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Abstract: The violation of a Leggett–Garg inequality confirms the incompatibility between quantum
mechanics and the combined premises (called macro-realism) of macroscopic realism (MR) and
noninvasive measurability (NIM). Arguments can be given that the incompatibility arises because
MR fails for systems in a superposition of macroscopically distinct states—or else, that NIM fails. In
this paper, we consider a strong negation of macro-realism, involving superpositions of coherent
states, where the NIM premise is replaced by Bell’s locality premise. We follow recent work and
propose the validity of a subset of Einstein–Podolsky–Rosen (EPR) and Leggett–Garg premises,
referred to as weak macroscopic realism (wMR). In finding consistency with wMR, we identify that the
Leggett–Garg inequalities are violated because of failure of both MR and NIM, but also that both are
valid in a weaker (less restrictive) sense. Weak MR is distinguished from deterministic macroscopic
realism (dMR) by recognizing that a measurement involves a reversible unitary interaction that
establishes the measurement setting. Weak MR posits that a predetermined value for the outcome of
a measurement can be attributed to the system after the interaction, when the measurement setting is
experimentally specified. An extended definition of wMR considers the “element of reality” defined
by EPR for system A, where one can predict with certainty the outcome of a measurement on A
by performing a measurement on system B. Weak MR posits that this element of reality exists once
the unitary interaction determining the measurement setting at B has occurred. We demonstrate
compatibility of systems violating Leggett–Garg inequalities with wMR but point out that dMR has
been shown to be falsifiable. Other tests of wMR are proposed, the predictions of wMR agreeing with
quantum mechanics. Finally, we compare wMR with macro-realism models discussed elsewhere.
An argument in favour of wMR is presented: wMR resolves a potential contradiction pointed
out by Leggett and Garg between failure of macro-realism and assumptions intrinsic to quantum
measurement theory.

Keywords: quantum entanglement; quantum nonlocality; macroscopic realism; Bell inequality;
Leggett-Garg inequality; element of reality

1. Introduction

The interpretation of the quantum superposition of two macroscopically distinguish-
able states has been a topic of interest for decades [1–11]. Schrödinger considered a su-
perposition |ψM⟩ = 1√

2
(|a⟩+ |d⟩) where |a⟩ and |d⟩ are macroscopically distinct quantum

states, distinguished by some measurement Q̂ [1]. The outcomes are associated with
macroscopically distinct physical properties, analogous to a cat alive or dead. Schrödinger
explained how the standard interpretation given to a quantum superposition introduces a
paradox when applied to the macroscopic system. The system is interpreted as being in
neither state |a⟩ or |d⟩ prior to measurement Q̂, suggesting it is somehow simultaneously
in both states, which would be “ridiculous” [1].

Leggett and Garg proposed concrete tests of macroscopic realism versus quantum
mechanics [12]. They introduced macroscopic realism (MR) as the premise that “a system
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with two macroscopically distinct states available to it will at all times be in one or other
of those states”. They considered a measurable quantity Qi defined for the system at
time ti; this quantity takes the value +1 or −1, depending on which of the two states
the system is (measured to be) in. MR posits the existence of a variable, λi, such that
the value of λi specifies which macroscopically distinct state the system is in and hence
predetermines the outcome of the measurement of Qi. For systems described by the
macroscopic superposition state |ψM⟩, the variable λi is a “hidden” one because quantum
mechanics does not give such a predetermination. In our paper, we are careful to specify
MR as a minimally restrictive definition, where the predetermination of the outcome Qi does
not require full knowledge of the macroscopically distinct “states” of the system, e.g., it
is not assumed that the system with λi = +1 or −1 is necessarily in state |a⟩ or |d⟩, nor
indeed in any particular quantum state.

In order to test MR, Leggett and Garg introduced the additional assumption of macro-
scopic noninvasive measurability (NIM). This assumption, however, is challenging to
justify [13–20]. The combined assumptions of MR and NIM are referred to as macro-realism.
By considering the two-time moments ⟨QiQj⟩ and assuming macro-realism, Leggett and
Garg derived inequalities that are predicted by quantum mechanics to be violated for
certain dynamical systems involving macroscopic superposition states [12].

There have been many demonstrations of a violation of a Leggett–Garg
inequality [13–33]. However, many of these are microscopic realizations only. Macro-
scopic tests exist [14,15,18,26,27], but these have been susceptible to the criticism that the
local measurements used are invasive or else require auxiliary assumptions, e.g., that the
“states” given by a definite value of λi can be prepared in the laboratory [15]. A strict test
of MR would not require such assumptions.

Motivated by the need to rigorously test macroscopic realism (MR), we examine in this
paper a recently proposed test of macro-realism involving superpositions of coherent states,
namely, entangled cat states [34,35]. Here, a measurement of the sign Q̂ ≡ Ŝ of a quadrature
phase amplitude X̂ distinguishes between two coherent states |α⟩ and | − α⟩ where α → ∞.
MR implies the outcome of Ŝ to be predetermined as either positive or negative. In this
proposal, the question of there being an invasive measurement is partly resolved because the
outcome for the measurement of Ŝ can be inferred from a measurement made on a spatially
separated system B, implying that the NIM premise is justified by Bell’s assumption of
locality [30,36–40]. The Leggett–Garg inequality becomes a Bell inequality and is referred to
as the Leggett–Garg–Bell inequality. The proposal may hence be interpreted in two ways: as
a Leggett–Garg test, or else as a macroscopic Bell test, in which a Bell inequality involving
the hidden variables λi is predicted to be violated. Such a test predicts violation of a Bell
inequality for macroscopically coarse-grained measurements, where it is not necessary to
fully resolve the amplitude X̂. While other macroscopic Bell-nonlocality tests have been put
forward [41–58], the proposal here identifies two macroscopically distinct states that allow
for the simple application of MR as considered originally by Leggett and Garg. Similar
tests involving coarse-grained measurements have been proposed [35,59–62].

In this paper, our motivation is to examine whether it is possible to obtain consistency
with macroscopic realism (MR), despite the fact that the Leggett–Garg–Bell inequality is
violated for a macroscopic proposal with a rigorous justification of noninvasive measura-
bility. In the Leggett–Garg interpretation of the proposal, the system A is examined at three
consecutive times ti (i = 1, 2, 3). At each of these times, the system has two macroscopically
distinct states available to it. In between, the system evolves dynamically, according to
a unitary evolution UA(t). The system is entangled with a second system B, which also
evolves locally. At time ti, a measurement of Qi on system B provides the outcome for Qi
of A. In the Bell interpretation of the proposed experiment, the two-time moments ⟨QiQj⟩
become the bipartite moments of the Bell inequality. For each system A and B, the local
dynamics UA(t) (UB(t)) corresponds to the dynamics UA

θ (UB
ϕ ) associated with the local

choice of measurement setting θ (ϕ), which in the traditional Bell experiment dictates which
spin component SA

θ (SB
ϕ ) will be measured.
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It has been shown in previous work that the dynamics Uθ associated with the choice
of measurement setting θ plays a key role in understanding how it is possible to find con-
sistency with MR. Thenabadu and Reid [34] have pointed out that MR can hold despite the
violation of the Bell inequalities, if defined appropriately to take into account this dynamics.
“Realism” is a concept taken to imply real properties that exist independently of, or prior to,
a measurement made on a system. Hence, there are two definitions of MR, depending on
whether the “measurement” is defined to include the unitary dynamics Uθ or not. The first
is deterministic macroscopic realism (dMR), which can be falsified by the proposed Bell cat ex-
periments. The second, weak macroscopic realism (wMR), is a weaker set of assumptions that
can be posited consistently with the Bell predictions. Recently, Fulton et al. [63] extended
the premises of wMR to fully account for bipartite Einstein–Podolsky–Rosen (EPR) systems
where “elements of reality” may be considered [64]. They defined three parts to the wMR
premise: wMR(1), wMR(2), and wMR(3).

In this paper, we demonstrate the consistency of the extended wMR premises with
the predicted violation of the macroscopic Leggett–Garg–Bell inequalities, as proposed
in [34]. In particular, we show how the third premise wMR(3) is implicit in quantum
measurement theory, where one indirectly infers the result of a measurement of a physical
quantity of a system A by a direct measurement on a second system, the meter (for which
the measurement setting is fixed). It was raised by Leggett and Garg whether a system
violating macro-realism could be a good measurement device [12]. Extending arguments
put forward in [34], we show how the premise wMR (3) resolves this question. The premises
of wMR lead to predictions that can be tested experimentally. In this paper, we review and
summarize four such tests. The tests allow for the falsification of wMR, if the experimental
results are inconsistent with the predictions of wMR. This is not expected, however, since
the predictions of wMR agree with those of quantum mechanics.

Fulton et al. point out that wMR can be generalized to apply to the standard micro-
scopic Bell systems, in which case the premise of wMR is referred to as weak local realism
(wLR) [63]. Hence, the analyses and tests we give in this paper map on to similar analyses
and tests for wLR. There is consistency of wLR with the violations of Bell inequalities in
standard set-ups. This has been shown by Fulton et al. [63] and by Joseph et al., who have
applied the wMR/wLR premises to examine realism in Wigner’s friend paradoxes [65]. It
is emphasized that the premise of weak local realism (wLR) is a subset of the conditions
of local realism as defined in Bell’s theorem. The premises of wMR and wLR give predic-
tions consistent with quantum mechanics and allow for the violation of Bell inequalities.
Hence, these premises do not rule out Bell nonlocality. Our motivation in examining the
wMR/wLR premises is to probe the degree of nonlocality that is necessarily involved in
Bell violations.

The layout of this paper is as follows. In Section 2, we summarize the premises of dMR
and wMR. In Sections 3 to 6, we review and extend the arguments put forward in [34,63].
This includes the apparent inconsistency between wMR and the completeness of quantum
mechanics, given along the lines of Schrödinger’s original argument [1], in Section 3. The
gedanken experiment involving entangled cat states is summarized in Section 4, and the
negation of deterministic macroscopic realism is explained in Section 5. In Sections 6 and 7,
we demonstrate the consistency of wMR with the predicted violation of Leggett–Garg–Bell
inequalities. We also examine the premise wMR(3) involving the assumption of an “element
of reality”, showing consistency with that premise. Four tests of wMR are proposed, all of
which show agreement between wMR and quantum predictions. In Section 8, we explain
how the wMR(3) premise can be implemented in quantum measurement theory to resolve
the inconsistency raised by Leggett and Garg [12]. Finally, in Section 8, we compare wMR
with models of macroscopic realism developed by Maroney and Timpson [19,20].

2. Weak versus Deterministic Macroscopic Realism

Two definitions of MR exist. The definitions depend on whether the “measurement”
process includes the unitary interaction Uθ that determines the measurement setting θ or
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not (Figure 1). This stage of measurement precedes a final “pointer” measurement stage,
which includes an (irreversible) readout of a meter. In the Bell experiments, the interaction
Uθ is considered to be part of the measurement, and the relevant system is that defined
prior to Uθ . In this context, deterministic macroscopic realism (dMR) posits that a value λθ

predetermining the outcome of the measurement Q̂ ≡ Ŝθ can be specified for the system as
it exists prior to the measurement (which includes Uθ). Here, we consider that the different
sets of macroscopically distinct states φλθ

(which give a definite outcome λθ for Ŝθ) defined
for different θ can be simultaneously identified for this system. The analogy is in classical
mechanics, where states with a definite x and p are defined for the system at any point of
time, prior to measurement of either. It has been shown that dMR is falsifiable, according
to quantum predictions that allow for a violation of macroscopic Bell inequalities [34,35].

A

t=t1 t=t2

System 
prepared

Unitary 
operations 

𝜆"#

𝑈%#

Readout stage of
measurement 

𝜆%#

{𝝀𝟏𝑨, 𝝀𝟐𝑨}

Figure 1. Diagram depicting the different meanings of deterministic (dMR) and weak macroscopic
realism (wMR). A system is prepared at time t1 in a state |ψ⟩. System A has two macroscopically
distinct states available to it, depicted as a ball being in one box or the other. The diagram depicts a
measurement ŜA

θ that can be made on the system. First, reversible interactions UA
2 occur, modelled in

the diagram as a shuffling of the ball between the boxes. In one view of the measurement process,
these operations model the first stage of measurement that requires unitary interactions to fix the
measurement setting θ. After the shuffling, at time t2, the location of the ball, as in which box it
is in, can be determined by an observer opening the boxes. This is referred to as the “pointer”, or
readout, stage of the measurement. Weak macroscopic realism (wMR) posits that the location of the
ball is predetermined at times t1 and t2, after the shuffling U2 has occurred, just prior to the observer
opening the boxes. The predetermination is represented by variables λA

i that are assigned only to the
system as it is defined at each time ti, with the value λA

i = +1 or −1 indicating which box the ball is
located in. Alternatively, the premise dMR considers predetermined values prior to the measurement
viewed in its entirety as consisting of both stages (large grey rectangle). Here, a predetermination
for the outcome giving the final macroscopic state of the ball at time t2 is assigned to the system as
defined prior to the unitary operations, at time t1. This implies a simultaneous assignment of both
variables {λA

1 , λA
2 } (in red) to the system described by |ψ⟩.

On the other hand, the Leggett–Garg interpretation of the experiment presents a
different context (Figure 1). At certain times ti (i = 1, 2, 3) the system is already prepared for
the final “pointer” stage of the measurement, the unitary interaction Uθ being considered
part of the system dynamics. In this context, the measurement basis has been fixed prior,
and a less restrictive definition of MR applies. The premise of weak macroscopic realism (wMR)
is a set of weaker assumptions that are not negated by the violation of the macroscopic Bell
inequalities [34]. We consider that the system at the relevant time t f after the interaction Uθ
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has available to it two [or more] macroscopically distinct states, these states (which we call
pointer states) corresponding to definite and distinct outcomes for the final measurement,
Q̂ ≡ Ŝθ .

The premise of wMR posits that [34]:

• Premise wMR(1): A predetermined value λθ for the outcome of the (pointer) mea-
surement Ŝθ can be ascribed to the system as it exists at the time t f after the unitary
dynamics Uθ , at which time the measurement setting θ is fixed in the experiment. This
means that the predetermination is only (necessarily) assumed for the system once it
is prepared with respect to the measurement basis.
The premise implies that the irreversible pointer stage of the measurement occurring
after the unitary dynamics Uθ is passive, in the sense that this stage of measurement
acts to reveal the value λθ . It is also posited that:

• Premise wMR(2): The value λθ defined for the system at the time t f is fixed to give the
outcome of the pointer measurement (if it were to be made on the system defined at
that time) and is not changed by any space-like separated interactions Uϕ or events that
might then occur at a spatially separated site.

Recently, Fulton et al. [63] have extended the definition of wMR to the situation of the
Einstein, Podolsky, and Rosen (EPR) paradox [64], including Bohm’s version for spins [66].
Consider the bipartite set-up where spin measurements ŜA

θ and ŜB
ϕ are made on space-like

separated systems A and B.
Here, wMR posits that:

• Premise wMR(3): Whether or not the final pointer measurement for the spin ŜB
ϕ has been

made on one system (B, say) does not influence the value λA
θ for the outcome of the

spin measurement of the other, A. Suppose one can predict with certainty the result of
a measurement (Ŝϕ, say) on one system (A, say) by making a measurement (Ŝϕ, say)
on the other system, B. The premise posits that the value for the outcome of Ŝϕ at A is
specified by an “element of reality”, given by a variable λA

ϕ , once the unitary dynamics
UB

ϕ determining the measurement setting at B has taken place. The “element of reality”
exists regardless of whether the unitary operation UA

ϕ specifying the measurement
setting at A has actually been carried out.

It is important to note that the value λθ predetermines the (macroscopic) outcome for
the pointer measurement only e.g., in Schrödinger’s cat paradox [1], the cat is dead or alive
in a box, prior to the observer opening the box. Similarly, in the example of Figure 1, the
ball is in one or other box, prior to an observer opening the box. The predetermination λθ

does not refer to the full “state” of the cat, or of the ball, which may specify other physical
quantities. This is discussed further in Sections 3 and 9.

Fulton et al. explain that it is possible to consider a qubit system that is not necessarily
macroscopic, as in a standard Bell experiment [63]. One can consider the system at a time
t f after which the unitary interaction Uθ that fixes the measurement setting has occurred.
For a suitable t f , the system would become coupled to a macroscopic meter, in a reversible
interaction, prior to any final readout. The measurement basis is specified, and at this stage
the system is a macroscopic superposition of pointer states corresponding to final amplified
qubit outcomes. We expect wMR to apply to the system at this time. Hence, it is possible to
define weak local realism (wLR) as the three premises above, specifying the time t f .

The above premises are less restrictive than those of local realism, as introduced by
EPR and Bell. The EPR paradox, Bell nonlocality and the Greenberger–Horne–Zeilinger
(GHZ) nonlocality [67] all arise from the assumption of EPR and Bell’s strong version
of local realism, where the predetermined values are assumed valid prior to the unitary
interactions, U(A)

θ and U(B)
ϕ at each site [63]. Hence, the above wMR premises do not rule

out Bell nonlocality. In fact, nonlocal effects are evident for systems satisfying wMR (and
wLR) [34].
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A simple picture justifying the extended wMR premises is given by considering set-
ups similar to that of the three-box paradox [68,69], as in Figure 1. A ball is placed in one of
three boxes at time t1. The state is modelled as the three-mode state |N⟩|0⟩|0⟩, where here
|n⟩ is a number state of n photons, the n quanta representing the ball. After some shuffling,
the ball at time t2 is in a superposition of being found in one of the three boxes:

1√
3
[|N⟩|0⟩|0⟩+ |0⟩|N⟩|0⟩+ |0⟩|0⟩|N⟩]. (1)

In this context, the unitary interaction U1 corresponds to the shuffling, which is reversible.
The pointer measurement corresponds to an observer opening the boxes, to determine the
state of the ball, as in Figure 1. Further shuffling Uk can occur, and the location of the ball
examined at time tk after shuffling has occurred. As explained above, wMR(1) posits MR
for the location of the ball, that it will be found in one of the boxes, i.e., the outcome for the
ball being in a given box or not is predetermined. Hence, according to wMR, a variable λk
can be specified, the value of which indicates which box the ball will be found in, at time tk.

Figure 2 shows a set-up of two groups of two boxes, A and B, prepared in
a state

[|N⟩|0⟩]A[|N⟩|0⟩]B (2)

Weak MR(2) posits that once the shuffling for group A has finished, the location of the ball
as given by λA is fixed and cannot be changed by any shuffling that occurs at the other
boxes B. Thirdly, wMR(3) posits that if, after some form of shuffling UA

θ and UB
ϕ at both the

groups, we are able to predict with certainty which box the ball is in of group A, by opening
the boxes at B, then an “element of reality” λA

θ exists for the location of the ball in group A.
However, we can only say that this element of reality λA

θ is valid at the time tϕ, once the
shuffling UB

ϕ has occurred at B. The value λA
θ is fixed at this time tϕ, however, regardless

of whether the shuffling UA
θ has actually yet occurred at A. We explain in Section 8 how

the premise wMR(3) justifies assumptions in quantum measurement theory, where the
measurement made on a meter B implies the value of a physical quantity of a system A.

A

t=t1 t=t2 t=t3

Local 
operations

System 
prepared

Local 
operations 

B

𝜆"#

𝑈%#

𝑈%&

𝑈'#

𝑈'&

𝜆"&

𝜆%#

𝜆%&

𝜆'#

𝜆'&

Figure 2. Diagram depicting the assumptions of weak macroscopic realism (wMR). Consider two
separated systems A and B, each of which has two macroscopically distinct states available to it. As
in Figure 1, this is depicted as a ball being in one box or the other. Reversible interactions UA

2 and
UB

2 occur locally at each site, modelled as a shuffling of the ball between the two boxes. After the
shuffling, at time t2, the location of each ball can be determined by opening the boxes. After time t2,
further local shuffling operations UA

3 and UB
3 take place. The premise wMR(1) posits that at each time
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ti (i = 1, 2, 3), the location of each ball is predetermined prior to an observer opening the boxes. The
predetermination is represented by variables λA

i and λB
i , assigned to each system at time ti. The

premise wMR(2) posits that the location of the ball at one site at time ti is fixed once the local shuffling
operation Ui has been finalized, and is not affected by any shuffling that might then occur at the
other site. The premise wMR(3) posits that if it is possible at time ti (i = 1, 2, 3), after the shuffling has
taken place at one site (B, say), to predict with certainty (by determining the location of the ball at
site B) the location of the ball of the other system (A) as it is placed after some specified shuffling
UA

k at that site A, then the location of the ball at A after that shuffling UA
k is fixed at time ti. This is

regardless of whether the shuffling UA
k has actually occurred at the other site A at time ti.

In Section 6, we give a physical example of this model of wMR by presenting an explicit
interaction that realizes UA

θ and UB
ϕ . We then show how this wMR model can be consistent

with the violation of Leggett–Garg and Bell inequalities. In the above example which
uses number states, UA

θ and UB
ϕ can be realized at least for moderate N by a Hamiltonian

H based on a Josephson coupling [35,70,71]. A more fruitful example that works in a
macroscopic limit uses cat states rather than number states.

3. Cat States, Weak Macroscopic Realism, and Incompleteness

The objective of this paper is to analyse how weak macroscopic realism (wMR) can
be consistent with violations of macroscopic Bell and Leggett–Garg inequalities. As a
preliminary, before examining whether wMR can be compatible with quantum mechanics,
we present a possible argument against wMR [34]. This concerns the inconsistency between
wMR and the completeness of quantum mechanics. We review how the premise of wMR
links with Schrödinger’s cat paradox [1]. This is done to highlight the importance of testing
the macroscopic realism (MR), since it is not clear whether wMR is fully compatible with
quantum mechanics.

Schrödinger asks whether it is feasible that a macroscopic system (a “cat”) be simulta-
neously in both of two macroscopically distinct states (both “dead and alive”) [1]. Weak MR
counters such a claim: wMR posits that at any given time ti, the system is to be considered
in one or other of the macroscopically distinct states. The essential feature of Schrödinger’s
paradox is that for the system in a quantum superposition of the two macroscopically dis-
tinct states, quantum mechanics does not provide a description of what could be meant by
the “states” that the “cat” is “in”. This constitutes the nature of the paradox—an apparent
inconsistency between wMR and the completeness of quantum mechanics.

It is generally understood that those “states” for which the “cat” is either “dead” or
“alive” cannot be quantum states. Below, we summarise the proof of this result for the
system we examine in this paper: a superposition of macroscopically distinct coherent
states. According to wMR, the “state” the cat is in (prior to an observer opening the
box) has a predetermined value for the physical quantity Q that the observer measures to
distinguish whether the cat is dead or alive. We show below that the superposition cannot
be represented as a classical mixture of quantum states having a definite value of Q. The
question associated with Schrödinger’s argument [1] is: If the “states” are not quantum
states, what are they? Schrödinger’s argument becomes a paradox since if macroscopic
realism is correct, this suggests an incompleteness of quantum mechanics: the description
for the underlying states of the system is lacking.

We begin by considering the cat state [7,8,72–74]

|ψM⟩ = 1√
2

(
|α⟩+ i| − α⟩

)
(3)

of a single-mode field A. Here, | ± α⟩ are coherent states with α large and real. These
states becomes macroscopically distinguishable in phase space for large α, in analogy
with the “alive and dead” states, |a⟩ and |d⟩, of the “cat”. Quadrature phase amplitude
measurements X̂A = 1√

2
(â + â†) and P̂A = 1

i
√

2
(â − â†) are defined (in a rotating frame)

where â†, â are mode boson operators (h̄ = 1) [7]. The states | ± α⟩ can be distinguished
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by a measurement Q̂: here, Q̂ is given as ŜA, which has a value +1 if the outcome of X̂A is
positive and −1 otherwise. The outcomes +1 and −1 are analogous to the spin outcomes
in a Bell experiment.

In this context, ŜA is the pointer measurement. The outcome can be determined
using a homodyne measurement scheme, which gives a readout on a macroscopic meter.
Here, we see that the system in the state |ψM⟩ has been prepared in a superposition
of pointer eigenstates. The coherent states constituting the superposition are effective
pointer eigenstates for large α since the outcome for ŜA is given as 1 or −1 for |α⟩ and
| − α⟩, respectively. The state |ψM⟩ is prepared for the pointer measurement ŜA, with the
measurement basis being eigenstates of ŜA.

Weak macroscopic realism postulates that the system has a definite “spin” outcome,
+1 or −1, for ŜA, which implies it must be in a state with a sufficiently localized outcome
XA, for X̂A. If the state is to be a quantum state, we arrive at a constraint on the outcomes PA
of measurement P̂A. The distribution for XA gives two Gaussian hills each with variance
1/2 (Figure 3). Supposing the system to be in a classical mixture of two states, one for each
Gaussian, in accordance with wMR, then for each we specify the variance (∆XA)

2 = 1/2.
If the two states are quantum states, then the uncertainty relation ∆XA∆PA ≥ 1/2 for each
implies that the overall variance in PA satisfies (∆PA)

2 ≥ 1/2 [34].

-6 -3 0 3 6

0

0.1

0.2

0.3

-6 -3 0 3 6

0

0.2

0.4

0.6

0.8

1

Figure 3. The probability distributions P(XA) and P(PA) for the cat state (3) with α = 2.

The observation of
(∆PA)

2 < 1/2 (4)

leads to an Einstein–Podolsky–Rosen-type paradox, where, since the state consistent with
wMR cannot also be consistent with the uncertainty principle, one argues either the failure
of wMR or else an incompleteness of quantum mechanics. The underlying states posited
by weak macroscopic realism (wMR), which have a definite value of the parameter ŜA,
cannot be quantum states. For the cat state (3), a fringe distribution is observed for P̂A
(Figure 3), and

(∆PA)
2 =

1
2
− 2α2e−4α2

. (5)

The paradox is obtained for all α, albeit by a vanishingly small amount for larger
α [34,75,76]. The proof presented here is stronger than earlier proofs that demonstrate
the incompatibility of the superposition with a classical mixture of the two coherent states,
|α⟩ and | − α⟩ [7]. We note similar paradoxes have been given in the literature, including
in [77,78].

While the original Einstein–Podolsky–Rosen (EPR) paradox revealed inconsistency
between local realism and the completeness of quantum mechanics [64], Bell later proved
local realism could be negated [36]. The predictions of quantum mechanics were different
to those of local realism. This gave a resolution of the original EPR paradox, since the
paradox was based on a falsifiable premise. The above argument, however, is based on
weak macroscopic realism (wMR), which motivates the question of whether wMR can
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also be negated. We show in this paper that wMR is not negated by the violation of the
macroscopic Bell and Leggett–Garg inequalities.

4. A Strong Test of Macro-Realism Using Entangled Cat States

To examine this question, we first follow [27] to demonstrate how Leggett and Garg’s
macro-realism [12] can be violated for the cat state (3). In the context of the Leggett-Garg
tests, the premise of MR is applied only to the system defined at the times when it is
prepared for a pointer measurement (refer to Figure 2). Hence, the weaker premise of
wMR suffices to define macro-realism. Macro-realism is hence defined as the combined
assumptions of wMR and noninvasive measurability (NIM)—that one may determine the
value of λi as defined by wMR, without a subsequent macroscopic disturbance to the future
dynamics of the system [12].

At time t1 = 0, we consider that system A is prepared in |α⟩, where α is real. The
system then evolves according to the nonlinear Hamiltonian

HNL = Ωn̂4 (6)

where Ω is a constant and n̂ = â† â. After time t2 = π/4Ω, it can be shown that the system
is in the state [27,34]

Uπ/8|α⟩ = e−iπ/8(cos π/8 |α⟩+ i sin π/8 | − α⟩
)

(7)

where we write Uπ/8 = UA(t2) = e−iH(A)
NL t2/h̄. After further evolution, at time t3 = π/2Ω,

the system is in the cat state

Uπ/4|α⟩ =
e−iπ/4
√

2

(
|α⟩+ i| − α⟩

)
(8)

where Uπ/4 = UA(t3). The dynamics is depicted in Figure 4, using the Q function [79].

-4 0 4

-4

0

4

-4 0 4 -4 0 4 -4 0 4

0.1

0.2

0.3

T=0t=0 t=p/4 t=p/2 t=3p/4

xA

pA

xA xA xA

Figure 4. The dynamics of the system prepared in a coherent state |α⟩ as it evolves for a time t
under the action of HNL (Equation (6)). Here, α = 3, but the solutions apply as α → ∞. Time t
is in units of Ω−1. After an evolution time t = π/4, the system is in the superposition (7). After
evolving for a time t = π/2, the system is in the superposition (8). The evolution is periodic and
returns to the coherent state |α⟩ at time t = 2π. The contour plots give the Q function defined as
Q(α0) = |⟨α0|ψ⟩|2/π = Q(xA, pA) of the state |ψ⟩ at time t. Here, α0 = xA + ipA.

At each time ti, we define Si to be the outcome of the measurement ŜA. Assuming the
system satisfies wMR, the value for Si is determined by a hidden variable λi, with values
+1 and −1. Algebra reveals that ⟨λ1λ2⟩ − ⟨λ1λ3⟩ + ⟨λ2λ3⟩ ≤ 1 [12,21]. The two-time
correlations are given as ⟨SiSj⟩ = ⟨λiλj⟩. The assumption NIM implies these could be
measured since an ideal measurement of Si at times ti determines the value of λi without
subsequent disturbance to the system. Macro-realism therefore implies the Leggett–Garg
inequality [12,21]

⟨S1S2⟩+ ⟨S2S3⟩ − ⟨S1S3⟩ ≤ 1. (9)
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Quantum mechanics predicts ⟨S1S2⟩ = cos(π/4) and ⟨S1S3⟩ = 0 since the outcome for S1
is known to be 1 from preparation. Establishing ⟨S2S3⟩ is not so clear because one may
argue that a realistic measurement at time t2 will affect the future dynamics. However,
assuming the system is actually in one of the states |α⟩ or | − α⟩ at t2, the system at the later
time t3 will evolve to Uπ/4|α⟩ or Uπ/4| − α⟩ [12]. This implies ⟨S2S3⟩ = cos(π/4). The
inequality (9) is violated, with the left side being

√
2. One sees however from the paradox

(5) that the system cannot actually quite be in either state |α⟩ or | − α⟩ at time t2, prior
to measurement.

The test of macro-realism can be improved in the following manner. Consider two
space-like separated systems A and B prepared at time t1 = 0 in the Bell-cat state [10,34]

|ψBell⟩1 = N
(
|α⟩A| − β⟩B − | − α⟩A|β⟩B

)
(10)

where |β⟩B is a coherent state for system B, N = 1√
2
{1 − exp(−2|α|2 − 2|β|2)}−1/2, and

we will take α = β with α real (Figure 5). We define the operators X̂, P̂, Ŝ, n̂, HNL, Uπ/8,
Uπ/4 and hidden variables λi as above for each system A and B, denoted by a superscript
A or B in each case. The systems A and B evolve independently for times ta and tb,
respectively, according to local interaction Hamiltonians HA

NL and HB
NL. We define SA

j

(SB
j ) as the outcomes of the measurements ŜA

j (Ŝj
B) performed after an interaction time

ta = tj (tb = tj). If both systems evolve for time t2 = π/4Ω, the system is in the Bell state
|ψBell⟩2 = UA

π/8UB
π/8|ψBell⟩1 given by

|ψBell⟩2 = N e−iπ/4(|α⟩| − β⟩ − | − α⟩|β⟩
)
. (11)

If both systems evolve for time t3 = π/2Ω, the system is in the similar Bell state

|ψBell⟩3 = UA
π/4UB

π/4|ψBell⟩1

= N e−iπ/2(|α⟩| − β⟩ − | − α⟩|β⟩
)
. (12)

The premise wMR assigns to A and B after interaction times ta = ti and tb = tj (i, j = 1, 2
or 3) the hidden variables λA

i and λB
j (Figure 5). These take values +1 or −1 that determine

(in the wMR model) the outcomes for ŜA
i and ŜB

j .
The failure of macro-realism is demonstrated convincingly, if one is able to perform

the measurement at time t2 without direct disturbance to the system A. To this end, we note
the mapping that leads to the proposal of a macroscopic version of the Bell experiment [34].
As α → ∞, |α⟩ and | − α⟩ are orthogonal, and we map the system onto spin-qubits | ↑⟩ and
| ↓⟩, defined as eigenstates of Pauli spin σ̂A

z . The rotations Uπ/8, Uπ/4, and U3π/8 (defined
below) become precisely the spin rotations required in the Bell experiments, realized by
Stern–Gerlach analyzers or polarizing beam splitters [36–38].

The SA
i can be measured by taking tb = ti and inferring the value from a measurement

of SB
i at B (Figure 5). The anti-correlation evident in the Bell states implies SA

i = −SB
i ,

and λA
i = −λB

i . It is argued that this measurement is noninvasive to system A, based on
the assumption of macroscopic Bell locality (ML). ML asserts that for space-like separated
events or interactions at A and B, the events at B cannot change the value of the hidden
variable λA

M at A, and vice versa. This is assumed for all events and interactions over the
time interval t1 to t3, implying no macroscopic changes to the outcomes at A at any time
ti due to measurement at B [80]. Assuming macro-realism, the inequality (9) becomes the
Bell inequality [36]

−⟨SB
1 SA

2 ⟩ − ⟨SB
2 SA

3 ⟩+ ⟨SB
1 SA

3 ⟩ ≤ 1. (13)

The predictions based on the measurements X̂A and X̂B are calculated by evaluating
P(XA, XB) (Figures 6 and 7). Where α, β > 1, the predictions for −⟨SB

i SA
j ⟩ are indistinguish-

able from those of ⟨SiSj⟩ given above for the predictions of the Leggett–Garg inequality (9).
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Violation of (13) is predicted; as for (9), the left side is
√

2. The violations are valid for
arbitrarily large α, β and falsify the combined assumptions of wMR and ML. Hence, we note
that one cannot conclude the violation of wMR directly.

A

t=t1 t=t2 t=t3

Local 
operations

System 
prepared
in | ⟩𝜓$%&& 1

Local 
operations 

B

𝜆()

𝑈+/-)

𝜆($

𝜆.)

𝜆.$

𝜆/)

𝜆/$

𝑈+/-$

𝑈+/-)

𝑈+/-$

𝑡1 = 𝜋/4 𝑡1 = 𝜋/4

𝑡5 = 𝜋/4 𝑡5 = 𝜋/4

| ⟩𝜓$%&& 2 | ⟩𝜓$%&& 3

Figure 5. A schematic diagram of the dynamics for the measurement of spins SA
i and SB

i on the
systems A and B prepared in the Bell state |ψBell⟩1 (Equation (10)). The measurement of SA

i (i = 1, 2, 3)
is made by measuring which state the system is in at time ti. This is likened to observing a ball in one
or other box. The measurement SA

2 is preceded by a unitary interaction UA
2 = UA

π/8 corresponding
to evolving under the action of the Hamiltonian HA

NL for time ta = π/4. Here, time is in units Ω−1.
Similarly, SA

3 is preceded by a total evolution of UA
3 = UA

π/4, corresponding to evolution for time
ta = π/2. The spin SB

i is measured similarly, by local interactions on system B. The outcomes of SA
i

and SB
i are anti-correlated, with the Bell states |ψBell⟩i being created at times t1. Hence, the value of

SA
i can be inferred indirectly from the measurement of SB

i on system B. In a wMR model, the location
of each ball is predetermined at time ti, as given by λA

i and λB
i (Figure 2). Hence, λA

i = −λB
i .
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A

t=t1 t=t2 t=t3

Local 
operations

System 
prepared
in | ⟩𝜓$%&& 1

Local 
operations 

B

𝜆()

𝑈+/-)

𝜆($
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𝑈+/-)

𝑡1 = 𝜋/4 𝑡1 = 𝜋/4

𝑡5 = 0
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0
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Figure 6. Violation of the macroscopic Leggett–Garg–Bell inequality (13) using cat states, measuring
⟨SB

1 SA
2 ⟩ and ⟨SB

1 SA
3 ⟩. The diagram (top) and contour plots (lower) show the dynamics as the system

prepared in the state |ψBell⟩1 at time t1 = 0 evolves through the measurement of ⟨SB
1 SA

2 ⟩ and ⟨SB
1 SA

3 ⟩.
The local systems evolve according to HA/B

NL for times ta and tb given by (ta, tb) in units of Ω−1. For
the measurement of SB

1 , the evolution is stopped at B at time tb = 0. A series of successive unitary
rotations occurs at A. The interactions realize UA

π/8, and hence preparation for measurement of ŜA
2 ,

at time ta = π/4; and UA
π/4, and hence preparation for measurement ŜA

3 , after a total interaction time
of ta = π/2. Here, t1 = 0, t2 = π/4, and t3 = π/2. The diagram is schematic only. The contour plots
show the quantum prediction for P(XA, XB) at the given times. Here, α = β = 3.
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Figure 7. Violation of the macroscopic Leggett–Garg–Bell inequality (13) using cat states, measuring
⟨SB

2 SA
3 ⟩. The diagram (top) and contour plots (lower) are as for Figure 6 and show the dynamical

sequence as the experimentalist measures ⟨SB
2 SA

3 ⟩. For the measurement of SB
2 , the local evolution

under HB
NL is stopped at B at time t2 so that tb = π/4. For the measurement of SA

3 , the local evolution
under HA

NL is stopped at time ta = π/2. This moment involves a unitary rotation at each site
and hence a change of measurement basis for both systems. The contour plots show the quantum
prediction for P(XA, XB) at the given times. The anti-correlation indicated in Figure 5 between the
outcomes SA

i and SB
i is evident when ta = tb. Here, t1 = 0, t2 = π/4, and t3 = π/2. Here, α = β = 3.

The correlations and violations are unchanged as α, β → ∞.

5. Falsifying Deterministic Macroscopic Realism

The violation of the Leggett–Garg–Bell inequality (9) (or (13)) does not imply falsifica-
tion of weak macroscopic realism (wMR). However, one may falsify deterministic macroscopic
realism (dMR). The inequality given by (13) is seen to be a macroscopic version of Bell’s
original inequality [36,37], applied to macroscopic spin observables ŜA

j and ŜB
j . The choice

between two times of evolution for each system A and B (e.g., t2 and t3 for A, and t1 and t2
for B) corresponds to a choice between two measurement settings (e.g., θ2 and θ3 for A, and
ϕ1 and ϕ2 for B). This choice of unitary rotation tj maps in the microscopic Bell experiment
to a choice of analyzer setting θj.

The Bell inequality (13) can be derived assuming deterministic macroscopic realism
(dMR) [34]: each system A and B is simultaneously predetermined to be in one or other of
two macroscopically distinct states, prior to the choice of measurement setting, so that two



Entropy 2024, 26, 11 14 of 33

macroscopic hidden variables (e.g., λA
2 and λA

3 for A, and λB
1 and λB

2 for B) are ascribed to
each system at the time t1 (Figure 1). This assumption naturally incorporates ML since it is
specified that λj cannot change over the course of the unitary dynamics associated with the
adjustment of measurement setting, at either site. The violation of (13) therefore falsifies
dMR. The Bell inequality (13) is of the form derived by Bell in his original paper, where he
considered local hidden variables of a deterministic nature [36]. In such theories, the Pauli
spin component of each of the two particles is assumed to be predetermined, taking on the
value of either +1 or −1.

We may also consider the evolution of (10) for time t4 = 3π/4Ω, in which case the
evolved state is

UA
3π/8|α⟩ = ei3π/8(cos 3π/8|α⟩+ i sin 3π/8| − α⟩

)
. (14)

This allows for the evaluation of the familiar Clauser–Horne–Shimony–Holt Bell inequal-
ity [37,38]

|⟨SB
1 SA

2 ⟩+ ⟨SA
2 SB

3 ⟩+ ⟨SB
3 SA

4 ⟩ − ⟨SB
1 SA

4 ⟩| ≤ 2 (15)

which can also be derived from dMR. The system prepared in the Bell state (10) evolves
after time t4 to the Bell state

|ψBell⟩4 = UA
3π/8UB

3π/8|ψBell⟩1

= N e−i3π/4(|α⟩| − β⟩ − | − α⟩|β⟩
)
. (16)

This leads to predictions ⟨SB
3 SA

4 ⟩ = − cos π/4 and ⟨SB
1 SA

4 ⟩ = − cos 3π/4, and a violation
of (15), with the left side being 2

√
2. Equation (15) can be viewed as the Leggett–Garg

inequality
⟨SA

1 SA
2 ⟩+ ⟨SA

2 SA
3 ⟩+ ⟨SA

3 SA
4 ⟩ − ⟨SA

1 SA
4 ⟩ ≤ 2 (17)

derived in [12]. Similar to (13), to obtain (15) we justify the NIM premise using ML and put
SB

i = −SA
i for times t1 and t3, based on the anti-correlation of the spins for the Bell states.

Alternatively, Equation (15) is seen to be a macroscopic Bell inequality, where one measures
the correlation E(θi, ϕj) = ⟨SA

i SB
j ⟩.

6. Finding Consistency of the Leggett–Garg–Bell Violations with Weak
Macroscopic Realism

We now ask whether one can reconcile the violations of macro-realism and determin-
istic macroscopic realism (dMR) with the validity of weak macroscopic realism (wMR). To
argue for consistency, it is necessary to understand that we distinguish the two stages of
the measurement process and that the measurement setting is fixed experimentally by a
physical, not abstract, device that requires an interaction with the system being measured.

6.1. Two Stages of Measurement

The first stage of measurement consists of the unitary dynamics Uθ that determines
the experimental measurement setting. In standard Bell experiments, this corresponds
to the passage of particles through a Stern–Gerlach apparatus, or else a polarizing beam
splitter. In the macroscopic Bell experiments that we propose, the dynamics Uθ is given
by the interaction of the local mode with a nonlinear medium, according to HNL, for
a given length of time tθ . The length of time determines the setting. The first stage of
measurement can be reversed by applying the inverse operation U−1

θ . After the unitary
dynamics, the measurement is completed by the detection of particles or fields, and a
final readout on a macroscopic meter. This constitutes the irreversible second stage of the
measurement. We have referred to this second stage of the measurement as the pointer
stage of the measurement because it leads to a reading on a meter. The different stages of
measurement are modelled in Figures 1–7 as a “shuffling” and as a detection, by opening
a box.
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The premise of wMR considers the system at time t f , after the first stage but prior to
the second stage of measurement. Suppose the state of the system prior to the measurement
is |ψM⟩. Then, at time t f the state has evolved and is different, given by

|ψ(t f )⟩ = Uθ |ψM⟩

where for the macroscopic Bell test, Uθ = e−iHNLtθ /h̄. In the standard Bell and EPR ex-
periments, the Hamiltonian H is defined by the polarizing beam splitter. The premise
wMR posits that the system at time t f can be ascribed a real property, given by λθ , which
determines the final outcome of the measurement, if it is to be completed (without a change
of measurement setting).

6.2. Pointer Superpositions

For wMR to apply, however, it is necessary for the state |ψ(t f )⟩ of the system at time
t f to have “two or more macroscopically distinct states available to it”, with these states
corresponding to definite outcomes for the pointer measurement. This is true for the sys-
tems in a superposition of two macroscopically distinct coherent states, as in Equation (10).
It is useful to make the analogy with the standard Bell state

|ψB⟩ =
1√
2
[| ↑⟩| ↓⟩ − | ↓⟩| ↑⟩], (18)

the | ↑⟩ and | ↓⟩ being eigenstates of the spin component Ŝz, which are the pointer states
for the system prepared for the final stage of measurement of Ŝz. It is possible to rewrite
the state in terms of the eigenstates | ↑⟩ and | ↓⟩ of Ŝx. However, this measurement would
require a further unitary operation to be performed. The premise wMR only identifies a
predetermined value λθ for the outcome of Ŝθ for the system once it is prepared for the
final pointer stage of the measurement. We refer to this as the system being prepared with
respect to the measurement basis.

6.3. Leggett–Garg Test: Breakdown of Noninvasive Measurability

We now analyze the proposed Leggett–Garg–Bell tests of Section 4 (Figures 6 and 7).
The systems depicted in Figures 6 and 7 at each time ti (i = 1, 2, 3) are prepared in a
superposition of type

|ψi⟩ =
(
c1|α⟩A| − β⟩B + c2| − α⟩A|β⟩B

c3|α⟩A| − β⟩B + c4| − α⟩A|β⟩B) (19)

where the ck are probability amplitudes (α, β is large). The |ψi⟩ constitutes a pointer
superposition. This is because the pointer measurement Ŝ can be performed directly as a
homodyne measurement of X̂, with the phase of X̂ being real, consistent with the phase of
α as written in Equation (10). Hence, wMR can be applied to each state at time ti.

Hence, if wMR holds, the value of the SA/B
i is predetermined, given by λA/B

i , at
each time ti. In this case, the violations of the Leggett–Garg–Bell inequality arise because
the noninvasive measurability premise (NIM), as justified by locality (ML), breaks down.
Consistency with wMR is possible because the unitary dynamics

U = e−iHNLt/h̄ (20)

has a finite time duration. This means the values λA/B
i can be defined at different times

ti. This is evident in the Figures 5–7, which plot the dynamics given by U. In Figure 5,
the dynamics transforms the Bell state |ψBell⟩1 prepared in the pointer basis of σ̂z at time
t1 = 0 into a different Bell state |ψBell⟩2 at time t2 = π/4 (prepared with respect to different
basis), and then into a different state |ψBell⟩3 at t3 = π/2 (prepared in the basis of σ̂y). The
system given by the state |ψBell⟩1 is not viewed to be simultaneously in all three pointer
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superpositions, in the sense that wMR cannot apply simultaneously at a single time to give
a predetermination for all three measurements. One is therefore able to postulate wMR
without being required to assume dMR, which fails by violation of (9), (13), and (15).

6.4. Bell Test: Breakdown of Local Realism

In the Bell interpretation of the Leggett–Garg–Bell experiment, the relevant measure-
ment is that of a spin component Ŝθ . Hence, the measurement process includes the entire
two-stage process and the hidden variables λ are hence assigned to the system as it is
defined prior to the unitary interactions Uθ that fix the settings θ in the experiment. Similar
to those defining deterministic macroscopic realism, this means that the hidden variables
pertaining to different spin components are considered simultaneously valid, prior to
the measurement. This form of realism is negated by the violation of the Bell inequality.
Hence, in the Bell interpretation, the violation is viewed as due to a failure of deterministic
(local) realism.

At a deeper level, as we show from the Leggett–Garg interpretation, the violations are
consistent with wMR (and also with wLR, refer to Section 2), hence implying the failure of
noninvasive measurability (NIM). Since NIM is justified by locality, it can then be argued
that the violations occur due to failure of locality. This is not inconsistent with the extended
wMR premises, since the extended premises of wMR imply a partial locality only. This is
elucidated in the next section, which examines tests of wMR.

7. Tests of Weak Macroscopic Realism

Careful examination of the dynamics Uθ associated with the measurement settings
for the Leggett–Garg–Bell tests reveals further features consistent with wMR. We outline
four tests of wMR, showing how the predictions for the tests are in agreement with those
of quantum mechanics. We first analyse two tests that were explained in [34,81].

7.1. Test 1: Unitary Rotations Are Required at Both Sites to Display the Violation of the
Leggett–Garg–Bell Inequality

Any theory for which wMR is valid predicts that it is the dynamics involving a unitary
rotation at both sites that yields the violation of the inequalities (9) and (13). A similar
analysis holds for the violation of (15). This is given in Ref. [63].

To show this, we examine the sequence of contour plots for P(XA, XB) showing the
measurement of ⟨SB

1 SA
2 ⟩ and ⟨SB

1 SA
3 ⟩ in Figure 6. This sequence depicts the case where

there is a single rotation after t1. According to wMR, this sequence is consistent with
macro-realism. The system is prepared in the pointer-measurement basis at time t1. A
unitary rotation giving a change of measurement basis then takes place at A but not B.
According to wMR, the system at time t2 given by snapshot (π/4, 0) can be specified by
two variables λA

2 and λB
1 that simultaneously determine the outcomes SA

2 and SB
1 of the

measurements ŜA and ŜB, if performed at time t2. Importantly, λB
1 = −λA

1 also determines
the outcome SA

1 of measurement ŜA at time t1 (given by (0, 0)). The outcome for SA
1 can

be determined at time t2 without further unitary rotation because this is given by the
pointer measurement at B at time t2. Hence, wMR (3) applies. Hence, by applying wMR
we obtain a description for measurements made at times t1 and t2 that is consistent with
macro-realism. Similarly, the description is consistent with Bell’s local realism, since the
variables λA

2 and λB
1 predetermine the measurement outcomes for SA

2 and SB
1 , and the local

unitary rotation at A does not affect the value λB
1 .

By contrast, the sequence of Figure 7 showing measurement of ⟨SB
2 SA

3 ⟩ has rotations
giving a change of measurement basis for both A and B. For the system given by (π/2, π/4)
at time t3, wMR asserts the validity of variables λA

3 and λB
2 that determine the outcomes of

ŜA
3 and ŜB

2 , but there is no determination of the outcome of ŜA
1 . It is the fact that the three

variables λA
1 , λA

2 , and λA
3 cannot be specified simultaneously for system A that allows the

violation of the Leggett–Garg inequality in a wMR model. The simultaneous specification
is not required by wMR, because for the bipartite system it is only possible to prepare
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the systems in pointer bases for two measurements simultaneously (one at each site). The
premise of wMR does not exclude that value of λA

3 is affected by whether or not the unitary
rotation to measure SB

2 occurs. Hence, wMR does not imply that the measurement of SA
2

will not affect the subsequent dynamics. Hence, for this sequence of double rotations, wMR
does not imply that there will be consistency with macro-realism. Similarly, we see that
Bell’s local realism will not necessarily apply. Hence, there is no inconsistency between
wMR and the violations of the Leggett–Garg–Bell inequality.

We now examine how this provides an experimental way to test wMR. The dynamics
for the mixed state

ρ
(AB)
mix =

1
2
(|α⟩| − β⟩⟨α|⟨−β|+ | − α⟩|β⟩⟨−α|⟨β|) (21)

for which a macro-realistic model holds [27] can be experimentally compared with that of
|ψBell⟩1. Here, the coherent states can be distinguished by a measurement Ŝ corresponding
to a dual homodyne measurement of X̂ and P̂, which leaves the system in a coherent
state after measurement. The mixed state also provides a local realistic model for the
experiment [27]. Here, |α⟩ and |β⟩ are coherent states for systems A and B, and we take
α = β. The system in ρ

(AB)
mix is also an example of a model for which wMR holds, but

it should be clear that not all wMR models imply macro-realism. According to wMR, a
violation of the inequality would not arise due to the moments where there are rotations
at single sites only, after the preparation at t1. The premise can be falsified if this is
shown not to be the case. By comparing the dynamics given by the systems prepared in
ρ
(AB)
mix and |ψBell⟩1 at time t1, we can show consistency with wMR for the moments where

there are single rotations. A model consistent with both wMR and macro-realism exists to
describe these moments, as given by ρ

(AB)
mix . According to the above argument, the dynamics

between systems given by ρ
(AB)
mix and |ψBell⟩1 will diverge where there are unitary rotations

at both sites.
For such an experiment, quantum mechanics predicts consistency with wMR. Figure 8

shows the dynamics of the measurements required to test the Leggett–Garg–Bell inequality
for the system prepared initially at time t1 in ρ

(AB)
mix . The top sequence involving a rotation

(change of measurement basis) at one site only is visually unaltered between the cat state
|ψBell⟩1 (Figure 6) and the mixture ρ

(AB)
mix . The difference between the plots is of the order

e−α2
, which vanishes for the macroscopic case, where α = β → ∞ [34]. By contrast, for the

lower sequences where there is a rotation (change of basis) at both sites, P(XA, XB), while
indistinguishable at t1 = 0, become macroscopically different at the later times t2 and t3. This
is seen when comparing the final plots of the lower sequences: the contour plot for the
evolution of ρ

(AB)
mix (Figure 8) is clearly different to that of |ψBell⟩1 (Figure 7).

In a model where wMR is valid, it is the dynamics that occurs over the time in-
tervals of the combination of both unitary rotations involving a change of measure-
ment basis at each site that results in the violation of the macroscopic Leggett–Garg–Bell
inequalities (13) and (15). This is consistent with calculations for violations of the Bell
inequalities for microscopic spin Bell states, where it is well known that the quantum
interference arising from the nonzero angles θ and ϕ is necessary to create the violation
of the inequality (15). That Bell violations can arise over the course of the dynamics is
consistent with predictions for Bell violations involving trajectories [80].

The dynamics given by HNL involves a high-order quartic nonlinearity that may
not be currently readily realizable experimentally. However, the premise of weak local
realism (wLR) can be tested in a similar manner using the equipment of a standard Bell
experiment and comparing the Bell and mixed states ρ

(AB)
mix and |ψBell⟩1, where |α⟩ and

| − α⟩ are replaced by | ↑⟩ and | ↓⟩ as in Equation (18). The unitary interactions UA
θ and UB

ϕ

are realized by a polarizing beam splitters with variable angles θ and ϕ, at each site. The
system is initially prepared with respect to the measurement (pointer) basis corresponding
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to θ = ϕ = 0. The predictions of wLR and quantum mechanics are that where there is
only one angle change (either θ or ϕ), the moments measured for ρ

(AB)
mix and |ψBell⟩1 are

indistinguishable. However, the moments diverge when both θ and ϕ are changed.
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Figure 8. Testing weak macroscopic realism (wMR) by comparing the dynamics of |ψBell⟩1 with that
of a mixed state: The contours show the sequences associated with the measurements needed to
test the Leggett–Garg–Bell inequality (13) as described for Figures 6 and 7, except here the initial

state is taken to be the nonentangled mixed state ρ
(AB)
mix where no violation is possible. The top

sequence is for the measurement of ⟨SB
1 SA

2 ⟩ and ⟨SB
1 SA

3 ⟩, where a unitary rotation creating a change
of measurement basis takes place at system A only. The lower sequence shows the measurement
dynamics for ⟨SB

2 SA
3 ⟩ involving unitary rotations and hence a change of measurement basis for both

systems, A and B. Compared with Figures 6 and 7, we see that there is no visual difference between
the plots at the initial time t = 0. The top sequence involving a rotation at one site only remains
visually indistinguishable from that of the entangled state shown in Figure 6. However, we see that
the final state of the lower sequence involving a change of basis at each site becomes macroscopically
different from the final state at time t3 in Figure 7. This is as predicted by wMR.

7.2. Test 2: Delaying the Pointer Stage of the Measurement

The second test of wMR concerns the timing of the second irreversible pointer (or
“collapse”) stage of measurement, when the system is coupled to a detector to read out the
value of X̂. The unitary evolution Ui, which precedes the pointer stage of the measurement,
prepares the system for the pointer measurement at time ti by establishing the measurement
setting (i.e., measurement basis).

In a model where wMR is valid, the hidden variable λA
i for system A (i = 1, 2, 3)

is fixed in value (+1 or −1) at time ti, after application of the unitary evolution UA
i that

prepares the basis at A. This gives a record of λA
i at the particular time ti − that cannot be

changed by the future collapse of B. There is also no retrocausality: the value defined at
that time is fixed as a record. The same analysis applies for the variable λB

j . If we consider

the measurement of SA
3 and SB

2 as in Figure 9, then ⟨SB
2 SA

3 ⟩ = ⟨λB
2 λA

3 ⟩. Let us consider
the premises of wMR defined in Section 2. According to wMR(2), the value of λB

2 is not
affected by the subsequent unitary interactions at A. There is no change in the value of λB

2
depending on when the readout stage of measurement at B occurs, i.e., whether it occurs
before or after the evolution UA

3 and readout at A. Similarly, according to wMR(3), the
value of λA

3 is not influenced by the final pointer measurement at B. Hence, the measured
moment ⟨SB

2 SA
3 ⟩ is unchanged by the timing of the pointer measurement at B.

Quantum mechanics predicts consistency with wMR: It is possible to delay the collapse
stage of the measurement ŜB

j at B by any amount of time after the measurement at A,
i.e., after t3, and it makes no detectable difference to P(XA, XB) [34]. The details of the
calculation are given in [34]. To summarize, we consider the set-up of Figure 9, where at
time t2, the unitary evolution UB

2 at B has taken place. We first consider that the collapse at
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B takes place immediately (prior to the evolution UA
3 and measurement SA

3 at A) so that

the system is prepared in the mixed state ρ
(AB)
mix (Equation (21)). System A then evolves

according to a unitary evolution UA
3 . P(XA, XB) is calculated for this final state. This

compares with the evaluation of P(XA, XB) assuming the collapse at B does not take place
until after the evolution UA

3 . Then, the system at time t2 is in the Bell state |ψBell⟩2, and
P(XA, XB) is evaluated after the application of UA

3 on this state. The difference between
the predictions is of order e−|α|2 , vanishing in the limit of large α. This is as expected
since from the time t2 there is only one further unitary rotation, UA

3 , at the single site A.

The macroscopic nonclassical effects that distinguish ρ
(A,B)
mix from |ψBell⟩2 require unitary

rotations at both sites.
The experiment to test wMR would involve measuring and comparing the moments

⟨SA
2 SA

3 ⟩ with the change in timing of the final readout at B. As for the Test 1, the proposed
Test 2 can be performed experimentally by adapting a standard Bell set-up, to test weak
local realism.

A

t=t1 t=t2 t=t3

Local 
operations

System 
prepared
in | ⟩𝜓$%&& 1

Local 
operations 

B

𝜆()
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Figure 9. A schematic diagram of the delayed collapse test showing the consistency of weak macro-
scopic realism with quantum mechanics. The schematic is as for Figure 7. The two possible timings
of the second irreversible readout (or pointer stage) of the measurement are depicted by the circled
“P”. The readout can be made at a time before the unitary dynamics at A, or after, at time t3. In the

first case, the system is viewed as having collapsed into the mixed state ρ
(AB)
mix prior to UA

π/8 being
applied at time t2. Otherwise, the system remains in the Bell state |ψBell⟩2. We show that this makes
no difference to the moments ⟨SB

2 SA
3 ⟩ as calculated in a wMR model, which is consistent with the

quantum prediction. Here, time is in units of Ω−1.

7.3. Test 3: Delayed-Choice Experiments: Non-Retrocausality and Extra Dimensions

The premise of wMR specifies a fixed value λi for the outcome of the measurement Ŝi
at the given time ti. This cannot be changed by any future event. One might therefore ask
whether delayed-choice experiments would falsify wMR?

The following argument in favor to reject wMR could be made. We consider the
set-up of Figures 6 and 7, to measure ⟨SA

1 SA
3 ⟩ or ⟨SA

2 SA
3 ⟩. The measurement SA

3 is by a
direct measurement on system A after a suitable interaction time ta, whereas SA

1 or SA
2 is

measured indirectly, by the measurement on the correlated system B. The choice of tb hence
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determines whether SA
1 or SA

2 will be inferred. The joint probabilities P(XA, XB) depend
on the local interaction times ta and tb only. Hence, one can delay the choice tb to measure
SA

1 or SA
2 until after the final detection at system A, at time t3. This might suggest that

the measurement at B is necessarily noninvasive of the dynamics at A, and hence that the
ensuing violation of the Leggett–Garg inequality (9) is due to failure of wMR.

However, as with delayed-choice experiments for spin-qubits [82–87], this interpre-
tation can be countered [88]: A careful analysis reveals that in order to measure ⟨SA

2 SA
3 ⟩,

a unitary evolution U occurs at both sites after time t2: There is the evolution UA
3 at A,

and then UB
2 at B. It is shown in [34,81] that the violation of the Leggett–Garg inequal-

ity can hence be explained as a failure of dMR and be found consistent with wMR. The
delayed-choice tests do not lead to the falsification of wMR.

On the other hand, a modified delayed-choice experiment can lead to a falsification
of a subset of weak MR models. The delayed-choice Wheeler–Chaves–Lemos–Pienaar
experiment [88–90] falsifies all two-dimensional non-retrocausal models for a two-state sys-
tem, described by qubits {| ↑⟩, | ↓⟩}. Using the mapping (7) and considering the unitary
rotations UA

θ where θ is a multiple of π/8, it is possible to map the microscopic spin ex-
periment involving {| ↑⟩, | ↓⟩} onto one involving the macroscopic qubits {|α⟩, | − α⟩} [81].
Assuming the predictions of quantum mechanics are verified, this enables a falsification of
all two-dimensional non-retrocausal models based on the macroscopic qubits {|α⟩, | − α⟩} [81].
This contradicts the premise of wMR, which gives a non-retrocausal model—but only if we
are restricted to two-dimensional models. The falsification of wMR is avoided by noting
the extra dimensions associated with the continuous-variable phase-space representation of
the cat-states, which are measurable. The system as it evolves under the action of HNL from
the superposition |ψM⟩ of Equation (3) is not restricted to the two-state basis {|α⟩, | − α⟩}.
The full phase-space is necessary to describe the evolution, as is evident by Figure 10.
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Figure 10. The dynamics of the system prepared in a coherent state |α⟩ as it evolves for a time t under
the action of HNL (Equation (6)), as in Figure 4. Here, α = 4. Time t is in units of Ω−1. It is evident
that for the times intermediate between the ti (i = 1, 2, 3) where t1 = π/4, t2 = π/2, and t3 = 3π/4
as shown in Figures 5–7, the system is not necessarily in a simple superposition of the two states,
|α⟩ and | − α⟩. Here, the extra dimensions allowed by the continuous phase space representation
are important in portraying the intermediate dynamics. The intermediate times correspond to the
“shuffling” process, where there is a change of the measurement basis. The contour plots give the Q
function defined as Q(α0) = |⟨α0|ψ⟩|2/π = Q(xA, pA) of the state |ψ⟩ at time t. Here, α0 = xA + ipA.

The original realizations of the Wheeler–Chaves–Lemos–Pienaar gedanken experiment
involved microscopic photonic qubits {| ↑⟩, | ↓⟩}, with the unitary rotations being realized
by beam splitters [88–90]. As such, these experiments rule out two-dimensional models of
weak local realism (wLR) since wLR is a non-retrocausal model.

7.4. Test 4: EPR’s Elements of Reality Are Justified after the Setting Dynamics

We now consider the postulate wMR(3) in the set-up of the EPR experiment. This
extends the earlier work of [34]. Here, we test for the consistency between the quantum
predictions and the weaker modified concept of EPR’s “elements of reality”, as specified by
the premise wMR(3).

First, we review the original definition of EPR’s “elements of reality”. Examining the
state (10), we see that the Bohm-EPR paradox for spin applies. At the given time ti, the
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outcome of the measurement ŜA
i at A can be predicted with certainty by the measurement

of ŜB
i on system B. We see that SA

i = −SB
i . EPR’s original premises posit that an element

of reality λA
i exists for system A at this time [64]. In EPR’s original formalism, this value

predetermines the outcome of the measurement SA
i if measured directly at A, regardless of

whether the measurement at B is performed or not, because the outcome at A can be predicted in
principle by establishing the measurement at B and nothing at B can influence the system
at A, according to EPR’s assumption of locality. The value for the element of reality is
λA

i = −λB
i and can be determined by finalizing the measurement at B.

As is well known, these original EPR “elements of reality” can be falsified. The
assumption of the λA

i can be applied to (non-commuting) measurements at the different
times, ti and tj, as explained in Section 5. Hence, the EPR premises lead to the premise of
dMR, which is falsified by the Bell test violating inequalities (13) or (15) [36].

However, the weaker premise wMR(3) is not falsified. This is because it refers to system
B at time ti after any appropriate unitary interaction UB has taken place at B, to finalize the
measurement setting at B, i.e., to prepare the system for the final pointer measurement ŜB.
This suggests that the “elements of reality” may apply, in certain circumstances, as specified
by the premise wMR(3). As explained by Clauser and Shimony [38], the importance of
the dynamics associated with the choice of measurement setting was commented on by
Bohr, in his reply to Einstein, Podolsky, and Rosen [91]. Clauser and Shimony interpret
Bohr’s argument to imply that “it is incorrect to say that system 2 is not disturbed by the
experimentalist’s option to measure a rather than a′ on system 1.” Here, a and a′ refer to the
measurement settings.

Figure 7 depicts the dynamics showing the consistency of the quantum predictions
with the premise wMR(3). At time t1 = t0 = 0, system B has been prepared for the
final detection and readout of spin ŜB

1 . The wMR postulate is that system B has the
predetermined value λB

1 for the outcome of that measurement. According to wMR(3),
this also gives the value for the measurement ŜA

1 at A, regardless of any further unitary
interactions UA

j that might take place at A. It would be possible to rotate the measurement

basis at A to prepare for the measurement ŜA
2 by evolving system A according to UA

π/8 but
keeping B unchanged. This would create a new state. However, this would not change the
“element of reality” λA

1 = −λB
1 for the outcome of measurement ŜA

1 . The measurement ŜA
1

can still be made by reversing the unitary operation UA
π/8 and performing the final part of

the measurement, X̂A. In other words, after a further time, the system evolves according
to the dynamics (UA

π/8)
−1, and the prediction according to quantum mechanics is that

the results of the measurements at A and B remain anticorrelated. According to wMR(3),
the value λB

1 gives the prediction for ŜA
1 at A, regardless of any local reversible unitary

interactions, such as UA
π/8 at A (Figure 11).

An experimental test of the premise wMR(3) can be performed. This is depicted in
Figure 11. The value for the element of reality λB

1 can be obtained by a final measurement
readout at the separated system B. This gives the prediction for ŜA

1 . The value for ŜA
1 can

be confirmed to be correct, both without and then with the unitary rotation UA
π/8 followed

by its reversal. The evolution of HNL is periodic, and the reversal is hence achieved with
time ta = 2π − π/4 (in units where Ω = 1). Similarly, the prediction can be verified for
different times of the pointer measurement at B. Quantum mechanics gives predictions
consistent with those of wMR.

It might be considered obvious that the value measured for ŜB
1 of system B fixes the

outcome for ŜA
1 . This is the basis for quantum measurement, when a system A observable

is measured by coupling to a meter. The question that the premise of wMR(3) addresses
is as follows: At what time is the outcome for ŜA

1 actually fixed? In summary, the premise
wMR(3) posits that it is fixed at the time after which the measurement setting at B is fixed.
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Figure 11. A schematic diagram showing the meaning of the premise wMR(3). At time t1, the
outcome of the measurement of SA

1 can be predicted with certainty by a measurement SB
1 on system B.

The measurement setting is fixed at B at time t1, meaning that any local “shuffling” have been carried
out. According to wMR(1), the outcome of the pointer measurement P for SB

1 is hence determined at
time t1 and can be represented by λB

1 . According to wMR(3), the prediction for SA
1 is predetermined

(and can be represented as an “element of reality”) for system A, at time t1. The predetermined value
is designated by the variable λA

1 = λB
1 . However, according to wMR(3), the prediction λB

1 holds to
predetermine the outcome of SA

1 , as long as the measurement setting at B remains fixed (no further
shuffling at B), even if there are further unitary interactions at A as in the diagram, where the local
system A evolves for time t = π/4 according to UA

π/8. The value of λB
1 gives the prediction for SA

1 at
time t2, even though a unitary interaction (UA

π/8)
−1 is required at A to carry out the measurement of

SA
1 . In this case, a reversal of UA

π/8 is achieved by evolving system A for a further time ta = 7π/4.
The measurement of SA

1 at time t4 would be completed by a local pointer measurement, which would
yield the value λB

1 = λA
1 . The predetermination for SA

1 exists, irrespective of when or whether the
pointer measurement P at B is made. Here, time is in units of Ω−1.

8. Weak Macroscopic Realism, Weak Local Realism, and Quantum Measurement

The concept of weak macroscopic realism (wMR) may resolve questions about the
nature of the quantum measurement. This can be put forward as an argument in favor
of wMR. A fundamental question is how to understand the connection between “realism”
and states such as

|ψM⟩ = 1√
2
(| ↑⟩A|β⟩B − | ↓⟩A| − β⟩B) (22)

formed at time tk after a macroscopic measurement device B interacts with a microsystem
A prepared in the superposition

|ψA⟩ =
1√
2
(| ↑⟩A − | ↓⟩A) (23)

of the two eigenstates of σ̂A
z . Here, |β⟩ and | − β⟩ are coherent states of the system B (we

take β to be real). The readout of ŜB gives the measured value of σ̂A
z . A model for an
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interaction HM that evolves (23) into (22) has been presented [92–94]. In that model, the
meter system B is prepared initially in a coherent state |γ⟩. The phase of β is determined
by the phase γ of the initial coherent state.

A fundamental question arises: At what point in the measurement process does
the value for the outcome of the measurement emerge? How is realism connected to
measurement [95–97]?

8.1. Weak Local Realism

As summarised in Section 2, it becomes apparent that the wMR premises can be
applied to spin systems described by {| ↑⟩, | ↓⟩}, even where the spin states may not be
macroscopically distinct. This is because there is a direct mapping between the systems
violating the Leggett–Garg-Bell inequalities for {|α⟩, | − α⟩} and those that violate for
{| ↑⟩, | ↓⟩}. In this case, we refer to the premises of weak macroscopic realism as weak
local realism (wLR). An explanation has been given in [63]. These premises are weaker (less
restrictive) than those of local realism defined by Bell and are not negated by violations of
Bell inequalities. Section 7.3 suggests a wMR model in which the spin states be completed
by extra dimensions.

8.2. Schrödinger’s Cat Paradox

How to understand the entangled state (22) was the paradox put forward by Schrödinger
in his essay [1]. It is often supposed that the value of the outcome of σ̂A

z is not determined
prior to the measurement of it, but in the wMR and wLR models, this is overstated. In these
models, the value for the outcome of the spin σ̂A

z of A is specified at, or by, the time tk of the
creation of the entangled system-meter system in the state (22). This is because the measure-
ment basis (setting) for the meter has been specified by the interaction HM, through the phase of
the coherent field. After tk, only the “pointer” measurement corresponding to the detection
of the amplitude X̂B of the meter is required to complete the measurement. According to
wMR, there is a predetermined value λB

M for the amplitude X̂B of the macroscopic meter B
at this time. According to wMR(3), this value is an “element of reality” for the outcome of
σ̂A

z at A since it gives the value if it were to be measured directly. Hence, in the wMR and
wLR models, the value for the outcome of the measurement can be assigned to system A at
time tk, prior to the final detection and readout, since the measurement setting for A has
been established.

A local unitary interaction at A can be further applied to change the measurement
setting for the spin measurement at A. However, we have seen that in the wMR (wLR)
models this makes no difference to the outcome λB

M specified for spin σ̂A
z at A, as given

by the “element of reality” defined at B. The result for spin σ̂A
z is specified by the meter

and would be verified if the measurement σ̂A
z at A is actually performed. If a local unitary

interaction has since changed the measurement setting at A, then for the spin σ̂A
z to actually

be measured, a further unitary interaction giving a reversal takes place.
Similarly, if a local unitary interaction at B is implemented while keeping system A

unchanged, it does not change the element of reality for system B that is implied by the
fact the outcome X̂B can be inferred by the spin measurement at A. On the other hand, if
unitary interactions are implemented to change the measurement settings at both A and B,
then in the wMR (wLR) models, we can no longer suppose that the value of λB

M applies to
a future measurement.

8.3. Leggett and Garg’s Question about the State of the Measurement Device that Violates
Macro-Realism

In their paper [12], Leggett and Garg consider states such as (22). They explain that
the violations of macro-realism should “not be formally in conflict with the arguments so often
given in discussions of the quantum theory of measurement to the effect that once a microsystem has
interacted with a realistic measuring device, the device (and, if necessary, the microsystem) behave
as if it were in a definite (and noninvasively measurable) macroscopic state”.
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They also suggest that system |ψM⟩, if violating macrorealism, would not be a suitable
measuring device, by continuing: “The macroscopic systems suitable for a macroscopic quantum
coherence experiment are certainly not able to be measuring devices, at least under the conditions
specified. But such a result might cause us to think a great deal harder about the significance of

“as if”!”
We extend the analysis of the statements of Leggett and Garg for this system, given

in [34]. We examine the first statement of Leggett and Garg. The premise of wMR does
indeed imply a “definite macroscopic state” for the measuring device, given by system B
in (22), in the sense that there is a predetermination of the outcome of ŜB. This is because
the measurement setting ŜB has been specified for the system in the state (22), by the
interaction HM. This interaction specifies the phase of the coherent-state amplitude β.
All that is required to complete the measurement is a pointer measurement, involving a
detection of the amplitude X̂B.

Assuming wLR, the microsystem A also has a definite value for the outcome of
σ̂A

z —but only when prepared (after the choice of measurement setting) in a superposition
with respect to the pointer bases of σ̂A

z and ŜB. When we write the original state |ψA⟩
of (23), it is not specified whether or not the measurement basis has been determined
experimentally. However, we see as explained above that once entangled with the meter
as in the state (22), there is a definite value for the outcome of σ̂A

z . This is because the
measurement setting for the microsystem is specified.

Hence, there is no conflict with Leggett and Garg’s statement “that the device behaves
as if it were in a definite macroscopic state”. The basis for the spin at A is determined to be
fixed (as the eigenstates of σ̂A

z ) because the coherent states that act as the meter (when X̂B is
measured) have a definite fixed phase, and no further rotation UB is necessary (Figure 12).
In the wMR model, the value λA

M for σ̂A
z is determined by that of λB

M: λA
M = λB

M. There is
an element of reality λA

M for the result of the spin σ̂A
z of A, for the system in the entangled

meter-system state. We note that in the wMR model, the value λA
M = λB

M is the value of the
spin σ̂A

z if measured directly and that this value λB
M can be revealed by a direct readout at B.

Importantly, in the wMR model, the predicted value for the measurement of σ̂
(A)
z is always

λA
M = λB

M, even if there are further local unitary interactions UA (and their reversals) at A.
Leggett and Garg also state that the meter should be “noninvasively measurable”. We

note that in accordance with the premise wMR(2), the value λB
M that determines whether

the meter B will be found with positive or negative amplitude is fixed, provided there is no
further change of measurement basis for the meter (i.e. no further “shuffling” at B). At
any point, the value of λB

M can be determined by a measurement on system A (with an
appropriate choice of measurement basis at A). According to wMR(2), the value of λB

M
would not be changed. In this sense, the wMR model satisfies Leggett and Garg’s condition
(refer Figure 12).

Now, we turn to examine Leggett and Garg’s second statement. Noting that the same
predictions are given on mapping {| − α⟩, |α⟩} onto {| ↑⟩, | ↓⟩} for (10) in Section 4, we see
that macro-realism is indeed violated for the macroscopic measuring device B (provided
the unitary rotations are carried out appropriately for the system A). Yet, contrary to what
may be suggested by Leggett and Garg’s statements, for theories where wMR (or wLR)
is valid, we argue that there is no conflict with the arguments of quantum measurement
theory. This is because system B has a definite value λB

M for the outcome of ŜB. System A
of |ψM⟩ also has a definite value λA

M for the outcome of σ̂z when prepared in (22).
In short, contrary to what might be supposed, the argument that the systems (22) can

be considered to have definite real values λB
M and λA

M does not contradict the Bell violations
(for example, of (15)) since we have shown consistency with wMR (and also with wLR,
in the microscopic case) for such violations. The values, however, refer only to systems
prepared appropriately at a given time in a superposition with respect to pointer-bases
of σ̂A

z and ŜB. Suppose one could specify that A (prior to the measurement interaction)
was prepared appropriately in |ψA⟩ of (23), for the pointer-basis of σ̂A

z : According to wLR,
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system A has a definite value λA for the outcome of σ̂A
z . Provided λA = λM, it can then be

argued that system |ψM⟩ is a suitable measuring device.
Leggett and Garg have suggested in their statement that there may be a “conflict” if

we are to consider that measurement devices allow for violations of macro-realism. We
have shown that there is not since violations of macro-realism can be consistent with
(weak) macroscopic realism. There is, however, a “conflict”, if we consider the meaning
of a “definite macroscopic state”. The conflict arises when we consider the consequence of
the wMR and wLR assumptions, summarized in Section 3, concerning the completeness
of quantum mechanics: It is well known that the systems cannot be considered to be
in either quantum state | ↑⟩A or | ↓⟩A, or in |β⟩ or | − β⟩, since superpositions of these
states are distinguishable from classical mixtures of them [7]. If wMR is valid, it is unclear
which “state” each of the systems are actually in. An analysis of ontological states defining
macroscopic realism has been given by Maroney and Timpson [19,20], which motivates
the Section 9.

A

t=t1 t=t2
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Local 
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Figure 12. A schematic diagram depicting how a measurement device (a meter) that violates macro-
realism can be consistent with the concept of being in a “definite and non-invasively macroscopic
state”. The systems are prepared at time t1 in the entangled Bell-type state |ψM⟩ (22). System B acts
as a meter for the observable SA

1 of system A because the value of SA
1 can be inferred with certainty

by measuring SB
1 . If we evolve the systems according to local unitary operations UA

π/8 and UB
π/8

(refer text), then the value of SA
2 can be inferred by the outcome of SA

2 . Similarly, systems A and B can
be evolved according to the further operations UA

π/8 and UB
π/8 to allow for the measurement of SA

3 .
As in Figures 6 and 7, these measurements allow for the violation of macro-realism (for either system
A or B). Yet, according to wMR(1), system B at each time ti (i = 1, 2, 3) is in a definite macroscopic
state with a predetermined value λB

M = λB
i for the outcome of SB

i , which gives the outcome for
the measurement SA

i if performed. According to wMR, the value λB
M = λB

i of the meter system B
is not changed once the setting (shuffling) is fixed at B and is hence “non-invasively measurable”
(e.g., by measuring system A). However, the full state description of system B is not definite and
non-invasively measurable.
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9. Comparison with Other Models of Macroscopic Realism

Our conclusions are consistent with those of Maroney [19] and Maroney and
Timpson [20], who in analyzing tests of macro-realism have argued that violations of
the Leggett–Garg inequalities arise from a nonclassical form of measurement disturbance
and do not necessarily imply failure of macroscopic realism. Maroney and Timpson consid-
ered three models of macroscopic realism, which they refer to as macro-realism models.
First, they defined the operational eigenstates of a property as “those preparations [of the
system] which determinately fix the value of the property”. In our context, these are
preparations of the system for which there is a predetermined value for the outcome of the
measurement Ŝθ .

The three models of macroscopic realism considered are operational eigenstate mixture
macro-realism (OEM-MR), operational eigenstate support macro-realism (OES-MR), and
supra eigenstate support macro-realism (SES-MR). Maroney and Timpson argued that only
OEM-MR gives the strict form of macro-realism that necessarily leads to the derivation of
the Leggett–Garg inequality. We next examine each of these models for consistency with
weak macroscopic realism as defined in this paper.

9.1. Operational Eigenstate Mixture Macro-Realism

The OEM-MR specifies that the system after preparation (after the unitary interactions
Uθ) is in a mixture of the operational eigenstates. This model is negated by the violation
of Leggett–Garg inequalities and is compatible with wMR but is a stronger model than
required by wMR.

An example of an OEM-MR model is the mixed state (21), where system A prior to the
measurement Ŝ can be considered to be either in the state |α⟩ or | − α⟩. Here, Ŝ is selected
as the dual measurement of amplitudes X̂ and P̂. The coherent states become eigenstates
of Ŝ (for large α) and are also operational eigenstates. Here, Ŝ distinguishes between the
two coherent states (for large α). The measurement can be shown to not change the system
placed in one or other of the coherent states.

Maroney analyzes the three-box paradox, where MR would imply that a ball placed in
a superposition of being in one of three boxes is always actually in one of the boxes [19]. A
Condition (III) is satisfied that a measurement made on the system where a ball is placed
in a box is confirmed to be non-disturbing to the state of the system. This confirms that
the measurement is non-invasive for operational eigenstates. Maroney claims that “An
intuition lurking alongside the idea that the ball is always in one, and only in one, of the boxes,
is that whenever the ball is in a given box, it behaves exactly as it appears to behave when it is
observed to be in that box. This runs into difficulties, for when the ball’s location is observed, it is
in an operational eigenstate. This rather natural idea of macro-realism would lead to operational
eigenstate mixture macro-realism. . . ”.

Weak macroscopic realism (wMR) does not imply OEM-MR since it is not assumed
that the state of the system before and after the measurement are the same. This is evident
from the analysis of Section 2, where it is proved for the cat state (3) that, if wMR holds,
the system prior to the measurement Ŝ cannot be in one or other quantum state that is an
eigenstate of Ŝ. The states of the cat system satisfying wMR are necessarily different before
and after the measurement.

9.2. Operational Eigenstate Support Macro-Realism

The OES-MR and SES-MR models consider the system to be, prior to measurement Ŝ,
in a mixture of ontic states that have definite predetermined values for the measurement Ŝ.
For the three-box paradox, the measurement Ŝ corresponds to observing whether the ball
is found in a given box. Operational eigenstate support macrorealism (OES-MR) constrains
the ontic states to be in the support of the operational eigenstates.

For OES-MR, Maroney comments about the application to the three-box paradox [19]:
“The unobserved ball’s ontic state is always one that can occur when the ball is being observed.
However, the price is that those ontic states must now be behaving differently to their appearances.
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Neither positive- nor negative-result non-invasiveness will be possible, even for operational eigen-
states. While the observed behaviour of the ball, determinately placed in one box while Bob checks
Condition (III), is showing no detectable disturbance, something must nevertheless be undergoing
change, below the level of appearances, as a result of Bob’s measurements. This change takes place
even when Bob is only interacting with a different box: placing the ball in Box 1, then opening the
empty Box 2, somehow disturbs the ball in Box 1 in an unobservable way. But when the system
is prepared as in a quantum superposition, and the ball is not being directly observed, these same
disturbances emerge and lead to observable consequences”.

Positive-result and negative-result non-invasiveness refers to the measurement having
no disturbance to the system when the system is directly measured as a ball being observed
in a box and indirectly measured, as in a ball not being observed in a box. The OES-MR
model allows for nonlocality since there can be a disturbance to the ’state’ of the ball in Box
1, when an empty Box 2 is observed.

Our work expands the analysis of Maroney for the OES-MR model. Here, wMR posits
that the observation of a ball not being in Box 2 would not change the variable λ

(1)
M that

predetermines the outcome of the measurement on the Box 1. However, the state of the
system can change. If there is a further unitary interaction at Box 1, and at Box 2, so that
measurement settings change, observable paradoxes can occur.

We note that wMR counters OES-MR since it is not true that “the unobserved ball’s
ontic state is always one that can occur when the ball is being observed”. The “observed”
state of the system is identifiable as a quantum state, and for the cat state (3), we have
seen that the assumption of wMR implies the system cannot be in a quantum state prior
to measurement.

9.3. Supra Eigenstate Support Macro-Realism

The supra eigenstate support macro-realism (SES-MR) model also considers the system
to be, prior to measurement Ŝ, in a mixture of ontic states that have definite predetermined
values for measurement Ŝ. Different to the OES-MR model, however, the SES-MR model
allows for novel ontic states that cannot be prepared quantum mechanically.

Maroney, in examining the third SES-MR model, states that: “Supra eigenstate support
macro-realism takes the opposite route. Operational eigenstates do not appear to be disturbed by
Bob’s measurements, and it may be maintained that the ontic states in their support are not, in fact
disturbed. However, when the ball is prepared through a quantum superposition, it may now be in
an ontic state that does not appear in any operational eigenstate. When it is not being observed, the
ball can behave differently”.

The premise of wMR gives support to the SES-MR model of macroscopic realism
proposed by Maroney and Timpson. These authors also present the de Broglie–Bohm
model [66] as an example of an SES-MR model [19]. In a recent paper [98], the wMR
premises have been shown to be consistent with a model for realism based on the Q
function [99–101]. An analysis of that model suggests ontic states that cannot be compatible
with “prepared” or “observed” states [102].

10. Discussion and Conclusions

In this paper, we have examined a macroscopic version of a Leggett–Garg and Bell test
presented earlier [34], in which the spin states | ↑⟩ and | ↓⟩ are realized by coherent states
|α⟩ and | − α⟩, with α → ∞, and the unitary interactions determining the measurement
settings θ in the Bell test, normally realized by polarizing beam splitters or Stern–Gerlach
apparatuses, are realized by local nonlinear interactions Uθ = e−iHNLt/h̄. In particular, the
set-up allows the noninvasive measurability premise of the Leggett–Garg inequalities to be
replaced by that of Bell’s locality assumption. The corresponding Bell test is macroscopic,
meaning that the Bell premises combine the assumptions of macroscopic realism (MR) and
locality at a macroscopic level (ML).

Earlier work showed how MR, if defined deterministically, can be falsified [34,61].
Macroscopic realism applies to a system with “two or more macroscopically distinct states
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available to it” and posits the system to be in one of those states [12], thereby implying
that a measurement Ŝθ distinguishing between the states has a predetermined outcome.
Deterministic macroscopic realism posits a predetermination of the outcome prior to the entire
measurement dynamics, including the implementation of Uθ , and is a stronger (more
restrictive) assumption. In such a model, as in classical mechanics, it is assumed that there
are a set of macroscopically distinct states giving a definite outcome for Ŝθ , which can be
identified for the system prior to the time at which Uθ is implemented.

Violations of Bell inequalities are explained generally as a failure of “local realism”, or
of “local hidden variables” [36]. The violations exclude that there can be hidden variables
satisfying the Einstein–Podolsky–Rosen (EPR) premises. EPR’s “elements of reality” are
negated by Bell violations. The macroscopic version of the Bell test motivates a deeper
consideration of the meaning of local realism and, in particular, of the EPR premises since
any rejection of macroscopic realism would be a more startling conclusion than the rejection
of local realism at the microscopic level.

Our conclusion is that MR is not contradicted by the Bell violations and can be viewed
consistently with the violations, if defined in a less restrictive way, as weak macroscopic
realism (wMR). Weak macroscopic realism has been proposed earlier, and recent work gives
an extension of the definition to the bipartite set-up of EPR [63]. The earlier work showed
the consistency of the macroscopic Bell violations with a subset of the wMR premises [34].
Here, we show the consistency of the macroscopic Bell violations with the expanded
definition of wMR. The authors of [34] proposed three tests of wMR, where the results
would be consistent with wMR according to quantum mechanics. We present a fourth test,
involving EPR’s “elements of reality”.

The consequence of our work is a model consistent with quantum mechanics, in
which there is an understanding of when the EPR “elements of reality” may be valid. The
“elements of reality” apply in the context of the system defined after the unitary interaction
Uθ has been carried out in the experiment. In this model, we see that the violation of the
Bell inequalities occurs due to a combination of a failure of realism and locality. On the other
hand, both a weaker version of realism and a weaker version of locality apply: The system
has a real property for the outcome of the measurement Ŝθ after the implementation of Uθ .
Also, the system A has an “element of reality” for the outcome of Ŝθ , if the outcome of Ŝθ

at A can be predicted with certainty by measurement Ŝϕ on a second system B—but this
applies only once the implementation of the unitary interaction Uϕ at B has taken place.

A justification for wMR is given on considering the nature of quantum measurement.
Consider system A for which Ŝθ is being measured, by a coupling to a macroscopic meter,
which we refer to as system B. This is a situation for which EPR’s “element of reality”
applies because one can predict with certainty the outcome of the measurement on system
A by performing a measurement on meter B. While EPR’s traditional “elements of reality”
can be negated, this particular “element of reality” is justified by wMR because the coupling
interaction is such that the measurement basis θ has already been specified. Hence, wMR
provides a way to resolve possible inconsistencies relating to macroscopic realism and
quantum measurement, as highlighted by Leggett and Garg [12].

While the motivation for examining wMR is to arrive at a model allowing some form of
macroscopic reality, the mapping between the microscopic and macroscopic Leggett-Garg-
Bell tests ensures that a similar definition, weak local realism (wLR) [63], can be applied to the
original set-up of Bell involving the microscopic spin states | ↑⟩ and | ↓⟩. The original Bell
violations can be explained consistently with wLR. A justification for wLR can also be given
based on the argument that in the microscopic tests, at time after the unitary dynamics Uθ

establishing the measurement setting θ, there will be some form of amplification, such as a
coupling to a meter. Hence, wMR can be applied at this time [63].

It is interesting to consider the possibility of an experiment. While the predictions
of wMR are consistent with those of quantum mechanics, four tests of wMR have been
presented, which motivates an experiment. Two-mode entangled cat states have been
experimentally realized [10,103]. However, it may be challenging to realize Uθ . The
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Bell example with cat states was presented because of the strength of the conclusions
that follow from a Bell violation and because of the simplicity of the argument from a
theoretical viewpoint. Other macroscopic realizations of quantum correlations can be
considered, however [104]. This includes the continuous variable correlations of the
Einstein–Podolsky–Rosen (EPR) paradox, which are measured by homodyne detection,
with the measurement setting θ being a phase shift [105–107]. Here, wMR can be exam-
ined, since amplification can be modelled as taking place after the choice of phase shift,
but prior to a final detection, as part of the measurement process [98]. Also, set-ups
are possible where amplification takes place prior to the implementation of the phase
shift θ [108–110], so that macroscopic states can be defined and both dMR and wMR
posited for the system. We also note that mesoscopic quantum correlations have been
achieved for distinct atomic systems [111–118]. In particular, EPR correlations involving
atomic clouds have been measured, including where the measurement setting is adjustable
locally [118]. This has led to a realization of Schrödinger’s description of the EPR paradox,
in which there is a simultaneous measurement of two non-commuting observables, x and
p [119]. An analysis of wMR testing for consistency with such EPR correlations would
be interesting.

In conclusion, we have outlined how a weak form of local realism can be consistent
with realism at a macroscopic level, despite violations of macroscopic Bell inequalities. Yet,
Schrödinger’s argument is that there is inconsistency between (weak) macroscopic realism
and the completeness of quantum mechanics [1]: if (weak) macroscopic realism is valid,
then for a system in a macroscopic superposition, which state is the system in prior to
detection (since the system cannot be viewed as being in any quantum state)? This motivates
an analysis of deeper models and interpretations of quantum mechanics [96,98–102,120–137].
Bohm’s theory is an example of a nonlocal realistic model for quantum mechanics [120,121].
Other models exist, based on retrocausal mechanisms [99,126,130,131,134].
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