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Abstract: Depression is a psychiatric disorder characterized by anxiety, pessimism, and suicidal
tendencies, which has serious impact on human’s life. In this paper, we use Granger causality index
based on polynomial kernel as network node connectivity coefficient to construct brain networks
from the magnetoencephalogram (MEG) of 5 depressed patients and 11 healthy individuals under
positive, neutral, and negative emotional stimuli, respectively. We found that depressed patients
had more information exchange between the frontal and occipital regions compared to healthy
individuals and less causal connections in the parietal and central regions. We further analyzed the
topological properties of the network revealed and found that depressed patients had higher average
degrees under negative stimuli (p = 0.008) and lower average clustering coefficients than healthy
individuals (p = 0.034). When comparing the average degree and average clustering coefficient of
the same sample under different emotional stimuli, we found that depressed patients had a higher
average degree and average clustering coefficient under negative stimuli than neutral and positive
stimuli. We also found that the characteristic path lengths of patients under negative and neutral
stimuli significantly deviated from small-world network. Our results suggest that the analysis
of polynomial kernel Granger causality brain networks can effectively characterize the pathology
of depression.

Keywords: brain network; magnetoencephalogram; Granger causality; kernel function

1. Introduction

Depression is an emotional disorder mainly characterized by persistent sadness and
a loss of interest. It’s always accompanied by changes in cognitive function and biology,
failure to regulate negative emotions is one of the main factors of depression [1–3]. Today,
depression has become one of the most common neuropsychiatric disorders characterized
by anxiety, pessimism, and suicidal thoughts which seriously affects human’s life and poses
challenges to social development [4,5].

Human brain is an extremely complex system, whose precise structure and efficient
functional connection mode provide the basis for the differentiation and integration of
brain information [6]. Complex networks based on graph theory can effectively describe
and evaluate the function and structure of the brain and are widely used in the study of
the pathogenesis of mental illness. Researchers found that the construction of a functional
brain network and the analysis of topological properties using the data obtained by
electroencephalogram (EEG), magnetoencephalogram(MEG), and Functional magnetic
resonance imaging (fMRI) can provide brain network imaging markers for the diagnosis
and treatment of mental illness [7–9]. Morabito et al. [10] studied the resting-state
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EEG of patients with Alzheimer’s disease (AD) and constructed a brain network. They
calculated brain network parameters, such as feature path length, clustering coefficient,
and small-world attributes, and found that brain efficiency decreased and small-world
connectivity was lost. Depression is a common mental disease which is closely linked
to abnormalities in brain function and structure [11]. Previous studies have shown that
there are abnormalities in the global topological properties and regional connections of
complex brain networks in depressed patients. The complex brain network may provide
us with quantitative indicators for the diagnosis and treatment of depression and provide
an objective basis for the physiological and pathological mechanism of depression.

The Granger causality is a common tool used for analyzing linear time series. After
the Granger causality was proposed in 1969, it has been widely used in economics,
physiology, neuroscience, and other fields [12–15]. The actual physiological signals
are always nonlinear in neuroscience [16]. The traditional Granger causality cannot
accurately analyze the internal relationships between nonlinear signals. Mapping low-
dimensional nonlinear data to high-dimensional spaces to make them linearly separable
can effectively solve this problem, causing a “dimension disaster” in high-dimensional
space computing. The kernel function computes a similarity measure in feature space by
vector dot product, which can solve complex calculation problems in a high-dimensional
space [17]. Therefore, combining a kernel function with linear Granger causality can
effectively analyze the nonlinear time series.

MEG is a kind of physiological signal with non-linear characteristics, the different
MEG channels can be used as nodes to construct a brain network to observe the informa-
tion exchange between different brain regions. Behrad [18] proposed a network-localized
Granger causality (NLGC) paradigm to directly estimate its parameters from MEG mea-
surements. They use NLGC to process MEG data of young and elderly participants with
auditory tasks. Changes in the interactions between different regions of the brain in the
resting and tone-processing states of the brain were discovered in the δ bands. In our
study, we use the Granger causality index based on the polynomial kernel as a measure
of the connection edge between the different brain nodes to construct brain networks for
depressed patients and healthy people. Then further analyze the topological properties of
network, which aims to help with the clinical diagnosis and treatment of depression.

2. Methods
2.1. Granger Causality Basic Theory

In order to complete the transformation from linear Granger causality to non-linearity,
it is necessary to embed the data into the Hilbert space for operation [19]. It is specifically
expressed as follows:

Suppose that there are two random variables, X,Y; let Xi = (ξi, . . . , ξi+m−1)
T ,

Yi = (ηi, . . . , ηi+m−1)
T , xi = ξi+m, Xi,Yi,xi is the realization of X,Y and x, respectively.

Xi is the column vector of X, and X is a m ∗ N matrix. Define Zi =
(
XT

i , YT
i
)
, so Zi is a

2m ∗ N matrix. Suppose xTx = 1, and that the mean of each component of the random
variables X and Y is 0, then for i = 1, 2, ..., N, we have the following:

x̃i =
m

∑
j=1

Ajξi+m−j (1)

xi =
m

∑
j=1

Ajξi+m−j +
m

∑
j=1

Bjηi+m−j (2)
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The values of vectors x̃ = (x̃1, . . . , ˜xN)
T can be estimated by the linear regression method.

K = XTX is an N ∗ N matrix, let H ⊆ <N be in the range of K. Let the eigenvector of K be
v1, ..., vn and satisfy the orthogonal relation. For this eigenvector, there are

P =
m

∑
i=1

vivT
i (3)

x′ is the projection of x on H, we have x̃ = Px,y = x− Px. Similarly, H′ is in the range of
K′ = ZTZ and x′ = P′x. Here, H ⊆ H′, we decompose H′ into H ⊕ H⊥, H⊥ denotes all
spaces in H′ that are orthogonal vectors in space H. The projection of P in space H⊥ is
expressed as P⊥, and the Granger causality intensity is obtained:

δ =
‖P− y‖2

1− x̃T x̃
(4)

All nonzero eigenvectors of the matrix K̃ are extended, the eigenvectors are expressed as
t1, ..., tm, and H⊥ is the set of the eigenvectors. The range of values for K̃ = K′ − PK′ −
K′P− PK′P, H⊥ is in the range of K̃. R is the Pearson correlation coefficient of y and ti is ri;
we have:

δ =
m

∑
i=1

r2
i (5)

Finally, the Granger causality index with the filtering property is obtained by the FDR
correction:

δF = ∑
i

r2
i (6)

2.2. Granger Causality Based on Polynomial Kernel

The kernel function of a non-homogeneous polynomial of order p (p is an integer) is
defined as

Kp
(
X, X′

)
=

(
1 + XTX′

)p
(7)

In this case, the characteristic function is unary, and the input variable is up to the order of
p. The dimension of the H space is m1 = 1/B(p + 1, m + 1)− 1; when p = 1, it is a linear
regression. The dimension of the H′ space is m2 = 1/B(p + 1, 2m + 1)− 1. Here, H ⊆ H′,
H′ into H ⊕ H⊥. The calculation formula is K̃ = K′ − PK′ − K′P− PK′P. We construct the
kernel Granger causality corrected by the FDR to obtain the following:

δK
F = ∑

i′
r2

i′ (8)

2.3. Introduction to Topology Properties of Brain Network

1. Degree:
The degree Di of a node is defined as the number of edges connected to node i in the
network, and the degree of the i node can be expressed as follows:

Di = ∑
i

Cij (9)

where Cij is the state of connection between nodes i and j. When there is a connection
between i and j, Cij = 1. When there is no connection between i and j, Cij = 0. When
the value of i increases, the more connected edges of the node, representing the node,
became more important. The average degree of the network is determined by the
mean of the degree of all nodes. Average degree reflects the connection level between
nodes and measures the complexity of the network.

2. Clustering coefficient:
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The clustering coefficient C represents the clustering situation of the nodes in the
network, which means C represents the probability that the node neighbors are
also neighbors to each other. The clustering coefficient Ci of node i can be defined
as follows:

Ci =
2ei

ki(ki − 1)
(10)

Here, ei represents the number of connections between ki nodes connected to node
i, ki(ki − 1) represents the maximum number of connected edges between ki nodes
connected to node i. The average clustering coefficient of a network is the mean of the
clustering coefficient of all nodes in the network, which can be expressed as follows:

C =
∑N

i Ci

N
(11)

N is the number of nodes in the network and the value of Ci is between 0 and 1. When
a connection exists between both nodes in the network, C = 1, and when all nodes in
the network do not have a connection, C = 0. The clustering coefficient can reflect the
tightness of connections between nodes.

3. Average path length:
The calculation formula for the average path length L of the network is

L =
1

N(N − 1) ∑
i 6=j∈N

dij (12)

where N is the number of nodes in the network, dij is the shortest distance between
node i and node j, representing the minimum number of connection edges required
for connectivity between node i and node j. In small-scale networks, we usually use
the Floyd algorithm to calculate dij. The average path length is an important indica-
tor to measure the transmission efficiency of network. Random networks typically
have shorter average lengths, while regular networks typically have longer average
path lengths.

3. Experimental Results and Analysis
3.1. Experimental Data

We collected the MEG data from the magnetoencephalography center of the Brain
Hospital of Nanjing Medical University. The equipment used for collecting MEG was the
Canadian CTF 275 full-head magnetoencephalogram acquisition system, and the sampling
frequency was 1200 HZ. We have 16 samples including 11 healthy individuals and 5 de-
pression patients. All participants had no bad habits and their physiological indicators
were normal. The ages of participants were between 20 and 30 years, and the average age
was 25 ± 2. All patients were evaluated by professional psychiatrists using the Hamilton
Depression Rating Scale, consisting of 17 items (HDRS-17), and based on the International
Classification of Diseases, 10th Revision (ICD-10). The patients were taking antidepressants
during the test and had no other mental or neurological disorders. Their HDRS-17 scores
were greater than 17. Before the experiment, we introduced the equipment to participants
to ensure that they had no fear of the device. We obtain 240 images from the International
Emotional Image Library (IAPS), consisting of 80 positive, 80 neutral, and 80 negative
emotional images. Three types of images were displayed to participants consecutively in
order during the experiment. Then we use the CTF275 MEG system to record the brain
MEG signals of the 16 samples under different stimuli.

3.2. Experimental Process and Steps

We use MATLAB2022b to process the MEG data. The MEG data were pre-processed
by artifact removal, baseline correction, and SPM8 filtering. The specific processing was as
follows: for each data, a bandpass filter was used to obtain a signal from 0.1 HZ–200 HZ,
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then remove 50 HZ of industrial frequency noise, and we finally obtain a three-dimensional
matrix of 275 × 161 × 80. 275 represents the 275 MEG channels, 161 represent the data
sampling points, and 80 represents the number of each type of picture. The duration of the
stimulus was 600 ms, with intervals of 650 ms to 800 ms, and the three types of pictures
were randomly displayed on the screen in front of the subjects. In this experiment, we first
analyzed the subjects’ δ-wave (0.5–4 HZ), θ-wave (4–8 HZ), α-wave (8–13 HZ), β-wave
(13–30 HZ), and full frequency band using polynomial kernel Granger causality. We found
significant differences in the β-band brain MEG signals (13–30 HZ) of the two groups. In
Basar [20,21] et al.’s study on the response amplitude of different bands in the human
EEG under facial expression stimuli, they found that the β-band response amplitude was
significantly increased when subjects processed facial emotion picture stimuli. Compared
to other bands, β-band was most active and negative emotional stimuli will trigger higher
beta oscillations. Based on this, the following studies were conducted with beta-band
EEG signals.

The brain can be divided into five brain regions, namely the frontal region (F), parietal
region (P), occipital region (O), temporal region (T), and central region (C). As shown in
Figure 1, the CTF 275 magnetoencephalography system further divides these five brain
regions into left and right, or left, middle, and right.

Figure 1. Dividing regions in the CTF 275 and the number of channels in each brain region.

When selecting the embedding dimension (m) of the polynomial kernel function, since
the Granger causality is based on the theory of the regression model, we use the AIC
(Akaike information criteria) when selecting the embedding dimension m. AIC is a method
proposed by Akaike [22] et al. to obtain the order of a time series analysis model. While
AIC encouraging good data fitting, it is necessary to avoid overfitting as much as possible,
so that the model with the minimum AIC function is considered the optimal model. The
expression of the AIC criterion used in this experiment is [23]:

AIC(m) = ln
(
∑

)
+

2p2m
n

(13)

where p is the dimension of the variable, ∑ is the covariance matrix of the prediction error
obtained by m order regression, and n is the length of the time series. In this experiment,
we determined order m of the model using the AIC information criterion and calculated
the order of the model from 1 to 20. We found that when m = 4, both groups of people
had smaller AIC values. Therefore, we chose to embedding dimension m = 4. When
determining the value of p, two groups of channels were randomly selected in the occipital
and frontal regions of depressed patients and healthy people, and p = 1–6 was taken for



Entropy 2023, 25, 1330 6 of 14

calculation. As we can see in Figure 2, the polynomial kernel Granger causality strength
between the two groups of channels peaked when p = 2. To avoid overfitting issues
resulting from excessive index selection, we selected p = 2 for subsequent analyses.

Figure 2. Selection of parameter p value.

Fixing m = 2 and p = 4, we used polynomial kernel Granger causality to calculate
the connection strength between the two groups of 14 nodes two-by-two under three
different emotional stimuli, and then averaged the two groups separately. Finally, we
obtained the average Granger causality index matrix for the two populations under the
three emotional stimuli and performed independent samples t-tests on them. The results are
shown in Table 1. From the table, we can see that the mean of the Granger causality matrix
is greater in depressed than in healthy individuals and there is a significant difference
between depressed patients and healthy people (p < 0.05) under negative and neutral
stimuli. However, there is no significant difference between the two groups of people under
positive stimuli.

Table 1. Independent sample t-test of the Granger causality mean matrix between 14 brain regions
across 2 groups.

Depression Normal t p

Positive stimulus 0.1155 ± 0.0041 0.1158 ± 0.0041 0.040 0.968
Neutral stimulus 0.1198 ± 0.0041 0.1154 ± 0.0041 20.158 0.000
Negative stimulus 0.1211 ± 0.0041 0.1157 ± 0.0041 21.573 0.000

Before constructing a brain network, we need to select a suitable threshold value. The
selection of the threshold (T) has been a difficult point in brain network research. It can
directly affect the statistics and analysis of topological properties in brain networks. There
is no universally applicable threshold selection method, and the following three principles
will be referred to for threshold selection in this paper [24,25]: (1) The threshold value
shall be chosen to ensure the complete connectivity of the network as much as possible,
which means that there are no or very few isolated nodes in the network. (2) The threshold
must be chosen to ensure the small-world nature of the network as much as possible to
make the network has high global efficiency and low local efficiency. (3) The thresholds are
selected to reflect the differences between groups as much as possible. Based on the above
selection principle, we determined the threshold range of 0.11–0.13, and took a threshold
every 0.001 for calculation. Finally we select T = 0.115. To further observe the specific
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differential areas of the brain of the two populations under negative and neutral stimuli,
we draw the adjacency matrix of the difference between healthy and depressed individuals.
As shown in Figure 3, blue squares indicate the presence of causal effects between two
brain regions corresponding to the given coordinates in depressed individuals, with no
connections observed in healthy individuals. Yellow squares signify the existence of causal
effects between two brain regions corresponding to the coordinates for healthy individuals,
with no connections found in depressed individuals. Green squares denote consistency
between the two populations for the brain regions represented by the coordinates, i.e.,
either both groups exhibit a causal effect, or neither does.

Figure 3. The diff-adjacency matrix between the two groups under negative and neutral stimuli.
(a) negative stimuli (b) neutral stimuli.

As can be seen Figure 3, depressed patients had more causal interactions with other
regions in RF (right frontal), LO (left occipital) and RO (right occipital) than healthy
individuals under negative stimulation. Healthy individuals had more causal interactions
with other regions in the LP (left parietal) and LC (left central) regions. Under neutral
stimulation, depressed patients had more causal interactions in the LO (left occipital),
RF (right frontal), RO (right occipital). In contrast, healthy people showed more causal
interactions in the LP (left parietal) and ZC (central region) areas. These results suggest that
under non-positive emotional stimuli, depressed individuals show more causal connections
and closer information exchanges with other brain regions in the frontal and occipital
regions compared to healthy individuals, and less causal connections in the parietal and
central regions. The frontal lobe is closely related to the regulation of human emotions, and
depressed patients have significant abnormalities in the frontal lobe compared to healthy
individuals when processing negative stimuli [26]. The occipital lobe, as the primary
processing area of the brain for visual stimuli, is mainly involved in the processing of facial
emotions, and it has been shown that depressed patients have abnormal activation of the
occipital lobe in response to negative facial emotional stimuli [27]. Furthermore, excessive
attention to negative stimuli exists in the occipital region of depressed patients. The parietal
region is mainly responsible for the integration of visual and spatial information, and some
studies have shown that healthy people have higher neurotransmitter activation in the
parietal region than depressed patients. Neurotransmitters are the main substances that
transmit information between neurons, and a high activation of neurotransmitters in the
parietal regions of healthy people indicates that healthy people have more information
exchange and more intense activity in the parietal region, connecting with other brain
areas [28]; This finding is consistent with our results, which conclude that healthy people
have more causal connection in the parietal regions.

Based on the above data, we constructed brain networks with T = 0.115 for the
MEG signals of depressed patients and healthy individuals, respectively, as shown in
Figures 4–6. From the figure, we can see that the connections of the brain network are
tighter in depressed patients compared to healthy individuals under negative and neutral
stimuli. Due to the large number of nodes, we cannot visually observe the topological
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properties of the network from the network diagram, so we will find changes in the
topological properties of the two groups under different emotional stimuli by analyzing
the average degree of the network, the average clustering coefficient, and the characteristic
path length index in the small-world property.

Figure 4. Brain networks in two groups under negative stimuli, (a) healthy, (b) depressed.

Figure 5. Brain networks in two groups under neutral stimuli, (a) healthy, (b) depressed.
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Figure 6. Brain networks in two groups under positive stimuli, (a) healthy, (b) depressed.

Figures 7 and 8 show the error bar graphs of the average degree and average clustering
coefficients of the two populations under the three emotional stimuli: negative, neutral, and
positive, respectively. In Figure 7, we can see that the average degree of depressed patients
was higher than healthy individuals under negative and neutral stimuli, and both passed
the independent samples t-test (p = 0.008). However, the two groups didn’t show significant
differences under positive stimuli. This result suggests that the connections between brain
network nodes are stronger in depressed patients under non-positive emotional picture
stimuli and the causal connection between brain regions are significantly enhanced in
depressed patients when processing negative stimuli. From Figure 8, we can see that the
average clustering coefficients are higher in healthy individuals under all three emotional
stimuli, and all pass the independent samples t-test with p = 0.034 under negative stimuli,
p = 0.028 under neutral stimuli, and p = 0.011 under positive stimuli, indicating healthy
individuals have a higher degree of brain network grouping. Next, we compare differences
in mean degree and mean clustering coefficients for the same sample across emotional
stimuli. From Figure 9, it can be seen that depressed patients show the highest average
degree under negative stimuli and the lowest under positive stimuli. In contrast, healthy
individuals show no significant differences under the three emotional stimuli. To verify
whether there is a statistically significant difference in the average degree of the same
sample under three different emotional stimuli. We conducted a one-way ANOVA analysis
and set the significance level as α = 0.05. The original hypothesis H0 is: there is no significant
difference in the average degree of the same type of sample under three emotional stimuli.
After the calculation, it was found that the significant difference (p-value) in the average
degree between healthy individuals under three different emotional stimuli was greater
than 0.05, so there was no significant difference between the average degrees of the three
emotional stimuli in healthy individuals. However, in depressed patients, the p-value was
less than 0.05. This indicates that the differences in the average degree between the three
stimuli are significant. We further used the Bonferroni multiple comparison test to correct
results, we found that there were significant differences between positive and neutral
stimuli (p = 0.025), positive and negative stimuli (p = 0.011), and neutral and negative
stimuli (p = 0.041) in depressed patients. As can be seen in Figure 10, depressed patients
had the largest average clustering coefficient under negative stimuli and the smallest
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under positive stimuli, while the average clustering coefficient did not change in healthy
individuals under different emotional stimuli. We used the same method above to test
whether there were significant differences in the average clustering coefficients of the same
sample types. Finally, we found that there was no significant difference in the average
clustering coefficients between healthy individuals under three emotional stimuli. However,
there is significant differences in depressed patients between positive and negative stimuli
(p = 0.024). This result suggests that the brain networks of depressed patients differ more
under different emotional stimuli, which may be due to the fact that depressed patients are
more prone to mood swings compared to healthy individuals.

Figure 7. The average degrees of negative, neutral, and positive emotional stimuli in both categories.
(a) Error bar chart of the average degree between depression patients (blue line) and healthy indi-
viduals (red line) under negative stimulation. (b) Error bar chart of the average degree between
depression patients (blue line) and healthy individuals (red line) under neutral stimulation. (c) Error
bar chart of the average degree between depression patients (blue line) and healthy individuals (red
line) under a positive stimulation.

Figure 8. The average clustering coefficients of the two groups under negative, neutral, and positive
emotional stimuli. (a) Error bar chart of the average clustering coefficient between depression patients
(blue line) and healthy individuals (red line) under negative stimulation. (b) Error bar chart of the
average clustering coefficient between depression patients (blue line) and healthy individuals (red
line) under neutral stimulation. (c) Error bar chart of the average clustering coefficient between
depression patients (blue line) and healthy individuals (red line) under a positive stimulation.
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Figure 9. Comparison of the average degree of the same population under different emotional stimuli.
(a) Error bar chart of the average degree of the healthy group under positive, neutral, and negative
stimuli. (b) Error bar chart of the average degree of depression patients under positive, neutral, and
negative stimuli.

Figure 10. Comparison of average clustering coefficients of the same population under different
emotional stimuli. (a) Error bar chart of the average clustering coefficient of the healthy group under
positive, neutral, and negative stimuli. (b) Error bar chart of the average clustering coefficient of
depressed patients under positive, neutral, and negative stimuli.

A small-world network is a network with a high clustering coefficient and short
characteristic path length, and the small-world property can be characterized by calculating
the small-world coefficient. The characteristic path length of a network is the average of the
shortest path lengths that all nodes in the network need to travel to connect. In this paper,
we observed the changes in brain networks of depressed and healthy people by calculating
the deviation in the characteristic path length of the network under positive, neutral,
and negative stimuli compared to the characteristic path length of a random small-world
network model. We randomly construct fifty small-world networks and calculate their
characteristic path lengths (Ls). The mean path lengths (L) were calculated for depressed
patients and healthy people under three emotional stimuli at different thresholds, and the
degree of deviation of the two populations under different emotional stimuli compared to
small-world networks was observed by calculating the value of L/Ls. If the value of L/Ls
is closer to 1, it indicates that the characteristic path length of the network is close to that of
the small-world network.
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Figure 11 shows the comparison of the L/Ls values of the two groups under three
different emotional stimuli, * represents p < 0.05 after using the independent samples t-test.
It can be seen from the figure that the L/Ls values of the brain network of depressed
patients are greater than 1 under both negative and neutral stimuli at different thresholds
and have a tendency to continue to increase, indicating that the characteristic path length
of the brain network of depressed patient has a significant deviation from a small-world
property. On the contrary, the L/Ls values of the brain networks of depressed patients and
healthy individuals did not differ significantly under positive stimuli and were close to 1,
indicating that the brain networks of the two groups were close to the small-world network
under positive stimuli. These results indicate that the characteristic path lengths of the
brain networks of depressed patients significantly deviated from a small-world property
under negative and neutral stimuli, and changes in the brain network of depressed patients
were more pronounced, while the brain networks of healthy individuals were close to the
small-world network properties under the three emotional stimuli.

Figure 11. L/Ls values in depressed and healthy individuals under 3 emotional stimuli, * represents
p < 0.05, (a) negative stimuli (b) neutral stimuli (c) positive stimuli.
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4. Summary

In this paper, we used the Granger causality based on the polynomial kernel as the
connecting edge between the brain network nodes to construct brain networks for two
groups of people (depressed patients and healthy people); we divided their topological
properties and obtained the following conclusions: (1) Under negative and neutral emo-
tional stimuli, depressed patients exchanged information more closely between the frontal
and occipital regions compared to healthy people, and the causal connection was weaker in
the parietal and central regions. (2) Depressed patients had higher average degrees under
negative and neutral emotional stimuli than healthy individuals, and healthy individuals
had higher average clustering coefficients under all three emotional stimuli than depressed
patients. (3) Comparing the changes of the mean degree and mean clustering coefficients
in the same population under different stimuli, it was found that the mean degree and
mean clustering coefficients were greater in depressed patients under negative stimuli than
in neutral and positive stimuli, indicating that the brain networks of depressed patients
changed more when they were subjected to emotional stimuli. (4) The mean path lengths
of depressed patients deviated significantly from the small-world properties under nega-
tive and neutral stimuli. In conclusion, using Granger causality based on the polynomial
kernel to analyze MEG signals and construct networks can effectively differentiate between
healthy individuals and depressed patients, aiding in the diagnosis of depression. Finally,
we would like to emphasize that larger and more representative patients are necessary for
the validation of our findings; we will further increase our sample size and conduct more
research on the topological structure and attributes of the brain network for depression and
other mental disorders.
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