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Abstract: We introduce Brain-Inspired Modular Training (BIMT), a method for making neural net-
works more modular and interpretable. Inspired by brains, BIMT embeds neurons in a geometric
space and augments the loss function with a cost proportional to the length of each neuron connection.
This is inspired by the idea of minimum connection cost in evolutionary biology, but we are the
first the combine this idea with training neural networks with gradient descent for interpretability.
We demonstrate that BIMT discovers useful modular neural networks for many simple tasks, reveal-
ing compositional structures in symbolic formulas, interpretable decision boundaries and features
for classification, and mathematical structure in algorithmic datasets. Qualitatively, BIMT-trained
networks have modules readily identifiable by the naked eye, but regularly trained networks seem
much more complicated. Quantitatively, we use Newman’s method to compute the modularity of
network graphs; BIMT achieves the highest modularity for all our test problems. A promising and
ambitious future direction is to apply the proposed method to understand large models for vision,
language, and science.

Keywords: brain-inspired artificial intelligence; mechanistic interpretability; modularity

1. Introduction

Although deep neural networks have achieved great successes, mechanistically inter-
preting them remains quite challenging [1–5]. If a neural network can be decomposed into
smaller modules [1], interpretability may become much easier.

In contrast to artificial neural networks, brains are remarkably modular [6–8]. We
conjecture that this is because artificial neural networks (e.g., fully connected neural net-
works) have a symmetry that brains lack: both the loss function and the most popular
regularizers are invariant under permutations of neurons in each layer. In contrast, the cost
of connecting two biological neurons depends on how far apart they are because an axon
needs to traverse this distance, thereby using energy and brain volume and causing time
delay [7,8].

We argue that (current) artificial neural networks are missing a key ingredient, which is
the very reason why human brains are modular. From Darwin’s evolution theory, modular
brains have survival advantages over non-modular ones, since modular brains react faster
by processing certain functions within local areas. By contrast, modular neural networks
do not necessarily have “survival advantages” (e.g., lower losses) over non-modular ones
in standard training.

To facilitate the discovery of more modular and interpretable neural networks, we
introduce Brain-Inspired Modular Training (BIMT). Inspired by brains, we embed neurons
in a geometric space where distances are defined and augment the loss function with a
cost proportional to the length of each neuron connection times the absolute value of the
connection weight. This obviously encourages locality , i.e., keeping neurons that need
to communicate as close together as possible. Any Riemannian manifold can be used;
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we explore 2D and 3D Euclidean space for easy visualization (see Figure 1). Our work
is inspired by the minimum connection cost idea explored in [9–12]. While their focus
is on understanding biological neural networks under evolution, our goal is to enhance
interpretability of artificial neural networks trained with gradient descent.

We demonstrate the power of BIMT on a broad range of tasks, finding that it can reveal
interesting and sometimes unexpected structures. Qualitatively, BIMT-trained networks
have modules readily visible to the naked eye, but standard trained networks seem to
have much more complicated connections. Quantitatively, we use Newman’s method
to compute modularity of the network connection graph; BIMT can achieve the highest
modularity in all test cases. On symbolic formula datasets, BIMT is able to discover
structures such as independence, compositionality, and feature-sharing, which are useful for
scientific applications. For classification tasks, we find that BIMT may produce interpretable
decision boundaries and features. For algorithmic tasks, we find BIMT to produce tree-
like connectivity graphs, not only supporting the group representation argument in [13],
but also revealing a (somewhat unexpected) mechanism where multiple modules vote.
Although most of our experiments are conducted on fully connected networks for vector
inputs, we also conduct experiments demonstrating that BIMT generalizes to other types
of data (e.g., images) and architectures (e.g., transformers).

This paper is organized as follows: Section 2 introduces Brain-Inspired Modular
Training (BIMT). Section 3 applies BIMT to various tasks, demonstrating its interpretability
power. We describe related work in Section 4 and discuss our conclusions in Section 5.

Figure 1. (Top): Brain-Inspired Modular Training (BIMT) contains three ingredients: (1) embedding
neurons into a geometric space (e.g., 2D Euclidean space); (2) training with regularization, which
penalizes non-local weights more; (3) swapping neurons during training to further enhance locality.
(Bottom): Zoo of modular networks obtained via BIMT (see experiments for details).

2. Brain-Inspired Modular Training (BIMT)

Human brains are modular and sparse, which is arguably the reason why they are so
efficient. To make neural networks more efficient, it is desirable to make them modular and
sparse, just like our brains. Sparsity is a well-studied topic in neural networks and can be
encouraged by including the L1/L2 penalty in training or by applying pruning to model
weights [14,15]. As for modularity, most research explicitly introduce modules [16,17], but
this requires prior knowledge about problem structures. Our motivation question is thus:

Q: What training techniques can induce modularity in otherwise non-modular networks?

In other words, our goal is to let modularity emerge from non-modular networks when
possible. In this section, we propose a method called Brain-Inspired Modular Training
(BIMT), which explicitly steers neural networks to become more modular and sparse during
training. BIMT consists of three key ingredients (see Figure 1): (1) embedding the network
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in a geometric space; (2) training to encourage locality and sparsity; and (3) swapping
neurons for better locality.

Notation: For simplicity, we describe how to perform BIMT with fully connected
networks. Generalization to other architectures is possible. We distinguish between weight
layers and neuron layers. Assuming a fully connected network to have L weight layers,
whose ith weight layer (i = 1, · · · , L) has weights Wi ∈ Rni−1×ni and biases bi ∈ Rni ,
where ni−1 and ni are the number of neurons incoming to and outgoing from the ith weight
layer, the ith (i = 0, · · · , L) neuron layer has ni neurons. The input and output dimensions
of the whole network are n0 and nL, respectively.

Step 1: Embedding the network into a geometric space. We now embed the whole
network into a space where the jth neuron in the ith layer is the (i, j) neuron located at rij.
If this is 2D Euclidean space, neurons in the same neuron layer share the same y-coordinate
and are uniformly spaced in x ∈ [0, A](A > 0). Different neuron layers are vertically
separated by a distance y∗ > 0, so

rij ≡ (xij, yij) = (Aj/ni, iy∗). (1)

The weight that connects the (i − 1, j) neuron and the (i, k) neuron has value wijk ≡ (Wi)jk,
the bias at the (i, k) neuron is bik ≡ (bi)k, and its length is defined as

dijk ≡
∣∣ri−1,j − rik

∣∣. (2)

We will use L1-norm, giving dijk = |xi−1,j − xik|+ y∗, but other vector norms can also be

used. For example, L2-norm gives dijk =
(
|xi−1,j − xik|2 + y2

∗
)1/2.

Step 2: Imposing regularization that encourages locality. We define the connection
cost for weight and bias parameters of the whole network to be

ℓw =
L

∑
i=1

ni

∑
j=1

ni+1

∑
k=1

dijk|wijk|, ℓb =
L

∑
i=1

ni

∑
j=1

y∗|bij|. (3)

When training for a particular task, in addition to the prediction loss ℓpred, we include ℓw

and ℓb as regularizations:
ℓ = ℓpred + λ(ℓw + ℓb), (4)

where λ is the strength of the regularization. Without loss of generality, we can set y∗ = 1,
leaving only the two hyper-parameters λ and A. Setting A = 0 reduces to standard L1
regularization, which solely encourages sparsity. A > 0 further encourages locality, in
addition to sparsity.

Step 3: Swapping neurons for better locality. We encourage locality (reduction of ℓw)
not only by updating weights via gradient descent, but also by swapping two neurons in
the same neuron layer (i.e., swapping corresponding incoming/outgoing weights), when
this reduces ℓw. Gradient descent (continuous search) can get stuck at bad local minima
where non-local connections are still present (see Figure 2c), while swapping (discrete
search) can avoid this (see Figure 2e). Such swapping leaves the function implemented
by the whole network (hence, ℓpred) unchanged but improves locality (see Figure 1, right).
However, trying every possible permutation is prohibitively expensive. We assign each
neuron (i, j) a score sij to indicate its importance:

sij =
ni−1

∑
p=1

|wipj|+
ni+1

∑
q=1

|wi+1,jq|, (5)

which is the sum of (absolute values) of incoming and outgoing weights. We sort neurons in
the same layer based on their scores and define neurons with the top k-scores as “important”
neurons. For each important neuron, we swap it with the neuron in the same layer, causing
the greatest decrease in lw if it helps. Since swaps are somewhat expensive, requiring
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O(nkL) computations, we implement swaps only every S ≫ 1 training steps. We allow
swaps also of input and output neurons, if not stated otherwise.

Figure 2. The connectivity graphs of neural networks when trained with different techniques
for a regression problem (blue/red denote positive/negative weights). Our proposed BIMT = L1

regularization (not novel) + local regularization (novel) + swap (novel). BIMT finds the simplest
circuit (e) which clearly contains two parallel modules, with a moderate sacrifice in test loss compared
to vanilla (a), but with lower loss than for mere L1 regularization (b). Note that swapping aims to
reduce the local connection cost, so all of (c–e) encourage locality.

BIMT = L1 + Local + Swap. To summarize, BIMT means local L1 regularization
with swaps. Both “local” and “swap” are novel contributions of this paper, while L1
regularization is quite standard. If one wants to ablate “local” or “swap”, one can set A = 0
to remove “local” or set S → ∞ to remove “swap”. Our experience is that the joint use
of “local” and “swap” usually gives the most interpretable networks. As a simple case,
we compare BIMT to baselines on a regression problem, shown in Figure 2. On top of L1,
although using “local” or “swap” alone gives reasonably interpretable networks, the joint
use of both produces the most interpretable network (at least visually). Although using L1
alone leads to a reasonably sparse network, the network is neither modular nor optimally
sparse (see Appendix A for pruning results).

Connectivity Graphs. As in Figure 2 and throughout the paper, we use connectivity
graphs to visualize neural network structures. For visualization purposes, we normalize
weights by the max absolute value in the same layer (so the normalized values lie in
range [−1, 1]). A weight is displayed as a line connecting two neurons, with its thickness
proportional to its normalized value, and its color set to blue (red) if the value is positive
(negative). Note that we draw all weights and do not explicitly ignore small weights.
The reason connectivity graphs appear sparse is because naked eyes cannot identify very
thin lines.

3. Experiments

In this section, we apply BIMT to a wide range of applications. In all cases, BIMT can
result in modular and sparse networks, which immediately provide interpretability on the
microscopic level and the macroscopic level. At the microscopic level, we can understand
which neurons are useful, what each useful neuron is doing, and where/how information
of interest is located/computed. At the macroscopic level, we can understand relations
between different modules (e.g., in succession or in parallel) and how they cooperate to
make the final prediction. From Sections 3.1–3.3, we train fully connected neural networks
with BIMT for regression, classification, and algorithmic tasks. In Section 3.4, we show that
BIMT can generalize to transformers and demonstrate it through in-context learning. In
Section 3.5, we demonstrate that BIMT can easily go beyond vector-type data to tensor-
type data (e.g., images). In general, BIMT achieves interpretability with either no drop
or a modest drop in performance, summarized in Table 1. We also report the modularity
metric in Table 2, computed using Newman’s method provided by the NetworkX package,
showing that BIMT gives the most modular networks in all examples. Our baseline
training methods are training with no penalty or with the L1 [18] penalty with the Adam
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optimizer [19]. Results are averaged over five random seeds. All experiments are runnable
on a CPU (M1), usually within minutes (at most two hours).

Table 1. BIMT achieves interpretability with no or a modest performance drop.

Dataset Symbolic
(a)

Symbolic
(b)

Symbolic
(c)

Two
Moon

Modular
Addition Permutation In-Context MNIST

metric loss loss loss accuracy accuracy accuracy loss accuracy

Vanilla (5.2 ± 1.0)× 10−3 (1.1 ± 0.4)× 10−5 (1.2 ± 0.5)× 10−4 (100.0 ± 0.0)% (100.0 ± 0.0)% (100.0 ± 0.0)% (7.8 ± 1.8)× 10−5 (98.5 ± 0.2)%
L1 penalty (7.9 ± 0.8)× 10−3 (1.2 ± 0.3)× 10−5 (1.8 ± 0.4)× 10−4 (100.0 ± 0.0)% (100.0 ± 0.0)% (100.0 ± 0.0)% (7.2 ± 1.0)× 10−5 (98.4 ± 0.3)%

BIMT (ours) (7.4 ± 1.0)× 10−3 (8.0 ± 1.5)× 10−5 (1.3 ± 0.3)× 10−3 (100.0 ± 0.0)% (100.0 ± 0.0)% (100.0 ± 0.0)% (1.8 ± 0.4)× 10−4 (98.2 ± 0.3)%

Table 2. BIMT achieves the highest modularity for all tasks.

Dataset Symbolic
(a)

Symbolic
(b)

Symbolic
(c)

Two
Moon

Modular
Addition Permutation In-Context MNIST

Vanilla 0.207 ± 0.025 0.151 ± 0.015 0.145 ± 0.023 0.291 ± 0.032 0.194 ± 0.028 0.129 ± 0.012 0.085 ± 0.014 0.073 ± 0.005
L1 penalty 0.512 ± 0.042 0.456 ± 0.035 0.328 ± 0.027 0.289 ± 0.016 0.435 ± 0.028 0.371 ± 0.031 0.083 ± 0.010 0.099 ± 0.008

BIMT (ours) 0.581 ± 0.042 0.543 ± 0.063 0.392 ± 0.021 0.338 ± 0.039 0.535 ± 0.027 0.634 ± 0.043 0.161 ± 0.013 0.238 ± 0.021

3.1. Symbolic Formulas

Symbolic formulas are prevalent in scientific domains. In recent years, as increasingly
more data are collected from experiments, it is desirable to distill symbolic formulas from
experimental data, a task called symbolic regression [20]. However, symbolic regression
usually faces an all-or-nothing situation, i.e., either succeeds gloriously or fails miserably.
Consequently, a tool supplementary to symbolic regression is called for, which can robustly
reveal the high-level structure of formulas. We show below that BIMT can discover such
structures in formulas.

We consider the task of predicting y = (y1, · · · , ydo ) from x = (x1, · · · , xdi
), where

yi = fi(x) are symbolic functions. We randomly sample each xi from U[−1, 1] and compute
yi = fi(x) to generate the dataset. We use fully connected networks with SiLU activations
(architectures shown in Figure 3) and training networks using the MES loss with the Adam
optimizer with learning rate 10−3 for 20, 000 steps, while choosing A = 2, y∗ = 0.1, k = 6,
and S = 200. We schedule λ as such: (10−3, 10−2, 10−3) for (5000, 10,000, 5000) steps.

Figure 3. The connectivity graphs of neural networks trained with BIMT to regress symbolic formulas
(blue/red lines stand for positive/negative weights). For symbolic formulas with modular properties,
e.g., independence, shared features, or compositionality, the connectivity graphs display modular
structures revealing these properties.

We apply BIMT to several formulas, each of which has certain modular properties, as
shown in Figure 3. (a) Independence. y1 = x2

2 + sin(πx4) is independent of x1 and x3, while
y2 = (x1 + x3)

3 is independent of x2 and x4. As desired, BIMT results in a network split into
two parallel modules independent of each other, one only involving (x1, x3), the other only
involving (x2, x4). (b) Feature Sharing. For targets (y1, y2, y3) = (x2

1, x2
1 + x2

2, x2
1 + x2

2 + x2
3),
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learning shared features (x2
1, x2

2, x2
3) is beneficial for predicting all targets. Indeed, in the

neuron layer A2, the only three active neurons correspond to these shared features (see
Appendix B). (c) Compositionality. Computing y =

√
(x1 − x2)2 + (x3 − x4)2 ≡

√
I

requires computing I first, which is an important intermediate quantity. We find that the
only active neuron in layer A3 has activations highly correlated with I. Although one might
worry that these extremely sparse networks could severely under-fit, we show that fitting
is reasonably good in Appendix B.

3.2. Two Moon Classification

Interpretable decision boundaries help to make classification trustworthy. Moreover,
decision boundaries with fewer pieces are more likely to generalize better. Therefore, it is
desirable that neural networks used for classifications are sparse and interpretable.

We apply BIMT to the toy Two Moon dataset [21]. The architecture is shown in Figure 4
(the final softmax layer is not shown), with the same training details used in Section 3.1,
with the only difference being the use of cross-entropy loss. We choose λ = 0.01 and A = 2.
The evolution of the neural network is shown in Figure 4. Starting from a (randomly
initialized) dense network, the network becomes increasingly sparse and modular, ending
up as a network with only six useful hidden neurons. We can roughly split the training
process into three phases: (i) in the first phase (steps 0 to 1000), the neural network mainly
aims to fit the data while slightly sparsifying the network; (ii) in the second phase (steps
1000 to 3000), the neural network sparsifies the network in a symmetric way (both outputs
of Classes 1 and 2 have neurons connecting to them); (iii) in the third phase (steps 3000 to
end), the network prunes itself to become asymmetric, with useful neurons only connecting
to Class 1 output. In Appendix C, we interpret what each weight is doing by editing them
(zeroing) and see how this affects decision boundaries.

Figure 4. (Top): Evolution of network structures trained with BIMT on the Two Moon dataset. Blue
and red lines stand for postive and negative weights, respectively. (Bottom): Evolution of decision
boundaries.

3.3. Algorithmic Datasets

Algorithmic datasets are ideal for benchmarking mechanistic interpretability methods
because they are mathematically well understood. Consider a binary operation a ◦ b = c
(a, b, c are discrete and treated as tokens), in which a neural network is tasked with predict-
ing c from embeddings of a and b. For modular addition, Ref. [22] discovers that ring-like
representations emerge in training. Ref. [23] reverse-engineered these networks, finding
that the network internally implements trigonometric identities. For more general group
operations, Ref. [13] suggests that representation theory is key for neural networks to
generalize. However, in these papers, it is usually not obvious which neurons are useful
or what the overall modular structure of the network is. Since BIMT explicitly optimizes
modularity, it is able to produce networks that self-reveal their structure.
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Modular addition. The task is to predict c from (a, b), where a + b = c (mod 59).
Each token a is embedded as a d = 32-dimensional vector Ea, initialized as a random
normal vector at initialization and trainable later. The concatenation of Ea and Eb is fed
to a two-hidden-layer MLP, shown in Figure 5. We split train/test 80/20%. We train the
network with BIMT with cross-entropy loss using the Adam optimizer (lr = 10−3) for
20,000 steps. We choose A = 2, y∗ = 0.5, k = 30, and S = 200. We schedule λ as such:
(0.1, 1, 0.1) for (5000, 10,000, 5000) steps.
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Knockout Accuracy
None 100.00%

A 15.25%
B 29.33%
C 33.67%

A, B 3.39%
A, C 5.08%
B, C 10.28%

A, B, C 1.69%
A11 47.11%
A12 46.51%
B17 50.47%
B18 51.42%
C21 77.10%
C22 73.60%
C23 78.17%

All but
A, B, C 100.00%

Figure 5. MLP trained with BIMT for modular addition. (Left): the final connectivity graph is
tree-like, demonstrating three parallel modules (voters); middle: the representations of each module
in the input layer. Blue and red lines stand for postive and negative weights, respectively. (Right):
ablation results, which imply a voting mechanism. The input layer contains embeddings of two
tokens, which overlap each other but are drawn to be vertically separated.

After training, the network looks like a tree with three roots (A, B, C), shown in Figure 5.
We visualize embeddings corresponding to these roots (modules), finding that the token
embeddings form circles in 2D (A, B) and a bow tie in 3D (C). In contrast to Refs. [22,23],
where post-processing (e.g., principal component analysis) is needed to obtain ring-like
representations, the ring structures here automatically align to privileged bases, which is
probably because embeddings are also regularized with L1. To evaluate how these parallel
modules are important for making predictions, we compute accuracy after knocking out
some of them. The result is quite surprising: knocking out one of the modules can severely
degrade the performance (from 100% to 15.25%, 29.33%, or 33.67% for knocking out A,
B, or C). This means that modules are cooperating together to make predictions correct,
similar to majority voting for error correction. To verify the universality of this argument,
we include more tree graphs for perturbed initializations and different random seeds in
Appendix D.

Permutation group. The task is to predict c from (a, b), where a, b, c are elements in
the 24-element group (the permutation of 4 objects) S4, and ab = c. Our training is the
same as for modular addition. Figure 6 shows that, after training with BIMT, the network
is quite modular. Notice that there are only nine active components in the embedding layer,
exactly agreeing with the representation theory argument of Ref. [13] (S4 has a 3 × 3 matrix
representation). In Figure 6 (right), we show how each embedding neuron is activated
by each group element, revealing that BIMT has discovered a crucial group-theoretical
structure! Note that we have normalized these embeddings when plotting: denote the
value of the ith neuron and the jth token as eij. The normalized embedding is defined
as ẽij = eij/

(
maxj|eij|

)
. In particular, neuron 22 is the sign neuron (1/−1 for even/odd
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permutations), and other active neurons correspond to subgroups or cosets (see further
analysis in Appendix E).
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Figure 6. Apply BIMT to MLP on the Permutation S4 dataset. (Left): the final connectivity graph,
with only nine active embedding neurons. The input layer contains embeddings of two tokens, which
overlap each other but are drawn to be vertically separated. Blue and red lines stand for postive and
negative weights, respectively. (Right): the nine active neurons correspond to group representations
of S4, whose values are normalized into the range [−1, 1]. In particular, neuron 22 is the sign neuron
(1/−1 for even/odd permutations).

3.4. Extension to Transformers: In-Context Linear Regression

So far, we have demonstrated the effectiveness of BIMT for MLPs. We can generalize
BIMT to transformers [24]: we simply apply BIMT to linear layers in transformers (see
details in Appendix F). Following the setup of Ref. [25], we now study in-context linear
regression. Linear regression aims to predict y from x ∈ Rd, assuming that we know
training data (xi, yi) (i = 1, · · · , n), where yi = w · xi. In-context linear regression aims
to predict y from the sequence (x1, y1, · · · , xn, yn, x), which is called in-context learning
because the unknown weight vector w needs to be learned in context, i.e., when the
transformer runs in test time rather than when it is trained. To make things maximally
simple, we choose d = 1 (the weight vector degrades to a scalar) and n = 1.

The architecture is displayed in Figure 7, where, for clarity, we only show the last
block, ignoring its attention dependence on previous blocks. The embedding size is 32,
the number of transformer layers is 2 (each layer containing an attention layer and an
MLP), and the number of heads is 1. We draw w ∈ U[1, 3] (Instead, we can investigate
w ∼ U[−1, 1], which has a singularity issue (please see Appendix F for details).) and
x ∈ U[−1, 1] to create datasets. With MSE loss, we train with the Adam optimizer (lr:
1 × 10−3) for 4 × 104 steps (λ = 0.001, 0.01, 0.1, 0.3 each for 104 steps). We choose A = 2,
y∗ = 0.5, k = 30, and S = 200.

It is shown in Ref. [25] that w is linearly encoded in neural network latent representa-
tions, but it is not easy to track where this information is located. From Figure 7 (left), it is
immediately clear which neurons are useful (active). In Figure 7 (top right), we show that
the prediction is quite good, even though the network has become extremely sparse. We
examine active neurons in the Res2 layer, finding that several neurons are correlated with
the weight scalar, although no one neuron alone can determine the weight scalar perfectly.
In Figure 7 (right middle and bottom), we show that pairs of neurons (8 and 9, 11 and 19)
implicitly encode information about the weight scalar in nonlinear ways.
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Figure 7. Application of BIMT to transformers during in-context learning linear regression. Left: the
connectivity graph of the transformer after training. Only the last block is shown, which takes in
[0, x] to predict [y, 0]. Blue and red lines stand for postive and negative weights, respectively. Right
top: predicted vs true y. Right middle and bottom: neurons in the Res2 layer contain the information
about the weight scalar, encoded non-linearly.

3.5. Extension to Tensor Data: Image Classification

So far, we have always embedded neural networks into 2D Euclidean space, but BIMT
can be used in any geometric space. We now consider a minimal extension: embedding
neural networks into a 3D Euclidean space. For 2D image data, to maintain their local
structure, it is better to leave them as 2D rather than flatten them to 1D. As a result, an MLP
for 2D image data should be embedded in 3D, as shown in Figure 8. The only modification
for BIMT is that, when computing distances, we use 3D rather than 2D vector norms.

We train with MSE loss and use the Adam optimizer (lr = 1 × 10−3) for 4 × 104 steps
(λ = 0.001, 0.01, 0.1, 0.3 each for 104 steps). We choose A = 2, y∗ = 0.5, k = 30, and S = 200.
We disable swaps of input pixels. We show the evolution of the network in Figure 8. Starting
from a dense network, the network becomes more modular and sparser over time. Notably,
the receptive field shrinks for the input layer, since BIMT learns to prune away peripheral
pixels that always equal zero. Another interesting observation is that most of the weights
in the middle layer are negative (colored red), while most of the weights in the last layer
are positive (colored blue). This suggests that the middle layer is not adopting the strategy
of pattern matching, but rather pattern mismatching. Pattern matching/mismatching means
that, if an image has/does not have these patterns, it is more likely to be, for example,
an 8. We visualize features in Appendix G, where we also include the results for MLPs
with different depths. Moreover, in the output layer, Classes 1 and 7 are automatically
swapped to become neighbors, probably due to their similarity. In future work, we would
like to compare our method with convolutional neural networks (CNNs). It might be best
to combine CNNs with BIMT, since CNNs guarantee the locality of inputs, while BIMT
encourages locality of model internals.
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Figure 8. Application of BIMT to 3D MLP on MNIST. From left to right: connectivity graph evolution.
Blue and red lines stand for postive and negative weights, respectively.

4. Related Work

Mechanistic Interpretability (MI) is an emerging field that aims to mechanically
understand how neural networks work. Various modules/circuits are identified from
neural networks via reverse engineering, including image circuits [1], induction heads [2],
computational quanta [3], transformer circuits [4], factual associations [26], and heads
in the wild [5], although superposition [27] makes interpretability more complicated. A
generalization puzzle called grokking [28] has also been understood by reverse-engineering
neural networks [13,22,23,29].

Modularity in neural networks can help generalization in transfer learning [16] and
can enhance interpretability [1]. Non-modular neural networks trained in standard ways
are shown to present an imperfect extent of modularity [30–32]. Modular networks explic-
itly use trainable modules in constructing neural networks [17,33], but this inductive bias
may require prior knowledge about the tasks. The multi-head attention layer in transform-
ers lies in the category of explicitly introducing modularity. By contrast, this work does not
explicitly introduce modules, but rather lets modules emerge from non-modular networks
with the help of BIMT.

Pruning can lead to sparse and efficient neural networks [14,15,34,35], usually achieved
by L1 or L2 regularization and thresholding small weights to zero. BIMT borrows the L1 reg-
ularization technique for sparsity but improves modularity by making the L1 regularization
distance-dependent.

Analogy between neuroscience and neural networks has existed for a long time in
the literature [36,37]. Although biological and artificial neural networks may not have the
same low-level learning mechanisms [38], we can still borrow high-level ideas and concepts
from neuroscience to design more interpretable artificial neural networks, which is the
goal of this work. The minimal connection cost idea has been explored in [9–12], where
an evolutionary algorithm is applied to evolve tiny networks. By contrast, our method is
more aligned with modern machine learning, i.e., gradient-based optimization and broader
applications.

Neuroscience-inspired learning. Since the literature of neuroscience is vast [39], we
will not review it here, but we do want to highlight some progress in neuroscience that can
potentially inspire and improve current machine learning systems. The study of neural
codes [40], neural information processing and transmission [41–43], and neural spikes [44]
may provide tools and language towards the study and design of artificial neural networks.
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5. Conclusions and Discussion

We have proposed Brain-Inspired Modular Training (BIMT), which explicitly encour-
ages neural networks to be modular and sparse. BIMT is a principled idea that could be
generalized to many types of data and network architectures. Tested on several relatively
small-scale tasks, we show its ability to provide interpretable insights for these problems.
In future studies, we would like to see if this training strategy remains valid for larger-scale
tasks, e.g., large language models (LLMs). In particular, can we fine-tune LLMs with BIMT
to make them more interpretable? Moreover, BIMT achieves interpretability at the price
of slight performance degradation. In fact, it is known that modularity might improve
performance in continual learning when the tasks have modular and compositional struc-
tures [12]. To understand the benefits and limitations of BIMT, further studies will require
careful disentanglement of network sparsity and modularity and rigorous definition of task
modularity. We would like to improve BIMT such that interpretability and performance
are achieved at the same time.

Broader Impacts. We believe that building interpretable neural networks will make
AI more controllable, more reliable, and safer. However, like other AI interpretability
research, the controllability brought by interpretability should be regulated, making sure
the technology is not misused.

Limitations. (1) This work deals with small-scale toy problems, where neural networks
can be easily visualized. It is still unclear whether this method remains effective for larger-
scale problems. (2) BIMT requires users to define the embedding geometric space, which
may require some prior knowledge about the task. Arguably, this might be a feature not a
bug, especially for neuromorphic computing. (3) The swapping step may incur additional
overhead. Additionally, swapping is currently implemented layer by layer, so global
topological problems cannot be resolved via swapping. (4) Visualizing the connectivity
graph of neural networks is only efficient and useful for small networks. (5) There is
generally a trade-off between accuracy and simplicity/interpretability, which is also true
for BIMT. (6) The connectivity graphs can be quite sensitive to random seeds, although
they share common global structures, which might be enough for interpretation. Please see
Appendix D for more details.

Future Directions. Two major concerns of this work are scalability and sensitivity. We
would like to mention our plans for how to address these two issues in future work. To
improve scalability, we may need to explicitly introduce some notion of hierarchy (beyond
modularity), because hierarchy can potentially decompose complicated modules into
simpler sub-modules, hence making scaling easier. To reduce sensitivity, some theoretical
research is first needed to characterize equivalent classes of neural networks so that we can
better understand whether the changes caused by perturbation are superficial (in the same
equivalent class) or fundamental (in different equivalent classes).
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Appendix A. Pruning

Although the original goal of BIMT is to make neural networks modular and inter-
pretable, the fact that it can make networks sparse is also useful for pruning. Here, we

https://github.com/KindXiaoming/BIMT


Entropy 2024, 26, 41 12 of 21

show the benefits of BIMT in terms of pruning on a toy example (in Figure 2). The task
is to fit (y1, y2) = (x1x4 + x2x3, x1x4 − x2x3) from (x1, x2, x3, x4) with a two-hidden-layer
MLP. As in Figure 2, we test five training methods: vanilla, L1, L1 + Local, L1 + Swap, and
BIMT (L1 + Local + Swap). For each trained network, we sort their parameters (including
weights and biases) from small to large (in magnitudes), defining a threshold below which
parameters are set to zero. Given a threshold, we can compute the number of unpruned
parameters Nu, as well as test loss ℓtest. By sweeping the threshold, we obtain a trade-off
frontier, as shown in Figure A1. Note that, in this plot, the lower left the curve goes, the
better the pruning. Therefore, BIMT and L1 + Local achieve the best pruning results, even
better than L1 (which is standard in pruning). We leave the full investigation of BIMT as a
pruning method for future work.

101 102

number of unpruned parameters

10 5

10 4

10 3

10 2

10 1

100

101

te
st

 lo
ss

Vanilla
L1
L1+Local
L1+Swap
L1+Local+Swap(BMT)

Figure A1. In a toy regression problem (see Figure 2), BIMT and L1 + Local achieve the best pruning
results, even better than L1 regularization alone (a standard training method for pruning).

Appendix B. Symbolic Formulas

Appendix B.1. How Good Are the Predictions?

Since the connectivity graphs in Figure 3 are extremely sparse, one may suspect that
these sparse networks severely under-fit. We show that this is not the case, since the
(test) losses are quite low, and sample-wise prediction errors are quite small, as shown
in Figure A2. The explanation is that SiLU activations (and other similar activations) are
surprisingly effective. In fact, in the following, we reverse-engineer how these symbolic
functions can be approximated with very few parameters.

Figure A2. Although the networks are extremely sparse in Figure 3, their predictions are quite good.
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Appendix B.2. Reverse-Engineering Implementation of Formulas

Once we obtain the sparse connectivity graphs in Figure 3, we can easily reverse-
engineer how neural networks approximate these analytical functions with linear oper-
ations and SiLU activation functions σ(x) = x/(1 + e−x). If not stated otherwise, the
approximations below hold for x ∈ [−1, 1].

(a) Independence

x2 ≈ −1.33x + 1.84σ(1.53x),

sin(x) ≈ −2.27x + 1.72σ[−0.91σ(−3.24x + 1.54) + 2.63]− 2.10,

x3 ≈ 2.30σ[3.34σ(0.90x − 0.51)− 0.46]− 2.27σ[3.00σ(−0.87x − 0.19)− 1.07].

(A1)

(b) Feature Sharing:

x2 ≈ 0.35σ[1.41σ(2.64x) + 1.99σ(−1.80x + 0.05)]. (A2)

(c) Compositionality:

1.60
√

x − 1.24 ≈ 0.80σ(1.04x)− 1.18σ(−2.26x + 2.44)− 0.18, x ∈ [1.24, 3.66]. (A3)

Appendix B.3. Intermediate Quantities

In the compositionality example, y =
√
(x1 − x2)2 + (x3 − x4)2 ≡

√
I, we argue that

there is an intermediate quantity I contained in the network. Figure A3 shows this to be
neuron 11. The relationship between this neuron and the NN output is seen to accurately
approximate the square root function.

Figure A3. Verifying the existence of an intermediate quantity.

Appendix C. Two Moon Classification

We showed in Section 3.2 that a very sparse network is able to classify the Two Moon
dataset. Since the active weights are so few, we are able to interpret each of them by
removing them (setting the weight value to be 0). We show how the decision boundaries
change under removing one of the weights (marked as a cross) in Figure A4. It is clear that
every weight is necessary for prediction, since removing any of them can lead to false classi-
fications. We can also write the symbolic formula for the network (σ(x) = x/(1 + e−x)) as:

p(green|x1, x2) =
exp(s(x1, x2))

1 + exp(s(x1, x2))

s(x1, x2) =5.16σ(1.44x2 + 1.43)− 6.36σ(−0.86σ(1.44x2 + 1.43) + 1.72σ(1.34x1)

− 2.47σ(−3.29x1 − 0.17) + 1.99σ(2.32x1 − 2.07)).

(A4)
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Figure A4. For the Two Moon dataset, we interpret what each weight is doing by setting it to zero
(marked with an ‘x’ in the top panel) and visualizing the resulting decision boundary (bottom).

Appendix D. Modular Addition

Sensitivity (add noise). In the modular addition task in Section 5, we investigate
the sensitivity of the module structures to small perturbations during their initializations.
To do this, we first initialize a model’s parameters using a fixed random seed and then
add zero-mean Gaussian noise with varying standard deviations σ. In Figure A5 (top)
presented in the graphs, the “noise” values refer to the standard deviation of the Gaussian
noise added to the model’s parameters during initialization.

We find that small perturbations to initialization have sizable impacts on the final
model. Even the least perturbed model (σ = 10−6) is quite different from the base model
going from layer 2 to the output, although the modules are mostly in the same positions.
We conjecture that the training dynamics have many branching points, where a small
perturbation can lead to quite different basins. Luckily, these basins all have similar tree
structures, amenable to be interpreted.

More tree graphs. We also investigate the behavior of the model with different random
seeds for initialization and see a diverse pattern of module formation. Although they are
different in detail, there are some universal features: (1) the number of modules is odd most
times, supporting the argument of (majority) voting; (2) between layer 1 and layer 2, many
copies of the same motif emerge, which connects three neurons in L1 to one neuron in L2.

Figure A5. For the modular addition task, we test what happens when we add small perturbations to
the model (top) and when we initialize the the parameters using different random seeds (bottom).

Appendix E. Reverse-Engineering Learned S4 Embeddings

Appendix E.1. Visualizing Neurons with Cayley Graphs

In Figure 6, we find that there are only nine active embedding neurons. For each
of them except for the sign neuron, only a subset of group elements is non-zero and,
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interestingly, non-zero elements are close to +1 or −1. Therefore, to visualize what each
neuron is doing, we can highlight its active group elements on a Cayley graph of the
permutation group S4, as shown in Figure A6, where green/orange/no circle means
+1/−1/0, respectively. Red and blue arrows represent two generators 4123 and 2314. There
are a few interesting observations: (1) Moving circles along blue arrows for neuron 8 gives
neuron 10; (2) For neuron 14 (15), the inside square (octagon) activates to +1, while the
outside square (octagon) activates to −1. Moreover, both of them are closed under red
arrows. (3) For neurons 11, 12, 13, 16, they display similar structures, up to translations
and rotations.

Figure A6. For active neurons in Figure 6, we highlight active group elements on Cayley graphs
(green/orange/no circle means 1/−1/0), revealing interesting structures.

Appendix E.2. The Learned Embedding Is Not a Linear Transformation of the Faithful
Group Representation

Although a lot of interesting structure emerges from learned embeddings, we show
that the learned embedding is not a linear transformation of the faithful group representa-
tion; at least some extent of non-linearity is at play.

S4 has a 3 × 3 (truthful) matrix representation, corresponding to 3D rotations and
reflection of the tetrahedron. We denote this representation as Etrue

i ∈ R3×3, and we denote
the learned embedding Ei ∈ R9(i = 1, · · · , 24). If Etrue

i and Ei are linearly related, there
exists A ∈ R3×3 and V ∈ R9×9 such that

Ei = Vvec(AEtrue
i A−1), (A5)

where vec flattens a matrix to a vector. We define a loss function:

L(V, A) =
∑24

i=1 |Ei − Vvec(AEtrue
i A−1)|2

∑24
i=1 |Ei|2

. (A6)

If L ≈ 0, this means a linear relation between Etrue
i and Ei; otherwise, nonlinearity is present.

We optimize the above loss function with scipy.optimize.minimize, consistently finding
the minimal value to be 0.56 (and the same for 100 random seeds), implying that learned
embedding Ei is not a linear transformation of a truthful group representation.

Since the learned representation is quite sparse, it is likely that no single truthful
representation can reach that sparsity (defined below). We conjecture that the learned
representation could be combining multiple (sparse) representations in a clever way such
that the combined representation is even more sparse and remains “faithful” to the extent
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that prediction accuracy is perfect. The “combination” might not be that surprising, since
we saw that, for modular addition (Figure 5), the learned embedding consists of three
different faithful group representations.

To measure sparsity of a representation, we define a representation matrix R and its
normalized version R̃:

R ≡ [E1, · · · , E24] ∈ R9×24, R̃ ≡ R
|vec(R)|1

, (A7)

and its entropy S and effective dimension D as

S ≡ Entropy(vec( ˜|R|)), D ≡ 2S. (A8)

For faithful representations corresponding to tetrahedra

A : (1, 0, 0), (−1, 1, 0), (0,−1, 1), (0, 0,−1)

B : (−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 1, 1)

C : (1,− 1√
3

,− 1√
6
), (−1,− 1√

3
,− 1√

6
), (0,

2√
3

,− 1√
6
), (0, 0,

√
6

2
),

(A9)

their effective dimensions are D ≈ 120, 108, 153, respectively, while the learned representa-
tion has D ≈ 80, which is noticeably smaller.

Appendix F. In-Context Learning

In this section, we show how to modify BIMT (presented in Section 2 for MLPs) to use
with transformers.

Appendix F.1. Applying BIMT to Transformers

In Section 2, we discussed how to use BIMT with fully connected neural networks.
Generalization to transformers is also possible; we simply apply BIMT to “linear layers”,
which include not only linear layers in MLPs, but also (key, query, value) matrices, em-
bed/unembed layers, as well as projection layers in attention blocks. In summary, we
count any matrix as a “linear layer” if the matrix belongs to model parameters and does
matrix–vector multiplications.

Attention layers can be seen as a special type of linear layer, involving [WQ, WK, WV]
as the weight matrix. We leave softmax and dot product of keys and queries unchanged,
since they involve no trainable parameters. The way to calculate regularizations is the
same as MLPs. However, care needs to be taken when swapping neurons. We want to
swap neurons (with their corresponding weights and biases), such that the whole network
remains unchanged as a function. For MLPs, we can therefore swap any two neurons in
the same layer (and their corresponding weights and biases). However, for transformers,
since each head operates independently, only neurons in the same head can be swapped.
In addition, two heads in the same attention layer can be swapped. In summary, swapping
choices are more restricted for attention layers.

Residual connections. For MLPs, swapping can be implemented independently for
each layer. However, the residual connections couple all the layers in the residual stream.
This means that all layers in the residual stream share the same permutations/swapping.

LayerNorm normalizes features, which contradicts the goal of sparsity. Currently, we
simply remove LayerNorm layers, which works fine for our two-layer transformers. In the
future, we would like to explore principled ways to handle LayerNorm in the framework
of BIMT.

Appendix F.2. A Singularity Problem

In Section 3.4, we trained a transformer with BIMT for an in-context learning linear
regression problem. Our setup simply has d = 1 and n = 1, which means that, given
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(x1, y1, x) and knowing y1 = wx1, the network aims to predict y = wx based on x1, x, y1.
The ground truth formula is y = y1

x1
x, which is singular at x1 = 0. In Section 3.4, we

explicitly constrained x1 to be positive and bound it away from zero, to avoid the possible
singularity. In this section, we investigate the effect of the singularity. The setup is exactly
the same as in Section 3.4, with the only difference being that x1, x are now drawn from
U[−1, 1] instead of U[1, 3], where U[a, b] stands for a uniform distribution on [a, b].

After training with BIMT, the transformer is shown in Figure A7. The top right shows
the predicted y versus the true y, where the prediction is good for large |x1| and bad for
small |x1|, which is an indication of the singularity point. Moreover, similar to Section 3.4,
we look for neurons that potentially encode the information of the weight scalar in the Res2
layer. We find that neurons 9, 13, and 23 are correlated with the weight scalar, although
none of them can predict the weight scalar single-handedly. In Figure A7 (bottom right),
the 2D plane, spanned by neuron 9 and neuron 23, is split into four regions, with very
abrupt changes at the boundaries, which are also evidence for the singularity.

Figure A7. Applying BIMT to transformers using in-context learning linear regression. The setup is
almost the same as in Figure 7, except that here, data present some singularities.

Appendix G. MNIST

Applying BIMT to tensor data. For simplicity, we usually embed neural networks
in 2D Euclidean space, but it can be any geometric space. For image data, for example, to
maintain locality of input images, it is more reasonable to embed neural networks into 3D
Euclidean space (two along image axes, one along depth). Now, neurons in the same layer
are arranged in a 2D grid instead of a 1D grid. This only affects distances between neurons,
with everything else unchanged. In fact, to change MLP embedding from 2D to 3D, the
only thing we need to change is to redefine the coordinates of neurons. Similarly, networks
can be embedded in higher-dimensional Euclidean space or even Riemannian manifolds
by properly redefining coordinates and computing distances based on the manifold metric.

Positive vs. negative weights. It was observed in Figure 8 that, at the end of training,
most weights in layer 3 (the last layer before outputs) are positive (blue), while most weights
in layer 2 are negative (red). To verify that this is not just a visual artifact, we plot the
rank distribution of positive and negative weights in Figure A8. In layer 1, there are more
positive weights with large magnitude, while negative weights seem to have a heavier tail.
In layer 2 and layer 3, there are clearly more positive and negative weights, respectively.
We are still not sure why such symmetry breaking happens because, upon initialization,
the number of positive and negative weights is roughly balanced. In Section 3.5, we called
this phenomenon “pattern mismatching”. It would be interesting to investigate if pattern
mismatching is prevalent in neural networks, or if it is specific to some combination of
specific architectures, datasets, and/or training techniques.
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Learned features. To understand what the neural network has learned, we visualize
the features (weight matrices) in layer 1. For each feature, we compute its score as the sum
of absolute weights. We rank features from high to low scores, finding there are 38 features
with large scores, as shown in Figure A9. The features look like intermediate to high-level
feature maps of convolutional filters in trained convolutional neural networks, since they
are more than just edge detectors (low-level convolutional filters), containing some extent
of global correlations.

MLPs with other depths. In the main text, we showed the results for a three-layer MLP.
We also show the results (how the connectivity graphs evolve in training) for a two-layer
MLP and a four-layer MLP in Figures A10 and A11, respectively.
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Figure A8. The magnitudes of positive and negative weights in MLP layers after training. Positive
weights dominate in layer 2, while negative weights dominate in layer 3.
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Figure A9. Visualizing MNIST features (layer 1 of Figure 8).
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Figure A10. Evolution of a two-layer MLP trained with BIMT.

Figure A11. Evolution of a four-layer MLP trained with BIMT.
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