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Abstract: In this paper, we ask ourselves how non-local effects affect the description of thermody-
namic systems with internal variables. Usually, one assumes that the internal variables are local, but
that their evolution equations are non-local, i.e., for instance, that their evolution equations contain
non-local differential terms (gradients, Laplacians) or integral terms with memory kernels. In contrast
to this typical situation, which has led to substantial progress in several fields, we ask ourselves
whether in some cases it would be convenient to start from non-local internal variables with non-local
evolution equations. We examine this point by considering three main lengths: the observation scale
R defining the elementary volumes used in the description of the system, the mean free path l of
the microscopic elements of the fluid (particles, phonons, photons, and molecules), and the overall
characteristic size L of the global system. We illustrate these ideas by considering three-dimensional
rigid heat conductors within the regime of phonon hydrodynamics in the presence of thermal vortices.
In particular, we obtain a generalization of the Guyer–Krumhansl equation, which may be of interest
for heat transport in nanosystems or in systems with small-scale inhomogeneities.

Keywords: continuum thermodynamics; heat transport; classical irreversible thermodynamics;
internal variables; phonon hydrodynamics

1. Introduction

Non-local effects in heat transport (and in other transport phenomena) may arise for
five physical reasons: (1) a long mean-free path of the heat carriers (phonons); (2) strongly
inhomogeneous systems (such as foams or rocks); (3) long defects (such as dislocation lines)
or systems of long lines (longitudinally conducting polymers); (4) artificially structured
media; and (5) long correlations (as in superfluids or in critical states). The non-local
effects may affect: (i) the definition of the local variable; (ii) the fluxes appearing in the
equations; (iii) the form of the evolution equations; and (iv) the influence of the boundaries
of the system.

In several cases, one must specify the size of the elementary volume cells used for the
basic description of the system, for example, size R. There are two other reference lengths:
the mean free path l and the characteristic volume size L. The mean free path depends
on temperature, L is given by the size of the system (for instance, it could be the radius
of a cylindrical channel), and R will be decided by the researcher in terms of the physical
features of the system and of the observational range of interest or the range of the available
observational instruments. If l is smaller than R and L or if R is much smaller than l and l
much smaller than L, then the non-local effects will be negligible and the local equilibrium
situation will be valid (the local equilibrium situation requires that the observation scale be
larger than l, such that in any elementary volume there is a high number of collisions of
the heat carriers leading the system to the local equilibrium state). The situation when R is
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much smaller than l but l is comparable to L has been studied on several occasions—for
instance, in phonon hydrodynamics. Here, we aim to emphasize the conceptual complexity
of the general description and suggest some points of reflection. Our motivations arise
from our interest in thermal vortices but go beyond this concrete problem.

For instance, the presence of non-local effects in generalized equations for heat tran-
sport is of special interest in systems in which l is comparable to (or bigger than) L, i.e.,
for Knudsen number l

L ≥ 1. This may be when the system is small enough that its size
becomes comparable to the mean free path, as in nanosystems, or when the mean free path
is sufficiently long that it becomes comparable to the size of the system, as is the case with
phonons at low temperature, or in rarefied systems, as in aerodynamics at low environ-
mental pressure. Some of the most-used phenomenological generalized heat transport
equations in nanosystems are variations of the so-called Guyer–Krumhansl equation [1,2],
which is a generalization of the relaxational Maxwell–Cattaneo–Vernotte equation [3–5],
plus a Laplacian term in the heat flux J(q), times a coefficient proportional to the square
of the mean free-path. Such an equation, plus some suitable boundary conditions on the
heat flux at the walls of the system, giving, for instance, a slip heat flow along the walls,
are the basis of phenomenological versions of phonon hydrodynamics [6–22]. Thermody-
namic basis for generalized equations for heat transport [23–35] has been provided from
non-equilibrium thermodynamics with internal variables and extended thermodynamics
(see References [36–68]). Internal variables are a powerful tool for modeling complex
media. Some remarks about the introduction of the internal variables and some versions of
non-equilibrium thermodynamics will be made in Section 2.

In Reference [27], a “universal” approach was developed for heat rigid conductors,
assuming that the entropy function depends on the internal energy and on a single vectorial
internal variable quadratically. This internal variable may be a function of several micro-
scopic variables of odd and even type with respect to the time reversibility. A generalized
form for the entropy current is postulated and a generalized ballistic-conductive heat trans-
port equation is obtained, which illustrates the universal character of the used approach.

In Reference [28], in the case of one-dimensional isotropic rigid heat conductors,
assuming a quadratic dependence of the entropy density on two additional fields, the
heat flux J(q) and a second-order tensor Q as internal variable, and a generalized form
for the entropy flux, a generalized ballistic-conductive heat transport law is obtained,
from which the special cases of Guyer–Krumhansl, Cahn–Hilliard-type, Jeffreys-type,
Maxwell–Cattaneo–Vernotte and Fourier heat equations were derived. In Reference [33],
the three-dimensional case was treated and both cases when the tensorial internal variable
has odd parity or even parity were studied.

In Reference [9], an extended thermodynamic model for heat transfer at continuum
scale and sub-continuum scale is given. At nanoscale, a two-fluid ballistic-diffusive hydro-
dynamic model is formulated, assuming that two types of heat carriers (phonons) coexist:
the diffusive phonons, colliding with the core of the medium, according to the Maxwell–
Vernotte–Cattaneo equation, and the ballistic phonons, colliding with the boundaries of
the medium, whose motion is governed by the Guyer–Krumhansl equation. This ballistic-
diffusion model was initially introduced by Chen in Reference [7], within the framework
of the kinetic theory, wherein the distribution function is split into two contributions for
diffusive phonons and for ballistic phonons. In this regard, see also Reference [53].

In Reference [34], assuming that the entropy function depends on the internal energy,
and two internal variables, a vector and a second rank tensor, the total heat flux was
split in two parts: a contribution obeying Fourier law and another one governed by the
Maxwell–Vernotte–Cattaneo equation.

Several different thermodynamic formalisms may lead to slightly different versions of
the Guyer–Krumhansl equation. This diversity may be useful when comparing different
solutions, or may suggest new terms which could be relevant in particular problems.

As the motivation of this paper, we want to include the thermal vortices of
phonons [69,70], arising in nonlinear phonon hydrodynamics and in GENERIC (general
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equation for non-equilibrium reversible-irreversible coupling) [71,72]. However, we also
want to generalize the reflection on the local use variables (either the heat flux and its
respective flux or the vectorial and tensorial variables) in non-local situations a little bit.
Indeed, in the mentioned references, the non-locality is reflected in the evolution equations,
but not in the definition of the basic variables themselves.

The paper is organized as follows. In Section 2, we recall some concepts regarding the
internal variables and some different types of non-equilibrium thermodynamics, among
them the Gyarmati wave approach [41], in whose frame we work in this paper. In Section 3,
we introduce some fundamentals about the Gyarmati wave theory (see also [50]). In
Sections 4–6, we review the thermodynamic formalism of the heat transport in rigid solids,
with a polar vectorial internal variable, having odd parity. The phenomenological equations
in the anisotropic and isotropic cases with the Onsager–Casimir relations and the entropy
production are derived. In Section 7, we work out a generalized Guyer–Krumhansl heat
transfer equation for isotropic media and in Sections 8 and 9 we identify the internal
variable with particular vector fields, deriving the corresponding heat transport laws and
special cases of some of them. In Section 10, we discuss the relevant role of the entropy
flux in non-local formulations, assuming that the entropy depends on the internal energy
density, the heat flux and a tensorial internal variable. We also consider the case where the
tensorial variable may have a symmetric part and an antisymmetric part, and explore how
these parts, in the steady state, may be, respectively, related to the symmetric part and the
antisymmetric part of the gradient of the heat flux.

We have also provided a wide bibliography on internal variables and some historical
views of their use in non-equilibrium thermodynamics. We have thought that this biblio-
graphic exercise, which we have carried out for our particular reflection, could also be
of interest for young researchers interested in internal variables but not aware of their
multiple aspects nor of the historical evolution of their use.

2. Some Remarks about the Internal Variables and Some Versions of Non-Equilibrium
Thermodynamics

A treatment concerning the history of the introduction of internal variables in non-
equilibrium thermodynamics, their role and their definition can be found in
References [43,50,57,60,61,63–65,67]. Internal variables are a powerful tool to model com-
plex media. Internal variables are different from dynamic degrees of freedom. The internal
degrees of freedom obey their own balance equations, the internal variables do not [65,67].
In some papers, no distinction is made between the internal variable and the internal
degree of freedom. In Reference [57], the distinction is made between an internal variable,
which is measurable, and a hidden degree of freedom (a variable whose physical nature is
unknown) which is not measurable.

Some local macroscopic internal variables describe the internal structure of a medium,
which can present point defects inside the crystalline lattice, due to the lack of atoms,
dislocation lines that disturb the periodicity of the lattice, porous channels, inhomogeneity
and heterogeneity. They can also describe partial specific polarizations or partial specific
magnetizations in a electromagnetic medium, which are parts of the total specific pola-
rization or of the total specific magnetization of the medium, due to different types of
irreversible microscopic phenomena, that give rise to the dielectric relaxation or to the
magnetic relaxation. Furthermore, assuming that irreversible microscopic phenomena
give rise to inelastic strains (such as slips or dislocations) it is possible to describe these
phenomena splitting the total strain in partial strain tensors and to formulate a theory for
mechanical relaxation phenomena.

Some of these variables are polar vectors, such as the specific polarizations p(i), or axial
vectors such as the specific magnetizations m(i) (i = 1, 2, . . . , n) (see [73,74] and also [75,76]),
partial heat fluxes J(i) (i = 0, 1, 2, . . . , n), contributions of the total heat flux J(q) [42], others
are tensorial variables such as the partial inelastic strain tensors ε

(i)
αβ (i = 1, 2, . . . , n;

α, β = 1, 2, 3), (with α and β spatial coordinates) contributions of the total strain tensor in a
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medium [77–80], the dislocation core tensor aij, with i, j = 1, 2, 3 spatial coordinates, á la
Maruszewski [81] or the dislocation tensor introduced by the authors [82] (see also [83,84]),
analogous to the tensor defined to describe the quantized vortices in turbulent superfluid
Helium II [85], the porosity tensor rij á la Kubik [86] (see also [87–89]), the inhomogeneity-
grain density and the anisotropy-grain tensor both defined by Maruszewski [90] (see
also [91]). Furthermore, the trace of the dislocation tensor is an internal scalar variable and
describes the density of local dislocation lines at a point of the medium. There exist several
other internal variables describing the internal structure of the medium.

In some formalisms, the internal variable is eliminated and does not appear in the
final results, while in others there is a relaxation equation for this variable and it appears in
the final results, as for the dislocation tensor or the porosity tensor and others.

In Reference [63], the internal variables are introduced axiomatically in non-equili-
brium thermodynamics by seven fundamental concepts, among them the concepts esta-
blishing that “the internal variables may be included in the state space or may be not”,
“in equilibrium the internal variables become dependent on the variables of the equili-
brium subspace, but they are not determined by them, i.e., the equilibrium subspace is
many-valued”, “additional rate equations for internal variables join the balance equations
and constitutive equations”, and “internal variables need a model or a (microscopic or
molecular) interpretation”.

In this paper, within the framework of the Gyarmati wave approach [41], we introduce
a non-local internal variable to model special thermal motions of phonons. It is called in a
general way ζ, to develop a general model, but after obtaining the results, its identification
takes place, as in the paper [42], where the internal variable is not eliminated from the
formalism but an interpretation of it is given. There are many schools of non-equilibrium
thermodynamics [45,47–49,56,62,92].

Limiting ourselves to the theories in continuum field formulation, two classes of
theories can be distinguished with respect to the general relation between the heat flux

J(q) and the entropy flux density J(s) = J(q)
T + k, where k is an additional term called extra

entropy flux density [44,49,93]. The theories where k is null, k = 0, are called Clausius–
Duhem theories. The choice of the state space of the “basic” fields together with different
basic assumptions classify special versions of non-equilibrium thermodynamic theories.

In classical irreversible thermodynamics (CIT), the state space is the equilibrium
subspace. This hypothesis is called the local equilibrium hypothesis, thus there are no
gradients and time derivatives, nor fluxes in the state space. The entropy flux density is

given by J(s) = J(q)
T in the case of one component material or J(s) =

1
T

(
J(q) −∑n

l=1 µ(l)J(l)di f f

)
in the case where a medium consist of n components, with J(l)di f f the l-th diffusive flux

and µ(l) the thermodynamic or chemical potential of the component l-th. Furthermore, in
non-equilibrium, the time rate of the entropy satisfies the Gibbs equation. The entropy
production σ(s) is given by a sum of products of fluxes Ji and forces Xi, σ(s) = JiXi.
Fluxes and forces are connected by linear constitutive equations, Ji = LikXk, so that the
entropy production is a bilinear form, σ = LikXiXk, where the Einstein sum convention
regarding the repeated indices is used. The Onsager reciprocity relations state that the
phenomenological coefficients relating thermodynamic fluxes to thermodynamic forces are
symmetrical, i.e., Lij = Lji [36,37,56].

In rational thermodynamics (RT) in the state space non-equilibrium variables are
included, they can be gradients, time derivatives. It is assumed that the entropy and
the temperature are primitive concepts, i.e., nothing is said about how to define (or to
measure) these quantities in non-equilibrium. The fields of specific entropy s, the entropy
flux density J(s) and entropy production density σ(s) are assumed as constitutive quantities
(i.e., functions of the state space fields), which have to satisfy the dissipation inequality
(local in time)

σ(s) = ρ
ds
dt

+ ∇ · J(s) > 0, (1)
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where ρ is the mass density field of the body, d/dt is material time derivative, defined by
d
dt = ∂

∂t + vi
∂

∂xi , with ∂
∂t the partial time derivative, vi is the velocity field, and the symbol

“∇·” denotes the divergence operator.
Indeed, the law (1) is the second law of thermodynamics that, with its amendment:

“Except in equilibrium, there are no reversible process directions in the state space”, states
that all local solutions of the balance equations have to satisfy the dissipation inequal-
ity (1), [45,47–49,56,94–96]. The inequality (1) is exploited by Coleman/Noll [97,98] or Liu
procedure [99]. The principle of equipresence states that all constitutive quantities depend
on the same set of variables of the state space. There are other material axioms restricting
the constitutive mappings: material frame indifference, objectivity, and standard frame
dependence [45,62,100].

In extended thermodynamics (ET) [55,56,58,62], in the state space there are present
dissipative fluxes but no gradients or time derivatives. We distinguish two types of
extended thermodynamics, which differ mainly in exploiting the dissipation inequality:
the rational extended thermodynamics (RET), that is a further development of the rational
thermodynamics, where the dissipation inequality is exploited by using the Liu or Coleman
and Noll technique; the extended irreversible thermodynamics (EIT), that, starting from CIT,
exploits the dissipation inequality as in CIT. Additional balance equations for dissipative
fluxes are needed.

The Gyarmati wave approach, considers dissipative fluxes in the state space and a
quadratic dependence of the entropy density on the added fields in the state space and
uses the CIT procedures, see Section 3.

Another approach of the non-equilibrium thermodynamics is GENERIC [72,101–103],
where the evolution equation of a state variable consists of a reversible part and an irre-
versible part. The reversible evolution is Hamiltonian, i.e., it is generated by a Poisson
bracket and by the energy, the irreversible part is generated by a dissipation potential and
by the entropy.

There exist other important different types of thermodynamics such as the endore-
versible thermodynamics, the mesoscopic theory, the kinetic theory, the variational formu-
lations and others [48,56,62].

3. Gyarmati Wave Approach: Fundamentals

In this paper, we treat the heat transfer phenomena in solid media within the frame-
work of Gyarmati wave theory [41], where, as Verhás commented, “the current densities
regarding transport processes have inertia and hence the part of the internal energy of the
medium is a kinetic energy attributable to them” [50].

This section deals with the fundamental concepts and assumptions of this approach,
giving some examples. The standard Cartesian tensor notation in a rectangular coordinate
system is used and the equations governing the behavior of a heat-conducting rigid medium
are considered in a current configuration Kt.

We consider the following balance equations:
the mass conservation law given by

dρ

dt
+ ρ∇ · v = 0. (2)

the internal energy balance equation in the form:

ρ
du
dt

+ ∇ · J(q) = 0 , (3)

where u is the internal energy density (the internal energy per unit mass), J(q) is the heat
flux vector, the current density of the internal energy, the heat source is disregarded and
∇ · J(q) = tr(∇J(q)), with “∇” as the symbol indicating the gradient operator;
and the entropy inequality given by (1).
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In this thermodynamic approach, to model phenomena beyond the local equilibrium,
the specific entropy s of the medium is not function only on the local equilibrium state
variables, but also comprehends additive contributions depending, in an homogeneous
quadratic way, on vectorial, tensorial variables, and current densities, that describe the
rate of the processes. In particular, in Reference [41] (see also Reference [50]), the specific
entropy has the form

s = seq(u)− 1
2

m(J(q))2, (4)

where seq(u) is the equilibrium entropy function and m is a material coefficient characteri-
zing the inertia of the heat current density. Furthermore, m > 0 by virtue of the concavity
of the entropy function. The following quantities are defined:

1
T

=
∂s
∂u

=
ds(eq)

du
,

∂s

∂J(q)i

= −mJ(q)i (i = 1, 2, 3), (5)

where T is the equilibrium temperature.
By virtue of Equation (3) and the entropy balance Equation (1), with the entropy

flux J(s), defined as in CIT, J(s) = 1
T J(q), using the procedures of the classical irreversible

thermodynamics, the Maxwell–Cattaneo equation, describing high frequency processes, is
obtained in the following form:

τ
dJ(q)

dt
+ J(q) = −λ∇T, (6)

with τ = λmT2 the relaxation time of the heat flux and λ the heat conductivity coefficient.
The Gyarmati theory is a generalization of the classical irreversible thermodynamics

and it was formulated on the basis of Onsager and Machlup approach for adiabatically
closed systems, having a “kinetic energy” [104].

The same procedure is used in Reference [42], where a specific entropy is considered
in the form

s = seq(u)− 1
2

n

∑
k=1

(β(k))2, (7)

where β(k) (k = 1, 2, . . . , n) are vectorial variables, called dynamic degrees of freedom,
introduced in the state space C = C(u, β(1), β(2), . . . , β(n)).

Defining
1
T

=
∂s
∂u

,
∂s

∂β
(k)
i

= −β
(k)
i (k = 1, 2, . . . , n; i = 1, 2, 3), using the entropy

balance (1), with the entropy flux J(s) given by J(s) = 1
T J(q), and the internal energy balance

Equation (3), by virtue of the CIT procedures, the following phenomenological equations
are obtained in the isotropic case:

J(q) = −λ∇ T − ρ
n

∑
k=1

µ(q)(k) dβ(k)

dt
, β(k) = −µ(k)(q)∇ T − ρα(k)

dβ(k)

dt
(k = 1, 2, . . . , n). (8)

By the identifications: J(0) = −λ(0)∇ T, J(k) = µ(q)(k)

α(k)
β(k), the following results are

derived [42]:

J(q) = J(0) +
n

∑
k=1

J(k), τ(k) dJ(k)

dt
+ J(k) = −λ(k)∇ T (k = 1, 2, . . . , n), (9)

where λ−∑n
k=1

µ(k)(q)µ(q)(k)

α(k)
= λ(0) = 0, µ(i)(q) = T2µ(q)(i), α(k) > 0, τ(k) = ρα(k),

λ(k) = T2 (µ(k)(q))2

α(k)
(k = 1, 2, . . . , n).

Equation (9) establishes that the heat flux J(q) is given by n + 1 contributions: J(0)

governed by Fourier constitutive equation, valid at low frequencies and large space scales,
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and the n contributions J(k) governed by Maxwell–Cattaneo equations, describing high
frequency processes. τk is the relaxation time of the partial heat flux J(k).

In Reference [26], supposing that the entropy function depends besides the internal
energy u also on the heat current J(q), in a way as suggested by the Gyarmati approach, a
theory for non-local phenomena is formulated assuming a generalized entropy flux. The
Guyer–Krumhansl heat transfer equation, with Fourier, Maxwell–Cattaneo–Vernotte as
special cases, and the Cahn–Hilliard heat transport equation are derived. In Reference [29],
the second sound, the wave-like propagation of heat is investigated at low temperatures,
and assuming a quadratic dependence of the entropy density on the heat flux J(q) and a
second order tensorial internal variable Q, postulating a generalized form for the entropy
flux, using the Nyíri multipliers [105], a generalized ballistic-conductive heat transport
model is obtained.

4. A Model Describing Special Thermal Motions of Phonons

The phonon hydrodynamics describes the heat transfer at sub-continuum scale, when
the motion of the phonons (heat carriers) is taken into consideration. At nanoscale, for
instance, we can consider the diffusive phonons, that undergo multiple collisions with
the core of the medium, whose motion is governed by the Maxwell–Vernotte–Cattaneo
equation, and the ballistic phonons, colliding with the walls of the medium, whose motion
is described by the Guyer–Krumhansl equation [2,7,9,53]. In this paper, we suppose that
particular thermal motions of the phonons, such as the thermal vortices [69,70], can be
described by a non-local macroscopic vectorial internal variable ζ, of which we give some
interpretations in Sections 8 and 9. We work within the framework of the Gyarmati
approach. Our objective is to derive generalized Guyer–Krumhansl evolution equations
for the heat flux. Thus, if u is the specific internal energy, the thermodynamic state space is
chosen as follows:

C = C(u, ζ), (10)

and the specific entropy s depends on the specific internal energy u and on the internal
variable ζ, i.e.,

s = s(u, ζ). (11)

We define 
1
T

=
∂s
∂u

∂s
∂ζi

= − ηijζ j,
(12)

where T is the equilibrium temperature (the absolute temperature) and ηij are constitutive
coefficients characterizing the material under consideration (they are called inductivities).

The mass conservation law and the internal energy balance equation are given by (2)
and (3). We assume an entropy function having the form:

s(u, ζ) = s(eq)(u) − 1
2

ηijζiζ j (i, j = 1, 2, 3), (13)

where seq(u) is the equilibrium entropy function depending only on the internal energy.
Furthermore, from (13) the coefficients ηij satisfy the following symmetry relations:

ηij = ηji (i, j = 1, 2, 3). (14)

Thermodynamic stability requires that the inductivity tensors ηji are positive definite (see
Appendix A), and we assume that they are constant. Using Equations (12) and (13), we
obtain the following Gibbs relation:

T ds = du − T ηijζi dζ j. (15)
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From (15), it follows that the time derivative of the entropy s has the form

$T
ds
dt

= $
du
dt
− $T ηijζi

dζ j

dt
. (16)

Using Equation (3), from (16) the entropy balance is obtained in the form (1), where the
entropy flux J(s) is given by J(s) = 1

T J(q), and the entropy production has the following form:

σ(s) = T−1
[
−T−1 J(q)i

∂T
∂xi − $ T ηij ζi

dζ j

dt

]
≥ 0. (17)

From (17), it is seen that the entropy production is composed additively of two contributions,
the first term is due to the heat conduction and the second term is connected with the
entropy production due to the internal variable field.

Here, we consider the case of rigid conductors at rest, so that the material time
derivative d

dt is equal to the partial time derivative ∂
∂t .

5. Phenomenological Equations

The entropy production (17) is a bilinear form composed of a sum of terms, where
each term is a product of a flux and an affinity (or thermodynamic force) conjugate to

the flux [39,57]. We choose as fluxes J(q)i and $Tηij
∂ζ j
∂t and as affinities −T−1 ∂T

∂xi and −ζi.
According to the procedures of non-equilibrium thermodynamics, we derive the following
phenomenological equations for anisotropic media, where the irreversible fluxes are linear
functions of the affinities

J(q)i = L(q)(q)
ij

(
−T−1 ∂T

∂xj

)
+ L(q)(1)

ij

(
−ζ j

)
, (18)

$Tηij
∂ζ j

∂t
= L(1)(q)

ij

(
−T−1 ∂T

∂xj

)
+ L(1)(1)

ij

(
−ζ j

)
. (19)

Equation (18) is a generalization of Fourier law and Equation (19) is the phenomenological
equation for the irreversible processes described by the internal variable ζ. The quantities
L(q)(q)

ij , L(q)(1)
ij , L(1)(q)

ij , L(1)(1)
ij , that occur in (18) and (19) are phenomenological tensors and

are supposed constant. L(q)(q)
ij is the second order tensor of the heat conductivity, L(q)(1)

ij

and L(1)(q)
ij are second order tensors connected with the influence of the heat flux on the

field of the internal variable and vice versa and L(1)(1)
ij is a second order tensor connected

with the irreversible phenomena due to the field ζ. The macroscopic quantities, which
occur in a phenomenological theory, from the microscopic point of view, can depend on the
velocity of the microscopic particles, distinguishing them in even and odd functions if they
are even or odd functions of the speed of these particles. From the macroscopic point of
view, we distinguish the macroscopic quantities in even and odd functions, when they are
even or odd under time reversal [39,56,57,72].

The heat flux J(q) is an odd function and we assume that the internal variable ζ is
an odd polar vector; T−1grad T and the time derivative of ζ, ∂ζ

∂t are even functions. Hence,
we have the following Onsager–Casimir reciprocity relations for the phenomenological
coefficients

L(q)(q)
ij = L(q)(q)

ji , L(q)(1)
ij = −L(1)(q)

ji , L(1)(1)
ij = L(1)(1)

ji . (20)

Relations (20) reduce the number of independent components of the phenomenological
tensors, that are polar tensors. Substituting the laws (18) and (19) into (17), by virtue of
relations (20), one has

T σ(s) = T−2L(q)(q)
ij

∂T
∂xi

∂T
∂xj + L(1)(1)

ij ζ jζi. (21)
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From (21) it is seen that the entropy production in a non-negative bilinear quadratic
form in the components of the gradient of the temperature and the components of the
internal variable. In Appendix A, we give a matrix representation of σ(s) in the form:
σ(s) = XαLαβXβ, being Xα, Xβ and Lαβ suitable matrices see (A2)–(A4). Some inequalities
are derived for the components of the phenomenological tensors, resulting from the fact
that all the elements of the main diagonal of the symbolic matrix Lαβ associated with the
bilinear form (21) must be non-negative, representing a condition (only necessary) for the
semi-definiteness of the matrix Lαβ. In particular, we have obtained

L(q)(q)
ii ≥ 0, L(1)(1)

ii ≥ 0, (i, j = 1, 2, 3). (22)

Furthermore, other relations can be derived from the non-negativity of the major minors of
Lαβ, coming from Sylvester’s criterion, that represents a necessary and sufficient condition
for the semi-definiteness of the matrix Lαβ.

6. Isotropic Case

The existence of spatial symmetry properties in the media under consideration may
simplify the form of the phenomenological equations in such way that the Cartesian
components of the fluxes do not depend on all Cartesian components of the thermodynamic
forces. This statement is called Curie symmetry principle.

In this Section, we consider perfect isotropic media for which the symmetry properties
are invariant under orthogonal transformations with respect to all rotations and inversions
of the axes frame.

In this case, polar tensors of order two keep the form Lij = Lδij, where L is a scalar.
Thus, in the isotropic case, ηij = ηδij and the entropy function (13) has the following

form:
s(u, ζ) = s(eq)(u)− 1

2
ηζ2. (23)

Defining 
1
T

=
∂s
∂u

∂s
∂ζi

= − ηζi,
(24)

from (23) and (24), the following Gibbs relation is derived:

T ds = du − T ηζi dζi. (25)

From (3) and (25), the entropy balance is obtained in the form (1), where J(s) = 1
T J(q), and

the entropy production has the following form:

σ(s) = T−1
[
−T−1 J(q)i

∂T
∂xi − $ T ηζi

dζi
dt

]
≥ 0. (26)

From (26), following the procedures of non-equilibrium thermodynamics, the phenomeno-
logical equations in the isotropic case have the form (see also (18) and (19))

J(q)i = L(q)(q)
(
−T−1 ∂T

∂xi

)
+ L(q)(1)

(
−ζi

)
, (27)

$ηT
∂ζi
∂t

= L(1)(q)
(
−T−1 ∂T

∂xi

)
+ L(1)(1)

(
−ζi

)
. (28)

The Onsager–Casimir reciprocity for the phenomenological coefficients are

L(q)(q) = L(q)(q), L(q)(1) = −L(1)(q), L(1)(1) = L(1)(1), (29)



Entropy 2023, 25, 1259 10 of 21

see also (20), being in the isotropic case

L(q)(q)
ij = L(q)(q)δij, L(q)(1)

ij = L(q)(1)δij, L(1)(q)
ij = L(1)(q)δij, L(1)(1)

ij = L(1)(1)δij.

Substituting the laws (27) and (28) into Equation (26), by virtue of the relations (29), one
has

T σ(s) = T−2L(q)(q)
(

∂T
∂xi

)2
+ L(1)(1)(ζi)

2. (30)

The entropy production (30) is a positive definite quadratic form in the components of the
gradient of the temperature and the components of the internal variable, thus we have (see
Appendix A)

L(q)(q) ≥ 0, L(1)(1) ≥ 0. (31)

Furthermore, the thermodynamic stability requires that

η > 0 (32)

(see Appendix B). We assume that η is constant.

7. A Generalized Guyer-Krumhansl Heat Transfer Equation in Rigid Media

In this section, we derive a generalized Guyer–Krumhansl equation for the heat trans-
port in rigid media at rest. First, we calculate the partial time derivative of Equation (27)
multiplied by $TηL(q)(q), obtaining

$TηL(q)(q) J̇(q)i = $Tη(L(q)(q))2
[
−T−1 ∂Ṫ

∂xi + T−2Ṫ
∂T
∂xi

]
+ L(q)(q)L(q)(1)

(
−$Tηζ̇i

)
, (33)

where the upper dot denotes the partial time derivative.
Furthermore, Equation (27), multiplied by L(1)(q), and added to the Equation (28),

multiplied by L(q)(q), gives

L(1)(q) J(q)i + L(q)(q)$ηTζ̇i =

+2L(1)(q)L(q)(q)
(
−T−1 ∂T

∂xi

)
+
(

L(1)(q)L(q)(1) + L(q)(q)L(1)(1)
)(
−ζi

)
. (34)

From Equation (34), multiplied by L(1)(q), and Equation (33), we obtain

$TηL(q)(q) J̇(q)i + (L(1)(q))2 J(q)i = $Tη(L(q)(q))2
[
−T−1 ∂Ṫ

∂xi + T−2Ṫ
∂T
∂xi

]
+

+2(L(1)(q))2L(q)(q)
(
−T−1 ∂T

∂xi

)
+ L(1)(q)

(
L(1)(q)L(q)(1) + L(q)(q)L(1)(1)

)(
−ζi

)
, (35)

i.e.,

τq J̇(q)i + J(q)i = −λ
∂T
∂xi − ν

∂Ṫ
∂xi + µṪ

∂T
∂xi + γζi, (36)

with

τq =
$TηL(q)(q)

(L(1)(q))2
, λ = 2T−1L(q)(q) ν =

$η(L(q)(q))2

(L(1)(q))2
, µ = T−1 $η(L(q)(q))2

(L(1)(q))2
,

γ =

(
−L(q)(1) +

L(q)(q)L(1)(1)

L(q)(1)

)
=

(
−L(q)(1) − L(q)(q)L(1)(1)

L(1)(q)

)
, (37)
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where τq is the relaxation time of the heat flux, λ is the heat conductivity, L(q)(q), L(1)(1) and
η are positive (see (31) and (32)) and we have taken into account that L(q)(1) = −L(1)(q) (see
relation (29)).

Furthermore, we have to suppose that in Equation (36), we have

L(q)(q) 6= 0 and L(q)(1) = −L(1)(q) 6= 0, (38)

(see expressions of τq, λ, ν, µ and γ in (37)).
From the expressions (37) we have the following relations among the coefficients

τq, λ, ν, µ:

τq =
ρT2ηλ

2(L(q)(1))2
, ν =

ρT2ηλ2

4(L(q)(1))2
, µ =

ρTηλ2

4(L(q)(1))2
, ν = Tµ, ν =

τqλ

2
, µ =

τqλ

2T
. (39)

To obtain generalized Guyer–Krumhansl evolution equations for the heat flux, we
have to impose that γ is positive. From the first expression of γ on the right hand side
in (37)5, we derive the following constraints concerning the phenomenological coefficients:

γ > 0 if (40)

L(q)(q)L(1)(1) > (L(q)(1))2, and L(q)(1) > 0, (41)

or
L(q)(q)L(1)(1) < (L(q)(1))2 and L(q)(1) < 0. (42)

From the second expression of γ on the right hand side in (37)5, we have

γ > 0 if (43)

L(q)(q)L(1)(1) < (L(1)(q))2, and L(1)(q) > 0, (44)

or
L(q)(q)L(1)(1) > (L(1)(q))2 and L(1)(q) < 0. (45)

The constraints (40)–(42) are equivalent to the constraints (43)–(45), taking into considera-
tion that (L(q)(1))2 = (L(1)(q))2, being L(q)(1) = −L(1)(q).

In the Sections 8–10, we give some proposals for the internal variable.

8. Proposal I for the Internal Variable: ζ = α(J(q) + R2∆J(q))

Up to now, we have worked with ζ in general terms, for which we have not provided
any particular interpretation, in such a way that the calculations are more manageable.
Here, we are interested in the Guyer–Krumhansl equation, going beyond the Maxwell–
Cattaneo one because of the presence of non-local terms having the form of a Laplacian
of the heat flux times the square of the mean free path. Because of this, as an illustration
of our proposal to use non-local variables we assume, for instance, that instead of taking
the heat flux as in the paper [41], or a vector proportional to it, one can take the more
general expression

ζ = α(J(q) + R2∆J(q)), (46)

where the symbol “∆” indicates the Laplacian operator. Note that the variable ζ, that
we are proposing is not local, i.e., it contains Laplacian terms times the square of the
observation length R. When such observation length is small enough, i.e., when the system
is homogeneous at the scale of R, this non-local term in the variable may be neglected, and
we obtain a theory with local variables following non-local evolution equations. However,
if the system is inhomogeneous at the scale of R, this term could be used to reflect the
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degree of local inhomogeneity in the system, giving a correction to the average value of
J(q). From a statistical point of view, one could say that the first term in ζ is the average of
J(q) in the elementary region R, and that the second term is related to the local variance of
J(q) in such region. We think that such considerations are worthy of further exploration.

From Equation (36), with the relations (37)–(45), we have

τq J̇(q) + (1− γα)J(q) = −λ∇ T − ν∇ Ṫ + µṪ∇ T + γαR2∆J(q). (47)

So that Equation (47) represents a generalized Guyer–Krumhansl evolution equation for
the heat flux, we impose:

γα > 0, and (1− γα) > 0, from which α > 0 and α < 1/γ. (48)

From (46)–(48), we derive that for the validity of (47) we have to take into consideration in
the choice of ζ the following constraint for α

ζ = α(J(q) + R2∆J(q)), with 0 < α < 1/γ, i.e., 0 < α <
L(q)(1)

L(q)(q)L(1)(1) − (L(q)(1))2
. (49)

In (47), we see that from the option to choose the internal variable ζ in the form (49) we
have obtained the presence of non-local terms having the form of a Laplacian of the heat
flux times the quantity γαR2 and a total heat flux (1− γα)J(q), which is given by two
contributions. This last situation is contemplated several times in thermodynamics with
internal variables, in the sense that a macroscopic physical quantity describing particular
phenomena in complex media, with internal structure, is split in more parts to describe new
phenomena (see for instance the case of studies on special mechanical, dielectric, magnetic
effects [75,76]). Here, we are treating thermal phenomena. Thus, we obtain

τq J̇(q) + J(q) = −λ∇ T − ν∇ Ṫ + µṪ∇ T + γ∆J(q), (50)

where we have continued to call τq, λ, ν, µ, (γαR2) the coefficients present in (46) divided
by (1− γα). Equation (48) is a generalized Guyer–Krumhansl heat equation.

9. Proposal II for the Internal Variable: ζ = ∇∇ · J(q)

In this section, in order to model special thermal motions in a heat conducting solid,
we propose interpreting ζ as the gradient of the divergence of the heat flux∇∇ · J(q), which
is a vector proportional to ∇u̇. From the balance energy Equation (3), we have

∇∇ · J(q) = −$∇ u̇, (51)

$ being supposed constant. Thus, the chosen internal variable describes a negative non-
local variation of an instantaneous variation of u, i.e., −∇( ∂u

∂t ), or a negative instantaneous

variation of a non-local variation of u, i.e., − ∂(∇u)
∂t . From this definition of ζ, one obtains

ζ j
def
=
(
∇ ∇ · J(q)

)
j

def
=

(
∂J(q)i
∂xi

)
,j

=
∂2 J(q)i
∂xj∂xi

= J(q)i,ij = J(q)i,ji , (52)

where a comma in lower indices indicates the spatial derivation and the indices assume
values 1, 2, 3. Expression (52) can be reformulated as

ζ =
(
∇∇ · J(q)

)
= ∇× (∇× J(q)) +∇ · ∇J(q) = ∇× (∇× J(q)) + ∆J(q), (53)
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where the symbol “×” indicates the vectorial product. By virtue of (53), Equation (36), with
the relations (37)–(45), takes the following form

τq J̇(q) + J(q) = −λ∇T − ν∇Ṫ + µṪ∇T + γ∇× (∇× J(q)) + γ∆J(q). (54)

Equation (54) is a generalized heat equation for rigid heat conducting media, more general
than the well-known Guyer–Krumhansl, when γ is positive, because in (54) there are the
terms in ∇Ṫ and Ṫ∇T and the term ∇× (∇× J(q)), describing effects of vortices of heat
flux. In Fourier theory, the term ∇× (∇× J(q)) is zero because J(q) comes from a gradient,
but in more general theories, and especially in phonon hydrodynamics, that term is in
principle admissible, as it is in the usual hydrodynamics.

Note that the coefficient γ is proportional, in general, to some relaxation time times
the square of a mean-free path of the heat carriers (phonons). Such a relaxation time is
not necessarily the same as the relaxation time of the heat flux, but it is characteristic of
the decay of ∇∇ · J(q). This is logical because we have assumed that this quantity to be an
internal variable, with a dynamics slightly different from that of J(q) itself.

From (54), it is possible to derive as particular cases some well-known equations, ana-
lyzed in the literature of heat transport. When the coefficients ν and µ can be disregarded,
γ = l2 (with l the mean free path of phonons) and the term in ∇× (∇× J(q)) is ignored,
Equation (54) coincides with the Guyer–Krumhansl equation, i.e.,

τq J̇(q) + J(q) = −λ∇T + l2∆J(q). (55)

If one ignores in (54) the terms in Ṫ∇T, ∇× (∇× J(q)) and ∆J(q), but not the other terms,
it reduces to the analogous of the double lag equation proposed by Tzou [106], having
the form

τq J̇(q) + J(q) = −λ∇T − τ∇Ṫ. (56)

In such an equation, one has two different relaxation times, τq and

τ =
1
2

τqλ (57)

(see expressions (39)) related to the lag in J(q) and to the lag in ∇T, respectively. From (57),
we see that only both relaxation times τq and τ can be zero, not separately.

When l2 is negligible, Equation (55) reduces to the following Maxwell–Vernotte–Cattaneo
equation, describing second-sound phenomena (heat waves), and governing, at sub-
continuum scale, the diffusive motion of the phonons, which are subjected to collisions
with the core of the medium.

τq J̇(q) + J(q) = −λ∇T. (58)

It describes thermal signals having relaxation time τq and finite propagation velocity. In
the case where in Equation (58) the relaxation time τq is negligible, it reduces to the Fourier
equation J(q) = −λ∇T, valid at low frequencies and large space scales.

10. The Role of the Entropy Flux in Non-Local Formulations

A usual way of dealing with non-local effects is related to the entropy flux, which has
not appeared in our proposal in the former sections, and which we consider here for the sake
of a more complete analysis. For instance, one may assume an entropy function s(u, J(q), Q),
with Q a tensorial internal variable, having the following form (see [13,23,24,55,56,58,59]):

s(u, ζ) = s(eq)(u)− 1
2

α1(J(q))2 − 1
2

α2Q : Q,
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where α1 and α1 are the inductivity constants, that the thermodynamic stability requires
positive and the symbol “:” indicates double contraction, i.e., Q : Q = QijQij. We define
1
T = ∂s

∂u , ∂s
∂J(q)i

= −α1 J(q)i , ∂s
∂Qij

= −α2Qij. We postulate the entropy flux in the form

J(s) = T−1J(q) − β1Q · J(q), (59)

where β1 is a material coefficient, that conveniently represents the deviation of J(s) from
the local equilibrium, and Q · J(q) in components has the form Qij J

(q)
j . Thus, one has

ds = T−1du− α1J(q) · dJ(q) − α2Q : dQ, (60)

from which, by virtue of (1), (3) and (59), we obtain the following entropy production:

σs = −α1J(q) · J̇(q) − α2Q : Q̇ + J(q) · ∇T(−1) − β1[J(q) · (∇ ·QT) + Q : (∇J(q))T ] =

J(q) · [∇T(−1) − α1J̇(q) − β1∇ ·QT ] + Q : [−α2Q̇− β1(∇J(q))T ], (61)

where we have denoted by the upper dot the partial time derivative ∂
∂t , supposing the rigid

conductor we are considering at rest, and we have taken into account that ∇ · (Q · J(q)) =
J(q) · (∇ ·QT) + Q : (∇J(q))T), with QT the transposed tensor of Q, (Qji)

T = Qij.
We assume the following linear relations between the thermodynamic fluxes J(q), Q

and the forces [∇T(−1) − α1J̇(q) − β1∇ ·Q], [−α2Q̇− β1J(q)], as constitutive equations

J(q) = λ1T2[∇T(−1) − α1J̇(q) − β1∇ ·Q], (62)

Q = λ2 [−α2Q̇− β1∇J(q)], (63)

with α1 and α2 proportional to the relaxation times of J(q) and Q, respectively. If α2 is very
small with respect to α1 and it may be neglected, Q is proportional to −λ2β1∇J(q) and,
introduced in (62), leads to

J(q) = −λ1∇T − τJ̇(q) + l2∆J(q), (64)

with τ ≡ λ1T2α1, l2 ≡ λ1λ2T2β2
1 and λ1 and λ2 positive. Since the fluxes are related to

transfer from one point to another point, it is logical that they play an important role in
non-local theories. Note that instead of J(q) in (60), one could have a vectorial internal
variable J, which is usually interpreted a posteriori as proportional to J(q).

One could also generalize (59). Usually, it is considered that the internal variable Q is a
symmetric tensor, but one may also consider, in more general terms, that Q has a symmetric
part Qs plus an antisymmetric part Qa, which may be related to an axial vector Q(a), which
are independent variables in the formalism. Thus, we assume an entropy function having
the following form: s(u, J(q), Qs, Qa) = s(eq)(u)− 1

2 α1(J(q))2 − 1
2 αs

2Qs : Qs − 1
2 αa

2Qa : Qa,
and an entropy flux J(s) having the form:

J(s) = T−1J(q) − βs
1Qs · J(q) − βa

1Qa · J(q) = T−1J(q) − βs
1Qs · J(q) − βa

1Qa × J(q), (65)

being Qa · J(q) = Q(a) × J(q).
The entropy differential may be written as

ds = T−1du− α1J(q) · dJ(q) − αs
2Qs : dQs − αa

2Qa : dQa, (66)
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having defined 1
T = ∂s

∂u , ∂s
∂J(q)i

= −α1 J(q)i , ∂s
∂Qs

ij
= −αs

2Qs
ij,

∂s
∂Qa

ij
= −αa

2Qa
ij.

From (66), the entropy production, using expressions (1), (3) and (65), assumes the form

σs = −α1J(q) · J̇(q)+ J(q) · ∇T(−1)− βs
1[J

(q) · (∇ ·Qs)+Qs : (∇J(q))s]− β
(a)
1 ∇ · (Q

(a)× J(q)),

where we have decomposed ∇J(q) in its symmetric part (∇J(q))s and its antisymmetric
part. Using the expression ∇ · (Q(a) × J(q)) = J(q) · ∇ ×Q(a) −Q(a) · ∇ × J(q) we have

σs = J(q) · [∇T(−1) − α1J̇(q) − βs
1∇ ·Qs − β

(a)
1 ∇×Q(a)] + Qs : [−αs

2Q̇s − βs
1(∇J(q))s]+

Q(a) · [−α
(a)
2 Q̇(a) + β

(a)
1 (∇× (J(q)))], (67)

We assume the following linear relations among the thermodynamic fluxes J(q), Qs, Q(a)

and the forces [∇T(−1) − α1J̇(q) − βs
1∇ ·Qs − β

(a)
1 ∇×Q(a)], [−αs

2Q̇s − βs
1(∇J(q))s],

[−α
(a)
2 Q̇(a) + β

(a)
1 (∇× (J(q)))] as evolution equations for J(q), Qs and Q(a)

J(q) = λ1T2[∇T(−1) − α1J̇(q) − βs
1∇ ·Qs − β

(a)
1 ∇×Q(a)], (68)

Qs = λs
2[−αs

2Q̇s − βs
1(∇J(q))s], Q(a) = λ

(a)
2 [−α

(a)
2 Q̇(a) + β

(a)
1 (∇× (J(q)))], (69)

with λ1, λs
2, λ

(a)
2 positive scalar coefficients. If the terms in αs

2 and α
(a)
2 , proportional to

the relaxation terms of Qs and Q(a), concerning the contributions in Q̇s and Q̇(a), may be
neglected, one has

Qs = −λs
2βs

1(∇J(q))s, Q(a) = λ
(a)
2 β

(a)
1 (∇× (J(q)). (70)

From (70) and (68) and the expression ∇ · [(∇J(q))s] = ∇
(
∇ · J(q)

)
+ ∆J(q), one obtains

J(q) = −λ1∇T − τJ̇(q) + l2
1

[
∇
(
∇ · J(q)

)
+ ∆J(q)

]
− l2

2∇× (∇× J(q)), (71)

where τ = λ1T2α1, l2
1 = 1

2 λ1λs
2(βs

1)
2, l2

2 = λ1λ
(a)
2 (β

(a)
1 )2. The last term in (71) explicitly

describes the relation between J̇(q) and ∇× (∇× J(q)).
From the point of view of hydrodynamic analogies, such a development incorporating

an antisymmetric part of Q would be similar to the thermodynamic formulation of so-called
micropolar fluids (REF), which are fluids of elongated molecules whose rotational degrees
of freedom interact with the vortices and give rise to a rotational viscosity, which is not
found in fluids of small spherical molecules. In the case of phonon hydrodynamics, such
kinds of additional terms could be present in crystals of polar molecules or of elongated
molecules, in such a way that the particles could vibrate with respect to their equilibrium
position, but could also rotate with respect to such an equilibrium position. In this case,
the heat flux would contain contributions coming from the vibrations (the usual phonon
contributions) plus contributions related to the rotational energy, which could interact with
the phonon vortices of phonon hydrodynamics [107–109].

These equations refer to terms contributing to the entropy production. If one makes
the additional hypothesis that the reversible part without dissipation has a Hamiltonian
structure, as in GENERIC, additional terms may arise in (71), as for instance the Fourier–
Crocco term having the form J(q) × (∇× J(q)) [71], when this term is present and if l2

1 and
l2
2 are neglected, one obtains

λ1∇T = −J(q) − J(q) × (∇× J(q)), (72)
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according to which, for high ∇× J(q), the vectors ∇T, J(q) and ∇× J(q) would be mutu-
ally orthogonal.

11. Conclusions

In this paper, we have proposed that in some occasions, instead of considering local
internal variables obeying non-local evolution equations, one could use non-local internal
variables obeying non-local evolution equations. For instance, we have proposed that
instead of a local variable J(q), one could use as a variable α(J(q) + R2∆J(q)), with R as the
characteristic length of the elementary observation volume. If this observation scale is very
small, such an additional term would be negligible, but in the case R is sufficiently big, and
if within the region having characteristic length R the system is still inhomogeneous, J(q)

will have some local variations. Thus, J(q) would reflect the average value of J(q) in this
volume, whereas the term in R2∆J(q) would describe in some way the dispersion of J(q) in
the volume of size R.

As an illustration we have considered a macroscopic model for phonon hydrody-
namics, valid when the Knudsen number is comparable to (or bigger than) 1, within the
framework of non-equilibrium thermodynamics with internal variables, following the
Gyarmati wave theory. A particular motivation was to consider situations where thermal
vortices may be of interest. In this case, R could be related to the characteristic radius of
the thermal vortices, and the corresponding equation generalizes the Guyer–Krumhansl
equation, in agreement with some results worked out in [71], where the phonons are treated
as a Bose gas within a multiscale thermodynamics.

A general polar vectorial internal variable, having odd parity, was introduced in
the thermodynamic state vector, besides the internal energy, without being identified a
priori. A very general three-dimensional transport equation for the heat flux was obtained.
Therefore, choosing in a suitable way the non-local internal variable, new heat equations
were derived that could suggest new thermal phenomena in complex rigid media, such
as ferroelectric or/and ferrimagnetic crystals, accounting for the interactions among the
polarizations (or magnetizations) of the different molecular species of the crystal and the
crystal lattice, and the shell–shell interactions among the polarization (or magnetization)
gradients [110,111]. Furthermore, the obtained heat conduction equations can be valid
for materials with defects [112]. For instance, in [71], where the phonons are treated as
a Bose gas, and vorticity of the heat flux was found, it was supposed the presence of a
hydrodynamic force due, for instance, to an insulated obstacle inside a rigid body, that
creates a region of lower temperature and then a flow of phonons behind the obstacle (a
defect as an example).

In Section 10, we have also discussed the relevant role of the entropy flux in the
non-local terms of the evolution equations for the heat transport. Non-local equations for
the heat flux are obtained, for instance, assuming that the entropy depends on the internal
energy density, the heat flux, and a tensorial internal variable. Since we are interested
in situations with thermal vortices, we have proposed to consider that such a tensorial
internal variable has a symmetric part and an antisymmetric part, which may be written in
terms of a axial vector. A posteriori one may identify the symmetric part of the internal
variable as being proportional to the symmetric part of the gradient of the heat flux and the
axial vector corresponding to the antisymmetric part as being proportional to the rotational
of the heat flux, characterizing the vortices. From the point of view of hydrodynamic
analogies, such a development incorporating an antisymmetric part of the internal variable
would be similar to the thermodynamic formulation of so-called micropolar fluids, which
are fluids of elongated molecules whose rotational degrees of freedom interact with the
vortices and give rise to a rotational viscosity.
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Appendix A

In this Appendix, we give a two-dimensional symmetric representation of the conduc-
tivity matrix {Lαβ}. This form is useful when the conditions of positive definiteness of the
entropy production have to be calculated. Thus, the entropy production (21) can be also
written in the symbolic matrix notation

XαLαβXβ ≥ 0, (A1)

where, called −T−1 ∂T
∂xi = X(q)

i , Xα and Xβ are given by

{Xα} = {X(q)
i , ζi}, (i = 1, 2, 3; α = 1, 2, . . . , 6), (A2)

{Xβ} =
{

X(q)
j

ζ j

}
, (j = 1, 2, 3; β = 1, 2, . . . , 6), (A3)

and Lαβ, in the anisotropic case, is as follows:

{Lαβ} =


3×3

L(q,q)
ij

3×3
0

3×3
0

3×3

L(1,1)
ij

 (α, β = 1, 2, . . . , 6), (A4)

in which
3×3
0 is the symbolic null matrix of dimension 3× 3.

Inequalities can be derived for the components of the constitutive tensors, because
all the elements of the main diagonal of the matrix {Lαβ} must be non-negative, i.e.,

L(q)(q)
ii ≥ 0, L(1)(1)

ii ≥ 0, (i = 1, 2, 3) and all the major minors of this matrix of even and odd
order, must also be non-negative. For example, from the non-negativity of the first two
principal minors, we have

L(q)(q)
11 ≥ 0, L(q)(q)

11 L(q)(q)
22 −

(
L(q)(q)

12

)2
≥ 0. (A5)
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In the isotropic case, the entropy production (30) is still written in the symbolic matrix
notation (A1), with Xα and Xβ, given by the expressions (A2) and (A3) and the matrix Lαβ

has the following form:

{Lαβ} =


3×3

L(q,q)δij
3×3
0

3×3
0

3×3
L(1,1)δij

 (α, β = 1, 2, . . . , 6). (A6)

Inequalities can be derived for the components of the constitutive tensors, as for instance
L(q,q) ≥ 0, L(1,1) ≥ 0.

Appendix B

In Section 6, we have assumed that the entropy function s = s(u, ζ) for an isotropic
medium has the form (23) s(u, ζ) = s(eq)(u)− 1

2 ηζ2.
Having to be the entropy s a concave function, assuming the maximum value at the

thermodynamic equilibrium, taking into account that ∂s
∂u = 1

T = cv
1
u , ∂s

∂ζ = −ηζ, u = cvT,
then the Hessian matrix H of s must be negative-definite, having the form

H =

(
−cv/u2 0

0 −η

)
, from which it follows that H is negative-definite if the following

conditions hold − cv
u2 < 0, cv

u2 η > 0, i.e., cv > 0. η > 0.
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