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Abstract: We formulate a general program for describing and analyzing continuous, differential
weak, simultaneous measurements of noncommuting observables, which focuses on describing
the measuring instrument autonomously, without states. The Kraus operators of such measuring
processes are time-ordered products of fundamental differential positive transformations, which generate
nonunitary transformation groups that we call instrumental Lie groups. The temporal evolution of
the instrument is equivalent to the diffusion of a Kraus-operator distribution function, defined relative
to the invariant measure of the instrumental Lie group. This diffusion can be analyzed using
Wiener path integration, stochastic differential equations, or a Fokker-Planck-Kolmogorov equation.
This way of considering instrument evolution we call the Instrument Manifold Program. We relate
the Instrument Manifold Program to state-based stochastic master equations. We then explain
how the Instrument Manifold Program can be used to describe instrument evolution in terms of
a universal cover that we call the universal instrumental Lie group, which is independent not just
of states, but also of Hilbert space. The universal instrument is generically infinite dimensional,
in which case the instrument’s evolution is chaotic. Special simultaneous measurements have a
finite-dimensional universal instrument, in which case the instrument is considered principal, and it
can be analyzed within the differential geometry of the universal instrumental Lie group. Principal
instruments belong at the foundation of quantum mechanics. We consider the three most fundamental
examples: measurement of a single observable, position and momentum, and the three components
of angular momentum. As these measurements are performed continuously, they converge to strong
simultaneous measurements. For a single observable, this results in the standard decay of coherence
between inequivalent irreducible representations. For the latter two cases, it leads to a collapse within
each irreducible representation onto the classical or spherical phase space, with the phase space
located at the boundary of these instrumental Lie groups.

Keywords: measuring instrument; Kraus operator; Lie group; right-invariant derivative; Wiener
path integral; diffusion equation; stochastic differential equation; universal covering group; quantum
and classical chaos; Cartan decomposition

1. Introduction

“Well, why not say that all the things which should be handled in theory are just those
things which we also can hope to observe somehow.” . . . I remember that when I first saw
Einstein I had a talk with him about this. . . . [H]e said, “That may be so, but still it’s
the wrong principle in philosophy.” And he explained that it is the theory finally which
decides what can be observed and what can not and, therefore, one cannot, before the
theory, know what is observable and what not.

Werner Heisenberg, recalling a conversation with Einstein in 1926,
interviewed by Thomas S. Kuhn, February 15, 1963 [1]
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The science of optics, like every other physical science, has two different directions of
progress, which have been called the ascending and the descending scale, the inductive
and the deductive method, the way of analysis and of synthesis. In every physical science,
we must ascend from facts to laws, by the way of induction and analysis; and must
descend from laws to consequences, by the deductive and synthetic way. We must gather
and group appearances, until the scientific imagination discerns their hidden law, and
unity arises from variety: and then from unity must re-deduce variety, and force the
discovered law to utter its revelations of the future.

William Rowan Hamilton, 1833 [2]

At the beginning of the emergence of quantum mechanics was Heisenberg’s realization
that observables have noncommutative algebras (or kinematics), the most fundamental
examples being canonical positions and momenta and angular momenta [3]. This non-
commutativity opens up a very deep conversation about the nature of observation and
uncertainty. With Schrödinger’s wave functions [4] and Born’s interpretation of them [5,6],
observables were developed within the Dirac-Jordan transformation theory [7–9] and then
incorporated into the standard methods and ideas of quantum theory still used today: the
inner product and Hilbert space, unitary transformations, and the eigenstate collapse asso-
ciated with a von Neumann measurement [6,10–13]. The positive transformations in this
paper are a development of von Neumann’s original ideas about the measuring process [10],
fundamentally changing the perspective on measurement by putting measurement on the
same footing as unitary transformations.

Among the three fundamental tools of the standard methodology, the von Neumann
measurement is the least functional. After this initial generation of quantum theory, the
development of radio astronomy and commercialization of radio broadcasts, the formula-
tion of stochastic calculus, the development of quantum field theory, and the invention of
the laser, the concept of measurement was at last revisited [14–16]. Very important mea-
surements such as photodetection, homodyne detection, and heterodyne detection already
required a more general understanding than the von Neumann measurement [17–26]. This
generalized measurement theory was accomplished through the introduction of POVMs
(positive operator-valued measures), operations, instruments, and Kraus operators [27–34].
These tools can be considered an elaboration of another key idea of von Neumann’s,
the indirect measurement [10]. More or less because of this, this second generation of
measurement theory continued to consider the measuring process atemporally—that is,
without considering the development over time between when a measurement begins and
when it ends. The positive transformations of this paper offer a comprehensive theory
of temporal measuring processes by defining infinitesimal measurements that, we argue,
are fundamental.

It now appears to be the end of the third generation of measurement theory, which has
focused on continuous (that is, temporal) measuring processes by incorporating stochastic
calculus into the second-generation theory of operations. These works are usually not about
measuring instruments directly; rather, they concern state evolution as described by the
stochastic master equation over particular Hilbert spaces [24,25,35–48]. As such, although
these works are definitely about temporal measurement evolution, they do not consider
the measuring instrument to be what is temporally evolving. A handful of works have
touched on the significance of infinitesimal positive transformations [23,25,38,49–52], but
none of them has arrived at a clear understanding of simultaneous measurement, which is
key to a comprehensive theory of continuous measuring instruments.

In this paper, we formulate a program for directly analyzing continuous measuring in-
struments, which we call the Instrument Manifold Program. Similar to how (time-dependent)
Hamiltonians generate unitary transformation groups, continuous measuring instruments
also generate transformation groups, which we call instrumental Lie groups. Continuous
measuring instruments consist of Kraus operators generated by incremental (that is, in-
finitesimally generated) differential positive transformations of the form
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√
dµ(d~Wt) L~X(d~Wt) =

√√√√d(dW1
t ) · · · d(dWn

t )
e−d~Wt ·d~Wt/2dt

(2πdt)n/2 e−
~X2κ dt+~X·

√
κ d~Wt . (1)

Here ~X = (X1, . . . , Xn) is an n-tuple of dimensionless observables being weakly measured
simultaneously at time t with rate κ, ~X2 = ~X·~X, and d~Wt = (dW1

t , . . . , dWn
t ) is the conjugate

n-tuple of Wiener outcome increments that are registered by weak measurements. These
differential positive transformations “pile up” as successive measurements are performed.
At time T, the instrument is the collection of Kraus operators,{

L
[
d~W[0,T)

]
= T exp

( ∫ T−dt

0
−~X2κ dt + ~X ·

√
κ d~Wt

)
: d~W[0,T) is a Wiener path

}
, (2)

where T denotes a time-ordered exponential. This scenario of piling up incremental Kraus
operators is illustrated in Figure 1. These instruments are contained in the Lie group G that
is infinitesimally generated by the measured observables, {X1, . . . , Xn}, and the quadratic
term ~X2. We call G the instrumental Lie group. At every time T, the instrument (2) is
equivalent to a Kraus-operator distribution function,

DT(L) ≡
∫
Dµ[d~W[0,T)] δ

(
L, L

[
d~W[0,T)

])
, (3)

where Dµ[d~W[0,T)] is the Wiener path measure and δ
(

L, L
[
d~W[0,T)

])
is a Dirac δ-function

with respect to the left-invariant measure of G. The Kraus-operator distribution function de-
scribes how the instrument is distributed in the instrumental Lie group. The Markovianity
or group property of the instrument,

L[d~W[0,t+dt)] = L(d~Wt)L[d~W[0,t)] , (4)

means that the Kraus-operator distribution function evolves according to a Fokker-Planck-
Kolmogorov equation,

1
κ

∂

∂t
Dt(L) =

(
~X2
←−+

1
2 ∑

i
Xµ
←−

Xµ
←−

)
[DT ](L) , (5)

where X←− denotes a right-invariant derivative,

X←−[ f ](L) ≡ lim
h→0

f (ehX L)− f (L)
h

. (6)

Therefore, the instrument can be considered to evolve within the manifold that is the
instrumental Lie group G. These are the topics of Sections 2.1 and 2.2. Section 2.3 applies
the objects of the Instrument Manifold Program to state evolution for the purpose of
connecting with conventional works on continuous measurement.

As a manifold, the instrumental Lie group G can be considered either within a matrix
representation or universally; that is, the time-ordered exponentials of Equation (2) can
be processed either with matrix algebra or with abstract Lie brackets. The corresponding
instruments will be distinguished by the names quantum instrument and universal instru-
ment. For special choices of observables, the universal instrument is finite dimensional,
in which case, we will call it a principal instrument; otherwise, the universal instrument
evolves chaotically, and we will call it a chaotic instrument. The details of this are discussed
in Section 2.4.
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Figure 1. Schematic of a sequence of indirect, differential weak measurements; full understanding
comes after reading Sections 2.1 and 2.2. A system in a state |ψ〉 is indirectly measured by a sequence
of weak interactions e−iHdt, where each set of meters is observed after its interaction; that is, the
system is continuously monitored. The incremental Kraus operator for the measurement at time t,

given outcomes d~Wt, is
√

dn(d~Wt)
〈
d~Wt

∣∣e−iHdt∣∣~0 〉. Under the conditions outlined in Section 2.1, this

Kraus operator is the differential positive transformation of Equation (1), that is,
√

dµ(d~Wt) L~X(d~Wt),

with L~X(d~Wt) = e−
~X2κ dt+~X·

√
κ d~Wt . The incremental Kraus operators “pile up” to become, at time T,

the overall Kraus operator
√
Dµ[d~W[0,T)] L[d~W[0,T)], which is written as a time-ordered exponential

in Equation (2). The overall Kraus operator gives the unnormalized final state at time T, as shown in
the figure. The collection of Kraus operators at time T, for all Wiener outcome paths d~W[0,T), defines
an instrument, which can be analyzed on its own, independent of system states—simply omit |ψ〉
from the figure—a style of analysis we call instrument autonomy. The Kraus operators move across
the manifold of an instrumental Lie group, which is generated by the measured observables. Placing
the instrument within its instrumental Lie group and analyzing its evolution there is what we call the
Instrument Manifold Program.

In Section 3, we apply the Instrument Manifold Program to the three most fundamental
principal instruments. Section 3.2 discusses the measurement of a single observable;
Section 3.3 discusses the simultaneous momentum and position measurement (SPQM) [53];
and Section 3.4 discusses the simultaneous measurement of the three components of angular
momentum, also known as the isotropic spin measurement (ISM) [54]. The second and
third of these measurements have a very different character from the first. While the
first instrument evolves in a two-dimensional abelian Lie group, the second and third
evolve in seven-dimensional nonabelian Lie groups. While the first measurement collapses
onto the von Neumann POVM, the second and third measurements collapse onto the
canonical coherent POVM and the spin-coherent POVM [53–55]. The key to analyzing
the properties of these last two instruments is in establishing a coördinate system on the
universal instrumental Lie group, and for that purpose, the Cartan decomposition is just
the ticket.

The main purpose of the name Instrument Manifold Program is to bring attention to
the fact that this work consists of mathematical techniques from the theory of transformation
groups as they apply to the theory of measurement: universal covers [56–60], Haar mea-
sures [61–67], the Maurer-Cartan form [68–72], and Cartan decompositions [60,67,68,73,74].
While the theories of transformation groups and quantum mechanics essentially developed
simultaneously, they barely came into contact and basically could not come together until
stochastic calculus [71,75–84] became established in measurement theory. The history of
these mathematical techniques and the theory of measurement and the extent to which
they coexisted and influenced each other is complicated and fascinating, and perhaps
we will write about them in the future. For now, it suffices to affirm that we believe this
work is the first to demonstrate that measurement can be considered a theory of positive
transformations, putting it on the same footing as unitary transformations. By doing so,
two quite important connections have so far been realized: the connection between simul-
taneous measurements and phase-space POVMs (both standard and spin) and a surprising
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connection of simultaneous measurements with chaos, which promises a way forward on
the problem of quantum chaos and dynamical complexity.

An understanding of the Instrument Manifold Program can be broken down into three
important steps or “perspectival shifts”, which are pointed out as the paper progresses:

1. The first shift, in Section 2.2.1, is about considering infinitesimally generated pos-
itive transformations as the fundamental measuring processes, similar to how
infinitesimally generated unitary transformations are considered fundamental
dynamical processes.

2. The next shift, in Section 2.2.2, is about how such instruments can, therefore, be
understood as evolutions on an autonomous instrument manifold, relying not on
states for their existence, but rather finding their home in an abstract instrumental
Lie group.

3. The final shift, in Section 2.4, takes this new autonomy of the instrument a step further
by pointing out that the definition of such instruments with instrumental Lie groups
can be considered universally, independent even of the matrix representation of the
observables and therefore not relying even on the specific Hilbert space.

We now invite the reader to embark on a journey of understanding and appreciating these
three perspectival shifts.

2. Continuous, Differential Weak Measurements of Noncommuting Observables
2.1. Differential Weak Measurements and Incremental Kraus Operators

A differential weak measurement of multiple observables is conducted by performing
a sequence of indirect weak measurements of the several observables. These indirect
measurements are implemented by coupling independent Gaussian meters to the system,
one for each observable. We call this a “differential weak measurement” because the Kraus
operators are differentially close to the identity. These incremental Kraus operators can then
be regarded as fundamental, infinitesimally generated differential positive transformations of
a differentiable manifold. Although a differential measurement is definitely weak, there
are measurements that are generally construed as weak though they possess some Kraus
operators that are not close to the identity (e.g., jump processes). The word “weak” in
differential weak measurement is thus both insufficient by itself and unnecessary when
preceded by “differential”; it is included to throw a lifeline to conventional usage.

The key accomplishment of this section is to show that, at the level of differential weak
measurements, the commutators of the observables can be ignored, so there is no temporal
order to the measurements of the various observables, and these measurements can be
regarded as occurring simultaneously.

2.1.1. Differential Weak Measurement of a Single Observable

We start by considering the differential weak measurement of a single observable
(Hermitian operator) X of a system S , described in a Hilbert spaceH, during an increment
of time dt. The system is coupled to a canonical (essentially classical) position-momentum
(Q-P) meterM. The interaction Hamiltonian H acting over time dt,

H dt = 2
√

κ dt X⊗ σP , (7)

generates a controlled displacement of the meter. The meter begins in a state |0〉, which is
assumed to have a Gaussian wave function,

〈q|0〉 =

√√√√ e−q2/2σ2√
2πσ2

. (8)
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The Kraus operator for the differential weak measurement of X with outcome q within
dq is [30,32,34]√

dq 〈q|e−iH dt/h̄|0〉 =
√

dq 〈q|e−i2
√

κ dt X⊗ σP/h̄|0〉

=
√

dq e−2
√

κ dt σXd/dq〈q|0〉

=
√

dq
〈
q− 2

√
κ dt σX

∣∣0〉
=

√
dq√
2πσ2

exp
(
− (q− 2

√
κ dt σX)2

4σ2

)
.

(9)

Here we deliberately do not set h̄ = 1, thus making it clear that X is a “dimensionless”
system observable. By processing the incremental Kraus operator further, we have

√
dq 〈q|e−iH dt/h̄|0〉 =

√√√√dq
e−q2/2σ2√

2πσ2
eXq
√

κ dt/σ−κ dt X2

=

√√√√d(dW)
e−dW2/2dt
√

2πdt
eX
√

κ dW−X2κ dt .

(10)

In the final form, the outcome is rescaled to be

dW =
q
σ

√
dt , (11)

which is a standard Wiener increment—we call dW a Wiener outcome increment—with a
Gaussian probability measure,

dµ(dW) ≡ d(dW)
e−dW2/2 dt
√

2π dt
. (12)

Readers uncomfortable with the notations dµ(dW) and d(dW) should pause for a moment
to get comfortable by reading the last sentence again.

The reader should appreciate that the 1/
√

dt scaling of the controlled displacement (7),

H = 2
√

κ

dt
X⊗ σP , (13)

anticipates that as dt approaches zero, the interaction strength
√

κ/dt must go to infinity as
1/
√

dt. This ensures that the allegedly differentiable process associated with a Hamiltonian,
which is conjugate to time, becomes a diffusive process associated with a positive Kraus
operator. The incremental Kraus operator (10) contains a term linear in X that is conjugate
to a Wiener outcome increment dW, stochastically of order

√
dt, and a term quadratic in X

that is conjugate to dt.
Defining a Kraus operator with the Wiener measure omitted,

LX(dW) ≡ eX
√

κ dW−X2κ dt , (14)

brings the Kraus operator (10) into the form√
dq 〈q|e−iH dt/h̄|0〉 =

√
dµ(dW) LX(dW) . (15)

The (completely positive) superoperator for outcome dW,

dZX(dW) = dµ(dW) LX(dW)�LX(dW)† , (16)
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we call an instrument element. We stress that the outcome increment dW is essentially the
outcome of the measurement, scaled to have a variance dt. We also note that the exponential
expressions here are exact in the sense that they hold even when dt is not infinitesimal. The
set of instrument elements corresponding to all outcomes is the instrument [31,32,85]. Here
we also introduce the “odot” (�) notation [86–88] for a superoperator, defined by

A� B†(C) = ACB† . (17)

The � is essentially a tensor product, but if one does not want to think about that, one can
think of the � as just a placeholder for an operator on which the superoperator acts. We
further discuss the odot notation below.

Integrating the instrument elements over outcomes yields the (unconditional) quantum
operation associated with the instrument,

ZX,dt ≡
∫

dZX(dW)

=
∫

dµ(dW) LX(dW)�LX(dW)†

= e−κ dt(X2�1+1�X2)
∫

dµ(dW) eX·
√

κ dW�eX·
√

κ dW

= e−κ dt(X2�1+1�X2)
∫

d(dW)
e−dW2/2dt
√

2πdt
e
√

κ dW(X�1+1�X)

= e−κ dt(X2�1+1�X2)e(κ dt/2)(X�1+1�X)2

= e−(κ dt/2)(X�1−1�X)2

= e−(κ dt/2)ad2
X ,

(18)

which is a trace-preserving, completely positive superoperator. The last line introduces the
adjoint, defined by adX(A) = [X, A], as the superoperator

adX = X� 1− 1� X . (19)

The instrument is said to unravel the quantum operation [35]. Unravelings are not unique:
the Kraus operators (14) are the particular unraveling of ZX,dt that is a differential weak
measurement of X. We say that ZX,dt is woven from these differential instrument elements.

A brief digression on terminology is in order [34]. The term “instrument” originated
with Davies and Lewis [31,32,85]. We have adopted this term, as opposed to other possible
terminology, because it evokes the notion of an autonomous physical device or sense organ
that is independent of the state of the system, a device ready to be stimulated or “played”
by an input system state in the manner described below. The style of our analysis, wholly
based on instrument elements (or Kraus operators) and bereft of quantum states, we refer
to as instrument autonomy (we sometimes think of this as more than just a style and elevate
it to the Principle of Instrument Autonomy [26]). For continuous measurements, this style of
analysis emerged from the work of Shojaee et al. on continuous isotropic measurements
of the three components of angular momentum [54,55]. We reserve the term “quantum
operation” for a trace-preserving completely positive superoperator, often distinguished as
an “unconditional quantum operation”. In place of the “unconditional” in unconditional
quantum operation, we could use “total” or “nonselective”. The term quantum operation
also often includes trace-decreasing completely positive maps, like our instrument elements,
and these are sometimes distinguished as “selective quantum operations”. The unraveling
of a quantum operation into an instrument is often called a Kraus decomposition or an
operator-sum decomposition [30,34,89]. The instrument elements of an unraveling are
disassembled into Kraus operators; we often slough over the distinction between a Kraus
operator L and the corresponding instrument element L�L†.
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The only aspect of the odot notation used here, but not presented in the previous
literature [86–88], is a faux bra-ket notation that represents the matrix elements of a super-
operator S as (B)S(A) = tr

(
B†S(A)

)
. Since S(A) is read as “S of A”, we like to read

(B)S as “B faux S”. The faux bra-ket notation is developed in detail elsewhere. The only
features we need for the present are the following: (i) a trace-preserving superoperator
satisfies tr(A) = tr

(
S(A)

)
= (1)S(A) for all operators A, and thus trace preservation is

expressed as

(1)S = 1 ; (20)

(ii) (1)A�A†(B) = tr(ABA†) = tr(A† AB), which implies that

(1)A�A† = A† A (21)

is the projection that maps A to A† A. In the absence of a complete understanding of or interest
in the faux bra-ket notation, one can regard these two features as notational conveniences.

An instrument is a refinement of two fundamental state-independent objects. The
first is the unconditional quantum operation [28–30,34] of Equation (18). The second, the
positive-operator-valued measure (POVM) [27,30,33,34], comprises the operators

dEX(dW) ≡ (1)dZX(dW) = dµ(dW) LX(dW)†LX(dW) , (22)

each of which is called a POVM element. Often, just as for Kraus operators, one omits the
measure when talking about POVM elements. An immediate consequence of Equation (15)
is that the POVM satisfies a completeness relation: the POVM elements integrate over out-
comes to the identity operator,

1 = (1)ZX,dt =
∫

dEX(dW) =
∫

dµ(dW) LX(dW)†LX(dW) . (23)

Equivalent to ZX,dt being trace preserving, this completeness relation can be regarded in
the case at hand as a trivial consequence of the last two forms in Equation (18) because
(1)adX = 11X− X11 = 0.

So far there has been no mention of quantum states—instrument autonomy!—but
it is useful to review, before the notation makes it hard to discern the forest for the trees,
how operations, instruments, Kraus operators, and POVMs emerged from state-dependent
consideration of indirect measurements [28–32,34]. Given the initial system state ρ, the
probability for outcome dW = (q/σ)

√
dt,

d(dW) P(dW|ρ) = dq trS
(
〈q|e−iH dt/h̄ρ⊗ |0〉〈0|eiH dt/h̄|q〉

)
= dµ(dW) tr

(
LX(dW)ρLX(dW)†)

= (1)dZX(dW)(ρ) ,

(24)

is a matrix element of the instrument element dZX(dW); this can be converted to the POVM
element (22),

d(dW) P(dW|ρ) = dµ(dW) tr
(

LX(dW)†LX(dW)ρ
)

= tr
(
dEX(dW)ρ

)
.

(25)

The completeness relation (23) expresses the normalization of this probability for all normal-
ized input states ρ. The normalized state of the system after a measurement with outcome
dW is
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ρ(dW|ρ) = dq 〈q|e−iH dt/h̄ρ⊗ |0〉〈0|e−iH dt/h̄|q〉
dq trS

(
〈q|e−iH dt/h̄ρ⊗ |0〉〈0|e−iH dt/h̄|q〉

)
=

LX(dW)ρLX(dW)†

tr
(

LX(dW)ρLX(dW)†)
=

dZX(dW)(ρ)

d(dW) P(dW|ρ) .

(26)

In the second line of Equation (25), the POVM element combines with the initial system
state ρ to yield an outcome probability, and in the final form of Equation (26), the instrument
element dZX(dW) maps the initial state to the unnormalized post-measurement state,
conditioned on outcome dW, with the normalization given by the outcome probability.
If one ignores the outcome, the post-measurement state is given by the unconditional
quantum operation,∫

d(dW) P(dW|ρ)ρ(dW|ρ) = ZX,dt(ρ) = e−(κ dt/2)ad2
X (ρ) . (27)

2.1.2. Differential Weak Measurements of Multiple Observables Simultaneously

Suppose now that one measures several, generally noncommuting observables,
{Xµ | µ = 1, . . . , n } ≡ ~X, during an increment dt. Initially (but only temporarily), we think
of the n measurements as occurring sequentially during dt, each taking up an increment
dt/n. There is a meter for each observable. The meter wave functions are assumed to be
identical, each given by the Gaussian of Equation (8). The interaction strengths are adjusted
so that the interaction Hamiltonians, each acting over a time dt/n, are

Hµdt/n = 2
√

κ dt Xµ ⊗ σPµ , (28)

thus yielding a Kraus operator of the form (15) for each of the observables. The Kraus
operator for all n measurements is√

dqn · · ·
√

dq1 〈qn, . . . , q1|e
−iHndt/nh̄ · · · e−iH1dt/nh̄|0n, . . . , 01〉

=
√

dqn 〈qn|e
−iHndt/nh̄|0n〉 · · ·

√
dq1 〈q1|e

−iH1dt/nh̄|01〉

=

√
dµ(dWn) · · · dµ(dW1) LXn

(dWn) · · · LX1
(dW1) .

=
√

dµ(d~W) L~X(d~W) .

(29)

where

L~X(d~W) ≡ LXn
(dWn) · · · LX1

(dW1) (30)

and the measure for the n independent outcome increments is given by the isotropic Gaussian

dµ(d~W) ≡ dµ(dWn) · · · dµ(dW1) =
d(dWn) · · · d(dW1)

(2π dt)n/2 exp
(
−d~W · d~W

2dt

)
. (31)

Here d~W ≡ {dW1, . . . , dWn} and d~W · d~W = ∑n
µ=1(dWµ)2. The n outcome increments are

uncorrelated, zero-mean Wiener increments, with variances keyed to the measurement
time dt. The outcome increments thus satisfy the Itô rule

dWµdWν = δµνdt . (32)
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The instrument element for the n measurements during the increment dt comes from
composing the instrument elements for the n observables,

dZ~X(d~W) = dZXn
(dWn) ◦ · · · ◦ dZX1

(dW1) = dµ(d~W) L~X(d~W)�L~X(d~W)† . (33)

It is important to appreciate that the Kraus operators for the individual measurements pile
up in a linear product to form the incremental Kraus operator for all n measurements. In
the instrument elements, this results in the composition of the individual superoperators.

The Kraus operator (30) can be manipulated in the following ways,

L~X(d~W) = eXn
√

κ dWn−X2
nκ dt · · · eX1

√
κ dW1−X2

1κ dt

= e
~X·
√

κ d~W−~X2κ dt

= e−
~X2κ dte

~X·
√

κ d~W

= 1− ~X ·
√

κ d~W − 1
2
~X2κ dt ,

(34)

where ~X · d~W = XµdWµ (the Einstein summation convention is used to sum on matched
lower and upper indices) and

~X2 = ~X · ~X =
n

∑
µ=1

X2
µ . (35)

The key to these manipulations is this: because the Wiener increments dWµ are independent,
the Itô rule (32) sets to zero all the outcome-increment cross-terms that arise in expanding
L~X(d~W) to order dt, regardless of whether the observables commute. This makes the
temporal ordering of the n differential weak measurements irrelevant and allows us to
combine the Kraus operators for the individual measurements into the forms on the
last three lines of Equation (34) [48,49,53,54]. This means that, as opposed to the serial
measurements of the n observables contemplated initially, we can think of L~X(d~W) as
coming from simultaneous measurements of the n observables over the entire increment dt,
with each observable using the interaction Hamiltonian (7) with the standard interaction
strength. It also means that although the exponential expressions for a single observable
are exact, those for multiple, noncommuting observables are good only to order dt, as in the
last line of Equation (34). That being sufficient, we can move forward with the exponential
expressions with confidence.

The incremental Kraus operator for the n measurements,

Ldt = L~X(d~W) = eδ , δ ≡ ~X ·
√

κ d~W − ~X2κ dt , (36)

generates the stochastic evolution produced by the measurement, where Ldt is a differential
positive transformation. The logarithm, δ = ln Ldt, is the key object in the theory, and we
refer to δ as the forward generator.

The unconditional quantum operation is obtained by integrating over the n outcomes
in d~W,

Z~X,dt =
∫

dZ~X(d~W) =
n

∏
µ=1

∫
dZXµ

(dWµ) = e−(κ dt/2)(~X�1−1�~X)2
, (37)

an expression good to order dt. The notation is perhaps a shorthand taken a bit too far, so
we spell out that
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−1
2
(
~X� 1− 1� ~X

)2
= −1

2 ∑
µ

(Xµ � 1− 1� Xµ) ◦ (Xµ � 1− 1� Xµ)

= −1
2 ∑

µ

adXµ
◦ adXµ

= ∑
µ

Xµ � Xµ −
1
2
(
X2

µ � 1 + 1� X2
µ

)
= −1

2

(
~X2 � 1 + 1� ~X2

)
+ ∑

µ

Xµ � Xµ ,

(38)

which is the Lindbladian for the master equation, with its Lindblad operators being the
measured observables Xµ.

We stress that the Lindbladian—put differently, the quantum operation—is determined
by the interaction with the meters and the quantum state of the meters; it is independent
of how the meter is read out. Weakly measuring the Lindblad operators Xµ unravels the
quantum operation (or the Lindbladian) into instrument elements whose Kraus operators
are constructed from the measured observables, as in Equation (36). Other unravelings
arise from making different measurements on the meter. For example, the incremen-
tal quantum operation (37) can be unraveled into Kraus operators that are differential
stochastic-unitary transformations,√

dµ(d~W) e−i~X·
√

κ d~W , (39)

where

e−i~X·
√

κ d~W = 1− i~X ·
√

κ d~W − 1
2
~X2κ dt , (40)

Integrating, one finds that the unconditional quantum operation is indeed still Z~X,dt,∫
dµ(d~W) e−i~X·

√
κ d~W�ei~X·

√
κ d~W =

∫
dµ(d~W) e−i

√
κ d~W·(~X�1−1�~X)

= e−(κ dt/2)(~X�1−1�~X)2
= Z~X,dt .

(41)

As we show in Appendix A, the differential unitary transformations (39) arise from the
same meter model that yields the incremental Kraus operators (36), but with the registration
of the meter momenta instead of the meter positions. When comparing the final form
of L~X(d~W) in Equation (34) with the stochastic unitary (40), one sees that the Lindblad
operators change according to Xµ → −iXµ. This is an example of a symmetry of the general
Lindbladian,

L = ∑
j

Aj � A†
j −

1
2

(
A†

j Aj � 1 + 1� A†
j Aj

)
, (42)

which is that the Lindbladian remains unchanged under unitary transformations of the
Lindblad operators, Aj → AkUk

j.
Another unraveling of the Lindbladian (38) is the “jump unraveling” into discrete

Kraus operators,

no jump: K0 = e−(κ dt/2)~X2
= 1− 1

2
κ dt ~X2 , (43)

jump: Kµ =
√

κ dt Xµ , µ = 1, . . . , n . (44)
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This is obvious because

K0�K†
0 + ∑

µ

Kµ�K†
µ = 1 + κ dt

(
−1

2

(
~X2 � 1 + 1� ~X2

)
+ ∑

µ

Xµ � Xµ

)
. (45)

We show in Appendix A how this jump unraveling follows from the same Gaussian meter
model, but with the registration of the meter in its number basis instead of the registration
of position or momentum.

We stress that the incremental Kraus operators (36) and the stochastic-unitary Kraus
operators (40) are both differential, that is, close to the identity. In contrast, the jump Kraus
operators (44) are not close to the identity; thus the jump unraveling is not suitable for
formulating an instrumental Lie-group manifold—or really any group at all—because the
jump operators generally do not have an inverse.

The differential weak measurements of noncommuting observables that we consider
in this paper are of the sort first considered by Barchielli for the case of simultaneous
measurements of position and momentum [41,48,49,53] and by Jackson et al. for the
case of angular-momentum components [54,55]. There are hints of our formulation for
general sets of noncommuting observables in the work of Combes, Wiseman, and Scott
on feedback, control, and quantum filtering [90]. The measurements in this paper give
rise to all Lindbladians that have Hermitian Lindblad operators. What happens with
nonHermitian Lindblad operators was the focus of work on quantum optics in the 1990s and
2000s, pioneered by Wiseman and Milburn [20–22], advanced by Goetsch and Graham [23],
and perfected in Wiseman’s Ph.D. dissertation [24] and a subsequent publication [25].
This work started with the standard quantum-optical master equation, which describes
an optical mode decaying to vacuum: physically, by leaking out of an optical cavity,
and mathematically, via a Lindblad equation whose Lindblad operator is the mode’s
(nonHermitian) annihilation operator. These researchers unraveled this Lindblad master
equation in terms of the standard measurements of quantum optics—photon counting,
homodyne detection, and heterodyne detection—by considering measurements on the field
leaking from the cavity (this is an indirect measurement of the cavity mode). The resulting
theory serves as the basis for quantum feedback and control [36,39,43,45]. Jackson [26] has
recently developed the group-theoretic aspects of the photodetector and the heterodyne
instrument, with an emphasis on their autonomy. It is important to appreciate that in
the current paper, we only consider Hermitian Lindblad operators, which arise from the
controlled-displacement system-meter interaction of Equation (7); nonHermitian Lindblad
operators emerge from a different system-meter interaction. The general interaction that
gives rise to all Hermitian and nonHermitian Lindblad operators is not tied to quantum
optics and thus is richer than the leaky-cavity quantum-optical master equation. We have
explored these general interactions and the measurements that unravel them and will
provide an account of that work in future papers.

2.2. Continuous Measurements of Noncommuting Observables: Piling Up Incremental
Kraus Operators

In this section, we pile up the incremental Kraus operators L~X(d~W) as a time-ordered
product and thus develop a description of a continuous measurement of the generally
noncommuting observables ~X. We deliberately do not include any unitary system dynamics
because we want to focus on the evolution of the measurement itself. This means that we are
assuming that any dynamical time scales of the measured system are long compared to 1/κ.

We formulate the description in terms of the three faces of the stochastic trinity:
a Wiener-like path integral, stochastic differential equations (SDEs), and a Fokker-Planck-
Kolmogorov (diffusion) equation (FPKE) for an evolving Kraus-operator distribution
function. The three faces of the trinity describe the motion of the Kraus operators within
a manifold that we call the instrumental Lie group; this section is thus the essential start of
our development of the Instrument Manifold Program.
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2.2.1. Stochastic Differential Equations and Path Integrals

Suppose one performs a continuous sequence of differential weak, simultaneous
measurements, starting at t = 0 and ending at t = T (the last set of measurements
commences at T− dt). The defining mathematical object is the instrument element for an
outcome sequence d~W[0,T) ≡ {d~W0dt, d~W1dt, · · · , d~WT−dt},

DZ [d~W[0,T)] = dZ~X

(
d~WT−dt

)
◦ · · · ◦ dZ~X

(
d~W1dt

)
◦ dZ~X

(
d~W0dt

)
≡ Dµ[d~W[0,T)] L[d~W[0,T)]�L[d~W[0,T)]

† .
(46)

Here

Dµ[d~W[0,T)] ≡ dµ(d~WT−dt) · · · dµ(d~W1dt) dµ(d~W0dt)

=

(
T/dt−1

∏
k=0

dn(d~Wkdt
))( 1

2πdt

)nT/2 dt
exp

(
−
∫ T−

0

d~Wt · d~Wt
2 dt

)
(47)

is the isotropic Wiener measure. The open parenthesis in the outcome sequence d~W[0,T)

reminds us that the last vector of outcomes in the sequence is d~WT−dt; likewise, the minus
subscript on the upper integration limit, T− ≡ T− dt, indicates that the integral does not
include the outcome increment d~WT . The overall Kraus operator is

LT ≡ L[d~W[0,T)] ≡ L~X(d~WT−dt) · · · L~X(d~W1dt)L~X(d~W0dt)

= e
~X·
√

κ d~WT−dt−~X
2κ dt · · · e~X·

√
κ d~W1dt−~X

2κ dte
~X·
√

κ d~W0dt−~X
2κ dt

= T
T−

∏
t=0

exp
(
~X ·
√

κ d~Wt − ~X2κ dt
)

= T exp
( ∫ T−

0
~X ·
√

κ d~Wt − ~X2κ dt
)

;

(48)

the last two lines use T to denote the time-ordered product and the time-ordered ex-
ponential. In brief, the simultaneous measurement of a possibly noncommuting set of
observables, ~X = {X1, . . . , Xn}, defines an instrument that registers simultaneous Wiener
paths d~W[0,T) = {dW1

[0,T), . . . , dWn
[0,T)}, with Kraus operators

L[d~W[0,T)] = T exp
( ∫ T−

0
~X ·
√

κ d~Wt − ~X2κ dt
)

. (49)

The first instance in the literature where we have seen this time-ordered product—the
“piling up”—of incremental Kraus operators written out explicitly is in a paper by Jacobs
and Knight [50], albeit for a single measured observable mixed with system dynamics.
Less explicitly and with different Kraus operators, similar time-ordered products appear in
papers by Srinivas and Davies [18] and Goetsch and Graham [23].

The successive Kraus operators contributing to LT in Equation (48) must be time
ordered whenever the measured observables do not commute. Please appreciate that for
any finite number of increments dt, the commutators can be ignored, temporal ordering
is unnecessary, and the finite number of increments can simply be regarded as a “bigger”
infinitesimal increment. Once one proceeds to a finite time T, time ordering must be
respected. Being able to amalgamate any finite number of infinitesimal increments allows
one to start with nonGaussian outcome increments, with the Gaussian behavior emerging
from a kind of central-limit theorem over a bigger infinitesimal increment. This freedom
was used by Gross et al. [91], who replaced Gaussian meters with qubit meters in a state-
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based formulation of continuous measurements. The conditions for the emergence of
Gaussian behavior should rightly be the subject of further investigation.

The incremental Kraus operators (36) and overall Kraus operators (48) were derived
above from a meter model in which a measurement of position, a continuous variable,
was made on each of the meters; von Neumann essentially introduced this meter model
and called it an indirect measurement [10]. We ask the reader now to join us in a shift in
perspective, the first of three: regard the incremental Kraus operators for simultaneous mea-
surements of noncommuting observables, Ldt = eδ of Equation (36), not as derived objects, but
as the fundamental differential positive transformations—more fundamental in quantum measure-
ment theory than von Neumann projectors. The forward generator δ plays the role for positive
transformations that anti-Hermitian Hamiltonian generators, −iH dt, play in generating unitary
transformations. Continuously measuring commuting observables leads, over time, to von
Neumann’s original conception of eigenstates of Hermitian operators as measurement
outcomes. The perspectival shift is that Hermitian operators now play the more important
role of generating positive transformations, acting via exponentiation of the forward gener-
ator δ to produce the incremental Kraus operators. For noncommuting observables, these
incremental Kraus operators, piled up over time, lead to . . . —well, that is the subject of the
rest of this paper.

Although several researchers have hinted at or touched on the significance of positive
transformations [38,49,51], especially those who work or comment on linear quantum
trajectories [23,25,50,52], none has gained a complete understanding of how differential
weak, simultaneous measurements lead to the differential positive transformations, Ldt =

eδ of Equation (36), or how these transformations pile up to construct instrument manifolds.
The overall Kraus operator (48) is the solution to the SDE

dLt L−1
t = Lt+dtL

−1
t − 1

= L~X(d~Wt)− 1

= δt +
1
2
δ

2
t

= ~X·
√

κ d~Wt −
1
2
~X2κ dt ,

(50)

with the initial condition L0 = 1. The left side of the SDE, called the Maurer-Cartan form,
is processed by expanding the exponential L~X(d~Wt) = Ldt = eδt and applying the Itô
rule (32); this obscures the role of the quadratic drift term −~X2κ dt in the exponential. To
respect the exponentials, Jackson and Caves introduced the modified Maurer-Cartan stochastic
differential (MMCSD) of Lt, which satisfies

dLt L−1
t −

1
2
(dLt L−1

t )2 = ~X·
√

κ d~Wt − ~X2κ dt = δt . (51)

This result comes from expanding the exponential in L~X(d~Wt) to the second order, but
does not rely on the Itô rule (32). The MMCSD form of the SDE respects the exponential
form of the incremental Kraus operators in Equation (48), which means that the MMCSD is
equal to the forward generator δt; the quadratic term is unavoidable and traces back to the
displacement of the Gaussian meter wave functions.

Equations (50) and (51) are Itô-form SDEs, a fact recognized by noting that the “co-
efficient” of the increment dLt, in this case L−1

t , is evaluated at the beginning of the
increment. The equivalent Stratonovich-form SDE uses mid-point evaluation in the
Maurer-Cartan form,
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dLt L−1
t+dt/2 = δt . (52)

Those who contend that midpoint evaluation does not exist in the stochastic calculus should
regard it as being defined by at+dt/2 = 1

2 (at + at+dt) = at +
1
2 dat, which is precisely what

one would write for midpoint evaluation without thinking about this technicality. One can
see the equivalence to the Itô-form SDE by finding the Itô correction [83,84],

dLt L−1
t+dt/2 = dLt

(
L−1

t +
1
2

dL−1
t

)
= dLt

(
L−1

t −
1
2

L−1
t dLt L−1

t

)
= dLt L−1

t −
1
2
(dLt L−1

t )2 ,

(53)

which shows that the Stratonovich version of the Maurer-Cartan form, dLt L−1
t+dt/2, is a type

of shorthand for the Itô-form MMCSD.
The unconditional quantum operation ZT is woven from the instrument elements

DZ [d~W[0,T)], the weaving expressed as a Wiener-like path integral of the measurement
record,

ZT ≡
∫
DZ [d~W[0,T)] =

∫
Dµ[d~W[0,T)] L[d~W[0,T)]�L[d~W[0,T)]

† . (54)

The “-like” indicates, first, that the functional integral sums over superoperators, not just
c-numbers, and, second, that there is no restriction on the endpoint of the Wiener paths.
This unraveling of ZT we call the Wiener differential unraveling. It is easy to integrate ZT
because it is the composition of the incremental quantum operations Z~X,dt of Equation (37),

ZT = Z~X,dt ◦ · · · Z~X,dt ◦ Z~X,dt︸ ︷︷ ︸
T/dt terms

= e−(κT/2)(~X�1−1�~X)2
. (55)

The integrated form is familiar to anyone who works with Lindblad master equations: it
is the exponential of the Lindbladian (38). Since the incremental quantum operations are
trace preserving, so is the composite quantum operation,

1 = (1)ZT =
∫
Dµ[d~W[0,T)] L[d~W[0,T)]

†L[d~W[0,T)] , (56)

and this is equivalent to saying that the corresponding POVM, consisting of POVM elements

DE[d~W[0,T)] = (1)DZ [d~W[0,T)] = Dµ[d~W[0,T)] L[d~W[0,T)]
†L[d~W[0,T)] , (57)

is complete.

2.2.2. The Kraus-Operator Distribution Function and Subsequent
Fokker-Planck-Kolmogorov Equation

The third element of the stochastic trinity, FPKEs, involves the introduction of a new
mathematical object, the Kraus-operator distribution function, and a new mathematical tool,
right-invariant derivatives, which appear naturally in the FPKE that evolves the Kraus-
operator distribution function. The authors introduce these two mathematical objects
with some trepidation because unlike path integrals and SDEs, they require most physics
readers to appreciate and understand new concepts. Still, the reader must appreciate and
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understand them, because these two objects are at the heart of the Instrument Manifold
Program. So we take the plunge and introduce these new concepts in this section. There
will be a crash of cymbals just below to indicate when the reader needs to wake up and
pay special attention.

To begin, we need to think of the Kraus operators as occupying some “space”. Pro-
visionally, we can think of the space of Kraus operators as being the general linear group
onH, the Lie group GL(H,C). We can and must refine this provisional conception of the
Kraus-operator space, a task that we undertake in Sections 2.4 and 3, but for the present,
this is all we need. We assume that there is a right- and left-invariant measure dµ(L) on
the space of Kraus operators, and again, provisionally, dµ(L) can be taken to be the Haar
measure for GL(H,C). The invariance properties of the measure are

dµ(L′L) = dµ(L) = dµ(LL′) , (58)

with the left equality expressing left invariance and the right equality expressing right
invariance. It is useful to note that

dµ(L) = dµ(1) = dµ(L−1) , (59)

which follows from left and right invariance.
The δ-function that is conjugate to this measure, δ(L, L′), satisfies the reproduction

property [92,93], ∫
dµ(L) f (L) δ(L, L′) = f (L′) , (60)

for any function f on the space of Kraus operators. We have∫
dµ(L1) f (L1) δ(LL1, LL2) =

∫
dµ(L−1L′) f (L−1L′) δ(L′, LL2)

=
∫

dµ(L′) f (L−1L′) δ(L′, LL2)

= f (L2) .

(61)

where the second step uses the left invariance of the measure. This result implies that

δ(L1, L2) = δ(LL1, LL2) = δ(1, L−1
1 L2) = δ(L−1

2 L1, 1) , (62)

which can be regarded as expressing the consequences of left invariance for the δ-function.
Proceeding in the same way, one finds that the consequences of right invariance for the
δ-function are

δ(L1, L2) = δ(L1L, L2L) = δ(1, L2L−1
1 ) = δ(L1L−1

2 , 1) . (63)

Finally, we have∫
dµ(L1) f (L1) δ(L−1

1 , L−1
2 ) =

∫
dµ(L−1

1 ) f (L1) δ(L−1
1 , L−1

2 )

=
∫

dµ(L) f (L−1) δ(L, L−1
2 )

= f (L2) ,

(64)

where the first step uses the relation (59). This final property implies that

δ(L1, L2) = δ(L−1
1 , L−1

2 ) . (65)
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Applying Equations (62) and (63) yields

δ(L1, L2) = δ(L2, L1) , (66)

a property that requires both left and right invariance of the measure. Relations (62), (63),
and (66), which might mistakenly be thought of as trivially equivalent ways of requiring
that L1 = L2 in an integral, have content because the δ-function must pay attention to how
the measure changes from point to point in the group manifold. That there are no position-
dependent multipliers in these relations comes from the way right and left invariance relate
the measure at different points in the manifold.

We can now partition the measurement-record paths into sets, all of which lead to a
particular Kraus operator L, and we use the δ-function to add up all the Wiener-measure
probabilities for a set into a Kraus-operator distribution function,

DT(L) ≡
∫
Dµ[d~W[0,T)] δ

(
L, L[d~W[0,T)]

)
. (67)

This functional integral over the Wiener measure involves only c-numbers and is con-
strained by a path-end δ-function; thus, it is usually called a Wiener path integral [94–99].
We use “distribution function”, “distribution”, and “density” interchangeably, despite
subtle differences some might attribute to these usages, and we abbreviate the Kraus-
operator distribution function as KOD to invite the reader to use whichever of these terms
makes them happy.

The KOD is trivially normalized to unity because the Wiener measure is normalized
to unity: ∫

dµ(L) DT(L) =
∫
Dµ[d~W[0,T)] = 1 . (68)

The unconditional quantum operation at time T, given by Equation (54), can be unraveled
in terms of this distribution,

ZT =
∫

dµ(L) DT(L) L�L† , (69)

an unraveling we call the KOD unraveling. This was called the semisimple unraveling
by Jackson and Caves [54] in the context of SL(2,C) and semisimple Lie groups, but it is
more general than that context, so we give it a more general name here. That ZT is trace
preserving implies that

1 = (1)ZT =
∫

dµ(L) DT(L) L†L . (70)

In terms of the differential positive transformation (36),

Ldt = L~X(d~Wt) = eδ = e−
~X2κ dt+~X·

√
κ d~Wt , (71)
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the KOD satisfies an incremental Chapman-Kolmogorov equation,

Dt+dt(L) =
∫
Dµ[d~W[0,t+dt)] δ

(
L, L[d~W[0,t+dt)]

)
=
∫

dµ(d~Wt)Dµ[d~W[0,t)] δ
(

L, LdtL[d~W[0,t)]
)

=
∫

dµ(d~Wt)
∫
Dµ[d~W[0,t)] δ

(
L−1

dt L, L[d~W[0,t)]
)

=
∫

dµ(d~Wt) Dt
(

L−1
dt L

)
.

(72)

In other words, the value of the KOD at L at time t + dt is the value to be at a precursor
point L−1

dt L multiplied by the Wiener probability dµ(d~Wt) to transition from L−1
dt L to L, and

this product is then averaged over the precursor points. The reader should appreciate that
the incremental Chapman-Kolmogorov equation only requires the δ-function relations (62)
and thus relies only on the left invariance of dµ(L). As is generally the case, the incremental
Chapman-Kolmogorov equation is the basis for developing a diffusion equation.

To do that development, we introduce the right-invariant derivative [54,69,72,100] of
a function f along a path ehX L leading from L:

X←−[ f ](L) ≡ d
dh

f (ehX L)
∣∣∣∣
h=0

= lim
h→0

f
(
ehX L

)
− f (L)

h
= lim

h→0

f (L + hXL)− f (L)
h

. (73)

The underarrow points to the left because the path ehX is applied on the left side of L. The
derivative is called right-invariant because the derivative of a right-displaced function
g(L) = f (LL′) is also right-displaced, that is, X←−[g](L) = X←−[ f ](LL′). The right-invariant
derivative is trivially R-linear,

aX + bY←−−−−− = a X←−+ b Y←− , a, b ∈ R . (74)

The definition of the right-invariant derivative means that it generates a Taylor expansion
along the path ehX L,

f
(
ehX L

)
= eh X←−[ f ](L) = f (L) + h X←−[ f ](L) +

1
2

h2 X←−
[

X←−[ f ]
]
(L) + · · · . (75)

Now, notice that right-invariant derivatives are not C-linear. Indeed, for a complex
number z,

zX←− 6= z X←− ; (76)

in particular,

iX←− 6= i X←− . (77)

Crash of cymbals! The reader should be wide awake and asking who ordered a right-
invariant derivative for the anti-Hermitian generator iX. Any Kraus operator, that is, any
element of GL(H,C), has a polar decomposition,

L = W
√

E , E = L†L , (78)

where W is a unitary operator and E is a positive operator, indeed (within a constant)
a POVM element. The unitary operators are a subgroup of GL(H,C), but the positive
operators are not. Our incremental Kraus operators, generated by Hermitian operators, are
differential positive operators. However, when one starts piling up these incremental Kraus
operators, the overall Kraus operator acquires a unitary piece in the polar decomposition.
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This means that the Instrument Manifold Program must be able to deal with Hermitian
and anti-Hermitian generators.

The second shift in perspective, which we now ask the reader to contemplate, is this:
instrument evolution is the stochastic motion of Kraus operators across a manifold, specifically the
manifold of a complex Lie group. This is the essence of the Instrument Manifold Program.
The incremental Kraus operators Ldt = eδ generate this motion, which can be seen quite
clearly in the Wiener path integrals and the SDEs. The same incremental Kraus operator
generates motion in the Chapman-Kolmogorov Equation (72); this is smooth motion,
naturally described, as we are in the process of showing, by right-invariant derivatives
acting on the KOD. The right-invariant derivatives are expressions of motion or flow, with
X←− describing flow locally at each point in the manifold. For Hermitian X, X←− describes
flow in the direction of positive operators; iX←− similarly describes flow in the direction of
unitary operators. Such derivatives are vector fields—a vector at all points in the group
manifold—and they sit in the (real) tangent bundle to the group manifold. The vector
fields X←− and iX←−, which describe quite distinct flows on the group manifold, are R-linearly
independent. Holomorphic functions are those f satisfying iX←−[ f ](L) = i X←−[ f ](L). The
KOD is not holomorphic, precisely because of the difference between the motion associated
with unitary and positive transformations.

We now call out explicitly the terminology we have been using: the emphasis on
motion and on the transformation groups whose elements generate the motion means
that we generally refer to unitary operators as unitary transformations, something most
physicists are perfectly happy with; additionally, we also designate positive operators as
positive transformations to recognize their role as transformations in instrument evolution.

To make the right-invariant derivative explicit, one can consider f to be a function of
the matrix elements Ljk. The preceding discussion makes it clear that we should regard Ljk
and L∗jk as independent variables. Noting that to order h,

f (L + hXL) = f (L) + h
(
(XL)jk

∂ f
∂Ljk

+ (XL)∗jk
∂ f

∂L∗jk

)
, (79)

where we use the summation convention on the indices of the matrix elements, we obtain a
chain rule,

X←−[ f ](L) =
(
(XL)jk

∂

∂Ljk
+ (XL)∗jk

∂

∂L∗jk

)
f . (80)

This licenses us to regard X←− as acting directly on L and L†—this is the action on linear
functions—according to

X←−[L] = XL and X←−[L
†] = X←−[L]

† = L†X† . (81)

It should be noted that L is a holomorphic function and L† is an anti-holomorphic function.
Not every function is one of these, which is why the chain rule is in terms of both.
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The right-invariant derivatives do not commute—they are not coördinate derivatives—but
their commutators are vector fields, as we see from

X←−
[

Y←−[ f ]
]
=

(
(XL)jk

∂

∂Ljk
+ (XL)∗jk

∂

∂L∗jk

)(
(YL)lm

∂ f
∂Llm

+ (YL)∗lm
∂ f

∂L∗lm

)
= (YXL)jk

∂ f
∂Ljk

+ (YXL)∗jk
∂ f

∂L∗jk

+ (XL)jk(YL)lm
∂2 f

∂Ljk∂Llm
+ (XL)∗jk(YL)∗lm

∂2 f
∂L∗jk∂L∗lm

+ (XL)∗jk(YL)lm
∂2 f

∂L∗jk∂Llm
+ (XL)jk(YL)∗lm

∂2 f
∂Ljk∂L∗lm

,

(82)

which implies that

[
X←−, Y←−

]
[ f ] =

(
([Y, X]L)jk

∂

∂Ljk
+ ([Y, X]L)∗jk

∂

∂L∗jk

)
f = [Y, X]
←−−−

[ f ] , (83)

thus giving a commutator antihomomorphism,[
X←−, Y←−

]
= −[X, Y]
←−−−

. (84)

The right-invariant derivatives inherit the commutators of the path generators X and Y,
with a minus sign coming from the right invariance. Although Equations (82)–(84) are
instructive in showing how the commutators emerge as vector fields from their action on
an arbitrary function, Equation (84) follows immediately from letting the derivatives act on
linear functions, as in Equation (81).

It is useful to appreciate that for left-invariant derivatives, defined by

X−→[ f ](L) ≡ d f (LehX)

dh

∣∣∣∣
h=0

= lim
h→0

f
(

LehX)− f (L)
h

, (85)

we have

X−→[L] = LX and X−→[L†] = X†L† = X−→[L]† , (86)

which implies that [
X−→, Y−→

]
= [X, Y]
−−−→

. (87)

It is also trivial to see that right-invariant derivatives commute with left-invariant derivatives,[
X←−, Y−→

]
= 0 . (88)

Returning now to the incremental Chapman-Kolmogorov equation, notice that we can
write things in terms of right-invariant derivatives,

Dt(L−1
dt L) = Dt(e

−δt L) = e
−δt←−Dt(L) , δt←−

= −~X2
←−κ dt + ~X←− ·

√
κ d~Wt , (89)

so the incremental Chapman-Kolmogorov Equation (72) becomes

Dt+dt(L) =
∫

dµ(d~Wt) e
−δt←−Dt(L) . (90)

Expanding to order dt,
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e− δ←−Dt(L) = Dt(L)− δ←−[Dt](L) +
1
2
δ←−
[
δ←−[Dt]

]
(L) + · · ·

= Dt(L) + κ dt ~X2
←−[Dt](L)−

√
κ dWµXµ

←−
[Dt](L) +

1
2

κ dWµdWνXµ
←−

[
Xν←−

[Dt]
]
(L) + · · · ,

(91)

and plugging this into the incremental Chapman-Kolmogorov Equation (90) yields the
FPKE for the KOD,

1
κ

∂Dt(L)
∂t

= ∆[Dt](L) , (92)

where we introduce the Kolmogorov forward generator,

∆ ≡ ~X2
←−+

1
2
∇2 , (93)

which has a Laplacian diffusion operator in the positive directions,

∇2 ≡∑
µ

Xµ
←−

Xµ
←−

. (94)

The initial condition corresponding to the path integral (67) is D0(L) = δ(L, 1).
Rudely awakened by the crash of cymbals, the reader is urged now to savor the

reward: pause and contemplate the really quite blissful FPKE and its Kolmogorov forward
generator ∆. Meanwhile, it is important to recognize that the crucial step in the Chapman-
Kolmogorov derivation occurs when L−1

dt = e−δ is pulled out of the argument of Dt to
become an exponential of right-invariant derivatives, e− δ←−. With this step, one goes from
thinking about points—Kraus operators—moving stochastically through the group mani-
fold to motion on the manifold described by vector fields. Accompanying this perspective
is the appreciation that, in Equations (91)–(94), the deterministic and stochastic parts of
the forward-generator vector field δ←− contribute differently to the Kolmogorov forward
generator ∆: the right-invariant derivative coming from the deterministic quadratic term,
−~X2
←−κ dt, yields the first-derivative term in ∆; the right-invariant derivatives coming from

the measured observables, Xµ
←−
√

κ dWµ
t , don’t know in which direction to point, because

of the stochastic Wiener increment, and so give rise to the second-derivative diffusion
terms in the Laplacian. Our Wiener path integrals are right-invariant versions of what are
often called Feynman-Kac formulas for the solution of a diffusion equation. It appears
that Kac, inspired by Feynman’s translation of the Schrödinger equation to Feynman path
integrals [101–103], pioneered the translation of Wiener path integrals—then referred to as
averages over continuous functions—to diffusion equations [97–99].

With the initial condition D0(L) = δ(L, 1) comes a tale that needs to be told. Suppose
the initial Kraus operator is L0 instead of the identity. This situation is described by
replacing the unconditional quantum operation (54) with

ZT|L0
=
∫
Dµ[d~W[0,T)] L[d~W[0,T)]L0�L†

0 L[d~W[0,T)]
† = ZT ◦ L0�L†

0 , (95)

which can be unraveled as

ZT|L0
=
∫

dµ(L) DT(L|L0) L�L† , (96)
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where the KOD is defined by the Wiener path integral,

DT(L|L0) =
∫
Dµ[d~W[0,T)] δ

(
L, L[d~W[0,T)]L0

)
. (97)

Because the SDE and the FPKE involve only what is happening at the end of the chain of
incremental Kraus operators, Lt = L[d~W[0,t)]L0 obeys the SDE (50), with the initial condition
L0, and Dt(L|L0) obeys the FPKE (92), with the initial condition D0(L|L0) = δ(L, L0). The
path-integral definition of DT(L|L0) in Equation (97) implies that the unit normalization of
Dt(L|L0) is preserved by the FPKE (92): thus appreciate that Dt(L|L0) is the normalized
Green function of the FPKE. Yet, DT(L|L0) does not weave a trace-preserving superoperator
except when L†

0 L0 = 1—thus L0 is a unitary operator—as one can see trivially from

(1)ZT|L0
= (1)ZT ◦ L0 � L†

0 = (1)L0 � L†
0 = L†

0 L0 . (98)

Obvious? Yes, yet useful it is to stress what this means. The initial condition L0 can be
thought of in the following way: precede the string of differential weak measurements

with a two-outcome measurement whose Kraus operators are L0 and
√

1− L†
0 L0, and

retain only the result L0. This necessarily discards probability corresponding to the second
result, thus rendering ZT|L0

trace decreasing, unless the prior measurement is completely

uninformative, yielding just one result L0, which must satisfy L†
0 L0 = 1, which makes L0 a

unitary operator.
Using the continuous-measurement SDE (51) and FPKE (92) requires knowing more

about the space occupied by the Kraus operators. In particular, one needs to
characterize—ultimately this means to coördinate—the space of Kraus operators so that the
SDE can be converted to SDEs for the coördinates, and the FPKE can be written in terms of
coördinate derivatives. (The use of the matrix elements of L in considering right-invariant
derivatives is a mindless way of coördinating the Kraus operators when no other structure
has been recognized.) The further characterization of the space of Kraus operators is the
task of placing the instrument in a more refined Lie-group manifold, a task we undertake
in Sections 2.4 and 3. Here we digress to show how our instrument-autonomous approach
is related to conventional accounts of continuous measurements in terms of a quantum
state evolving via a stochastic master equation.

2.3. Stepping Back into State Evolution

Methods for quantum state evolution, such as Lindblad master equations, quantum
trajectories, and stochastic master equations, are far more popular than the methods just
introduced for analyzing measuring instruments autonomously. This section establishes a
connection between the two methods. There is an important difference in the philosophy
of the two methods concerning the nature of outcomes: in instrument-autonomous evolu-
tion, the outcomes are Wiener distributed; in state evolution, the outcomes are Born-rule
distributed.

This section only exists to comfort the reader who feels bereft without the presence of
a state. Those who are perfectly fine with the state-independent instrument formalism can
safely skip this section. We do point out, however, just this once, that this section provides
a very neat formulation of how quantum states evolve in the presence of continuous,
differential weak measurements.
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To convert our instrument-autonomous description to state evolution, we begin by
noting that the quantum state at time T, given an initial state ρ0 and outcomes d~W[0,T), is
obtained by applying the instrument element (46) to ρ0 and then normalizing,

ρ
[
d~W[0,T)

∣∣ρ0
]
≡
DZ [d~W[0,T)](ρ0)

tr
(
DZ [d~W[0,T)](ρ0)

)
=
DZ [d~W[0,T)](ρ0)

Dp
[
d~W[0,T)

∣∣ρ0
]

=
dZ~X

(
d~WT−dt

)
◦ · · · ◦ dZ~X

(
d~W1dt

)
◦ dZ~X

(
d~W0dt

)
(ρ0)

Dp
[
d~W[0,T)

∣∣ρ0
]

=
Dµ[d~W[0,T)]

Dp
[
d~W[0,T)

∣∣ρ0
] L[d~W[0,T)]ρ0L[d~W[0,T)]

†

=
L[d~W[0,T)]ρ0L[d~W[0,T)]

†

tr
(

L[d~W[0,T)]ρ0L[d~W[0,T)]
†) .

(99)

Here

Dp
[
d~W[0,T)

∣∣ρ0
]
≡ tr

(
DZ [d~W[0,T)](ρ0)

)
= Dµ

[
d~W[0,T)

]
tr
(

L[d~W[0,T)]
†L[d~W[0,T)]ρ0

)
(100)

is the Born-rule probability for the outcome sequence d~W[0,T), given the initial state ρ0.
“Given the initial state ρ0” is the reason for the conditional notation in ρ

[
d~W[0,T)

∣∣ρ0
]

and
Dp
[
d~W[0,T)

∣∣ρ0
]
. Probability (100), constructed in the standard way from the initial state

and the POVM element for the outcome sequence, we call the Born-rule measure. The density
operator ρ

[
d~W[0,T)

∣∣ρ0
]

is often called the quantum trajectory associated with the outcome
path d~W[0,T) [35–38].

Another way to handle quantum states is to work with an unnormalized density
operator that depends on the outcome record and the initial state,

ρ̃
[
d~W[0,T)

∣∣ρ0
]
≡
DZ [d~W[0,T)](ρ0)

Dµ
[
d~W[0,T)

]
=

dZ~X

(
d~WT−dt

)
◦ · · · ◦ dZ~X

(
d~W1dt

)
◦ dZ~X

(
d~W0dt

)
(ρ0)

Dµ
[
d~W[0,T)

]
= L[d~W[0,T)]ρ0L[d~W[0,T)]

† .

(101)

This unnormalized density operator comes from applying the piled-up incremental Kraus
operators in the overall Kraus operator (48) to the input quantum state. The product of
incremental Kraus operators [25,38,50] was named a linear quantum trajectory by Wise-
man [25]; the associated SDE, derived below, was developed by Goetsch and Graham [23],
who called it a linear SDE.

It is useful to record and contemplate three interconnected relations among the quanti-
ties introduced here: between the Born-rule measure and the Wiener measure,

Dp
[
d~W[0,T)

∣∣ρ0
]
= Dµ

[
d~W[0,T)

]
tr
(
ρ̃
[
d~W[0,T)

∣∣ρ0
])

, (102)

between the normalized trajectories and the linear trajectories,

ρ
[
d~W[0,T)

∣∣ρ0
]
=

ρ̃
[
d~W[0,T)

∣∣ρ0
]

tr
(
ρ̃
[
d~W[0,T)

∣∣ρ0
]) , (103)
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and the invariance of their product,

Dp
[
d~W[0,T)

∣∣ρ0
]

ρ
[
d~W[0,T)

∣∣ρ0
]
= Dµ[d~W[0,T)] ρ̃

[
d~W[0,T)

∣∣ρ0
]

. (104)

The last of these associates the two density operators with their conjugate measures, which
is key to the unravelings we turn to now.

The Wiener differential unraveling (54) and the KOD unraveling (69) are state-independent
unravelings of the unconditional quantum operation ZT . State-based unravelings start by
applying ZT , in the form of these two unravelings, to the initial state to obtain an uncondi-
tional, normalized final state ZT(ρ0). For each unraveling, there are two ways to proceed,
by using unnormalized states and their conjugate distributions or by using normalized
states and their conjugate distributions. The result is four state-based unravelings:

ZT(ρ0) =
∫
Dµ[d~W[0,T)] L[d~W[0,T)]ρ0L[d~W[0,T)]

† =
∫
Dµ[d~W[0,T)] ρ̃

[
d~W[0,T)

∣∣ρ0
]

, (105)

ZT(ρ0) =
∫
Dp
[
d~W[0,T)

∣∣ρ0
]

ρ
[
d~W[0,T)

∣∣ρ0
]

, (106)

ZT(ρ0) =
∫

dµ(L) DT(L) Lρ0L† =
∫

dµ(L) DT(L) ρ̃(L|ρ0) , (107)

ZT(ρ0) =
∫

dµ(L) DT(L) tr(L†Lρ0) ρ(L|ρ0) =
∫

dpT(L|ρ0) ρ(L|ρ0) . (108)

The first two of these unravelings are differential and thus serve as the basis for developing
SDEs for an evolving quantum state, a development we undertake below. The first is a
state-based version of the Wiener differential unraveling (54)—just put ρ0 in place of the �;
it gives rise to linear quantum trajectories and a linear SDE. The second unravels ZT(ρ0)
into normalized states and thus leads to stochastic master equations; notably, to obtain
the stochastic master equation, one must decompose into incremental time steps both the
Born-rule measure Dp

[
d~W[0,T)

∣∣ρ0
]

and the normalized state ρ
[
d~W[0,T)

∣∣ρ0
]
. We call this

second unraveling, that of Equation (106), the Born-rule differential unraveling.
The third and fourth unravelings are based on the KOD unraveling (69). The third

is a direct expression of the KOD unraveling—just put ρ0 in place of the �. It introduces
an overall unnormalized linear state,

ρ̃(L|ρ0) = Lρ0L† , (109)

which has the path-integral expression

DT(L) ρ̃(L|ρ0) =
∫
Dµ[d~W[0,T)] ρ̃

[
d~W[0,T)

∣∣ρ0
]

δ
(

L, L[d~W[0,T)]
)

. (110)

This follows immediately from the path-integral Formula (67) for DT(L) and exhibits the
importance of the KOD in the context of the linear states. The fourth unraveling is similar
to the third, but unravels into normalized overall states,

ρ(L|ρ0) =
Lρ0L†

tr(L†Lρ0)
=

ρ̃(L|ρ0)

tr
(
ρ̃(L|ρ0)

) . (111)

This fourth unraveling deserves extra attention. We call it the Born-rule unraveling
because if one thinks of the overall Kraus operators L as outcomes, ρ(L|ρ0) is the normalized
overall state conditioned on outcome L and given the input state ρ0:

ρ(L|ρ0) =
dµ(L) DT(L) Lρ0L†

dpT(L|ρ0)
. (112)
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Defined here is the Born-rule probability,

dpT(L|ρ0) = dµ(L) DT(L) tr(L†Lρ0) = dµ(L) DT(L) tr
(
ρ̃(L|ρ0)

)
, (113)

for the transition L within the infinitesimal volume dµ(L), given the initial state ρ0. This
probability can be interpreted as the probability of transitioning from the initial state ρ0 to
the final state ρ(L|ρ0) at time T. Just as in Equation (104), it is worth explicitly associating
measures with the states,

dµ(L) DT(L) ρ̃(L|ρ0) = dpT(L|ρ0) ρ(L|ρ0) . (114)

The Born-rule probability dpT(L|ρ0) splits into three factors: the invariant measure
dµ(L), the KOD DT(L), and the state-dependent factor tr(L†Lρ0). From a state-based
perspective, one might be tempted to shunt part or all of the KOD into the measure or
into the Kraus operators themselves; the extremes are to incorporate the KOD wholly into
the measure or wholly into renormalized Kraus operators

√
DT(L) L. The reason for not

doing any shunting in an instrument-autonomous approach is that the KOD has a real
meaning: it expresses how the Kraus operators become concentrated at different points
in the manifold of Kraus operators relative to the measure dµ(L), which itself defines
what is meant by a uniform distribution. This justification becomes even stronger in the
context of the instrument’s natural Lie group, where the group’s Haar measure provides
the dominant measure. We undertake this group-theoretic perspective in Section 2.4 in
order to detach the instrument from Hilbert space. The Born-rule-based approaches, with
their state-dependent probabilities, cannot be detached from Hilbert space.

Taking the trace of Equation (110) yields Wiener path-integral expressions for the
transition-probability distribution function,

dpT(L|ρ0)

dµ(L)
=
∫
Dµ[d~W[0,T)] tr

(
ρ̃
[
d~W[0,T)

∣∣ρ0
])

δ
(

L, L[d~W[0,T)]
)

=
∫
Dp
[
d~W[0,T)

∣∣ρ0
]

δ
(

L, L[d~W[0,T)]
)

.
(115)

This is the Wiener-path-integral solution, that is, the Feynman-Kac solution, of a diffusion
equation for the distribution function dpT(L|ρ0)/dµ(L) (not given here, nor anywhere
else as far we can tell). It is also the point of departure for the state-based path-integral
description of continuous, differential weak measurements developed in a sequence of
four papers by Chantasri et al. [42,104–106]; Chantasri et al.’s path-integral formulation is
considered in some detail in Appendix B. The path integral (110) for ρ̃(L|ρ0) is equivalent
to the path integrals for ρ(L|ρ0),

DT(L) tr(L†Lρ0) ρ(L|ρ0) =
∫
Dµ[d~W[0,T)] ρ̃

[
d~W[0,T)

∣∣ρ0
]

δ
(

L, L[d~W[0,T)]
)

=
∫
Dp[d~W[0,T)] ρ

[
d~W[0,T)

∣∣ρ0
]

δ
(

L, L[d~W[0,T)]
)

.
(116)

Now let us turn our attention to the SDEs for the state evolution described by the
above path integrals. For this purpose, we strip down our state notation, leaving implicit
the outcomes in the conditional density operators, thus writing

ρt = ρ
[
d~W[0,t)

∣∣ρ0
]

and ρ̃t = ρ̃
[
d~W[0,t)

∣∣ρ0
]

. (117)

We do this partly because everyone else does it and partly because retaining all the decora-
tion so clutters the equations that they can hardly be read. Nonetheless, we do it reluctantly
because failure to appreciate all the dependences can lead to confusion and even serious



Entropy 2023, 25, 1254 26 of 57

misconceptions. The SDE for the linear, unnormalized state ρ̃t comes trivially from applying
the differential positive transformation (71) to update ρ̃t according to

ρ̃t+dt = Ldtρ̃tL
†
dt , (118)

with the result that

dρ̃t = ρ̃t+dt − ρ̃t =
√

κ d~Wt ·
(
~Xρ̃t + ρ̃t~X

)
+ κ dt

(
−1

2
(
~X2ρ̃t + ρ̃t~X

2)+ ∑
µ

Xµρ̃tXµ

)
. (119)

This SDE for ρ̃t is called a linear SDE [23]. The first term represents conditioning on
the outcome increments d~Wt; integrating over these increments leaves the second term,
which describes the Lindblad evolution of an unconditional density operator under the
Lindbladian (38). The linear SDE follows directly from the piling up of incremental Kraus
operators displayed in Equation (48); the outcome increments are drawn from the Wiener
measure. Wiseman, in a careful analysis of stochastic state evolution, classifies this way
of handling state evolution as Method C and calls the Wiener-measure probabilities “os-
tensible” because they are not the probabilities for sampling from an evolving quantum
state [25].

Conventional stochastic master equations describe the evolution of the normalized
state (99) and thus use incremental probabilities that are determined by the evolving
state—Wiseman calls this Method A [25]. The place to begin is by unraveling the Born-rule
measure Dp

[
d~W[0,T)

∣∣ρ0
]

of Equation (102) into a product of incremental probabilities; our
treatment here can be traced back to the analysis of Goetsch and Graham [23]. Updating by
one increment yields

Dp
[
d~W[0,t+dt)

∣∣ρ0
]
= Dµ[d~W[0,t+dt)] tr(ρ̃t+dt)

= dµ(d~Wt)Dµ[d~W[0,t)]
tr(ρ̃t+dt)

tr(ρ̃t)
tr(ρ̃t)

= dµ(d~Wt)
tr(ρ̃t+dt)

tr(ρ̃t)
Dµ[d~W[0,t)] tr(ρ̃t)

= dp(d~Wt|ρt)Dp
[
d~W[0,t)]

∣∣ρ0
]

,

(120)

where the Born-rule incremental measure is

dp(d~Wt|ρt) = dµ(d~Wt)
tr(ρ̃t+dt)

tr(ρ̃t)

= dµ(d~Wt)
tr(Ldtρ̃tL

†
dt)

tr(ρ̃t)

= dµ(d~Wt) tr
(

LdtρtL
†
dt
)

= dµ(d~Wt) tr
(

L~X(d~Wt)ρ
[
d~W[0,t)

∣∣ρ0
]
L~X(d~Wt)

†
)

.

(121)

The last form restores all the decorations to remind the reader why we should and should
not include them. The Born-rule incremental measure is the probability for outcomes d~Wt,
given the state ρt = ρ

[
d~W[0,t)

∣∣ρ0
]

at time t. We can now factor the Born-rule measure (100)
into a product of incremental probabilities,

Dp
[
d~W[0,T)

∣∣ρ0
]
= dp(d~WT−dt|ρT−dt) · · · dp(d~W1dt|ρ1dt) dp(d~W0dt|ρ0) . (122)

Notice that if the first form of the Born-rule incremental measure in Equation (121) is
substituted into this product, the denominator of each ratio tr(ρ̃t+dt)/ tr(ρ̃t) cancels with the
numerator of the next term in the product, leaving the Born-rule measure in the form (102).
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We need one more piece of information, tr
(

LdtρtL
†
dt
)
. Since LdtρtL

†
dt looks just like the

update of ρ̃t,

LdtρtL
†
dt = ρt +

√
κ d~Wt ·

(
~Xρt + ρt~X

)
+ κdt

(
−1

2
(
~X2ρt + ρt~X

2)+ ∑
µ

XµρtXµ

)
, (123)

we have

dp(d~Wt|ρt) = dµ(d~Wt)
(
1 + 2

√
κ d~Wt · 〈~X〉ρt

)
. (124)

The Born-rule incremental measure is normalized, and relative to it, the means and second-
moment matrix of the Wiener outcome increments are

〈dWµ
t 〉ρt

=
∫

dp(d~W|ρt) dWµ = 2
√

κ〈Xµ〉ρt
dt , (125)

〈dWµ
t dWν

t 〉ρt
=
∫

dp(d~W|ρt) dWµdWν = δµνdt . (126)

One should appreciate that, relative to the Born-rule incremental measure, each Wiener
outcome increment dWµ

t acquires a mean value proportional to the expected value of its
observable Xµ and also proportional to dt.

The covariance matrix of the Wiener increments relative to the Born-rule incremental
measure is〈(

dWµ
t − 2

√
κ dt〈Xµ〉ρt

)(
dWν

t − 2
√

κ dt〈Xν〉ρt

)〉
ρt
= δµνdt− 4κ dt2 〈Xµ〉ρt

〈Xν〉ρt
= δµνdt . (127)

Dropping the mean-product term, on the grounds that being proportional to dt2 makes it
zero in stochastic calculus, is crucial to further developments. Indeed, with this omission in
mind, we can process the Born-rule incremental measure (124) to a new form,

dp(d~Wt|ρt) = dµ(d~Wt) exp
(

2
√

κ d~Wt · 〈~X〉ρt
− 2κ dt 〈~X〉2ρt

)
=

d(dWn
t ) · · · d(dW1

t )

(2π dt)n/2 exp
(
−
(
d~Wt − 2

√
κ dt〈~X〉ρt

)2

2dt

)
,

(128)

which is consistent with the second-moment matrix of the Wiener outcome increments in
Equation (126) only if we drop the mean-product terms proportional to dt2 when calculating
second moments.

It is conventional at this point to introduce outcome- and state-dependent innova-
tions [36,107],

d~It ≡ d~Wt − 2
√

κ〈~X〉ρt
dt , (129)

which have the means of the Born-rule-distributed outcome increments removed. The
Born-rule incremental measure is a Wiener measure in the innovations,

dp(d~Wt|ρt) =
d(dIn

t ) · · · d(dI
1
t )

(2π dt)n/2 exp
(
−d~I2

t
2dt

)
= dµ(d~It) . (130)

It is critical to appreciate that the outcome increments and the innovations satisfy the Itô
rule, dWµ

t dWν
t = δµνdt and dIµ

t dIν
t = δµνdt, regardless of whether they are drawn from

the Wiener measure or the Born-rule measure. The reason is that the difference between
the outcome increments and the innovations is proportional to dt, thus causing a vanishing
correction to the Itô rule. This is equivalent to dropping the dt2 terms from second-moment
calculations in the above.

Advancing the normalized density operator by one increment, one finds
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ρt+dt =
ρ̃t+dt

tr(ρ̃t+dt)

=
LdtρtL

†
dt

tr(LdtρtL
†
dt)

=

(
ρt +
√

κ d~Wt ·
(
~Xρt + ρt~X

)
+ κdt

(
−1

2
(
~X2ρt + ρt~X

2)+ ∑
µ

XµρtXµ

))
×
(
1− 2

√
κ d~Wt · 〈~X〉ρt

+ 4κ dt 〈~X〉2ρt

)
= ρt +

√
κ
(
d~Wt − 2

√
κ〈~X〉ρt

dt
)
·
(
~Xρt + ρt~X− 2〈~X〉ρt

ρt
)
+ κdt

(
−1

2
(
~X2ρt + ρt~X

2)+ ∑
µ

XµρtXµ

)
,

(131)

and this yields the conventional stochastic master equation [24,25,35–48],

dρt = ρt+dt − ρt =
√

κ d~It ·
(
~Xρt + ρt~X− 2〈~X〉ρt

ρt
)
+ κdt

(
∑
µ

XµρtXµ −
1
2
(
~X2ρt + ρt~X

2)) , (132)

which is written in terms of the innovations. It is instructive to write the first term as
√

κ d~It ·
((

~X− 〈~X〉ρt

)
ρt + ρt

(
~X− 〈~X〉ρt

))
. (133)

This term, nonlinear in ρt because of the expectation value 〈~X〉ρt
, describes how the out-

comes d~Wt affect the evolving quantum state: each innovation dIµ
t , drawn from the Born-

rule measure, is conjugate to the deviation of the corresponding observable Xµ from its
expected value. It is trivial to see, first, that the stochastic master equation is trace preserv-
ing and, second, that averaging over the innovations yields the Lindblad master equation
for the unconditional density operator.

Wiseman [25] explains that the (Method A) stochastic master equation is better suited
to simulations of state evolution than the (Method C) linear SDE because the outcome paths
are guided by the quantum states that one is trying to simulate, whereas the outcome paths
in linear SDEs are free to wander over the entire manifold of possible Kraus operators and
are not guided by state-based probabilities. Instrument autonomy, in contrast, is all about
letting the Kraus operators go where they may within the instrument manifold, thereby
revealing the structure of the instrument, a structure defined purely by the measured ob-
servables. The next step, which we turn to now, is to identify more precisely the instrument
manifold and thus detach the instrument not only from quantum states but also from
Hilbert space itself.

2.4. Getting Out of Hilbert Space: Universal Instruments, Towers of Chaos, and
Principal Instruments

This section is about how continuous, differential weak measurements are all about
the time-ordered exponential (48) for the overall Kraus operator. The instruments defined
by these measurements are thus not only autonomous, but also precede Hilbert space. This
means that the methods in Section 2.2, culminating in the Instrument Manifold Program,
can be considered universally, independent of Hilbert space.

The Hilbert space H came up twice in the preceding general discussion of simul-
taneous measurements of noncommuting observables. The first time was right at the
beginning of Section 2.1.1, whereH was mentioned once in setting up the problem of differ-
ential weak measurement. The second and more substantial instance was in Section 2.2.2,
where the space of Kraus operators was identified provisionally as the Lie-group mani-
fold GL(H,C); this was done in order to formulate the Kraus-operator distribution as a
function of GL(H,C) and to find its diffusion equation in terms of right-invariant deriva-
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tives acting as vector fields tangent to GL(H,C). Readers reconciled with the idea of a
group manifold to house the Kraus operators and right-invariant derivatives acting on
functions of that manifold—those readers are ready for the third, final, and most important
change in perspective: detaching the instrument from Hilbert space. Here we outline the
procedure for constructing the Lie group generated by the measured observables ~X and
the quadratic term ~X2. We call this group the instrumental Lie group, and it is the proper
home of the Kraus operators. The instruments we have been considering assumed a Hilbert
spaceH; for different Hilbert spaces, the instrumental group can look quite different, and
we call these H-specific groups quantum instrumental Lie groups. This section shows that
there is a universal instrumental Lie group, within the usual concept of a universal cover-
ing group [56–58,60,63], which is Hilbert-space independent and unifies all the quantum
instrumental Lie groups.

As we embark on this adventure, it is important to appreciate that any Lie algebra
considered in quantum theory is embedded in an associative algebra that has the operations
of a complex matrix algebra: commutative addition, associative multiplication, scalar
multiplication by complex numbers, and Hermitian conjugation. An associative algebra is
a complex vector space under addition and scalar multiplication. The Lie algebra inherits
the vector-space property, but as already explained, we regard it as a real vector space in
which Hermitian and anti-Hermitian elements are R-linearly independent. A quantum-
physicist reader has been assuming all along that we have been operating in the associative
algebra AH = gl(H,C) of operators (or matrices) on H. Detaching from Hilbert space
might be thought of as the adventure of getting out of AH.

The incremental Kraus operator, or differential positive transformation, Ldt = eδ

of Equation (36), is differentially close to the identity and is generated by the measured
observables, ~X = {X1, . . . , Xn}, and the quadratic, completeness-preserving term ~X2. Pil-
ing up incremental Kraus operators leads to the overall Kraus operator LT = L[d~W[0,T)],
which is written as a time-ordered product in Equation (48). This product can be re-
duced to a product of finitely many exponential factors, each of which, by the Magnus
expansion [108,109], has an argument given by a series of integrals of the operators
{X1, . . . , Xn, ~X2} = {~X, ~X2} and their successive commutators. This is to say that the
overall Kraus operator is an element of the instrumental Lie group G = eg, where g is
the Lie algebra generated by the set {~X, ~X2}. Below, we explore the instrumental groups,
both universal andH-specific (or quantum), in two steps, which highlight the difference
between the measured observables and the quadratic generator.

First, however, we discuss some general properties, which are based on the fact that
the real vector space g is the direct sum of a subspace gl of Hermitian generators and
a subspace go of anti-Hermitian generators:

g = go ⊕ gl . (134)

The two subspaces satisfy

[go, go] ⊆ go , (135)

[go, gl] ⊆ gl , (136)

[gl, gl] ⊆ go , (137)

thus identifying go ⊂ g as a Cartan pair. Equation (135) implies that go is a Lie subalgebra,
which generates the subgroup Go = ego of unitary transformations within G. In contrast,
Equation (137) indicates that the Hermitian subspace gl is not a subalgebra; gl generates the
positive transformations, which are not a subgroup of G, but should be thought of as a base
manifold E within G. The incremental Kraus operator Ldt = eδ is a differential positive
transformation, and the forward generator δ is an element of gl. Equation (136) states that
the unitary conjugation of a positive transformation yields another positive transformation;
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the conjugation of the base manifold E by an element of the unitary subgroup Go is a
rotation of the base manifold.

The Kraus operators are points in the group manifold G and, at the same time, in the
way of groups, they are also transformations of G. Each Kraus operator possesses a unique
group-theoretic polar decomposition L = W

√
E, as in Equation (78), where W is an element

of Go and
√

E =
√

L†L is a positive transformation and thus within E . The group-theoretic
polar decomposition is a consequence of the Lie-algebraic direct sum g = go ⊕ gl and the
commutation relations implied by Equations (135)–(137). The stochastic motion of the
Kraus operators traces a path on G. These stochastic paths are described by the SDE (50).
The outcome-increment paths are the domain of integration in the path integral (54) for
the unconditional quantum operation. The KOD, a function of G, is a distribution relative
to the Haar measure of G, describing how the outcome paths accumulate on different
Kraus operators. The right-invariant derivatives are vector fields that describe the flow
on G. The instrument assumes a shape within G. The unitary subgroup Go is called the
structure group, the base manifold E is the space of POVM elements, and G is a principal
bundle [110]. One way of thinking is that Go is a fiber of unitary transformations at each
point in the base manifold E , and G is the principal fiber bundle.

Let us now proceed to the two-step process for generating g. In the first step, we find
the Lie algebra f generated by the measured observables, which we call the observable Lie
algebra. Starting with the subspace spanned by the measured observables,

Γ(0) = span{X1, . . . , Xn} , (138)

we generate the Lie algebra through successive commutators:

Γ(1) = Γ(0) ⊕
[
Γ(0), Γ(0)]

Γ(2) = Γ(1) ⊕
[
Γ(1), Γ(1)]

...

Γ(j) = Γ(j−1) ⊕
[
Γ(j−1), Γ(j−1)]

...

. (139)

This iterative process continues until it closes, say, after N iterations; that is, Γ(N+1) = Γ(N),
in which case, the observable Lie algebra is f = Γ(N). The corresponding Lie group F = ef

we call the observable Lie group. We need to consider the origin of the commutator algebra
to generate f. If the measured observables are selected from the Hermitian generators of
a Lie algebra s that is represented in the Hilbert space H, then one already knows the
commutators, independent of H. If the measured observables are arbitrary Hermitian
operators on H, one resorts to the associative algebra AH to evaluate the commutators,
which is equivalent to saying that s = gl(H,C). It is trivial to see that f ⊆ gl(H,C)
and thus that F ≤ GL(H,C). Letting d = dimCH, we have dimR

(
gl(H,C)

)
= 2d2,

so dimR(f) ≤ 2d2. Thus, if H is finite dimensional, so is f, implying that the iterative
process (139) closes after a finite number of iterations. Once we have constructed f, we
can regard it and F abstractly, that is, as detached from H and its associative operator
algebra AH.

Now for the second step, which is to add the quadratic term to the observable Lie
algebra f. Starting with the subspace

∆(0) = f⊕ ~X2 , (140)
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we generate the Lie algebra g through successive commutators:

∆(1) = ∆(0) ⊕
[
∆(0), ∆(0)] = f⊕ ~X2 ⊕

[
f, ~X2]

∆(2) = ∆(1) ⊕
[
∆(1), ∆(1)] = ∆(1) ⊕

[
f,
[
f, ~X2]]⊕ [~X2,

[
f, ~X2]]⊕ [[f, ~X2], [f, ~X2]]

...

∆(j) = ∆(j−1) ⊕
[
∆(j−1), ∆(j−1)]

...

. (141)

The Lie algebra this iterative process generates we call the instrumental Lie algebra. The
definite article here is misleading, however, because there are now two genuinely different
ways to evaluate the commutators, corresponding to different choices of the associative
operator algebra that is associated with f. The first way is to work within AH; this uses
the d × d matrix representations, starting with f and ~X2, to evaluate the commutators.
The iterative process (141) necessarily closes at a Lie algebra h ⊆ gl(H,C), theH-specific
instrumental Lie algebra, whose correspondingH-specific Lie group, eh ≤ GL(H,C), we
call a quantum instrumental Lie group. IfH is finite dimensional, closure occurs after a finite
number N of iterations, so h = ∆(N). The second way to evaluate the commutators in
the iterative process (141) is within the universal enveloping algebra Uf of the observable
Lie algebra f [58,111]; this is the associative algebra that is free of constraints, except for
the commutators coming from f. In general, when one works in the universal enveloping
algebra, the iterations (141) do not close, so g = ∆(∞) is an infinite-dimensional Lie algebra,
and the corresponding Lie group G = eg is also infinite dimensional. We call G the universal
instrumental Lie group.

Working within AH yields a H-specific instrumental Lie algebra h and a H-specific
quantum instrumental group eh, whereas working within the universal enveloping algebra
Uf yields the Hilbert-space-independent Lie algebra g and the universal instrumental group
G = eg. It is instructive to consider the difference between h and g. The quadratic term
is quadratic in the “linear” measured observables, and its matrix commutators generally
generate higher and higher powers of the elements of f. When working with matrices
on a finite-dimensionalH, sufficiently high powers are constrained to be related to lower
powers by the dimensionality ofH, so the iterative process (141) closes after a finite number
of steps. This is particularly obvious in the extreme case where f = gl(H,C); then, ~X2

is already in f, so the iterative process goes nowhere and h = f = gl(H,C). In contrast,
when working in the universal enveloping algebra Uf, where the associative algebra is
constrained only by the commutators coming from f, high powers of elements of f are
not constrained to be related to lower powers, so the iterative process defining g can,
and generally does, go on forever. This universal iterative process yields the universal
instrumental Lie algebra g and the corresponding Lie group, the universal instrumental
group G = eg, which is a kind of universal covering group that unifies all the H-specific
quantum instrumental groups. We summarize the third perspectival shift as follows:
detach the instrument from Hilbert space and place it in its proper home, the universal instrumental
Lie group, where the three faces of the stochastic trinity can be applied universally.

Only very special instruments have a finite-dimensional universal instrumental group;
we call these principal (universal) instruments. These are pre-quantum [112], Hilbert-space-
independent objects that structure any Hilbert space in which they reside. Cases 1, 2, and
3 in Section 3 are all principal instruments. Universal instruments that are not principal
instruments we call chaotic (universal) instruments.

We need to examine more carefully the relation between the Lie algebras and Lie
groups and between the (H-specific) quantum and universal realizations. There is an
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associative-algebra homomorphism π̂ : Uf → AH, meaning that the map respects the
algebraic properties:

π̂(z1x1 + z2x2) = z1π̂(x1) + z2π̂(x2) , (142)

π̂(x1x2) = π̂(x1)π̂(x2) , (143)

π̂(x†) = π̂(x)† , (144)

for any x1, x2 ∈ Uf and z1, z2 ∈ C. Restricting the domain of this map to the universal
instrumental Lie algebra g yields a Lie-algebra homomorphism π : g→ h that projects the
universal instrumental Lie algebra g onto the H-specific instrumental Lie algebra h. The
kernel of this projection map,

ker π = π−1(0) = {x ∈ g : π(x) = 0} ≡ k , (145)

is an ideal of g, since [k, g] ∈ k for any k ∈ k and g ∈ g. The Lie group ek is a normal
subgroup of G = eg. The quotient group G/ek is not, however, eh because eh knows that
elements of h other than 0 exponentiate to the identity.

To go further, we extend π to a group projection map Π : G → eh, defined by
Π(eg) = eπ(g) for any g ∈ g. It is important to realize that Π is the associative-algebra
projection map π̂ restricted to G:

Π(eg) = eπ(g) = eπ̂(g) = π̂(eg) . (146)

The kernel of this map,

ker Π = Π−1(1) = {g ∈ G : Π(g) = 1} ≡ K , (147)

is a normal subgroup of G, as one can easily see by applying the projection map (146).
Moreover, it is also easy to see that the quotient group, H = G/K, is isomorphic to
Π(G) = eh,

H = G/K ∼= Π(G) = eh . (148)

This is the sense in which the universal instrumental Lie group G = eg is a universal cover:
for every Hilbert space in which the instrument is represented, there is a subgroup of G,
the kernel K, such that the quantum instrumental Lie group eh is isomorphic to H = G/K.

To illustrate this more concretely, we briefly consider two examples. The first is case 3,
the simultaneous measurement of the three components of angular momentum, Jx, Jy, and
Jz. Such measurements have been considered [113–115] and carried out [116] for spin- 1

2
(qubits) and in great detail in an instrument-autonomous, universal fashion (called there
Kraus-operator-centric and representation-independent) by Jackson and Caves [54]. In this
situation, the observable Lie algebra closes after just one step,

f = Γ(1) = span{−i Jx,−i Jy,−i Jz, Jx, Jy, Jz} = sl(2,C) , (149)

with the corresponding Lie group F = ef = SL(2,C). The quadratic term,~J 2 = J2
x + J2

y + J2
z ,

is the Casimir invariant; in a spin-j representation,~J 2 = j(j + 1)1j, and in the universal en-

veloping algebra Uf,~J
2 commutes with all the elements of f. Thus, the iterative process (141)

ends before it begins at the seven-dimensional Lie algebra,

g = ∆(0) = span{~J 2,−i Jx,−i Jy,−i Jz, Jx, Jy, Jz,~J 2} = R⊕ sl(2,C) , (150)
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and the seven-dimensional universal instrumental Lie group G = eR × SL(2,C). The
same thing happens in any spin-j representation, with the result that hj

∼= g and the
quantum instrumental Lie groups are essentially the same as G: Hj

∼= G for half-integral j

and Hj
∼= G/Z2

∼= eR × SO(3,C) for integral j. This universal instrument is thus a
principal instrument. Differential weak measurements of the three components of angular
momentum, performed continuously, become strong measurements. For finite times, the
POVM moves within a three-dimensional, hyperbolic base manifold E , and for late times,
it approaches the two-sphere boundary of E , which is the familiar phase space for spin
systems. In a spin-j representation, the late-time POVM elements are projectors onto spin-
coherent states [54]. These universal facts structure every representation j in a way that is
universal and pre-quantum [112].

Things are quite different for our second example: simultaneous measurements of
two components of angular momentum, say Jz and Jx. Such measurements have been
analyzed [105] and performed [117,118] for qubits; there is a good reason—the point of this
paragraph—why only qubits have been considered. The observable Lie algebra is

f = Γ(1) = span{Jz, Jx,−i Jy} = sl(2,R) . (151)

When one adds the quadratic term ~X2 = J2
z + J2

x = ~J 2 − J2
y , the universal iterative process

does not close, as one can see from the fact that nested commutators of J2
y with either

Jz or Jx do not close. For spin- 1
2 , the iterative process (141) closes immediately because

J2
z + J2

x = 1
2 11/2, with the result that h1/2 = ∆(0) = sl(2,R) ⊕ R = gl(2,R) and thus

eh1/2 ∼= H1/2 = GL(2,R). For j = 1, one can show that h1 = ∆(2) = gl(3,R) and thus
eh1 ∼= H1 = GL(3,R). In general, hj ⊆ gl(2j + 1,R) and thus Hj ≤ GL(2j + 1,R), and we
speculate that the inequalities are actually equalities. The universal instrumental group is
G = H∞. The stochastic paths of the universal instrument evolution explore the infinite-
dimensional universal instrumental Lie-group manifold. There is no asymptotic approach
to a POVM that describes a universal strong simultaneous measurement of Jx and Jy.

Crudely speaking, there is a “tower” of chaos in the infinite number of iterations in
the universal procedure (141), which leads to higher and higher powers of the observable
Lie algebra. A more developed notion is the “tower” of instrumental Lie algebras hj and
instrumental Lie groups Hj. The universal instrumental Lie group G is the setting of
a universal stochastic evolution; the Kraus operators, governed by the outcome paths,
wander in this infinite-dimensional Lie-group manifold. Classical chaos is the study
of how this infinite-dimensional stochastic evolution is projected into a classical phase
space without the loss of information about the paths. The connection to the phase space
comes through the Stratonovich-Weyl correspondence [92,119–121], in which powers of
observables correspond to scales on the phase space. Quantum chaos is the study of how the
paths are projected into the finite-dimensional quantum instrumental groups Hj = G/Kj,
with information about the fine-scale phase-space structure disappearing into the kernel Kj.
The right way to think about quantum chaos is that it is about comparing the universal
KOD on G with the projected KOD on the quantum Hj, with entropies of these KODs
perhaps providing the most salient comparison. Ultimately, this becomes a question of
the topologies of the various KODs. A general feature of the motion of the universal KOD
is spiraling [72], which when projected onto Hj, can appear as motion similar to a solar
flare, where the KOD reaches out from the bulk of the support, only to return, producing
a handle. After sufficient time, these handles are filled in, because each Hj has a much
simpler fundamental group than Kj.

The difference between our measurement setting and conventional studies of quan-
tum chaos is that conventionally one studies nonlinear unitary dynamics, whereas in
our measurement setting, the observable Lie algebra f defines what is linear, and the
nonlinearity comes from the unavoidable, completeness-preserving quadratic term. To
study Hamiltonian chaos in a similar way, one would perturb a nonlinear Hamiltonian
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continuously using the differential stochastic-unitary transformations of Equation (40),
drawn from the linear Lie algebra of the system under study. This is reminiscent of the
hypersensitivity to perturbation introduced by Schack and Caves [122,123] as a way of
characterizing both classical and quantum Hamiltonian chaos. This group-theoretic for-
mulation of classical and quantum chaos is arguably a productive approach for studying
chaos and dynamical complexity.

It is interesting to recall that Poincaré [56] also discovered the fundamental group in
the context of his exploration of what we now call chaos; the fundamental group is equal to
the kernel of the universal covering group, a concept also accredited to Poincaré by Weyl
and Bourbaki [57,58,60].

This paper started as a way to address the question of simultaneous measurements
of noncommuting observables: what can be measured simultaneously, and how do we
measure it? The idea was that any set of observables can be measured weakly and simulta-
neously, and performing these weak measurements continuously would lead to a strong
simultaneous measurement of these same observables. Sections 2.1 and 2.2 developed the
general formulation, yet after that development, much remained hidden—hidden behind
the very generality of the equations, which treat all sets of measured observables on the
same footing, because they only treat them locally. The difference between the various sets
of measured observables emerged only when, in this section, the global treatment of the
Instrument Manifold Program was applied to identify instrumental Lie-group manifolds.
The result was to identify and distinguish quantum instruments and universal instruments,
both principal and chaotic. The universal instrument is detached entirely from Hilbert
space and resides in the geometry of the universal covering group. All instruments for
simultaneous measurement have a universal description. For generic instruments, the
universal instrumental group is infinite dimensional, and the instrument moves chaotically
in the universal covering group. There is no universal strong measurement, and every
quantum instrument does its own thing, in its own Hilbert space, connected to the universal
instrument by the projection that maps G to G/K. Only for special instruments, which we
call principal instruments, do the quantum instruments resemble the universal instrument,
a resemblance so strong that one can speak of a universal strong measurement, indepen-
dent of Hilbert space. It is amazing that addressing such a simple question in quantum
mechanics—how do we measure noncommuting observables simultaneously?—leads to
such a fundamental insight.

This brings us to cases 1, 2, and 3, the primary examples of principal instruments.

3. Principal Instruments: Cases 1, 2, and 3

For the remainder of the paper, we set h̄ = 1.
We now apply the universal instrument program to the three most fundamental

principal instruments:

1. The measurement of a single observable X.
2. The simultaneous momentum P and position Q measurement (SPQM), where P and

Q have the canonical commutation relation,

[Q, P] = i1 . (152)

Generally, Q and P can be thought of as the canonical variables of a bosonic mode.
3. The 3D isotropic spin measurement (ISM) of the three components of angular momen-

tum, Jx, Jy, and Jz, which have the commutation relations,

[Jµ, Jν] = ∑
τ

εµντ i Jτ , (153)

where εµντ is the Levi-Civita symbol.

A notable feature of what happens over the course of each of these measurements is where
they end up, that is, at a place that any reasonable physicist might expect:
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1. The measurement of a single observable X collapses to an eigenstate of X, that is, to a
von Neumann POVM.

2. The SPQM collapses to the canonical-coherent-state POVM.
3. The ISM collapses to a spin-coherent-state POVM.

As natural as these collapses appear, the details by which the latter two, the coherent-state
cases, occur have only been understood quite recently [53,54]. Further, ISM appears to
have been the first universal method proposed [55] for performing the spin-coherent-state
POVM [124–127]. Indeed, the proposal by Shojaee et al. [55] led to the development of
the Instrument Manifold Program and ultimately the discovery of universal instruments.
Cases 2 and 3 are considered in much greater detail in [53,54].

3.1. Preparing for Cases 1, 2, and 3

It is important to note that comparing the measurement of a single observable to
SPQM and ISM is like comparing apples and oranges. Indeed, even the use of the terms
“collapse” and “state” for SPQM and ISM is a bit problematic because of how these terms
are generally thought of as being attached to the system’s Hilbert space. For SPQM and ISM,
these terms are, in fact, not describing something in Hilbert space, but rather something
in the universal measuring instrument that is generated by the simultaneous measuring
process. In the simplest terms, the biggest difference is in the nature of the time it takes for
the measurement to finish. For a single observable, the time it takes for the measurement
outcomes to come into focus depends on the eigenvalues of the observable, namely the
smallest difference among them. Such a collapse time for a single observable cannot be
defined without reference to the Hilbert space in which the observable is represented. For
SPQM and ISM, however, the time it takes for the phase points (which are what the coherent
states represent) to come into focus has nothing to do with the specific Hilbert space that is
sourcing the outcomes. In these cases, the Hilbert space only adds state-related information
such as the size of the quantum uncertainty in the phase space and degeneracies.

The reason why this “collapse time” for SPQM and ISM is independent of Hilbert
space is that these instruments generate universal instrumental Lie groups with far more
structure due to the noncommutativity of the simultaneously measured observables. Al-
though the identification of the universal instrumental Lie groups for all three cases is
easy, we now carry out the procedure outlined in Section 2.4, partly to illustrate the role of
noncommutativity, but also to draw attention to differences among the three cases. The
instrumental Lie groups for all three cases are universal because they are generated solely
by the commutator algebra of the measured observables, without reference to any matrix
representation. These are principal instruments because the universal instrumental Lie
algebra is finite dimensional.

Case 1 is absurdly simple because everything commutes. The observable Lie algebra
is f = span{X}, and after adding the quadratic term X2, the instrumental Lie algebra
is g = span{X, X2}. The instrumental Lie group G = eg is a 2D abelian Lie group that
contains only positive transformations.

For case 2, SPQM, the observable Lie algebra,

f = span{i1, Q, P} , (154)

comes from one application of the canonical commutation relation (152) to the measured
observables Q and P. When the quadratic term,

Q2 + P2 ≡ 2Ho , (155)
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is added to f, the first iteration adds the anti-Hermitian generators −iP = [Ho, Q] and
iQ = [Ho, P], and the second iteration adds 1 = [Q,−iP] = [P, iQ], after which the Lie
algebra closes. The instrumental Lie algebra,

g = span{i1, iQ,−iP, 1, Q, P, Ho} , (156)

is seven dimensional. The 7D universal instrumental Lie group we call the Instrumental
Weyl-Heisenberg Group, G = eg = IWH. It is worth noting that the quadratic term Ho
plays an essential role, first, in generating the unitary displacement parts of IWH (gen-
erators iQ and −iP), and, second, in including the real center term 1 in the Lie alge-
bra. A productive way to view the structure of IWH is to introduce the 6D Lie algebra
Cwh = span{1, i1, iQ,−iP, Q, P}, which omits the Ho that is in g. The generated Lie group,
eCwh ≡ CWH, called the Complex Weyl-Heisenberg Group, is the maximal normal subgroup
of IWH. Further, IWH decomposes as the semidirect product IWH ∼= CWH o eRHo . This
semidirect structure implies that the subgroup eRHo normalizes CWH and, therefore, the
coördinate conjugate to Ho, which we call the ruler r, has a purely ballistic evolution.
Further discussion of the groups associated with SPQM can be found in [53].

In case 3, ISM, the observable Lie algebra,

f = span{−i Jx,−i Jy,−i Jz, Jx, Jy, Jz} ∼= sl(2,C) , (157)

follows from one application of the commutation relations (153) to the measured observ-
ables Jx, Jy, and Jz; the corresponding Lie group is F = ef ∼= Spin(3,C) ∼= SL(2,C). The
quadratic term,

J2
x + J2

y + J2
z ≡ ~J 2 , (158)

is the Casimir operator: it commutes with all elements of f, and in a spin-j representation
is ~J 2 = j(j + 1)1j. The second iterative process, therefore, goes nowhere. The universal
instrumental Lie algebra is

g = span{−i Jx,−i Jy, i Jz, Jx, Jy, Jz,~J 2} ∼= sl(2,C)⊕R , (159)

and the universal instrumental Lie group is the 7D group G = eg ≡ ISpin(3) ∼= SL(2,C)× eR
~J 2

,
which we call the Instrumental Spin Group. In this case, the quadratic term is essentially
trivial, only adding a real center to SL(2,C).

We summarize these group-theoretic considerations as follows:

1. The measurement of a single observable X generates a 2D instrument, contained in a
2D abelian Lie group of positive transformations,

G ≡
{

e−X2r+Xa
}
∼= R2 . (160)

2. SPQM generates a 7D instrument, which is contained in the Instrumental Weyl-
Heisenberg Group,

IWH = CWH o eRHo , (161)

where CWH is the complex Weyl-Heisenberg group.
3. ISM generates a 7D instrument, which is contained in the Instrumental Spin Group,

ISpin(3) = Spin(3,C)× eR
~J 2

, (162)

where Spin(3,C) ∼= SL(2,C).
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The irreducible representations (irreps) of a single observable are all 1D, whereas the irreps
of IWH and ISpin(3) are multidimensional (except the trivial irrep, of course). Indeed,
the 1D irreps for measuring a single observable are the eigensubspaces of the observable.
Meanwhile, the irreps of IWH and ISpin(3) include the irreps usually considered for their
three-dimensional unitary subgroups, namely the unitary Weyl-Heisenberg group, UWH
(this is often thought of as the Weyl-Heisenberg group), and the universal covering group
of three-dimensional rotations, Spin(3,R) ∼= SU(2) (often thought of as the Spin group). In
summary, the collapse generated by measuring a single observable is entirely about the
coherence between irreps, whereas the collapse generated by SPQM and ISM has a very
important within-irrep component whose full temporal behavior can be described using
the Instrument Manifold Program.

The difference between the group structures of simultaneous measurements for com-
muting and noncommuting observables is quite dramatic. Because of this, there appears
to be some confusion about the nature of the phase space and its relation to quantum
measurement, in spite of the fact that the standard and spherical phase spaces appear so
plainly in the aforementioned POVMs. There are at least three major technical obstacles
that have to be overcome in order to arrive at the vision of these principal universal instru-
ments: (i) identifying the instrument with the piling up of independent incremental Kraus
operators (differential positive transformations); (ii) placing the instrument’s evolution
within a finite-dimensional universal instrumental Lie-group manifold; and (iii) actually
integrating the time-ordered exponentials of the instrument’s evolution, that is, the piled-up
Kraus operators. These are the essence of the Instrument Manifold Program for principal
instruments. Of course, the first two of these items were the purpose of Section 2, a tour
de force in stochastic calculus, the stochastic trinity, and their application to measuring
instruments. The third of these obstacles can be overcome with differential geometry as
soon as a coördinate system on the instrumental Lie-group manifold is established, and to
this end, we have found that an invocation of the Cartan decomposition is just the ticket.
Having established the Cartan decomposition for IWH and ISpin(3), both 7D, we will see
that five of their dimensions are phase space in nature: a 2D phase point in the past, a 2D
phase point in the future, and the 1D geodesic curvature of the connection between the
two. The remaining two dimensions are a normalization parameter, which is very different
in character between SPQM and ISM, and a “ruler” that characterizes the purity of the
measuring process (or how close to finished the process is), which is also quite different
between SPQM and ISM.

3.1.1. Recap of the Instrument Manifold Program: Universal Notation

To provide a template for the next three sections on cases 1, 2, and 3, we summarize
here the basic elements of the Instrument Manifold Program developed in Sections 2.1
and 2.2, while taking the opportunity to introduce a notation that is suited to universal
instrumental groups.

The simultaneous measurement of noncommuting observables corresponds to an
instrument consisting of the instrument elements (46) that are associated with each sample
path d~W[0,T),

Dµ[d~W[0,T)] O·
(

L[d~W[0,T)]
)

, (163)

where we now introduce the notation for a Kraus-rank-one operation,

O· (A) ≡ A�A† . (164)
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The overall Kraus operators are defined by the time-ordered exponentials of Equations (48)
and (49):

L[d~W[0,T)] = T exp
( ∫ T−

0
−~X2κ dt + ~X·

√
κ d~Wt

)
. (165)

The unconditional quantum operation is woven from the instrument elements,

ZT =
∫
Dµ[d~W[0,T)] O·

(
L[d~W[0,T)]

)
. (166)

The time-ordered exponentials are representations of a universal cover G,

L[d~W[0,T)] = R ◦ γ[d~W[0,T)] , (167)

where γ maps Wiener paths to elements of the universal cover G, which we generally
denote by x ∈ G to emphasize them as points in a manifold, and R maps elements of G to
their operator or matrix representation. We denote the universal time-ordered exponential
by the same notation,

γ[d~W[0,T)] = T exp
∫ T−

0
δt , where δt ≡ −~X

2κ dt + ~X·
√

κ d~Wt . (168)

The Wiener differential unraveling (166) becomes

ZT =
∫
Dµ[d~W[0,T)] O·

(
R ◦ γ[d~W[0,T)]

)
, (169)

and this gives rise to the KOD unraveling of Equation (69),

ZT =
∫

G
dµ(x) DT(x)O·

(
R(x)

)
, (170)

where dµ(x) is the left-invariant Haar measure of G, with respect to which is defined the
KOD (67),

DT(x) ≡
∫
Dµ[d~W[0,T)] δ

(
x, γ[d~W[0,T)]

)
. (171)

This can be considered the Feynman-Kac formula of the Fokker-Planck-Kolmogorov diffu-
sion equation displayed in Equations (92)–(94),

1
κ

∂Dt(x)
∂t

= ∆[Dt](x) , with ∆ ≡ ~X2
←−+

1
2 ∑

µ

Xµ
←−

Xµ
←−

, (172)

where the derivatives with underarrows pointing to the left are right-invariant derivatives.

3.1.2. Cartan Coördinate Systems for Principal Instruments

The Cartan or “KAK” decomposition is the universal analog of a singular-value
decomposition. More specifically, every continuous matrix group is a representation of
a universal Lie group, in which case, the analogy is essentially that the singular-value
decomposition of a representation is a representation of the Cartan decomposition. What
this means is that the terms of a Cartan decomposition are more about how the dimensions
of the Lie group are connected than they are about the Hilbert space that may carry it.
Applied to our three cases, the Cartan decompositions are the following:
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1. For the measurement of a single observable, the instrumental Lie group is the abelian
group G ∼= R2 of Equation (160). The K in the Cartan decomposition is K = {1} and

x = e−X2r+Xa . (173)

The invariant measure is the familiar Cartesian measure,

dµ(x) = dr da . (174)

2. For SPQM, the instrumental Lie group is the 7D IWH of Equation (161). The K in the
Cartan decomposition is K = {Dβei1φ} and

x =
(

Dβei1φ)e−Hor−1`D−1
α , (175)

where
Dα = e−iPα1+iQα2 , with α ≡ 1√

2
(α1 + iα2) , (176)

is the canonical displacement operator (and similarly for β). The Haar measure in
Cartan coördinates is

d7µ(x) =
d2β

π
dφ dr sinh2r d`

d2α

π
, (177)

with d2α = 1
2 dα1 dα2 and similarly for β.

3. For ISM, the instrumental Lie group is the 7D ISpin(3) of Equation (162). The K in the
Cartan decomposition is K = {Dm̂e−i Jzψ} and

x = (Dm̂e−i Jzψ)e−
~J 2`+JzaD−1

n̂ , (178)

where

Dn̂ = e−i Jzφe−i Jyθ = e−iθ(Jy cos φ−Jx sin φ)e−i Jzφ , with n̂ ≡ (sin θ cos φ, sin θ sin φ, cos θ) , (179)

is the spherical displacement operator (and similarly for m̂). The Haar measure in
Cartan coördinates is

d7µ(x) = d2µ(m̂)
dψ

4π
d` da sinh2a d2µ(n̂) , (180)

where
d2µ(n̂) =

dθ sin θ

2
dφ

2π
(181)

is the standard spherical measure normalized to unity (and similarly for m̂).

For a single observable, the parameters r and a do not gain perspective when considered
universally. For IWH or ISpin(3), however, one can see the phase point in the past (α or n̂),
the phase point in the future (β or m̂), the geodesic curvature of the connection between
the two (φ or ψ), the normalization parameter (` for both), and the ruler/purity (r or a).
Between IWH and ISpin(3), the role of the quadratic term (Ho or ~J 2) flips from ruler to
center.

The Cartan coördinates accommodate the POVM because the POVM elements,

(1)O·
(

R(x)
)
= R(x)†R(x) = R

(
π(x)

)
= R

(
“x†x”

)
, (182)

can be lifted to a universal projection map, π : G → E , which maps G to the base manifold
(symmetric space) E ∼= ker π\G = K\G, represented by positive operators. In other
words, Equation (182) tells us that the POVM for IWH or ISpin(3) is four dimensional and
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coördinated by the phase point in the past (α or n̂), the normalization parameter (` for
both), and the ruler (r or a).

3.2. Measuring a Single Observable Continuously

We consider first the case of the continuous measurement of a single observable X.
This case is well understood [23,25,37,38,40,41,50–52], making it easy for us to introduce
new concepts and techniques in a context where, even though they are not strictly necessary,
one can readily appreciate how to think about and use them.

The continuous measurement of a single observable, X, has sample paths generated
by the forward generator,

δt = −X2κ dt + X
√

κ dWt . (183)

The Kraus operators generated by δt represent the two-dimensional abelian Lie group (160),
which is coördinated in Equation (173) and whose invariant measure is the Cartesian
measure (174). The time-ordered exponential (168), with the forward generator δt of
Equation (183), does not need to be time ordered because everything commutes, and this
means that it can be integrated immediately to

γ[dW[0,T)] = e−X2κT exp
(

X
∫ T−

0

√
κ dWt

)
. (184)

This is equivalent to the coördinate SDEs,

drt = κ dt and dat =
√

κ dWt , (185)

whose solutions,

rT = κT and aT = a[dW[0,T)] =
∫ T−

0

√
κ dWt , (186)

are displayed in γ[dW[0,T)].
Meanwhile, the KOD diffuses according to the Kolmogorov forward generator (172),

∆ = X2
←−+

1
2

X←−X←− , (187)

where the transformation from the right-invariant frame to the coördinate frame is trivial,
as the two frames are the same,

X2
←− = −∂r and X←− = ∂a . (188)

The solution to the diffusion equation with the initial condition D0(x) = δ(x, 1) = δ(r)δ(a)
is therefore the familiar

DT(x) ≡ eκT∆[D0](x) = δ(r− κT)
e−a2/2κT
√

2πκT
. (189)

It is useful to note that the KOD also follows directly from applying the stochastic inte-
gral (184) to the KOD path integral (171),

DT(x) =
∫
Dµ[dW[0,T)] δ

(
x, γ[dW[0,T)]

)
= δ(r− κT)

∫
Dµ[d~W[0,T)] δ

(
a−

∫ T−

0

√
κ dWt

)
.

(190)

Since the integral is over the Gaussian Wiener path measure, the distribution for a is a
normalized Gaussian whose mean and variance are determined by the stochastic integral
for aT in Equation (186); the result is the KOD (189).
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We can now turn to the KOD unraveling (170) of the total operation,

ZT =
∫
DZ [dW[0,T)] =

∫
R2

dµ(x) DT(x)O·
(

R(x)
)

(191)

=
∫
R

da
e−a2/2κT
√

2πκT
O·
(

R
(
e−X2κT+Xa )) (192)

=
∫
R

da O·
(

R
(

e−(a−2κTX)2/4κT

(2πκT)1/4

))
. (193)

We say in this case that these KOD unravelings are abelian unravelings of the unconditional
quantum operation ZT into the instrument elements

dµ(x) DT(x)O·
(

R(x)
)

. (194)

In these unravelings, one can think that the outcome of the measurement at time T is the

Kraus operator R
(
e−X2κT+Xa) itself or, equivalently, the parameter a. The KOD DT(x) mea-

sures the weight of the contribution of each R(x) in the abelian unraveling. Equation (193)
incorporates the KOD directly into the Kraus operator, and Equations (192) and (193) are,
therefore, considered by Wiseman [25] to have different ostensible distributions. The
unraveling (193) is not such a bad idea here, but it would not be such a good idea for
SPQM or ISM, where the KOD comes into its own as a way to characterize collapse within
an irrep. In the present case of measuring a single observable, the group is abelian, and
thus the irreps are all 1D. Without a notion of collapse within an irrep, the KOD is left with
little to do.

Up until now, everything has been independent of the spectrum of X—Hilbert-space-
independent or universal, we would say—but because the irreps are 1D, this universal
description is not very enlightening. To find out more, one performs the further integral
over a to obtain the unconditional quantum operation ZT . In doing so, interpretation is fa-
cilitated by introducing the Hilbert-space eigendecomposition of the measured observable,

X = ∑
j

λjPj , (195)

with Pj being the projector onto the eigensubspace that has eigenvalue λj. Since we are
now manifestly working in a Hilbert space, we drop the map R from the formulas and find
for the unconditional quantum operation,

ZT = O·
(
e−X2κT) ◦ ∫

R
da

e−a2/2κT
√

2πκT
O·
(
eXa ) = e−(κT/2)(X�1−1�X)2

. (196)

This result is the same as that of Equation (55), yielding here the single-observable Lindbla-
dian. Notice that one is performing here the same Gaussian integral that was performed
to find the incremental quantum operation ZX,dt in Equation (18). Since the incremental
Kraus operators commute in this case of measuring a single observable, the same integral
appears at finite times. Plugging in the eigendecomposition of X, one finds

ZT = ∑
j,k

Pj � Pk e−(λj−λk)
2κT/2 , (197)

which shows the well-known effect of the single-observable Lindbladian in the exponential
decay of coherence between eigenstates with different eigenvalues, that is, between different
irreps. There is no loss of coherence between equivalent irreps, that is, within degenerate
eigensubspaces. The strong measurement that emerges as κT becomes much bigger than 1
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is, as one knew from the beginning, a von Neumann measurement of X, described by the
projectors Pj.

It is useful to appreciate that when X has a continuous spectrum and δ-orthogonal
eigenvectors, as in the case of the position variable of a particle moving in one dimension,
the unconditional quantum operation becomes

ZT =
∫
R

dq
∫
R

dq′ |q〉〈q| � |q′〉〈q′| e−(q−q′)2κT/2 . (198)

The function e−(q−q′)2κT/2 is the simplest and purest expression of the Feynman-Vernon
influence functional [16,128–131].

3.3. Measuring Position and Momentum Continuously

The following is a brief summary of results for the SPQM; for a complete exposition,
please refer to [53].

The Simultaneous P and Q Measurement (SPQM) has sample paths generated by

δt = −2Ho κ dt + P
√

κ dWp
t + Q

√
κ dWq

t . (199)

The universal cover of SPQM is the 7D Lie group that we call the Instrumental Weyl-
Heisenberg Group IWH = CWH o eRHo . The points x ∈ IWH can be coördinated using the
Cartan-like decomposition (175), and the Haar measure in these Cartan coördinates is given
by Equation (177).

The time-ordered exponential (168), with the SPQM forward generator (199), is equiv-
alent to the following Itô-form Cartan-coördinate SDEs:

drt = 2κ dt , (200)

d(β sinh r)t = cosh rt
√

κ dwt , (201)

d(β cosh r− α)t = sinh rt
√

κ dwt , (202)

−d`t = (coth rt − 2|βt|
2)κ dt + βt

√
κ dw∗t + β∗t

√
κ dwt , (203)

idφt = csch rt (αtβ
∗
t − α∗t βt)κ dt

+ 1
2 (βt coth rt − αt csch rt)

√
κ dw∗t − 1

2 (β∗t coth rt − α∗t csch rt)
√

κ dwt ,
(204)

where

dwt =
1√
2
(dWq

t + idWp
t ) (205)

is a complex Wiener increment. The SDEs for the ruler r and the future and past phase-
space coördinates, β and α, are easy to integrate. The SDEs for the center coördinates,
the normalization `, and phase φ, look quite complicated, but they can be integrated
straightforwardly by changing to what we call Harish-Chandra coördinates. This change in
the coördinates and the integration of the SDEs are discussed in detail in [53]. Nonetheless,
even after integrating the SDEs, interpreting and using the solutions is bedeviled by the
normalization center term e−1`. Guidance for handling this term comes from how the FPKE
is used to solve for the relevant parts of the Kraus-operator distribution function. With
this guidance in hand, the SDEs can be used to solve for the KOD to the same level that
is provided by the FPKEs. This approach through the SDEs is, however, nontrivial; for a
presentation of that approach, the reader is referred to [53]. We turn here to the FPKEs to
solve for the relevant part of the KOD.
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The SPQM Kolmogorov forward generator is

∆ = 2Ho←−
+

1
2

Q
←−

Q
←−

+
1
2

P←− P←− . (206)

In the Cartan coördinate basis, these right-invariant derivatives are

Q
←−

= ∇1 − β1∂` +
β2 cosh r− α2

2 sinh r
∂φ , (207)

P←− = ∇2 − β2∂` −
β1 cosh r− α1

2 sinh r
∂φ , (208)

−Ho←−
= ∂r − β1∇1 − β2∇2 +

β2
1 + β2

2
2

∂` +
β1α2 − β2α1

2 sinh r
∂φ , (209)

where
∇j ≡

1
sinh r

(
∂αj

+ cosh r ∂β j

)
. (210)

We do not have the full solution for the KOD DT(x), but we can solve a very significant
portion of it by binning the Kraus operators that differ only in their normalization and
phase dimensions. To do so, we introduce the center of IWH,

Z ≡
{

e1z : z ∈ C
}
C IWH , (211)

and the Reduced Instrumental Weyl-Heisenberg Group RIWH ∼= IWH/Z. To denote points in
RIWH, we use the coset notation Zx. Readers should interpret x ∈ IWH as being specified
by all seven Cartan coördinates and Zx ∈ RWIH as being specified by the ruler r and the
future and past phase-space coördinates, β and α. Now we take the KOD unraveling (170)
of the unconditional quantum operation and integrate over the center,

ZT =
∫

IWH
d7µ(x) DT(x)O·

(
R(x)

)
=
∫

IWH/Z
d5µ(Zx)

(∫
Z

dφ d` DT(x)e−2`
)
O·
(

R
(

Dβ e−HorD−1
α

))
=
∫

RIWH
d5µ(Zx)CT(Zx)O·

(
R
(

Dβ e−HorD−1
α

))
.

(212)

Here we introduce the invariant measure on RIWH,

d5µ(Zx) =
d7µ(x)
dφ d`

=
d2β

π
dr sinh2r

d2α

π
, (213)

and define the reduced distribution function,

CT(Zx) ≡
∫

Z
dφ d` DT(x)e−2` . (214)

The completeness relation becomes

1 = (1)ZT =
∫

RIWH
d5µ(Zx)CT(Zx)

(
R
(

Dαe−Ho2rD†
α

))
. (215)

The reduced distribution function satisfies the partial differential equation,

1
κ

∂

∂t
Ct(Zx) =

(
−2∂r − 2 coth r +∇∗∇

)
[Ct](Zx) , (216)
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where

∇ ≡ 1√
2
(∇1 − i∇2) =

1
sinh r

(
∂α + cosh r ∂β

)
. (217)

The appropriate initial condition for solving this equation is a bit tricky. It is inherited
from the initial condition for the KOD, D0(x) = δ(x, 1), which simply states that the
initial Kraus operator is the identity. When this initial condition is translated through the
integration over the center in Equation (214), one finds that the initial condition for the
reduced distribution function is

Cdt(Zx) =
2
r

δ(r− 2κdt)πδ2(β− α) , (218)

independent of β + α. The solution of Equation (216), given this initial condition, is

CT(Zx) =
2

sinh r
δ(r− 2κT)

e−|β−α|2/ΣT

ΣT
, (219)

also independent of β + α, where

ΣT = κT − tanh κT . (220)

It is important to note that although ΣT expresses a mean-square distance between future
and past phase points, the reduced distribution CT(Zx) is not normalized to unity. Indeed,
the diffusion-like Equation (216) for Ct(Zx) does not preserve normalization because of the
−2 coth r term. In fact, the normalization of CT(Zx) is not well defined.

What is well defined is the completeness relation (215). By plugging in the solution
for CT(Zx) and assuming we are working in an irrep, this becomes

1 = 2 sinh 2κT
∫ d2α

π
Dα e−Ho4κT D†

α

∫ d2β

πΣT
e−|β−α|2/ΣT = 2 sinh 2κT

∫ d2α

π
Dα e−Ho4κT D†

α . (221)

The first thing to appreciate is that for late times T � 1/κ, e−Ho4κT collapses to e−2κT |0〉〈0|
in the standard quantization and thus Dα e−Ho4κT D†

α collapses to e−2κT |α〉〈α|, where the
states |α〉 = Dα|0〉 are the canonical coherent states. The completeness relation becomes the
coherent-state resolution of the identity,

1 =
∫ d2α

π
|α〉〈α| . (222)

This completeness is the sense in which the SPQM instrument approaches the coherent-state
boundary uniformly for late times. The SDEs (201) and (202) for β and α provide no hint of
this uniform late-time behavior in α. The secret to the uniformity lies in the normalization
of the Kraus operators coming from the real center term e−1`, which for late times, enhances
the weight of Kraus operators with an anti-Gaussian in |β|2 + |α|2, that is,

e−1` ∼ e(|β|
2+|α|2)/2 when κT � 1 . (223)

The completeness relation has yet more to say for arbitrary times T. Schur’s lemma
says that

∫ d2α

π
Dα e−Ho4κT D†

α = 1 tr
(
e−Ho4κT) . (224)
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Thus, we have evaluated the partition function,

tr
(
e−Ho4κT) = 1

2 sinh 2κT
, (225)

using only the completeness relation for the SPQM. This is an alternative perspective on
Planck’s energy quantization, based on measuring-instrument considerations instead of
thermal equilibrium.

3.4. Measuring the Three Components of Angular Momentum Continuously

The following is a brief summary of the results for the ISM; for a complete exposition,
please refer to [54].

The Isotropic Spin Measurement (ISM) has sample paths generated by

δt = −~J
2κ dt + Jx

√
κ dWx + Jy

√
κ dWy + Jz

√
κ dWz . (226)

The universal cover of ISM is the seven-dimensional Lie group we call the Instrumental

Spin Group ISpin(3) = Spin(3,C)× eR
~J 2

. The points x ∈ ISpin(3) can be coördinated using
the Cartan decomposition (178), and the Haar measure in Cartan coördinates is given by
Equation (180).

To find the Itô-form SDEs for the time-ordered exponential (168), with the ISM forward
generator (226), it is convenient to decompose only partially, writing x ∈ ISpin(3) as

x = VeJza−~J 2`U . (227)

The coördinate SDEs for the center coördinate ` and the ruler/purity a are

d`t = κ dt , (228)

dat = κ dt coth at +
√

κ dYz
t , (229)

and the SDEs for the past and future unitaries U and V, written as MMCSDs, are

dUtU
−1
t −

1
2
(dUtU

−1
t )2 =

(
−i Jx
√

κ dYy
t + i Jy

√
κ dYx

t

)
csch at , (230)

dV−1
t Vt −

1
2
(dV−1

t Vt)
2 =

(
−i Jx
√

κ dYy
t + i Jy

√
κ dYx

t

)
coth at . (231)

Here the Wiener increments have to be rotated in situ by the future unitary V,

dYµ
t = (R−1

t )µ
ν dWν

t , (232)

with the rotation matrices defined in an obvious way,

V−1
t JνVt = Jµ(R−1

t )µ
ν . (233)

The Kolmogorov forward generator of ISM is

∆ = ~J 2

←−
+

1
2

(
Jx←−

Jx←−
+ Jy
←−

Jy
←−

+ Jz←−
Jz←−

)
. (234)

In the Cartan partial-coördinate basis, the right-invariant derivatives of the angular-
momentum components are

Jµ
←−

= (G -1R-1)ν
µ∇ν . (235)
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Here the matrix G has components

Gν
µ =

1 0 0
0 0 − sinh a
0 sinh a 0

 , (236)

where the rows and columns are ordered z, x, y, and the derivatives are given explicitly in
terms of partial derivatives by

∇z = ∂a , (237)

∇x = Lx←−
1 − cosh a Rµ

x Lµ
←−

0 , (238)

∇y = Ly
←−

1 − cosh a Rµ
yLµ
←−

0 . (239)

Here we let Lµ = −i Jµ denote the anti-Hermitian generators of rotation associated with the
components of angular momentum, and we define partial derivatives: the superscript “0”
denotes a right-invariant derivative of V, holding a, `, and U constant; and the superscript
“1” denotes a right-invariant derivative of U holding V, a, and ` constant. It should be clear
that Lµ
←−

0 = Lµ
←−

.

In terms of the derivatives ∇µ, the ISM Kolmogorov forward generator (234) assumes
a Laplace-Beltrami form,

∆ = ~J 2

←−
+

1
2

1√
det g

∇µ

[√
det g gµν∇ν

]
, (240)

where

gµν = δρσGρ
µGσ

ν =

1 0 0
0 sinh2a 0
0 0 sinh2a

 (241)

is the metric on the (noncenter part of the) base manifold, a symmetric space represented by
the POVM, specifically a 3-hyperboloid. By writing this out explicitly and using ~J 2

←−
= −∂`,

we obtain

∆ = −∂l +
1
2

1

sinh2a

∂

∂a
sinh2a

∂

∂a
+

1
2

1

sinh2a

(
∇x∇x +∇y∇y

)
= −∂l + coth a

∂

∂a
+

1
2

∂2

∂a2 +
1
2

1

sinh2a

(
∇x∇x +∇y∇y

)
.

(242)

We do not have the full solution for the KOD DT(x), but we can consider the distribu-
tion function obtained by integrating over the future unitary,

DT(Kx) ≡
∫

K
d3µ(V) DT(x) , (243)

where here we use coset notation, with K standing for the unitary group SU(2) of post-
measurement unitaries V. This distribution function governs completeness, as one can see
from the KOD unraveling (170),
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1 = (1)ZT =
∫

ISpin(3)
dµ(x) DT(x) R(x)†R(x)

=
∫

ISpin(3)
dµ(x) DT(x) e−

~J 22`U†eJz2aU

=
∫

d` da sinh2a d2µ(n̂)
(∫

K
d3µ(V) DT(x)

)
e−

~J 22`Dn̂eJz2aD†
n̂

=
∫

d` da sinh2a d2µ(n̂) DT(Kx) e−
~J 22`Dn̂eJz2aD†

n̂ .

(244)

The solution for DT(Kx), given the initial condition that sets x = 1 at t = 0, is

DT(Kx) = δ(`− κT)
PT(a)

sinh2 a
, (245)

which is symmetric on the sphere of angular variables and thus is specified by a single-variable
distribution function Pt(a) for the ruler/purity coördinate. This distribution is normal-
ized to unity against the measure da—which is why we included the 1/ sinh2a in this
solution—and it diffuses according to the FPKE,

1
κ

∂

∂t
Pt(a) =

(
− ∂

∂a
coth a +

1
2

∂2

∂a2

)
Pt(a) . (246)

Plugging the solution for DT(Kx) into the completeness relation (244) yields

1 = e−2κT~J 2
∫

S2
d2µ(n̂) Dn̂

( ∫ ∞

0
da PT(a) eJz2a

)
D†

n̂ . (247)

To understand this relation, we consider the partition (or characteristic) function in
a spin-j representation,

Za = tr(eJz2a) =
j

∑
m=−j

e2am =
sinh(2j + 1)a

sinh a
. (248)

The associated time-dependent function averaged over PT(a),

ZT ≡
∫ ∞

0
da PT(a)Za , (249)

satisfies the equation

1
κ

dZt
dt

=
∫ ∞

0
da Pt(a)

(
coth a

dZa
da

+
1
2

d2Za

da2

)
= 2j(j + 1)Zt , (250)

with solution

Zt = (2j + 1)e2κtj(j+1) . (251)

The SDE (229) or the diffusion Equation (246) implies that for late times, T � 1/κ, the
ruler/purity coördinate a has a mean and variance both equal to κT. This means that for late
times in a spin-j representation, a is very likely to be quite large and thus eJz2a ∼ Za|j, j〉〈j, j|.
The completeness relation (247) thus becomes

1 = e−2κTj(j+1)ZT

∫
S2

d2µ(n̂) Dn̂|j〉〈j|D
†
n̂ . (252)
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Using the solution for ZT and recognizing that Dn̂|j, j〉 ≡ |j, n̂〉 are the spin-coherent states,
one finds that the completeness relation is the spin-coherent-state resolution of the identity,

1 = (2j + 1)
∫

S2
d2µ(n̂) |j, n̂〉〈j, n̂| . (253)

Thus, the ISM POVM for late times approaches the spin-coherent-state boundary, and it
does that uniformly over the 2-sphere of spin-coherent states. A different argument for this
conclusion is presented in [54].

4. Conclusions

In this article, we formulated the simultaneous measurement of noncommuting observ-
ables in terms of a fundamental differential positive transformation, defined in Equation (36).
We consider these positive transformations fundamental because a large class of indepen-
dent, sequential weak measurements (Figure 1) have transformations that are effectively
equivalent to these, similar to how sampling a sum of independent random variables
is effectively equivalent to sampling a Gaussian distribution. Once these fundamental
differential positive transformations are recognized, it becomes evident that the simul-
taneous measurement of noncommuting observables generates over finite amounts of
time Kraus operators—or instrument elements—that reside in a Lie group that we call the
instrumental Lie group. Recognizing these instrumental Lie groups reveals the existence
of a universal instrument, which the Hilbert-space-specific quantum instruments can be
considered as representing.

These instruments can be analyzed directly in terms of the instrumental Lie groups
they reside in, and the Instrument Manifold Program was designed for this purpose. The
program interprets the measurement of an observable as a vector field tangent to the
instrumental Lie group considered as a manifold. This, in turn, translates the Kraus
operators of an instrument into a distribution function over the instrumental Lie-group
manifold. Once this step is performed, it becomes clear that the evolution of the Kraus-
operator distribution function can be analyzed using any of the standard techniques in
stochastic calculus, what we call the stochastic trinity: Wiener path integration, stochastic
differential equations, or the Fokker-Planck-Kolmogorov equation.

In general, Lie groups are manifolds that are very fundamental, but possess differen-
tial geometries that are not naturally described by the standard definitions of a manifold
via coördinate patches. Rather, the differential geometry of a Lie group is more natu-
rally described by a (coördinate-independent) right-invariant calculus. The design of a
right-invariant stochastic calculus was perhaps the most technically difficult part of the
Instrument Manifold Program.

Lifting to the universal instrument, independent of Hilbert space, the program revealed
two quite remarkable insights into the nature of noncommuting observables—insights that
come from recognizing the distinction between chaotic and principal universal instruments.
The first of these is that such simultaneous measurements generically produce chaos in the
evolution of the instrument. We believe this could be the beginning of a breakthrough in
the study of quantum chaos and dynamical complexity.

The second insight is that the phase-space coherent POVMs are exactly related to those
simultaneous measurements that do not produce chaos: the principal instruments. For
principal universal instruments, the quantum instruments strongly resemble each other,
and the universal instrument can be analyzed directly using the differential-geometric
techniques introduced by Cartan [68,70,72–74,110]. By connecting canonical phase space to
the simultaneous measurement of position and momentum, we found that the POVM for
finite times offers an alternative perspective on energy quantization, in which the value of
the partition function comes directly from the hyperbolic geometry of the instrumental Lie
group. Connecting spherical phase space to the simultaneous measurement of the three
components of angular momentum offers a universal way to perform the spin-coherent
POVM. The unitary Weyl-Heisenberg and Spin groups have for some time been understood
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to describe the virtual motion of canonical phase space and the sphere [92], which is key to
a deeper understanding of quantization and quantum uncertainty. The instrumental Weyl-
Heisenberg and Spin Lie groups extend the range of these virtual motions in a profound
way, incorporating measurement at the fundamental level and connecting phase space to
the identity.

The Instrument Manifold Program emerged from what we call the Principle of Instru-
ment Autonomy, which posits that measuring instruments are fundamentally independent
of the states that act upon them. Therefore, measurement problems should not be bound to
state-based analysis. There is much more work to be done with the Instrument Manifold
Program, on both the principal-instrument and chaotic-instrument fronts. On the side of
principal instruments, there are many principal instruments with features that are still not
fully understood, such as the spin analog of heterodyne detection, heterodyning with small
detuning, adaptive phase measurement and other adaptive measurements, fermionic and
parafermionic measurements, and measurements of more general semisimple observables,
to name a few. For chaotic instruments, an obvious next step would be to consider the
entropies of the Kraus-operator distribution functions and compare those entropies among
various quantum instruments and the universal instrument. In that regard, it should also
be noted that the program for analyzing instrumental chaos is not limited to the measure-
ment chaos encountered in this paper; it could also be applied to unitary chaos [122,123].
It should also be noted that random-matrix theories are also instruments and therefore
equivalent to Kraus-operator distribution functions. Perhaps the program could also help
gain insights into the universal properties of random-matrix theory.

In all, a pretty ambitious program of further research, all emerging from taking
seriously what it means to measure noncommuting observables simultaneously.
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Appendix A. Stochastic Unitary and Jump Unravelings

This appendix explains how the stochastic-unitary and jump unravelings, discussed
at the end of Section 2.1.2, emerge from the meter model in Section 2.1.1. We consider a
single observable X, and for both unravelings, we indicate how to generalize to multiple
observables.
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For the stochastic-unitary unraveling, one registers the momentum p of the meter. The
Kraus operator for outcome p within dp is√

dp 〈p|e−iH dt/h̄|0〉 =
√

dp 〈p|e−i2
√

κ dt X⊗ σP/h̄|0〉

=
√

dp e−i2
√

κ dt Xσp/h̄〈p|0〉

=

√√√√√dp
e−p2/2(h̄2/4σ2)√

2πh̄2/4σ2
e−i2

√
κ dt Xσp/h̄

=

√√√√d(dW)
e−dW2/2dt
√

2πdt
e−iX

√
κ dW

=
√

dµ(dW) e−iX
√

κ dW ,

(A1)

where the outcome p is rescaled to be

dW =
2σp

h̄

√
dt (A2)

and dµ(dW) is the standard Wiener measure (12). As promised, the result for the Kraus op-
erators is the stochastic-unitary transformation (39), specialized to a single observable X. To
generalize to multiple observables, one uses the approach that worked for differential weak
measurements of noncommuting observables: one can combine the stochastic unitaries
for different observables, because to order dt, the independence of the Wiener increments
means that the stochastic unitaries for different observables commute.

For the jump unraveling, we introduce the meter’s complex-amplitude (annihilation) operator,

A =
1√
2

(
1√
2σ

Q + i
√

2σ

h̄
P

)
, (A3)

relative to which the meter state |0〉 is the “vacuum state”, that is, A|0〉 = 0. The number
states,

|N〉 = (A†)N√
(N + 1)!

|0〉 , (A4)

are eigenstates of A† A, that is, A† A|N〉 = N|N〉. The meter position and momentum can
be expressed as

Q = σ(A + A†) , (A5)

P = −i
h̄

2σ
(A− A†) . (A6)

The jump unraveling comes from registering the meter in the number basis. By expanding
the action of the Hamiltonian (7) on the meter vacuum to order dt, one finds

e−iH dt/h̄|0〉 = e−i2
√

κ dt X⊗ σP/h̄|0〉 (A7)

= |0〉+
√

κ dt X⊗
(
−i

2σP
h̄

)
|0〉+ 1

2
κ dt X2 ⊗

(
−i

2σP
h̄

)2

|0〉 (A8)

= |0〉
(

1− 1
2

κ dtX2
)
+ |1〉

√
κ dt X + |2〉 1√

2
κ dt X2 . (A9)
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When one projects onto the meter number states, the only states that count are |0〉 and
|1〉—the |2〉 projection is order (dt)2 in the instrument element—so there are two Kraus op-
erators,

K0 = 〈0|e−iH dt/h̄|0〉 = 1− 1
2

κ dt X2 = e−(κ dt/2)X2
, (A10)

K1 = 〈1|e−iH dt/h̄|0〉 =
√

κ dt X . (A11)

These match the jump unraveling in Equations (43) and (44) for the case of a single ob-
servable X. To generalize to multiple observables, Xµ, one recognizes that for multiple
observables interacting sequentially with meters, the only number-state projectors that
survive at order dt are the no-jump projection onto the vacuum, which gives the Kraus
operator K0, and the single-jump projectors, which give the Kraus operators Kµ. In the
no-jump Kraus operator, the contributions from the multiple observables can be combined
because commutators can be ignored at order dt.

Appendix B. Chantasri et al.’s Path Integrals

Chantasri et al. [42,104–106] formulated a path integral for a distribution function that
describes the probability to transition from initial state ρ0 to final state ρF at time T. In
addition to qubits, the Chantasri et al. formalism has been applied to a state-based analysis
of weak measurements of position and momentum [48] and, notably, to a state-based study
of measurement chaos in qubits [132].

In their papers, Chantasri et al. parameterize density operators by “position” coördi-
nates q, considered with respect to a Cartesian measure, so they denote their distribution
function as P(qF|qI). Having no need for this parametrization, we prefer to write this
distribution function as PT(ρF|ρ0) with respect to a measure dµ(ρF); this notation also
explicitly recognizes the dependence on T. The distribution function PT(ρF|ρ0) is clearly
related to our probability in Equation (113), dpT(L|ρ0) = dµ(L) DT(L) tr(L†Lρ0), which
is the probability to transition from ρ0 to ρ(L|ρ0). The probability dpT(L|ρ0) involves the
KOD and has the path-integral expression (115). Chantasri et al. include an additional path
integral for the evolving density operator in their expression for PT(ρF|ρ0), thus giving a
double-path integral over both outcome increments and density operators. This appendix
shows how their approach works and how PT(ρF|ρ0) is related to dpT(L|ρ0).

Before getting to that, we note that the Kraus-operator formalism naturally expresses
density-operator evolution in a way that generates the desired transition probability. This
comes from the path integral (110) for the linear (unnormalized) overall state ρ̃(L|ρ0),

DT(L) ρ̃(L|ρ0) =
∫
Dµ[d~W[0,T)] ρ̃

[
d~W[0,T)

∣∣ρ0
]

(A12)

=
∫

dZ~X

(
d~WT−dt

)
◦ · · · ◦ dZ~X

(
d~W1dt

)
◦ dZ~X

(
d~W0dt

)
(ρ0) δ

(
L, L[d~W[0,T)]

)
. (A13)

Here we write out ρ̃
[
d~W[0,T)

∣∣ρ0
]

in terms of the incremental instrument elements; the
integral is over the outcome increments that determine these instrument elements. Taking
the trace of both sides gives the path integral (115) for the transition probability distribution,

PT(L|ρ0) ≡
dpT(L|ρ0)

dµ(L)
= DT(L) tr

(
ρ̃(L|ρ0)

)
=
∫

tr
(

dZ~X

(
d~WT−dt

)
◦ · · · ◦ dZ~X

(
d~W1dt

)
◦ dZ~X

(
d~W0dt

)
(ρ0)

)
δ
(

L, L[d~W[0,T)]
)

,
(A14)

written here in terms of the incremental instrument elements.
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Chantasri et al. start with the conditional probability for the density operator ρt+dt
and the outcome increments d~Wt, given the state ρt at time t; let us denote this probability
as dp

(
ρt+dt, d~Wt

∣∣ρt
)
. They factor this probability into further conditionals,

dp
(
ρt+dt, d~Wt

∣∣ρt
)
= dp

(
ρt+dt

∣∣d~Wt, ρt
)

dp(d~Wt|ρt) , (A15)

where

dp(d~Wt|ρt) = dµ(d~Wt) tr
(

L~X(d~Wt)ρtL~X(d~Wt)
†) (A16)

is the Born-rule incremental measure (121) and

dp
(
ρt+dt

∣∣d~Wt, ρdt
)
= dµ(ρt+dt) δ

(
ρt+dt −

L~X(d~Wt)ρtL~X(d~Wt)
†

tr
(

L~X(d~Wt)ρtL~X(d~Wt)
†)
)

. (A17)

The reader should note that the δ-function here is conjugate to the measure dµ(ρ). Equally
important is that in this approach, the density operators ρt are independent variables;
the δ-function in Equation (A17) constrains ρt+dt to be the updated state that comes from
applying the incremental Kraus operator L~X(d~Wt) to ρt and normalizing.

The probability for state ρF at time T within an infinitesimal volume dµ(ρF), given
initial state ρ0, is

dµ(ρF) PT(ρF|ρ0) ≡ dpT(ρF|ρ0) =
∫ T/dt−1

∏
k=0

dp
(
ρ(k+1)dt, d~Wkdt

∣∣ρkdt
)

, (A18)

where the integral is over the outcome increments d~W[0,T) = {d~WT−dt, · · · , d~W1dt, d~W0dt}
and over the density operators ρ(0,T) ≡ {ρT−dt, . . . , ρ2dt, ρ1dt}. In the last probability incre-
ment, one sets ρT = ρF. Substituting the additional conditionals in the factorization (A15)
puts the probability distribution for the transition from ρ0 to ρF in the form,

PT(ρF|ρ0) =
1

dµ(ρT)

∫ T/dt−1

∏
k=0

dµ(ρ(k+1)dt) dp(d~Wkdt|ρkdt) δ

(
ρ(k+1)dt −

L~X(d~Wkdt)ρkdtL~X(d~Wkdt)
†

tr
(

L~X(d~Wkdt)ρkdtL~X(d~Wkdt)
†)
)

=
∫
Dµ
[
ρ(0,T)

] T/dt−1

∏
k=0

dp(d~Wkdt|ρkdt) δ

(
ρ(k+1)dt −

L~X(d~Wkdt)ρkdtL~X(d~Wkdt)
†

tr
(

L~X(d~Wkdt)ρkdtL~X(d~Wkdt)
†)
)

,

(A19)

where

Dµ
[
ρ(0,T)

]
= dµ(ρT−dt) · · · dµ(ρ2dt) dµ(ρ1dt) . (A20)

The double-path integral (A19) is the one formulated by Chantasri et al. Characterizing the
functional integral over density operators as a sum over paths is perhaps a bit of a stretch,
since the δ-functions restrict the density-operator path to the single path determined by the
sequence of outcome increments. As already mentioned, Chantasri et al. parametrize the
density operator in terms of “position” coördinates; they expand the δ-functions in plane
waves, thus introducing “momentum” coördinates conjugate to the position coördinates.
This further development—and subsequent attention to an action-like formulation in terms
of the position and momentum coördinates—is not our concern here.

It is evident from the definitions of the transition probabilities that

dpT(ρF|ρ0)
∣∣
ρF=ρ(L|ρ0)

= dµ(ρF) PT(ρF|ρ0)
∣∣
ρF=ρ(L|ρ0)

= dµ(L) PT(L|ρ0) = dpT(L|ρ0) . (A21)

Although this is clear, it is instructive to see how it follows from the path-integral expres-
sions for the two distribution functions. Performing the integrals over the density operators
in Equation (A19), starting with ρ1dt and working up to ρT−dt, evaluates these density
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operators as ρkdt = ρ
[
d~W[0,kdt)

∣∣ρ0
]
, k = 1, . . . , T/dt− 1, as one would expect. The result

is that

PT(ρF|ρ0) =
∫
Dp
[
d~W[0,T)

∣∣ρ0
]

δ
(

ρF − ρ
[
d~W[0,T)

∣∣ρ0
])

. (A22)

This looks just like the Formula (115) for PT(L|ρ0) = dpT(L|ρ0)/dµ(L) as a path integral
over the Born-rule measure,

PT(L|ρ0) =
∫
Dp
[
d~W[0,T)

∣∣ρ0
]

δ
(

L, L[d~W[0,T)]
)

, (A23)

except that the δ-functions in the two formulas are different and conjugate to different
measures. It is easy to verify from these defining path integrals that

PT(ρF|ρ0) =
∫

dµ(L) PT(L|ρ0) δ
(
ρF − ρ(L|ρ0)

)
; (A24)

simply plug Equation (A23) into this expression and Equation (A22) emerges. This ugly
duckling of an equation, with its apparent discord between the δ-function and the measure,
is actually a swan. The δ-function enforces that ρF = ρ(L|ρ0) = Lρ0L†/ tr(Lρ0L†) and
handles the change in measure between the two probability distributions. Specifically, one
can see this change in measure through the following steps,

PT(ρF|ρ0)
∣∣
ρF=ρ(L|ρ0)

=
∫

dµ(L′) PT(L′|ρ0) δ
(
ρ(L|ρ0)− ρ(L′|ρ0)

)
=

dµ(L)
dµ(ρF)

∫
dµ(L′) PT(L′|ρ0)δ(L, L′)

=
dµ(L)
dµ(ρF)

PT(L|ρ0) ,

(A25)

which is the same as Equation (A21). Expressing the Chantasri et al. distribution function as

PT(ρF|ρ0)
∣∣
ρF=ρ(L|ρ0)

=
dµ(L)
dµ(ρF)

DT(L) tr(Lρ0L†) (A26)

highlights the Kraus-operator density as the state-independent factor in this distribution function.

References
1. Heisenberg, W. Interview of Werner Heisenberg by Thomas S. Kuhn. Session V of Oral History Interviews of Heisenberg, 15 Febru-

ary 1963; Niels Bohr Library & Archives, American Institute of Physics: College Park, MD, USA, 1963. Available online:
www.aip.org/history-programs/niels-bohr-library/oral-histories/4661-5 (accessed on 1 June 2023).

2. Hamilton, W.R. On a General Method of Expressing the Paths of Light, and of the Planets, by the Coefficients of
a Characteristic Function. Dublin Univ. Rev. Q. Mag. 1833, 1, 795–826; 1999 Version, Edited by David R. Wilkins. Available
online: www.maths.tcd.ie/pub/HistMath/People/Hamilton/Papers.html (accessed on 1 June 2023).

3. van der Waerden, B.L. Sources of Quantum Mechanics; Dover: Mineola, NY, USA, 1967.
4. Schrödinger, E. Collected Papers on Wave Mechanics; AMS Chelsea Publishing: New York, NY, USA, 1982.
5. Born, M. Zur Quantenmechanik der Stossvoränge. Z. Für Phys. 1926, 37, 863–867. [CrossRef]
6. Wheeler, J.A.; Zurek, W.H. Quantum Theory and Measurement; Princeton University Press: Princeton, NJ, USA, 1983.
7. Duncan, A.; Janssen, M. From canonical transformations to transformation theory, 1926–1927: The road to Jordan’s Neue

Begründung. Stud. Hist. Philos. Mod. Phys. 2009, 40, 352–362. [CrossRef]
8. Duncan, A.; Janssen, M. (Never) mind your p’s and q’s: Von Neumann versus Jordan on the foundations of quantum theory.

Eur. Phys. J. H 2013, 38, 175–259. [CrossRef]
9. Oppenheimer, J.R. Three notes on the quantum theory of aperiodic effects. Phys. Rev. 1928, 31, 66–81. [CrossRef]
10. von Neumann, J. Mathematical Foundations of Quantum Mechanics: New Edition; Wheeler, N.A., Ed.; Princeton University Press:

Princeton, NJ, USA, 2018; first published as Mathematische Grundlagen der Quantenmechanik in 1932.
11. Wheeler, J.A. On the mathematical description of light nuclei by the method of resonating group structure. Phys. Rev. 1937,

52, 1107–1122. [CrossRef]

https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4661-5
https://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Papers.html
http://doi.org/10.1007/BF01397477
http://dx.doi.org/10.1016/j.shpsb.2009.07.001
http://dx.doi.org/10.1140/epjh/e2012-30024-5
http://dx.doi.org/10.1103/PhysRev.31.66
http://dx.doi.org/10.1103/PhysRev.52.1107


Entropy 2023, 25, 1254 54 of 57

12. Thorne, K.S.; Zurek, W.H. John Archibald Wheeler: A few highlights of his contributions to physics. In Geenral Relativity and John
Wheeler; Ciufolini, I., Matzner, R.A., Eds.; Astrophysics and Space Science Library; Springer: Berlin/Heidelberg, Germany, 2010;
Volume 367, pp. 29–38.

13. Jammer, M. The Conceptual Development of Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1966.
14. Schwinger, J. The algebra of microscopic measurement. Proc. Natl. Acad. Sci. USA 1959, 45, 1542–1553. [CrossRef]
15. Wigner, E.P. The problem of measurement. Am. J. Phys. 1963, 31, 6–15. [CrossRef]
16. Feynman, R.P.; Vernon, F.L., Jr. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys.

1963, 24, 118–173. [CrossRef]
17. Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. [CrossRef]
18. Srinivas, M.D.; Davies, E.B. Photon counting probabilities in quantum optics. Opt. Acta 1981, 28, 981–996. [CrossRef]
19. Barchielli, A.; Belavkin, V.P. Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A Math. Gen.

1991, 24, 1495–1514. [CrossRef]
20. Wiseman, H.M.; Milburn, G.J. Quantum theory of field-quadrature measurements. Phys. Rev. A 1993, 47, 642–662. [CrossRef]

[PubMed]
21. Wiseman, H.M.; Milburn, G.J. Quantum theory of optical feedback via homodyne detection. Phys. Rev. Lett. 1993, 70, 548–551.

[CrossRef] [PubMed]
22. Wiseman, H.M.; Milburn, G.J. Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. Phys. Rev.

A 1993, 47, 1652–1666. [CrossRef]
23. Goetsch, P.; Graham, R. Linear stochastic wave equations for continuously measured quantum systems. Phys. Rev. A 1994,

50, 5242–5255. [CrossRef]
24. Wiseman, H.M. Quantum Trajectories and Feedback. Ph.D. Thesis, University of Queensland, Brisbane, QLD, Australia, 1994.
25. Wiseman, H.M. Quantum trajectories and quantum measurement theory. Quantum Semiclassical Opt. 1996, 8, 205–222. [CrossRef]
26. Jackson, C.S. The photodetector, the heterodyne instrument, and the principle of instrument autonomy. arXiv 2022,

arXiv:2210.11100.
27. Jauch, J.M.; Piron, C. Generalized localizability. Helv. Phys. Acta 1967, 40, 559–570.
28. Ludwig, G. Foundations of Quantum Mechanics I. In Texts and Monographs in Physics; Springer: Berlin/Heidelberg, Germany, 1983.
29. Ludwig, G. Foundations of Quantum Mechanics II. In Texts and Monographs in Physics; Springer: Berlin/Heidelberg, Germany,

1985.
30. Kraus, K. States, Effects, and Operations: Fundamental Notions of Quantum Theory; Böhm, A., Dollard, J.D., Wootters, W.K., Eds.;

Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1983; Volume 190.
31. Davies, E.B.; Lewis, J.T. An operational approach to quantum probability. Commun. Math. Phys. 1970, 17, 239–260. [CrossRef]
32. Davies, E.B. Quantum Theory of Open Systems; Academic Press: Cambridge, MA, USA, 1976.
33. Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic: Dordrecht, The Netherlands, 1993.
34. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000.
35. Carmichael, H. An Open System Approach to Quantum Optics; Springer: Berlin/Heidelberg, Germany, 1993.
36. Doherty, A.C.; Habib, S.; Jacobs, K.; Mabuchi, H.; Tan, S.M. Quantum feedback control and classical control theory. Phys. Rev. A

2000, 62, 012105. [CrossRef]
37. Brun, T.A. A simple model of quantum trajectories. Am. J. Phys. 2002, 70, 719–737. [CrossRef]
38. Jacobs, K.; Steck, D.A. A straightforward introduction to continuous quantum measurement. Contemp. Phys. 2006, 47, 279–303.

[CrossRef]
39. Wiseman, H.M.; Milburn, G.J. Quantum Measurement and Control; Cambridge University Press: Cambridge, UK, 2009.
40. Jacobs, K. Quantum Measurement Theory and its Applications; Cambridge University Press: Cambridge, UK, 2014.
41. Barchielli, A.; Gregoratti, M. Quantum Trajectories and Measurements in Continuous Time; Springer: Berlin/Heidelberg,

Germany, 2009.
42. Chantasri, A.; Dressel, J.; Jordan, A.N. Action principle for continuous quantum measurement. Phys. Rev. A 2013, 88, 042110.

[CrossRef]
43. Rouchon, P.; Ralph, J.F. Efficient quantum filtering for quantum feedback control. Phys. Rev. A 2015, 91, 012118. [CrossRef]
44. Albert, V.V.; Bradlyn, B.; Fraas, M.; Jiang, L. Geometry and response of Lindbladians. Phys. Rev. X 2016, 6, 041031. [CrossRef]
45. Hacohen-Gourgy, S.; Martin, L.S. Continuous measurements for control of superconducting circuits. Adv. Phys. X 2020, 5, 1813626.

[CrossRef]
46. Lewalle, P.; Elouard, C.; Manikandan, S.K.; Qian, X.-F.; Eberly, J.H.; Jordan, A.N. Entanglement of a pair of quantum emitters via

continuous fluorescence measurements: A tutorial. Adv. Opt. Photonics 2021, 13, 517–583. [CrossRef]
47. Benoist, T.; Fraas, M.; Pautrat, Y.; Pellegrini, C. Invariant measures for stochastic Schrödinger equations. Ann. Henri Poincaré 2021,

22, 347–374. [CrossRef]
48. Karmakar, T.; Lewalle, P.; Jordan, A.N. Stochastic path-integral analysis of the continuously monitored quantum harmonic

oscillator. PRX Quantum 2022, 3, 010327. [CrossRef]
49. Barchielli, A.; Lanz, L.; Prosperi, G.M. A model for the macroscopic description and continual observations in quantum mechanics.

Nuovo Cimento B 1982, 72, 79–121. [CrossRef]

http://dx.doi.org/10.1073/pnas.45.10.1542
http://dx.doi.org/10.1119/1.1969254
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1080/713820643
http://dx.doi.org/10.1088/0305-4470/24/7/022
http://dx.doi.org/10.1103/PhysRevA.47.642
http://www.ncbi.nlm.nih.gov/pubmed/9908961
http://dx.doi.org/10.1103/PhysRevLett.70.548
http://www.ncbi.nlm.nih.gov/pubmed/10054142
http://dx.doi.org/10.1103/PhysRevA.47.1652
http://dx.doi.org/10.1103/PhysRevA.50.5242
http://dx.doi.org/10.1088/1355-5111/8/1/015
http://dx.doi.org/10.1007/BF01647093
http://dx.doi.org/10.1103/PhysRevA.62.012105
http://dx.doi.org/10.1119/1.1475328
http://dx.doi.org/10.1080/00107510601101934
http://dx.doi.org/10.1103/PhysRevA.88.042110
http://dx.doi.org/10.1103/PhysRevA.91.012118
http://dx.doi.org/10.1103/PhysRevX.6.041031
http://dx.doi.org/10.1080/23746149.2020.1813626
http://dx.doi.org/10.1364/AOP.399081
http://dx.doi.org/10.1007/s00023-020-01001-4
http://dx.doi.org/10.1103/PRXQuantum.3.010327
http://dx.doi.org/10.1007/BF02894935


Entropy 2023, 25, 1254 55 of 57

50. Jacobs, K.; Knight, P.L. Linear quantum trajectories: Applications to continuous projection measurements. Phys. Rev. A 1998, 57,
2301–2310. [CrossRef]

51. Silberfarb, A.; Jessen, P.S.; Deutsch, I.H. Quantum state reconstruction via continuous measurement. Phys. Rev. Lett. 2005,
95, 030402. [CrossRef] [PubMed]

52. Martin, L.; Motzoi, F.; Li, H.; Sarovar, M.; Whaley, K.B. Deterministic generation of remote entanglement with active quantum
feedback. Phys. Rev. A 2015, 92, 062321. [CrossRef]

53. Jackson, C.S.; Caves, C.M. Simultaneous position and momentum measurement and the instrumental Weyl-Heisenberg group.
Entropy 2023, 25, 1221. [CrossRef]

54. Jackson, C.S.; Caves, C.M. How to perform the coherent measurement of a curved phase space by continuous isotropic measure-
ment. I. Spin and the Kraus-operator geometry of SL(2,C). Quantum 2023, 7, 1085. [CrossRef]

55. Shojaee, E.; Jackson, C.S.; Riofrío, C.A.; Kalev, A.; Deutsch, I.H. Optimal pure-state qubit tomography via sequential weak
measurements. Phys. Rev. Lett. 2018, 121, 130404. [CrossRef]

56. Poincaré, H. Papers on Topology: Analysis Situs and Its Five Supplements, History of Mathematics; Stillwell, J., Translator; American
Mathematical Society: Providence, RI, USA; The London Mathematical Society: London, UK, 2010; Volume 37.

57. Weyl, H. The Concept of a Riemann Surface, 3rd ed.; Dover: Mineola, NY, USA, 2009.
58. Bourbaki, N. Elements of Mathematics. Lie Groups and Lie Algebras, Chapters 1–3; Springer: Berlin/Heidelberg, Germany, 1989.
59. Knapp, A.W. Representation Theory of Semisimple Lie Groups: An Overview Based on Examples; Princeton Landmarks in Mathematics;

Princeton University Press: Princeton, NJ, USA, 1986.
60. Knapp, A.W. Lie Groups Beyond an Introduction, 2nd ed.; Progress in Mathematics; Birkhäuser: Basel, Switzerland, 2002; Volume 140.
61. Haar, A. Der Massbegriff in der Theorie der kontinuierlichen Gruppen. Ann. Math. Second. Ser. 1933, 34, 147–169. [CrossRef]
62. von Neumann, J. Invariant Measures; reprint of lectures given in 1940; American Mathematical Society: Providence, RI, USA, 1999.
63. Pontrjagin, L. Topological Groups; Princeton University Press: Princeton, NJ, USA, 1946.
64. Bourbaki, N. Elements of Mathematics. Integration II, Chapters 7–9; Springer: Berlin/Heidelberg, Germany, 2004.
65. Nachbin, L. The Haar Integral; D. Van Nostrand Company, Inc.: New York, NY, USA, 1965.
66. Montgomery, D.; Zippin, L. Topological Transformation Groups; Republication of 1974 edition; Dover: Mineola, NY, USA, 2018.
67. Barut, A.O.; Raczka, R. Theory of Group Representations and Applications, 2nd ed.; World Scientific: Singapore, 1986.
68. Chern, S.-S.; Chevalley, C. Élie Cartan and his mathematical work. Bull. Am. Math. Soc. 1952, 58, 157–216. [CrossRef]
69. Knapp, A.W. Lie Groups, Lie Algebras, and Cohomology; Mathematical Notes 34; Princeton University Press: Princeton, NJ, USA, 1988.
70. Borel, A. Essays in the History of Lie Groups and Algebraic Groups; History of Mathematics 21; American Mathematical Society:

Providence, RI, USA, 2001.
71. Chirikjian, G.S. Stochastic Models, Information Theory, and Lie Groups, Volume I: Classical Results and Geometric Methods; Applied and

Numerical Harmonic Analysis; Birkhäuser: Basel, Switzerland, 2009.
72. Frankel, T. The Geometry of Physics: An Introduction, 3rd ed.; Cambridge University Press: Cambridge, UK, 2012.
73. Helgason, S. Differential Geometry, Lie Groups, and Symmetric Spaces; Pure and Applied Mathematics; Academic Press: Cambridge,

MA, USA, 1978.
74. Borel, A. Semisimple Groups and Riemannian Symmetric Spaces; Texts and Readings in Mathematics; Hindustan Book Agency:

New Delhi, India, 1998.
75. Einstein, A. Investigations on the Theory of the Brownian Movement; Fürth, R., Ed.; Cowper, A.D., Translator; Dover: Mineola, NY,

USA, 1956.
76. Lemons, D.S.; Gythiel, A. Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement

brownien,” cr acad. sci.(paris) 146, 530–533 (1908)]. Am. J. Phys. 1997, 65, 1079–1081. [CrossRef]
77. Uhlenbeck, G.E.; Ornstein, L.S. On the theory of Brownian motion. Phys. Rev. 1930, 36, 823–841. [CrossRef]
78. Feller, W. On the theory of stochastic processes, with particular reference to applications. In Proceedings of the [First] Berkeley

Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1949; pp. 403–432. Available
online: https://projecteuclid.org/euclid.bsmsp/1166219215 (accessed on 10 August 2023).

79. Stratonovich, R.L. Topics in the Theory of Random Noise, Volume I; Silverman, R.A., Translator; Reprint of 1963 edition; Martino Fine
Publishing: Eastford, CT, USA, 2014.

80. Stratonovich, R.L. Topics in the Theory of Random Noise, Volume II; Silverman, R.A., Translator; Gordon and Breach: Philadelphia,
PA, USA, 1967.

81. Itô, K. Stochastic differential equations in a differentiable manifold. Nagoya Math. J. 1950, 1, 35–47. [CrossRef]
82. Itô, K.; McKean, H.P., Jr. Diffusion Processes and their Sample Paths: Reprint of the 1974 Edition; Springer: Berlin/Heidelberg,

Germany, 1996.
83. Gardiner, C. Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th ed.; Springer Series in Synergetics; Springer:

Berlin/Heidelberg, Germany, 2009.
84. Gardiner, C. Elements of Stochastic Methods; AIP Publishing: Melville, NY, USA, 2021.
85. Dressel, J.; Jordan, A.N. Quantum instruments as a foundation for both states and observables. Phys. Rev. A 2013, 88, 022107.

[CrossRef]
86. Caves, C.M. Quantum error correction and reversible operations. J. Supercond. 1999, 12, 707–718. [CrossRef]

http://dx.doi.org/10.1103/PhysRevA.57.2301
http://dx.doi.org/10.1103/PhysRevLett.95.030402
http://www.ncbi.nlm.nih.gov/pubmed/16090722
http://dx.doi.org/10.1103/PhysRevA.92.062321
http://dx.doi.org/10.3390/e25081221
http://dx.doi.org/10.22331/q-2023-08-16-1085
http://dx.doi.org/10.1103/PhysRevLett.121.130404
http://dx.doi.org/10.2307/1968346
http://dx.doi.org/10.1090/S0002-9904-1952-09588-4
http://dx.doi.org/10.1119/1.18725
http://dx.doi.org/10.1103/PhysRev.36.823
https://projecteuclid.org/euclid.bsmsp/1166219215
http://dx.doi.org/10.1017/S0027763000022819
http://dx.doi.org/10.1103/PhysRevA.88.022107
http://dx.doi.org/10.1023/A:1007720606911


Entropy 2023, 25, 1254 56 of 57

87. Rungta, P.; Bužek, V.; Caves, C.M.; Hillery, M.; Milburn, G.J. Universal state inversion and concurrence in arbitrary dimensions.
Phys. Rev. A 2001, 64, 042315. [CrossRef]

88. Menicucci, N.C. Superoperator Representation of Higher Dimensional Bloch Space Transformations. Ph.D. Advanced Project,
Princeton University, Princeton, NJ, USA, 2005.

89. Schumacher, B. Sending entanglement through noisy quantum channels. Phys. Rev. A 1996, 54, 2615–2628. [CrossRef]
90. Combes, J.; Wiseman, H.M.; Scott, A.J. Replacing quantum feedback with open-loop control and quantum filtering. Phys. Rev. A

2010, 81, 020301(R). [CrossRef]
91. Gross, J.A.; Caves, C.M.; Milburn, G.J.; Combes, J. Qubit models of weak continuous measurements: Markovian conditional and

open-system dynamics. Quantum Sci. Technol. 2018, 3, 024005. [CrossRef]
92. Brif, C.; Mann, A. Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with

Lie-group symmetries. Phys. Rev. A 1999, 59, 971–987. [CrossRef]
93. Ali, S.T.; Antoine, J.-P.; Gazeau, J.-P. Coherent States. Wavelets. amd Their Generalizations, 2nd ed.; Theoretical and Mathematical

Physics; Springer: Berlin/Heidelberg, Germany, 2014.
94. Wiener, N. The average of an analytic functional. Proc. Natl. Acad. Sci. USA 1921, 7, 253–260. [CrossRef]
95. Wiener, N. The average of an analytic functional and the Brownian movement. Proc. Natl. Acad. Sci. USA 1921, 7, 294–298.

[CrossRef] [PubMed]
96. Wiener, N. The average value of a functional. Proc. Lond. Math. Soc. 1924, s2–s22, 454–467. [CrossRef]
97. Kac, M. On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 1949, 65, 1–13. [CrossRef]
98. Kac, M. Probability and Related Topics in Physical Sciences; Lectures in Applied Mathematics; American Mathematical Society:

Providence, RI, USA, 1959; Volume I.A.
99. Chaichian, M.; Demichev, A. Path Integrals in Physics. Volume I: Stochastic Processes and Quantum Mechanics; CRC Press,

Taylor & Francis Group: Boca Raton, FL, USA, 2001.
100. Kitaev, A. Notes on S̃L(2,R) representations. arXiv 2018, arXiv:1711.08169.
101. Feynman, R.P. Feynman’s PhD Thesis: A New Approach to Quantum Theory; Brown, L.M., Ed.; World Scientific: Singapore, 2005.
102. Feynman, R.P. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 1948, 20, 367–387. [CrossRef]
103. Feynman, R.P.; Hibbs, A.R.; Styer, D.F. Quantum Mechanics and Path Integrals (Emended Edition); Dover: Mineola, NY, USA, 2010.
104. Chantasri, A.; Jordan, A.N. Stochastic path-integral formalism for continuous quantum measurement. Phys. Rev. A 2015,

92, 032125. [CrossRef]
105. Lewalle, P.; Chantasri, A.; Jordan, A.N. Prediction and characterization of multiple extremal paths in continuously monitored

qubits. Phys. Rev. A 2017, 95, 042126. [CrossRef]
106. Chantasri, A.; Atalaya, J.; Hacohen-Gourgy, S.; Martin, L.S.; Siddiqi, I.; Jordan, A.N. Stochastic continuous measurement of

noncommuting observables: Quantum state correlations. Phys. Rev. A 2018, 97, 012118. [CrossRef]
107. Kailath, T. A View of three decades of linear filtering theory. IEEE Trans. Inf. Theory 1974, 20, 146–181. [CrossRef]
108. Magnus, W. On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 1954, 7, 649–673.

[CrossRef]
109. Hollander, R.M. The Magnus Expansion. Bachelor Project, University of Groningen, Groningen, The Netherlands, February 2017.

Available online: fse.studenttheses.ub.rug.nl/14905/1/BSc_Mathematics_2017_Hollander_RM.pdf (accessed on 10 August 2023).
110. Sharpe, R.W. Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program; Graduate Texts in Mathematics; Springer:

Berlin/Heidelberg, Germany, 1997; Volume 166.
111. Dixmier, J. Enveloping Algebras; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 1996;

Volume 11.
112. Ali, S.T.; Engliš, M. Quantization methods: A guide for physicists and analysts. Rev. Math. Phys. 2005, 17, 391–490. [CrossRef]
113. Wei, H.; Nazarov, Y.V. Statistics of measurement of noncommuting quantum variables: Monitoring and purification of a qubit.

Phys. Rev. B 2008, 78, 045308. [CrossRef]
114. Ruskov, R.; Korotkov, A.N.; Mølmer, K. Qubit state monitoring by three complementary observables. Phys. Rev. Lett. 2010,

105, 100506. [CrossRef] [PubMed]
115. Ruskov, R.; Combes, J.; Mølmer, K.; Wiseman, H.M. Qubit purification speed-up for three complementary continuous measure-

ments. Philos. Trans. R. Soc. A 2012, 370, 5291–5307. [CrossRef] [PubMed]
116. Ficheux, Q.; Jezouin, S.; Leghtas, Z.; Huard, B. Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing.

Nat. Commun. 2018, 9, 1926. [CrossRef] [PubMed]
117. Hacohen-Gourgy, S.; Martin, L.S.; Flurin, E.; Ramasesh, V.V.; Whaley, K.B.; Siddiqi, I. Quantum dynamics of simultaneously

measured non-commuting observables. Nature 2016, 538, 491–494. [CrossRef]
118. Atalaya, J.; Hacohen-Gourgy, S.; Martin, L.S.; Siddiqi, I.; Korotkov, A.N. Correlators in simultaneous measurement of non-

commuting qubit observables. npj Quantum Inf. 2018, 4, 41. [CrossRef]
119. Weyl, H. Quantenmechanik and Gruppentheorie. Z. Für Phys. 1927, 46, 1–46. [CrossRef]
120. Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [CrossRef]
121. Moyal, J.E. Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 1949, 45, 99–124. [CrossRef]
122. Schack, R.; Caves, C.M. Information-theoretic characterization of quantum chaos. Phys. Rev. E 1996, 53, 3257–3270. [CrossRef]
123. Schack, R.; Caves, C.M. Chaos for Liouville probability densities. Phys. Rev. E 1996, 53, 3387–3401. [CrossRef] [PubMed]

http://dx.doi.org/10.1103/PhysRevA.64.042315
http://dx.doi.org/10.1103/PhysRevA.54.2614
http://dx.doi.org/10.1103/PhysRevA.81.020301
http://dx.doi.org/10.1088/2058-9565/aaa39f
http://dx.doi.org/10.1103/PhysRevA.59.971
http://dx.doi.org/10.1073/pnas.7.9.253
http://dx.doi.org/10.1073/pnas.7.10.294
http://www.ncbi.nlm.nih.gov/pubmed/16576610
http://dx.doi.org/10.1112/plms/s2-22.1.454
http://dx.doi.org/10.1090/S0002-9947-1949-0027960-X
http://dx.doi.org/10.1103/RevModPhys.20.367
http://dx.doi.org/10.1103/PhysRevA.92.032125
http://dx.doi.org/10.1103/PhysRevA.95.042126
http://dx.doi.org/10.1103/PhysRevA.97.012118
http://dx.doi.org/10.1109/TIT.1974.1055174
http://dx.doi.org/10.1002/cpa.3160070404
https://fse.studenttheses.ub.rug.nl/14905/1/BSc_Mathematics_2017_Hollander_RM.pdf
http://dx.doi.org/10.1142/S0129055X05002376
http://dx.doi.org/10.1103/PhysRevB.78.045308
http://dx.doi.org/10.1103/PhysRevLett.105.100506
http://www.ncbi.nlm.nih.gov/pubmed/20867502
http://dx.doi.org/10.1098/rsta.2011.0516
http://www.ncbi.nlm.nih.gov/pubmed/23091209
http://dx.doi.org/10.1038/s41467-018-04372-9
http://www.ncbi.nlm.nih.gov/pubmed/29765040
http://dx.doi.org/10.1038/nature19762
http://dx.doi.org/10.1038/s41534-018-0091-1
http://dx.doi.org/10.1007/BF02055756
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1017/S0305004100000487
http://dx.doi.org/10.1103/PhysRevE.53.3257
http://dx.doi.org/10.1103/PhysRevE.53.3387
http://www.ncbi.nlm.nih.gov/pubmed/9964647


Entropy 2023, 25, 1254 57 of 57

124. Klauder, J.R. The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers. Ann. Phys. 1960,
11, 123–168. [CrossRef]

125. Radcliffe, J.M. Some properties of coherent spin states. J. Phys. A Gen. Phys. 1971, 4, 313–323. [CrossRef]
126. Massar, S.; Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 1995, 74, 1259–1263.

[CrossRef]
127. D’Ariano, G.M.; Lo Presti, P.; Sacchi, M.F. A quantum measurement of the spin direction. Phys. Lett. A 2002, 292, 233–237.

[CrossRef]
128. Caldeira, A.O.; Leggett, A.J. Path integral approach to quantum Brownian motion. Physica 1983, 121A, 587–616. [CrossRef]
129. Leggett, A.J.; Chakravarty, S.; Dorsey, A.T.; Fisher, M.P.A.; Garg, A.; Zwerger, W. Dynamics of the dissipative two-state system.

Rev. Mod. Phys. 1987, 59, 1. [CrossRef]
130. Hu, B.L.; Paz, J.P.; Zhang, Y. Quantum Brownian motion in a general environment: Exact master equation with nonlocal

dissipation and colored noise. Phys. Rev. D 1992, 45, 2843–2861. [CrossRef]
131. Paz, J.P.; Habib, S.; Zurek, W.H. Reduction of the wave packet: Preferred observable and the decoherence time scale. Phys. Rev. D

1993, 47, 488–501. [CrossRef]
132. Lewalle, P.; Steinmetz, J.; Jordan, A.N. Chaos in continuously monitored quantum systems: An optimal-path approach. Phys.

Rev. A 2018, 98, 012141. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0003-4916(60)90131-7
http://dx.doi.org/10.1088/0305-4470/4/3/009
http://dx.doi.org/10.1103/PhysRevLett.74.1259
http://dx.doi.org/10.1016/S0375-9601(01)00809-X
http://dx.doi.org/10.1016/0378-4371(83)90013-4
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/PhysRevD.45.2843
http://dx.doi.org/10.1103/PhysRevD.47.488
http://dx.doi.org/10.1103/PhysRevA.98.012141

	Introduction
	Continuous, Differential Weak Measurements of Noncommuting Observables
	Differential Weak Measurements and Incremental Kraus Operators
	Differential Weak Measurement of a Single Observable
	Differential Weak Measurements of Multiple Observables Simultaneously

	Continuous Measurements of Noncommuting Observables: Piling Up Incremental Kraus Operators
	Stochastic Differential Equations and Path Integrals
	The Kraus-Operator Distribution Function and Subsequent Fokker-Planck-Kolmogorov Equation

	Stepping Back into State Evolution
	Getting Out of Hilbert Space: Universal Instruments, Towers of Chaos, and Principal Instruments

	Principal Instruments: Cases 1, 2, and 3
	Preparing for Cases 1, 2, and 3
	Recap of the Instrument Manifold Program: Universal Notation
	Cartan Coördinate Systems for Principal Instruments

	Measuring a Single Observable Continuously
	Measuring Position and Momentum Continuously
	Measuring the Three Components of Angular Momentum Continuously

	Conclusions
	Stochastic Unitary and Jump Unravelings
	Chantasri et al.'s Path Integrals
	References

