ, ĝa, ĝb,ODBDH), the task of B is
to calculate e(g, ĝ)abc by interacting with A3 as below:

(1) Setup: B randomly selects i∗0 , i∗1 ∈ {1, 2, · · · , qH1} and j∗0 , j∗1 ∈ {1, 2, · · · , qH2}. B ran-
domly selects α′, β0, β1 ∈ Z∗

q , calculates g1 = gaα′ , f = gβ0 , h = gaβ1 , f̂ = ĝβ0 and
ĥ = ĝaβ1 , sets pp = (G, g, ĝ, g1, f , h, f̂ , ĥ, H, Hi(i = 1, 2, 3, 4, 5, 6, 7, 8)), and delivers this
to A3 with pp. B implicitly sets mk = (s, α) = (a, aα′), because B has no knowledge
about a. B preserves the LH , LHi (i = 1, 2, 3, 4, 5, 6, 7, 8), and LA lists to simulate OH ,
OHi (i = 1, 2, 3, 4, 5, 6, 7, 8), and OAuth. Afterwards, B randomly selects
ui∗0

, ui∗1
, vj∗0

, vj∗1
, tj∗0

, tj∗1
∈ Z∗

q and randomly chooses Ω̃00, Ω̃01, Ω̃11, Ω̃10, I00, I01, I11, I10 ∈
Z∗

q .
(2) Phase 1: B answers A3’s queries.

• OH(η): B executes the following operations.

- When ODBDH(g, ga, gc, ĝ, ĝa, ĝb, η
(ui∗0

tj∗0
)−1

) = 1, B returns the Gap-BDH

instance solution η
(ui∗0

tj∗0
)−1

(= e(g, ĝ)abc) and defines Ω = Ω̃00
tj∗0

and I = I00.

- When ODBDH(g, ga, gc, ĝ, ĝa, ĝb, η
(ui∗1

tj∗1
)−1

) = 1, B returns the Gap-BDH

instance solution η
(ui∗1

tj∗1
)−1

(= e(g, ĝ)abc) and defines Ω = Ω̃11
tj∗1

and I = I11.

- When ODBDH(g, ga, gc, ĝ, ĝa, ĝb, η
(ui∗0

tj∗1
)−1

) = 1, B returns the Gap-BDH

instance solution η
(ui∗0

tj∗1
)−1

(= e(g, ĝ)abc) and defines Ω = Ω̃01
tj∗1

and I = I01.

- When ODBDH(g, ga, gc, ĝ, ĝa, ĝb, η
(ui∗1

tj∗0
)−1

) = 1, B returns the Gap-BDH

instance solution η
(ui∗1

tj∗0
)−1

(= e(g, ĝ)abc) and defines Ω = Ω̃10
tj∗0

and I = I10.

- Otherwise, B randomly selects I, Ω ∈ Z∗
q .

Subsequently, B inserts [η, Ω] into LH4 and [η, I] into LH and answers I.
• OH1(σi): Suppose σi as the i-th different query. When i = i∗0 , B inserts a tuple

[σi∗0
, ui∗0

] into LH1 and returns g
cui∗0 . When i = i∗1 , B inserts a tuple [σi∗1

, ui∗1
] into

LH1 and returns g
cui∗1 . Otherwise, B randomly selects ui ∈ Z∗

q , inserts a tuple
[σi, ui] into LH1 , and returns gui .

• OH2(ρj): Suppose ρj as the j-th different query. When j = j∗0 , B inserts a tuple

[ρj∗0
, vj∗0

] into LH2 and returns ĝ
bvj∗0 . When j = j∗1 , B inserts a tuple [ρj∗1

, vj∗1
] into
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LH2 and returns ĝ
bvj∗1 . Otherwise, B randomly selects vj ∈ Z∗

q , inserts a tuple
[ρj, vj] into LH2 , and returns ĝvj .

• OH3(ρj): B performs a simulation algorithm to query OH2(ρj). Subsequently, B
searches the tuple [ρj, vj] in LH2 . When j = j∗0 , B inserts a tuple [ρj∗0

, tj∗0
] into LH3

and returns ĝ
btj∗0 . When j = j∗1 , B inserts a tuple [ρj∗1

, tj∗1
] into LH3 and returns

ĝ
btj∗1 . Otherwise, B randomly selects tj ∈ Z∗

q , inserts a tuple [ρj, tj] into LH3 , and
returns ĝtj .

• OH4(η): B performs a simulation algorithm to query OH(η). Subsequently, B
searches for the tuple [η, Ω] in LH4 and returns Ω.

• OH5(m, k): B randomly chooses R ∈ Z∗
q , inserts a tuple [m, k, R] into LH5 , and

answers R.
• OH6(ω1, η, C0, C1, C2): B performs a simulation algorithm to query OH(η). Sub-

sequently, B randomly selects δ ∈ {0, 1}λ+l , inserts a tuple [ω1,−, η, C0, C1, C2, δ]
into LH6 , and returns δ.

• OH7(m): B randomly selects h7 ∈ Ĝ, inserts a tuple [m, h7] into LH7 , and returns h7.
• OH8(ω2): B randomly selects π ∈ Ĝ, inserts a tuple [ω2, π] into LH8 , and returns π.
• OSKGen(σi): B performs a simulation algorithm to query OH1(σi). There is a

tuple [σi, ui] in LH1 . When i ̸= i∗0 and i ̸= i∗1 , B answers ekσi = gaui . Otherwise, B
is aborted by failure.

• ORKGen(ρj): B performs a simulation algorithm to query OH3(ρj). There are a
tuple [ρj, vj] in LH2 and a tuple [ρj, tj] in LH3 . When j ̸= j∗0 and j ̸= j∗1 , B answers

dkρj = (d1, d2, d3) = (ĝatj , ĝaα′vj , ĝaα′tj). Otherwise, B is aborted by failure.
• OEnc(σi, rcv, m): Let rcv = ρj. B performs a simulation algorithm to query

OH1(σi) and OH3(ρj). When i ̸= i∗0 and i ̸= i∗1 , B can query OSKGen(σi) to obtain
ekσi and returns C = Enc(pp, ekσi , ρj, m). Otherwise, B executes as below:

- When (i, j) = (i∗0 , j∗0 ) or (i, j) = (i∗1 , j∗1 ), B is aborted by failure.
- When (i, j) = (i∗0 , j∗1 ) or (i, j) = (i∗1 , j∗0 ), B executes a simulation algorithm

to query OAuth(σi, ρj). There is a tuple [σi, ρj, I, Ω, td(σi ,ρj)
] in LA. After-

wards, B randomly selects r ∈ Z∗
q , δ ∈ {0, 1}λ+l , k ∈ {0, 1}l , calculates

ω1 = e(g1, H2(ρj))
r·Ω, ω2 = e(g1, H3(ρj))

r·Ω and R = H5(m, k), inserts a tuple
[ω1, (i, j),−, C0, C1, C2, δ] into LH6 , and returns C = (C0, C1, C2, C3, C4), where
C0 = gR, C1 = gr, C2 = ( f hI)r, C3 = (m ∥ k)⊕ δ, C4 = H7(m)R · H8(ω2).

- Otherwise, B can query ORKGen(ρj) to get dkρj = (d1, d2, d3), selects
k ∈ {0, 1}l , r ∈ Z∗

q randomly, calculates η = e(H1(σi), d1),

ω1 = e(g1, H2(ρj))
r·H4(η), ω2 = e(g1, H3(ρj))

r·H4(η) and R = H5(m, k), and
returns C = (C0, C1, C2, C3, C4), where C0 = gR, C1 = gr, C2 = ( f hH(η))r,
C3 = (m ∥ k)⊕ H6(ω1, η, C0, C1, C2), C4 = H7(m)R · H8(ω2).

• ODec(ρj, snd, C): Let snd = σi. B performs a simulation algorithm to query
OH2(ρj) and OH1(σi). When j ̸= j∗0 and j ̸= j∗1 , B can query ORKGen(ρj) to obtain
dkρj and returns the outcome of Dec(pp, dk(ρj)

, σi, C). Otherwise, B executes the
following operations:

- When (i, j) = (i∗0 , j∗0 ), or (i, j) = (i∗1 , j∗1 )m or (i, j) = (i∗0 , j∗1 ), or (i, j) = (i∗1 , j∗0 ),
B searches for the tuple [σi, ρj, I, Ω, td(σi ,ρj)

] in LA. When LA has no such
tuple, B executes as below.
When (i, j) = (i∗0 , j∗0 ), Ω = Ω̃00

tj
, I = I00. When (i, j) = (i∗1 , j∗1 ), Ω = Ω̃11

tj
,

I = I11. When (i, j) = (i∗0 , j∗1 ), Ω = Ω̃01
tj

, I = I01. When (i, j) = (i∗1 , j∗0 ),

Ω = Ω̃10
tj

, I = I10. Afterwards, B randomly selects ỹ ∈ Z∗
q , calculates z =

tjα
′Ω

β1 I ,

implicitly sets y = ỹ − bz, sets td(σi ,ρj)
= (y1, y2) = (ĝβ0(ỹ−bz) ĝaβ1 Iỹ, ĝỹ−bz),
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and stores [ρj, σi, I, Ω, td(σi ,ρj)
] in LA. td(σi ,ρj)

= (y1, y2) is a valid random
trapdoor according to ρj and σi, where

y1 = ĝβ0(ỹ−bz) ĝaβ1 Iỹ = ĝaα′btj ·Ω ĝβ0y ĝaβ1 Iy = dΩ
3 ĝ(β0+aβ1 I)y = dΩ

3 ( f̂ ĥI)
y
,

y2 = ĝỹ−bz = ĝy.

Next, B calculates ω2 = e(C1,y1)
e(C2,y2)

. For each tuple [ω1, (i, j),−, C0, C1, C2, δ] in

LH6 , B calculates m ∥ k = C3 ⊕ δ and R = H5(m, k). If both C0 = gR and
C4 = H7(m)R · H8(ω2) hold, B returns m; otherwise, B returns ⊥.

- Otherwise, B can query OAuth(σi, ρj) to obtain td(σi ,ρj)
= (y1, y2) and cal-

culates ω2 = e(C1,y1)
e(C2,y2)

. For each tuple [ω1, (i, j),−, C0, C1, C2, δ] in LH6 , B
calculates m ∥ k = C3 ⊕ δ and R = H5(m, k). If both C0 = gR and
C4 = H7(m)R · H8(ω2) hold, B returns m; otherwise, B returns ⊥.

• OAuth(snd, ρj): Let snd = σi. B performs a simulation algorithm to query OH3(ρj)
and OH1(σi). There is a tuple [ρj, vj] in LH2 . When j ̸= j∗0 and j ̸= j∗1 , B can query
ORKGen(ρj) to obtain dkρj = (d1, d2, d3), calculates η = e(H1(σi), d1), I = H(η),
Ω = H3(η), returns td(σi ,ρj)

= Auth(pp, σi, dkρj), and stores [σi, ρj, I, Ω, td(σi ,ρj)
]

into LA. Otherwise, B executes as below:

- When (i, j) = (i∗0 , j∗0 ) or (i, j) = (i∗1 , j∗1 ), B is aborted by failure.

- When (i, j) = (i∗0 , j∗1 ), Ω = Ω̃01
tj

, I = I01.

- When (i, j) = (i∗1 , j∗0 ), Ω = Ω̃10
tj

, I = I10.

- Otherwise, B can query OSKGen(σi) to obtain ekσi and calculates η = e(ekσi ,
H3(ρj)), Ω = H4(η). I = H(η)

Subsequently, B randomly selects ỹ ∈ Z∗
q , calculates z =

tjα
′Ω

Iβ1
, implicitly sets

y = ỹ − bz, returns td(σi ,ρj)
= (y1, y2) = (ĝβ0(ỹ−bz) ĝaβ1 Iỹ, ĝỹ−bz), and then,

stores [σi, ρj, I, Ω, td(σi ,ρj)
] in LA. td(σi ,ρj)

= (y1, y2) is a valid random trapdoor
according to ρj and σi, where

y1 = ĝβ0(ỹ−bz) ĝaβ1 Iỹ = ĝaα′btj ·Ω ĝβ0y ĝaβ1 Iy = dΩ
3 ĝ(β0+aβ1 I)y = dΩ

3 ( f̂ ĥI)
y
,

y2 = ĝỹ−bz = ĝy.

(3) Challenge: A3 offers a message m∗ ∈ {0, 1}λ and two pairs of sender/receiver iden-
tities (snd∗0 , ρ∗0), (snd∗1 , ρ∗1) to B. Set snd∗0 = σ∗

0 , snd∗1 = σ∗
1 . Afterwards, B utilizes a

simulation algorithm to query OH1(σ
∗
0 ), OH1(σ

∗
1 ), OH3(ρ

∗
0), and OH3(ρ

∗
1):

- When the i∗0-th tuple in LH1 is [σ∗
0 , u∗

0 ], the i∗1-th tuple in LH1 is [σ∗
1 , u∗

1 ], the
j∗0 -th tuple in LH2 is [ρ∗0 , v∗0 ], and the j∗1 -th tuple in LH2 is [ρ∗1 , v∗1 ], B executes the
following operations:
Firstly, B randomly selects x ∈ {0, 1} and searches for the tuple [σ∗

x , ρ∗x, I, Ω, td(σ∗
x ,ρ∗x)]

in LA. When LA has no such tuple, B sets Ω = Ω̃xx
t∗x

and I = Ixx. Subse-

quently, B randomly selects ỹ ∈ Z∗
q , calculates z = txα′Ω

β1 I = α′Ω̃xx
β1 I , implicitly sets

y = ỹ − bz, obtains td(σ∗
x ,ρ∗x) = (y1, y2) = (ĝβ0(ỹ−bz) ĝaβ1 Iỹ, ĝỹ−bz), and then, in-

serts a tuple [σ∗
x , ρ∗x, I, Ω, td(σ∗

x ,ρ∗x)] in LA. td(σ∗
x ,ρ∗x) = (y1, y2) is a valid random

trapdoor according to σ∗
x and ρ∗x, where

y1 = ĝβ0(ỹ−bz) ĝaβ1 Iỹ = ĝabα′ ·Ω̃xx ĝβ0y ĝaβ1 Iy = ĝaα′btx ·Ω ĝβ0y ĝaβ1 Iy = dΩ
3 ( f̂ ĥI)

y
,

y2 = ĝỹ−bz = ĝy.
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Secondly, B randomly selects r ∈ Z∗
q , C∗

3 ∈ {0, 1}λ+l , k ∈ {0, 1}l , calculates

ω∗
2 = e(gaα′ , ĝb)rΩ̃xx , R = H5(m∗, k), C∗

0 = gR, C∗
1 = gr, C∗

2 = ( f hI)r, and
C∗

4 = H7(m∗)R · H8(ω
∗
2 ).

The above construction implicitly sets C∗
3 = (m∗ ∥ k)⊕ H6(ω

∗
1 , η∗, C∗

0 , C∗
1 , C∗

2 ),
where ω∗

1 = e(gaα′ , ĝb)rΩv∗x , η∗ = e(g, ĝ)abcu∗
xt∗x . C∗

x = (C∗
0 , C∗

1 , C∗
2 , C∗

3 , C∗
4 ) is the

encryption of m∗ according to σ∗
x and ρ∗x, where

ω∗
2 = e(gaα′ , ĝb)rΩ̃xx = e(g1, ĝb)rt∗xΩ = e(g1, ĝbt∗x)r·Ω

= e(g1, H3(ρ
∗
x))

r·Ω.

Eventually, B returns the corresponding challenge ciphertext
C∗

x = (C∗
0 , C∗

1 , C∗
2 , C∗

3 , C∗
4 ) and challenge trapdoor td(σ∗

x ,ρ∗x) = (y1, y2) to A3.
- Otherwise, B is aborted by failure.

(4) Phase 2: A3 makes issues like in Phase 1.
(5) Guess: A3 answers a guess x′ ∈ {0, 1}.

Analysis: It is obvious that the simulations of OH1 , OH2 , OH3 , OH5 , OH7 , and OH8

are perfect. Define η(0,0) = e(g, ĝ)
abcui∗0

tj∗0 , η(1,1) = e(g, ĝ)
abcui∗1

tj∗0 , η(1,0) = e(g, ĝ)
abcui∗1

tj∗0 ,

η(0,1) = e(g, ĝ)
abcui∗0

tj∗1 . Let snd∗0 = σ∗
0 and snd∗1 = σ∗

1 . Denote the queries OH(η(0,0)),
OH(η(0,1)), OH(η(1,0)), and OH(η(1,1)) as the event AskH. Suppose AbortSK as the event in
which B terminates upon the queries OSKGen(σ

∗
0 ) and OSKGen(σ

∗
1 ) being issued, AbortRK

as the event in which B terminates upon the queries ORKGen(ρ
∗
0) and ORKGen(ρ

∗
1) being

issued, AbortAuth as the event in which B terminates upon the queries OAuth(σ
∗
0 , ρ∗0)

and OAuth(σ
∗
1 , ρ∗1) being issued, AbortEnc as the event in which B terminates upon the

queries OEnc(σ
∗
0 , ρ∗0 , ∗) and OEnc(σ

∗
1 , ρ∗1 , ∗) being issued, and AbortCh as the event in which

B terminates in the challenge phase. Clearly, ¬AbortCh implies ¬AbortSK, ¬AbortRK,
¬AbortAuth, and ¬AbortEnc, because the queries OSKGen(σ

∗
0 ) and OSKGen(σ

∗
1 ) cannot

be issued, the queries ORKGen(ρ
∗
0) and ORKGen(ρ

∗
1) are unable to be issued, (σ∗

0 , ρ∗0) and
the queries OAuth(σ

∗
0 , ρ∗0) and OAuth(σ

∗
1 , ρ∗1) are unable to be issued, and the queries

OEnc(σ
∗
0 , ρ∗0 , ∗) and OEnc(σ

∗
1 , ρ∗1 , ∗) are unable to be issued. Thus, we obtain Pr[¬AbortCh] ≥

1
q2

H1

· 1
q2

H2

.

Denote the failure of B to decrypt the legitimate ciphertext in ODec as the event Derr.
Thus, Pr[Derr] ≤ qD

2λ+l .
Define E0 = (AskH ∨ Derr)|¬AbortCh. There is no greater over 1

2 advantage that A3
will gain in guessing x when E0 does not happen because OH , OH4 , and OH6 are random
oracles. Hence, Pr[x = x′|¬E0] =

1
2 . We obtain

Pr[x = x′] = Pr[x = x′|¬E0]Pr[¬E0] + Pr[x = x′|E0]Pr[E0] ≤
1
2

Pr[¬E0] + Pr[E0] =
1
2
+

1
2

Pr[E0].

With ϵ, we obtain

ϵ = |Pr[x = x′]− 1
2
| ≤ Pr[E0] ≤

Pr[AskH] + Pr[Derr]
Pr[¬AbortCh]

.

Subsequently, we obtain

Pr[AskH] ≥ ϵPr[¬AbortCh]− Pr[Derr] ≥ ϵ

q2
H1

q2
H2

− qD

2λ+l .

Obviously, when AskH occurs, the Gap-BDH assumption can certainly be addressed
by B. B addresses the Gap-BDH assumption with advantage ϵ′ = Pr[B success] =
Pr[AskH] ≥ ϵ

q2
H1

q2
H2

− qD
2λ+l .

Theorem 4. For any A4, our IBME-ET scheme meets sUF-ID-CMA security on the basis of the
Gap-BDH assumption.
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More precisely, if A4 is able to break our proposal with the advantage ϵ, we are able to
conceive of a PPT algorithm B to address the Gap-BDH assumption with the advantage ϵ′ ≥
ϵ(1 − 1

q )
1

qH1 qH3
− 1+qD

2λ , where qHi (i = 1, 3) and qD denote the numbers of different queries to

OHi (i = 1, 3) and ODec, respectively.

Proof. Given a Gap-BDH assumption instance (g, ga, gc, ĝ, ĝa, ĝb,ODBDH), the task of B is
to calculate e(g, ĝ)abc by interacting with A4 as below:

(1) Setup: B randomly chooses i∗ ∈ {1, 2, · · · , qH1}, j∗ ∈ {1, 2, · · · , qH3}. B randomly
selects α, β0, β1 ∈ Z∗

q , calculates g1 = gα, f = gβ0 , h = gβ1 , f̂ = ĝβ0 and ĥ = ĝβ1 , sets
pp = (G, g, ĝ, g1, f , h, f̂ , ĥ, H, Hi(i = 1, 2, 3, 4, 5, 6, 7, 8)), and delivers this to A4 with
pp. B implicitly sets mk = (a, α), because B has no knowledge about a. B preserves the
LH and LHi (i = 1, 2, 3, 4, 5, 6, 7, 8) lists to simulate OH and OHi (i = 1, 2, 3, 4, 5, 6, 7, 8).
Afterwards, B randomly selects I∗, Ω∗ ∈ Z∗

q .
(2) Queries: B answers A4’s queries as below:

• OH(η): When ODBDH(g, ga, gc, ĝ, ĝa, ĝb, η) ̸= 1, B randomly selects Ω, I ∈ Z∗
q ,

inserts [η, Ω] into LH4 and [η, I] into LH , and answers I. Otherwise, B answers
the Gap-BDH solution η (= e(g, ĝ)abc), defines Ω = Ω∗ and I = I∗, inserts [η, Ω]
into LH4 and [η, I] into LH , and answers I.

• OH1(σi): Suppose σi as the i-th different query. When i ̸= i∗, B randomly selects
ui ∈ Z∗

q , inserts a tuple [σi, ui] into LH1 , returns gui . Otherwise, B inserts a tuple
[σi,−] into LH1 and returns gc.

• OH2(ρj): B performs a simulation algorithm to query OH3(ρj). Subsequently, B
randomly selects vj ∈ Z∗

q , inserts a tuple [ρj, vj] into LH2 , and returns ĝvj .
• OH3(ρj): Suppose ρj as the j-th different query. When j ̸= j∗, B randomly selects

tj ∈ Z∗
q , inserts a tuple [ρj, tj] into LH3 , and returns ĝtj . Otherwise, B inserts a

tuple [ρj,−] into LH3 and returns ĝb.
• OH4(η): B performs a simulation algorithm to query OH(η). Subsequently, B

searches for the tuple [η, Ω] in LH4 and answers Ω.
• OH5(m, k): B randomly chooses R ∈ Z∗

q , inserts a tuple [m, k, R] into LH5 , and
answers R.

• OH6(ω1, η, C0, C1, C2): B performs a simulation algorithm to query OH(η). Sub-
sequently, B randomly selects δ ∈ {0, 1}λ+l , inserts a tuple [ω1,−, η, C0, C1, C2, δ]
into LH6 , and returns δ.

• OH7(m): B randomly selects h7 ∈ Ĝ, inserts a tuple [m, h7] into LH7 , and returns h7.
• OH8(ω2): B randomly selects π ∈ Ĝ, inserts a tuple [ω2, π] into LH8 , and returns π.
• OSKGen(σi): B performs a simulation algorithm to query OH1(σi). There is a

tuple [σi, ui] in LH1 . If i ̸= i∗, B returns ekσi = gaui . Otherwise, B is aborted
by failure.

• ORKGen(ρj): B performs a simulation algorithm to query OH2(ρj). There is a
tuple [ρj, vj] in LH2 . If j ̸= j∗, B returns dkρj = (d1, d2, d3) = (ĝatj , ĝαvj , ĝαtj).
Otherwise, B is aborted by failure.

• OAuth(snd, ρj): Let snd = σi. B performs a simulation algorithm to query OH2(ρj)
and OH1(σi). There is a tuple [ρj, tj] in LH3 . When j ̸= j∗, B can query ORKGen(ρj)
to obtain dkρj = (d1, d2, d3), calculates η = e(H1(σi), d1), Ω = H4(η) and I =

H(η), and answers td(σi ,ρj)
= Auth(pp, σi, dkρj). Otherwise, B executes the

following operations:

- When (i, j) ̸= (i∗, j∗), B can query OSKGen(σi) to obtain ekσi , calculates
η = e(ekσi , H2(ρj)), I = H(η), and Ω = H4(η), calculates d3 = ĝαtj , ran-

domly selects y ∈ Z∗
q , and returns td(σi ,ρj)

= (y1, y2) = (dH4(η)
3 ( f̂ ĥH(η))y, ĝy).

- Otherwise, B defines Ω = Ω∗, I = I∗, calculates d3 = ĝbα, randomly selects
y ∈ Z∗

q , and returns td(σi ,ρj)
= (y1, y2) = (dΩ

3 ( f̂ ĥI)y, ĝy).
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• OEnc(σi, rcv, m): Let rcv = ρj. B performs a simulation algorithm to query
OH1(σi) and OH2(ρj). When i ̸= i∗, B can query OSKGen(σi) to obtain ekσi and
returns C = Enc(pp, ekσi , ρj, m). Otherwise, B executes the following operations:

- When (i, j) ̸= (i∗, j∗), B can query ORKGen(ρj) to obtain dkρj = (d1, d2, d3), ran-
domly selects r ∈ Z∗

q , k ∈ {0, 1}l, calculates R = H5(m, k), η = e(H1(σi), d1),

Ω = H4(η), ω1 = e(g1, H2(ρj))
r·Ω and ω2 = e(g1, H3(ρj))

r·Ω, and then,
returns C = (C0, C1, C2, C3, C4), where C0 = gR, C1 = gr, C2 = ( f hI)r,
C3 = (m ∥ k)⊕ H6(ω1), C4 = H7(m)R · H8(ω2).

- Otherwise, B defines Ω = Ω∗, I = I∗, randomly picks r ∈ Z∗
q ,

δ ∈ {0, 1}λ+l , k ∈ {0, 1}l , calculates R = H5(m, k), ω1 = e(g1, H2(ρj))
r·Ω

and ω2 = e(g1, H3(ρj))
r·Ω, inserts a tuple [ω1, (i, j),−, C0, C1, C2, δ] into

LH6 , and then, returns C = (C0, C1, C2, C3, C4), where C0 = gR, C1 = gr,
C2 = ( f hI)r, C3 = (m ∥ k)⊕ δ, and C4 = H7(m)R · H8(ω2).

• ODec(ρj, snd, C): Let snd = σi. B performs a simulation algorithm to query
OH2(ρj) and OH1(σi). When j ̸= j∗, B can query ORKGen(ρj) to obtain dkρj and
returns the outcome of the algorithm Dec(pp, dkρj , σi, C). Otherwise, B executes
the following operations:

- When (i, j) ̸= (i∗, j∗), B can query OAuth(σi, ρj) to obtain td(σi ,ρj)
= (y1, y2),

calculates ω2 = e(C1,y1)
e(C2,y2)

, obtains ekσi by querying OSKGen(σi), calculates

η = e(ekσi , H3(ρj)), Ω = H4(η), d2 = H2(ρj)
α, ω1 = e(C1, dΩ

2 ), recovers
m ∥ k by computing C3 ⊕ H6(ω1, η, C0, C1, C2), calculates R = H5(m, k).
If C0 = gR and C4 = H7(m)R · H8(ω2) hold, B answers m; otherwise, B
answers ⊥.

- Otherwise, B defines Ω = Ω∗, I = I∗, calculates ω1 = e(C1, ĝvj)Ω, obtains

td(σi,ρj)
= (y1, y2) by querying OAuth(σi, ρj), calculates ω2 = e(C1,y1)

e(C2,y2)
, and

searches for the corresponding tuple [ω1, (i, j),−, C0, C1, C2, δ] in LH6 . If there
exists no such tuple in LH6 , B randomly selects δ ∈ {0, 1}λ+land inserts
[ω1, (i, j),−, C0, C1, C2, δ] into LH6 . Afterwards, B recovers m ∥ k by computing
C3 ⊕ δ and calculates R = H5(m, k). If C0 = gR and C4 = H7(m)R · H8(ω2)
hold, B answers m; otherwise, B answers ⊥.

(3) Forgery: A4 outputs a triple (snd∗, ρ∗, C∗), where snd∗ = σ∗ and C∗ = (C∗
0 , C∗

1 , C∗
2 , C∗

3 , C∗
4).

Analysis: It is obvious that the simulations of OH1 , OH2 , OH3 , OH5 , OH7 , and OH8

are perfect. Define η∗ = e(g, ĝ)abc. Denote the query OH(η
∗) as the event AskH. Denote

the failure of B to decrypt the legitimate ciphertext in ODec as the event Derr. Thus,
Pr[Derr] ≤ qD

2λ+l .
Suppose E as the event for which σ∗ = σi∗ , ρ∗ = ρj∗ , and (σ∗, ρ∗, C∗) are legitimate.

With ϵ and the lemma on the relationship between the chosen-identity attack and given
identity attack [33], we obtain Pr[E] ≥ ϵ(1 − 1

q )
1

qH1 qH3
.

Define E0 = AskH ∨ Derr. There is no greater over 1
2λ advantage that A4 will forge a

valid (σi∗ , ρj∗ , C∗) when E0 does not happen because OH , OH4 , and OH6 are random oracles.
Hence, Pr[E|¬E0] =

1
2λ . We obtain

Pr[E] ≤ Pr[E|¬E0]Pr[¬E0] + Pr[E0] ≤
1

2λ
(1 − Pr[E0]) + Pr[E0] =

1
2λ

+ (1 − 1
2λ

)Pr[E0] ≤
1

2λ
+ Pr[E0].

Therefore, we obtain

Pr[E0] = Pr[AskH ∨ Derr] = Pr[AskH] + Pr[Derr] ≥ Pr[E]− 1
2λ

.
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Subsequently, we obtain

Pr[AskH] ≥ ϵ(1 − 1
q
)

1
qH1 qH3

− 1
2λ

− Pr[Derr] ≥ ϵ(1 − 1
q
)

1
qH1 qH3

− 1 + qD

2λ
.

Obviously, when AskH occurs, the Gap-BDH assumption can certainly be addressed
by B. B addresses the Gap-BDH assumption with advantage ϵ′ = Pr[B success] =

Pr[AskH] ≥ ϵ(1 − 1
q )

1
qH1 qH3

− 1+qD
2λ .

6. Performance Evaluation

We first give the functionality and security comparisons, then give the comparisons of
the computational overhead and communication overhead.

In Table 1, we compare our proposed IBME-ET with the related schemes (i.e.,
IB-ME [22], IBEET [3,15], and IBSC-ET [7]) in terms of functionality and security. It can be
seen that the IB-ME scheme in [22] ensures the confidentiality, authenticity, and anonymity
of data stored in the cloud, but does not achieve CCA security nor provide equality test
functionality without losing the confidentiality, authenticity, and anonymity of the data.
The IBEET schemes in [3,15] ensure the confidentiality of the data, but neither offer the
authenticity and anonymity of data, nor provide equality test functionality without losing
the confidentiality, authenticity, and anonymity of the data. Moreover, although the scheme
in [3] was the first proposed IBEET scheme, it fails to achieve CCA security. Hence, the
IBEET scheme that achieves CCA security was proposed in [15]. The IBSC-ET scheme
in [7] ensures the confidentiality and authenticity the data and achieves CCA security,
but neither ensures the anonymity of data, nor provides the equality test functionality
without losing the confidentiality, authenticity, and anonymity of the data. As a result,
only our proposed IBME-ET can realize all the functionality and security, which not only
ensures the confidentiality, authenticity, and anonymity of the data stored in the cloud
and achieves CCA security, but also provides equality test functionality for ciphertexts
generated under different identities without losing the confidentiality, authenticity, and
anonymity of the data.

Table 1. Comparison of functionality and security.

Equality Test Confidentiality Authenticity
Anonymity

Sender Receiver

[22] % CPA ! ! !
[3] ! CPA % % %
[15] ! CCA % % %
[7] ! CCA ! % %

Ours ! CCA ! ! !

Note that the IB-ME scheme in [22] implements only CPA security. This means that
the ciphertexts are malleable. When a valid plaintext/ciphertext pair of the sender and
receiver is given, an attacker can utilize it to fake a valid ciphertext of any message, in this
way to break the authenticity of the ciphertext stored in the cloud. Moreover, the IB-ME
scheme in [22] cannot provide equality test functionality for ciphertexts. Obviously, the
IB-ME scheme in [22] is not applicable to cloud storage application scenarios. In addition,
it was proven in [15] that the computational overhead and communication overhead of
the IBEET scheme in [15] are comparable to those of the IBEET scheme in [3]; however,
the IBEET scheme in [15] achieves stricter CCA security while the IBEET scheme in [3]
only achieves CPA security. Therefore, we only compared our proposed IBME-ET with the
most-related schemes (i.e., IBEET [15] and IBSC-ET [7]) in terms of computational overhead
and communication overhead.
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Table 2 shows the computational overhead comparison, which theoretically analyzes
the computational cost of our proposed scheme and the comparative schemes with regard
to encryption key generation (indicated as SKGen ), decryption key generation (indicated
as RKGen), encryption (indicated as Enc), decryption (indicated as Dec), authorization (in-
dicated as Auth), and the equality test (indicated as Test). For the analysis, we concentrated
on the operations that consumed the most time, including hash-to-point, bilinear pairing,
and exponentiation. Notably, the authorization algorithms of the schemes in [7,15] have no
computational cost. This is because both schemes directly use the partial decryption private
key as the trapdoor regardless of anonymity. The communication overhead comparison
is given in Table 3, which theoretically analyzes the communication cost of our proposed
scheme and the comparative schemes with regard to the encryption private key, decryption
private key, trapdoor, and ciphertext.

Table 2. Comparison of computational overhead.

SKGen RKGen Enc Dec Auth Test

[15] - 3ĥ + 3ê 3ĥ + 3p + 6e 3p + 2e 0 2p + 2e
[7] 2h + 2e 2ĥ + 2ê 2ĥ + 2p + 5e + ê 2h + 5p + 2e + ê 0 4p

Ours h + e 2ĥ + 3ê 2ĥ + 3p + 5e + ê h + 3p + 2e + ê h + p + 4ê 6p

e, ê are exponentiation operations in G and Ĝ, respectively. h, ĥ are hash-to-point operations in G and Ĝ, respec-
tively. p is the pairing operation.

Table 3. Comparison of communication overhead.

Encryption Key Decryption Key Trapdoor Ciphertext

[15] - 3|Ĝ| |Ĝ| 4|G|+ 5λ

[7] 2|G| 2|Ĝ| |Ĝ| 3|G|+ |Ĝ|+ |Zq|+ λ

Ours |G| 3|Ĝ| 2|Ĝ| 3|G|+ |Ĝ|+ |Zq|+ λ

|G|, |Ĝ| are the sizes of the elements in groups G and Ĝ, respectively. |Zq| is the size of the elements in Zq, and λ
is the security level.

In order to compare the computational and communication overhead of our pro-
posed scheme with the comparative schemes more intuitively, we used Charm 0.50 in
Python 3.6.9 to implement these schemes. The experimental environment was configured
as follows: Intel(R) Xeon(R) Platinum 8124M CPU @ 2.70 GHz (Intel Corporation, Santa
Clara, CA, USA), 16 GB memory, and Ubuntu 18.03 LTS. The experiments were instanti-
ated using the MNT224 curve in Charm and employed the Python module timeit for the
time measurements. Figure 3 shows the experimental computational overheads of these
schemes, and Figure 4 shows the experimental communication overheads of these schemes.

From Tables 1–3 and Figures 3 and 4, we can conclude that, with a small sacrifice in
computational and communication efficiency, our IBME-ET scheme not only offers the
confidentiality, authenticity, and anonymity of the data and achieves CCA security, but
also provides equality test functionality for ciphertexts generated under different identities
without losing the confidentiality, authenticity, and anonymity of the data. Other related
schemes cannot support this feature.
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Figure 3. Computational overhead comparison with LLS+16 [15] and XHH+20 [7].

Figure 4. Communication overhead comparison with LLS+16 [15] and XHH+20 [7].

7. Conclusions

In this paper, we presented the primitive of the IBME-ET, which not only offers the
confidentiality, authenticity, and anonymity of data and achieves CCA security, but also
provides equality test functionality for ciphertexts generated under different identities
without losing the confidentiality, authenticity, and anonymity of the data. More precisely,
we introduced the system model and definition of the IBME-ET. With respect to the confi-
dentiality, authenticity, and anonymity, we formalized the security models for the IBME-ET.
Finally, we proposed a concrete IBME-ET scheme, and our scheme was confirmed to be
secure and practical by proving its security and evaluating its performance.
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