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Abstract: Unique digital circuit outputs, considered as physical unclonable function (PUF) circuit
outputs, can facilitate a secure and reliable secret key agreement. To tackle noise and high
correlations between the PUF circuit outputs, transform coding methods combined with scalar
quantizers are typically applied to extract the uncorrelated bit sequences reliably. In this paper, we
create realistic models for these transformed outputs by fitting truncated distributions to them.
We also show that the state-of-the-art models are inadequate to guarantee a target reliability level
for all PUF outputs, which also means that secrecy cannot be guaranteed. Therefore, we introduce
a quality of security parameter to control the percentage of the PUF circuit outputs for which a
target security level can be guaranteed. By applying the finite-length information theory results
to a public ring oscillator output dataset, we illustrate that security guarantees can be provided
for each bit extracted from any PUF device by eliminating only a small subset of PUF circuit
outputs. Furthermore, we conversely show that it is not possible to provide reliability or security
guarantees without eliminating any PUF circuit output. Our holistic methods and analyses can be
applied to any PUF type, as well as any biometric secrecy system, with continuous-valued outputs
to extract secret keys with low hardware complexity.

Keywords: quality of security (QoSec); physical unclonable function (PUF); reliability on the quantization
boundary; transforms without multiplications; IoT security

1. Introduction

Device identification and authentication help in protecting sensitive data. Simi-
lar to identifying a person by using their biometric identifiers, one can use physical
identifiers, e.g., physical unclonable functions (PUFs) [1–3], to reliably and uniquely
identify a digital device that embodies the physical identifier. For instance, one can
secure internet-of-things (IoT) devices that carry private data by using PUFs that are
embodied by these devices, for which secret keys (SKs) can be extracted from PUF out-
puts, such that one can reliably reconstruct the SK on demand [4]. The extracted SK can
be considered as a root of trust that is hardware-intrinsic and suitable for applications
in cryptography, intellectual property protection, sensor identification/authentication,
etc. [5,6]. Therefore, digital circuit outputs that are reliable and high-entropy, such as ring
oscillator (RO) frequencies, can be used as PUFs that are cheaper and safer alternatives
to using nonvolatile memory to store SKs [7–9]. Note that PUFs are safer because SK
reconstruction takes place on demand, and invasive attacks to the hardware change
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the digital circuit outputs permanently, which help to eliminate the necessity of costly
uninterrupted hardware protection [10].

Mainly because there are random temporal variations in the hardware, digital
circuit output measurements are noisy. Furthermore, mainly because surrounding logic
circuitry causes systematic variations in the digital circuit outputs, different digital circuit
outputs embodied in the same device are correlated [7,11]. The noise causes errors in
the reconstructed SK, which can be corrected by using error correcting codes (ECCs) [7].
Moreover, PUF output symbol correlations may increase the amount of SK information
leaked to an eavesdropper who has side information about the correlations. This follows
as the eavesdropper can then apply machine learning algorithms for modeling the PUF
outputs [12,13]. When the noise components in the PUF measurements are additive,
simple SK agreement schemes that apply ECCs, called helper data schemes, can be used.
Two classic examples of such schemes are code-offset fuzzy extractors [14] and the
fuzzy commitment scheme (FCS) [15], which are extended in [16,17] under a constraint
on the amount of helper data. These schemes, however, require that PUF outputs are
uniformly distributed and independent and identically distributed to achieve the SK
capacity [18–21]. Therefore, transform coding methods are proposed in [12,22,23] to
decorrelate the PUF circuit outputs such that the transformed outputs are quantized via
uniform scalar quantizers, which allows one to extract almost uniformly distributed and
independent and identically distributed outputs; see [24–26] for their applications to
biometric identifiers and [27,28] for alternative methods.

1.1. Summary of Contributions

Consider correlated and noisy PUF circuit output symbols that are realizations of a
random variable with a continuous alphabet, such as for RO PUFs. We extract SKs from
such PUFs by applying a new transform coding method that improves on the state-of-
the-art methods. Toward this aim, we (i) model noiseless transform coefficients that are
obtained from noiseless PUF circuit outputs as random variables with a truncated probabil-
ity distribution to take account of the fact that most digital circuit output measurements
are realizations of a finite set; (ii) introduce a quality of security (QoSec) parameter that
refers to the PUF output percentage for which one can guarantee target reliability and
security levels. Moreover, we characterize how the QoSec parameter affects the tradeoff
between the average or maximum error probability and the number of bits extracted from
transform coefficients; and (iii) prove that there are significantly better schemes than the
two mentioned helper data schemes, which follows by showing that the model for the
measurement channel is generally not memoryless.

In addition to the contributions mentioned above that are provided in the conference
version of this work in [29], we have the following further significant contributions.

• We propose a joint thresholding approach to provide QoSec guarantees under con-
straints on the SK size and block error probability to achieve (secret-key, privacy-
leakage) rate tuples that are close to the finite-length information-theoretic bounds on
the rate region boundary;

• We apply our proposed approach to an RO output dataset to illustrate the effects of
different QoSec values on the manufacturing yield and the SK size for a small number
of ROs, while using state-of-the-art transforms that are orthogonal and that can be
computed without multiplications. This result shows that providing QoSec guarantees
do not cause a significant performance degradation.

1.2. Notation

We denote random variables with upper case letters X and their realizations with
lower case letters x. A sequence of random variables is denoted as Xn = X1, . . . , Xi, . . . , Xn,
where a subscript i denotes the position of a variable in the string. A random variable X has
a probability mass function PX or probability density function fX . The sets are represented
by calligraphic letters X with size |X |. Enc(·) is an encoder mapping, and Dec(·) is a
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decoder mapping. The function Hb(q) = −q log q− (1− q) log(1− q) denotes the binary
entropy function, and all logarithms in this work are natural logarithms. O(·) denotes the
big O notation. Q(·) is the Q-function, and Q−1(·) its inverse. I denotes the identity matrix,
and T is the matrix transpose. The operator ⊕ represents the element-wise modulo-2
summation. [a : b] denotes the set of integers a, (a + 1), . . . , b. A binary symmetric channel
(BSC) with crossover probability p is denoted by BSC(p) for p ∈ (0, 1).

1.3. Organization

This paper is organized as follows. In Section 2, we describe the output model for
ROs and the transforms that are applied to design RO PUFs. In Section 3, we discuss
the SK agreement with PUFs and provide the asymptotic and non-asymptotic limits for
the tradeoffs between reliability, secrecy, and privacy to argue for the FCS that achieves
asymptotic optimality at a particular point on the rate region. In Section 4, we propose a
new transform coding method. In Section 5, we impose a QoSec constraint and define the
performance metrics to be used for comparisons. In Section 6, we propose a novel joint
thresholding approach and illustrate the effects of providing QoSec guarantees by applying
the proposed transform coding method and the joint thresholding approach to a public RO
output dataset. In Section 7, we conclude the paper.

2. Model for RO Outputs

A classic PUF type is the RO PUF, which has positive- and continuous-valued outputs.
We describe the digital circuit model for ROs and focus on them in this work. However,
the same analyses can be applied to all PUF types with continuous-valued outputs.

The RO logic circuit consists of an odd number of inverters that are serially connected,
where the final inverter output is fed back to the first inverter; see Figure 1. In general,
a NAND gate is used from the first gate, since it allows one to disable the RO when it is
unused, and since it has the same logic output as an inverter otherwise. Uncontrollable
manufacturing variations change the total propagation delay of a signal that flows through
an RO, which can be equivalently described as the oscillation frequency x̂. If we have
(2m + 1) inverters, for any m ≥ 1, in the RO logic circuit, then we obtain [30]

x̂ =
1

2(2m + 1)τd
, (1)

where τd represents the propagation delay governed by the circuitry nonlinearities and
parasitics, which are mainly uncontrollable. Therefore, RO oscillation frequencies are
suitable to be used as a local source of randomness.

ENABLE

   x̂

1

Figure 1. The RO logic circuit.

Because of the random noise sources, such as thermal noise and flicker noise, RO
measurement outputs are noisy. Moreover, because of the deterministic effects, including
the surrounding logic circuitry and cross talk between adjacent signal traces, RO outputs
in the same device are correlated [9,10,30]. A simple binary SK extraction method is to
apply hard decisions to RO output pairs to put out a bit by comparing the oscillation
frequencies [7]. This simple method is not secure since the dependency between different
RO outputs in the same device, as discussed above, results in extra secrecy leakage [31].
Thus, in [22], a discrete cosine transform (DCT)-based transform coding scheme was
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applied, which reduced the dependencies before applying scalar quantizers. Furthermore,
in [12], the discrete Walsh Hadamard transform (DWHT) was shown to achieve a similar
decorrelation performance as the DCT, while requiring a smaller hardware area. As an
extension of the DWHT, a new set of orthogonal transforms was shown in [23] to further
decrease the bit error probability without increasing the hardware area as compared to the
DWHT. In this work, we use the new set of orthogonal transforms proposed in [23] and
then publicly select the best transform in the set that has the highest decorrelation efficiency
and reliability performance with QoSec guarantees.

3. Fuzzy Commitment Scheme for SK Agreement

Consider that we want to reconstruct a predetermined SK on demand by using PUF
outputs without leaking information about the SK. One can achieve this by using ECCs by
correcting the errors in the noisy PUF digital circuit outputs [19,21]. The FCS is a powerful
method that uses a masking (i.e., one-time padding) step and an error correction step to
reliably reconstruct an SK by using the noisy measurements of digital circuit outputs that are
used as PUFs. Suppose, without loss of generality, that the first PUF output measurement
is noiseless although other measurements are noisy, which can be directly extended to a
hidden PUF source model with noisy first measurements, as discussed in [17] [Appendix B].
The n-letter sequence Xn ∈ X n denotes the first PUF output measurement. We embed
a predetermined SK S ∈ S to bind Xn to S in such a way that the output of the binding
operation and the second PUF output measurement Yn ∈ Yn suffice to reliably reconstruct
the SK S. The output of the binding operation is denoted as Wn ∈ Wn, which is called
helper data, and is obtained via a masking step that adds two n-letter sequences. Suppose
a linear ECC C has blocklength n, code dimension log |S|, encoder Enc(·), and decoder
Dec(·). The FCS masking step computes the sum of a codeword Cn and Xn in modulo-|X |,
in which the codeword is computed by encoding the SK S, i.e., Cn = Enc(S). Assume
for simplicity that X = Y = W = {0, 1}, so one can use a binary linear ECC. Then, we
obtain Wn = Xn ⊕ Cn, which is the helper data available in the hardware publicly. We can
represent the second PUF measurement output Yn as Yn = Xn ⊕ En, where En ∈ {0, 1}n

represents a binary error sequence. Thus, we have Wn ⊕ Yn = Cn ⊕ En, which allows
the decoder Dec(·) to reliably map Cn ⊕ En into an index Ŝ ∈ S that is equal to the
predetermined SK S with high probability.

We depict the FCS in Figure 2, where Xn is assumed to follow an independent and
identically distributed Bernoulli distribution PX, and the channel PYn |Xn is assumed to
be memoryless, i.e., PYn |Xn = Pn

Y|X. To achieve an optimal rate tuple on the rate region
boundary by using the FCS, these assumptions are necessary but not sufficient [15]. We
next define all (secret-key, privacy-leakage) rate pairs that can be achieved by using the
FCS under secrecy, reliability, and privacy constraints.

Cn = Enc(S)

PY|XPX

Ŝ = Dec(Cn⊕En)

Wn

Xn Yn = Xn⊕En

S Ŝ

Cn⊕EnCn

Figure 2. Fuzzy commitment scheme (FCS).
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Definition 1. A (secret-key, privacy-leakage) rate pair (Rs, R`) is called achievable by using the
FCS if, for any ε>0, there exist n≥1, an encoder Enc(·), and a decoder Dec(·) that satisfy

Pe = Pr[Ŝ 6= S] ≤ ε (reliability) (2)

1
n

H(S) ≥ Rs − ε =
log |S|

n
− ε (SK uniformity) (3)

I
(
S; Wn) = 0 (zero secrecy leakage) (4)

1
n

I
(
Wn; Xn) ≤ R` + ε (privacy-leakage rate). (5)

The reliability constraint in (2) requires that the SK S should be reconstructed reliably
with a negligible probability of error. The SK uniformity constraint in (3) requires the SK S
with rate Rs to be almost uniformly distributed. The zero secrecy leakage constraint in (4)
requires that the helper data Wn, which is the only public sequence, should not leak any
information to an eavesdropper about the SK S, i.e., perfect secrecy is achieved. Finally,
the privacy-leakage rate constraint in (5) requires the normalized information leakage about
Xn to an eavesdropper to be not nonnegligibly larger than R`. Such a privacy leakage
constraint is imposed because if there are multiple PUF enrollments of the same PUF, we
observe extra secrecy leakage when the privacy leakage is high. Note that in general,
the unnormalized privacy leakage I(Wn; Xn) is unbounded unless there is a private key
available [18], which is not necessarily a realistic assumption, since if one can keep a private
key hidden from an eavesdropper, then there is no need to bind SKs to PUF outputs [32].

The measurement channel PY|X for PUFs is generally modeled as a BSC(p), which
applies, e.g., to static random access memory PUFs [6]. We illustrate in the next section
that a BSC fits well as the channel model also for PUF circuits with continuous-valued
outputs, e.g., RO PUFs, when transformation is followed by uniform scalar quantizers and
when the transform coefficients and all noise components follow symmetric probability
distributions. The decorrelation performance of a transform is one of the criteria for
choosing the orthogonal transform to apply to PUF circuit outputs, since the FCS requires
almost independent and identically distributed PUF output symbols that are obtained after
quantization. Moreover, the FCS analysis assumes that the measurement channel PYn |Xn is
memoryless. We show in the next section that after applying the new transform coding
method to RO PUFs, we have PUF measurements Xn that are almost independent and
identically distributed and that follow a binary uniform distribution, while we have the
measurement channel PYn |Xn ' ∏n

i=1 PYi |Xi
, where PYi |Xi

is a BSC(p) for all i ∈ [1 : n]. We
next provide the rate region for this model.

Theorem 1 ([20]). If Xn is independent and identically distributed, PX is a binary uniform
distribution, and Pn

Y|X is a BSCn(p), the rate region of all rate pairs (Rs,R`) achievable by using
the FCS is {

(Rs, R`): 0 ≤ Rs ≤ 1− Hb(p),

R` ≥ 1−Rs
}

. (6)

Note that the only tuple that is achievable by using the FCS and that is asymptotically
optimal is (R∗s , R∗` ) = (1−Hb(p), Hb(p)) [18,20], in which R∗s is equal to the channel capac-
ity of PY|X . Thus, maximizing the code rate of the ECC C suffices to achieve asymptotically
optimal rate tuples for the FCS. Moreover, the FCS treats reliability and security sepa-
rately [20]; so, one can directly apply the finite-length results for reliable communications
to the rate region of the FCS. Therefore, we have the following accurate approximation
for the finite-length rate region of the FCS that approximates both achievability and con-
verse bounds.
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Theorem 2 (Normal Approximation [33]). Given an n-letter independent and identically dis-
tributed Xn that is distributed according to a binary uniform distribution PX, a memoryless
measurement channel PY|X that is a BSC(p), and a block error probability Pe, there exist rate pairs
(Rs,R`) that are achievable by using the FCS such that

Rs(n, p, Pe) = C(p)−
√

V(p)
n

Q−1(Pe) + 0.5
log(n)

n
+ O

(
1
n

)
, (7)

where we have

C(p) = log(2)− Hb(p), (8)

V(p) = p(1− p) log2
(

1− p
p

)
(9)

and

R` ≥ 1− Rs. (10)

We next illustrate how to provide QoSec guarantees by proposing a new transform
coding method. Then, we illustrate, by using Theorem 2, accurate approximations for the
finite-length rate regions for SK agreement with FCS for an available PUF output dataset
under a realistic block error probability Pe constraint to analyze the effects of the QoSec
guarantees on practical setups.

4. New Transform Coding Steps

We propose a transform coding method that is suitable for any continuous-valued bio-
metric and PUF outputs, and we analyze the performance of RO PUFs when the proposed
transform coding method is applied. Consider that we implement r ≥ 1 ROs as a two-
dimensional (2D) array that has size

√
r×
√

r. Denote the first RO output measurements
during enrolment as a vector random variable X̃r with a joint probability density function
fX̃r . This model allows symbols of X̃r to have correlations. Furthermore, consider that the
noise sequence Ẽr is additive, and its random symbols have zero mean. Next, denote the
second RO output measurement during reconstruction as Ỹj = X̃j + Ẽj for all j ∈ [1 : r]. We
next describe the new transform coding method that consists of the following steps:

1. Applying a 2D
√

r×
√

r orthogonal transformation to decorrelate r RO output mea-
surements;

2. Modeling additive noise components and noiseless transform coefficients;
3. Equalizing the histograms by converting all the noiseless transform coefficients into

realizations of the same random variable with the same mean and variance values, which
allows one to reduce the hardware complexity by using the same scalar quantizer;

4. Quantization of each transform coefficient with scalar and uniform quantizers so that
we have an almost uniformly distributed and independent and identically distributed
binary sequence Xn (or its noisy version Yn = Xn + En) via Gray labeling, followed
by bit concatenation. Note that we impose the QoSec constraint on the probability
distribution fitted to the equalized transform coefficients in the last step.

4.1. Step 1: Applying the Orthogonal Transforms

The transformation decorrelates RO measurements X̃r to obtain transform coeffi-
cients T̃r, which are then quantized by using scalar quantizers separately such that the
security loss is negligible. This result follows, since if the transform coefficients are
uncorrelated and jointly Gaussian distributed, they are mutually independent; so, it
is common, e.g., in the image processing and digital watermarking literature, to use
transforms for this purpose [34]. It is observed that neighboring RO outputs in an array
are highly correlated [11]. Thus, to measure the decorrelation performance of the applied
transforms, we use the decorrelation efficiency that is determined by the autocovariance
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matrices before and after transformation [35]. The Karhunen–Loève transform (KLT)
achieves the maximum decorrelation efficiency for a large set of probability distributions.
However, the computational complexity is high for computing the KLT. Low-complexity
2D
√

r×
√

r transforms that achieve high decorrelation efficiency were proposed in [12].
The proposed set of transforms included the DWHT. In [23] [Section 4.1], the extensions
of the DWHT were obtained via an exhaustive search over all 4×4 orthogonal matrices
with elements {−1, 1}; then, larger matrices were constructed by applying Kronecker
products of the 4×4 orthogonal matrices with other matrices A that preserved the or-
thogonality. For instance, if a matrix A with elements {−1, 1} is orthogonal, i.e., we have
AAT = I, then the following matrices are also orthogonal [23]:[

A A
A −A

]
,

[
A A
−A A

]
,

[
A −A
A A

]
,

[
−A A
A A

]
,[

−A −A
−A A

]
,

[
−A −A
A −A

]
,

[
−A A
−A −A

]
,

[
A −A
−A −A

]
. (11)

Thus, via exhaustive search, one can obtain 12288 orthogonal 2D transforms with size
16×16. These transforms do not require multiplication, and the decorrelation performance
loss as compared to the DCT is negligible [12,23]. We define the transform, whose maximum
error probability for the RO output dataset [36] over all transform coefficients is the smallest
value among all obtained transforms, as the selected transform (ST). In Section 6, we thus
apply the ST for RO PUF security and reliability analysis.

4.2. Step 2: Modeling Noise Components and Transform Coefficients

We applied one of the transforms in the set, obtained by computing the matrices in
(11) for all 4× 4 orthogonal matrices A with elements {−1, 1}, to the RO measurements
X̃r in the dataset [36] to obtain the transform coefficients T̃r. In [23], it is shown that
Gaussian distributions are good fits for all transform coefficients, which does not take
into account that RO output realizations are positive real numbers within a finite range.
Truncated Gaussian distributions were thus fitted to the used transform coefficients T̃j,
i.e., only for j ∈ [2 : r] because the first coefficient T̃1 is equal to a fraction of the average
oscillation frequency over all ROs that can be estimated reliably by using the other transform
coefficients [9]. We applied maximum-likelihood estimation methods to obtain unbiased
variance and mean values for the fitted distributions. Furthermore, the finite range for each
coefficient was fixed by using the transform coefficients that were obtained from the RO
dataset in [36]. Note that the same transform was applied both to X̃r and Ỹr, such that
the transform coefficients computed from Ỹr were noisy transform coefficients denoted as
(T̃j + Ñj) for all j ∈ [2 : r], in which the noise components Ñj were zero-mean Gaussian
distributed and mutually independent as well as independent of T̃r.

4.3. Step 3: Equalizing Histograms

We applied a histogram equalization step, as proposed in [37], to convert each trans-
form coefficient T̃j into a standard normal distribution, as one can model all transform
coefficients as a Gaussian distribution with mean µT̃j

6= 0 and variance σ2
T̃j
6= 1 [37]. Con-

sider that an original Gaussian distribution that is fitted to a transform coefficient has a
mean of µT̃j,orig

and a variance of σ2
T̃j,orig

, such that we can uniquely obtain the parameters of

the corresponding truncated Gaussian distribution by bounding its range from both below
and above [38]. We denote the mean and variance of the truncated Gaussian distribution
as µT̃j,trun

and σ2
T̃j,trun

, respectively. Therefore, to apply the histogram equalization step we

subtracted the value µT̃j,trun
and then divided the result by σT̃j,trun

for each realization T̃j = t̃j.

We denote the resulting equalized transform coefficient as T̃ j and the resulting additive
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zero-mean mutually-independent Gaussian noise component with variance σ2
Ñ j

as Ñ j,

respectively, for all j ∈ [2 : r].

4.4. Step 4: Reliable Bit Extraction with QoSec Guarantees by Quantizing Noisy Coefficients

Consider that we extract mj ≥ 0 uniformly distributed and mutually independent

bits from an equalized transform coefficient T̃ j for j ∈ [2 : r], such that we can use the
FCS with almost uniformly distributed and independent and identically distributed binary
sequences Xn. For the j-th uniform scalar quantizer, we denote the quantization boundaries
as bj,0, bj,1, . . . , bj,2mj , where we have bj,0 and bj,2mj as the lower and upper bounds on the

range of the truncated Gaussian distributed T̃ j, respectively. For all k j ∈ [1 : (2mj−1)]
and j ∈ [2 : r], we assigned the quantiles of the j-th equalized and truncated Gaussian
distribution to the quantization boundaries, i.e., we obtained

bj,kj
=Q−1

(
Q(bj,0)·

(
1−

k j

2mj

)
+ Q(bj,2mj )·

k j

2mj

)
. (12)

Given a realization t̃j or its noisy version (t̃j+ñj), the quantizer in (12) outputs k j if

bj,(kj−1)< t̃j≤ bj,kj
. Furthermore, since each additive noise component Ñ j has zero mean,

we appled Gray labeling to map each k j to a bit sequence of size mj for all j ∈ [2 : r]. This
follows since Gray labeling results in only one bit flip if a noisy transform coefficient is
quantized into a neighboring quantization interval.

4.5. Step 5: Bit Sequence Concatenation

Finally, we concatenated the bit sequences extracted from all the used transform
coefficients to obtain a bit sequence that referred to Xn if the first RO measurements X̃r

were given as input and to Yn if the second RO measurements Ỹn = X̃n + Ẽn were given
as input, respectively. Thus, we obtained a sequence xn via the concatenation of the bit
sequences extracted from (r− 1) equalized transform coefficients; so, we have n=∑r

j=2 mj.

5. Analysis for QoSec Guarantees

Consider that we observe a transform coefficient realization at a quantization bound-
ary, i.e., t̃j = bj,kj

for some k j ∈ [1 : (2mj−1)] and j ∈ [2 : r]. For this realization, the error
probability with 1-bit quantization is 0.5. Thus, the reliable reconstruction of the correspond-
ing bit sequence is not possible; see [39,40] for similar discussions with different design
metrics and without QoSec guarantees. Therefore, to provide reliability guarantees to each
RO PUF output, one should eliminate unreliable realizations before quantization, i.e., the
transform coefficient realizations that are spatially close to the quantization boundaries.
We thus propose to eliminate the realizations that are in the range

t̃j ∈ ((bj,kj
−δ/2), (bj,kj

+δ/2)] (13)

for all k j ∈ [1 : (2mj−1)] and j ∈ [2 : r] and for some fixed δ ≥ 0; so, the parameter δ is a
QoSec parameter for all PUF outputs used for SK agreement with the FCS. We denote the
ratio of the eliminated realizations vs. all the realizations for all j ∈ [2 : r] as

γj(δ) =

(2
mj−1)

∑
kj=1

(
Q
(

bj,kj
− δ

2

)
−Q

(
bj,kj

+
δ

2

))
Q(bj,0)−Q(bj,2mj )

. (14)
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When δ is fixed, the percentage β j of realizations t̃j that can be used for the SK
agreement is defined as the secure manufacturing yield and is calculated as

β j(δ)=100·(1−γj(δ)) (15)

for all j ∈ [2 : r], which decreases for increasing δ. The worst case error probability then

decreases from 0.5 to Q
(

δ
/

2σ
Ñ j

)
for 1-bit quantization; so, δ represents a worst case

reliability guarantee.
We next illustrate that the error probabilities for different bits extracted from the same

coefficient are dependent, i.e., the channel Pn
Y|X has memory. This result proves that the

FCS, which requires Pn
Y|X to be memoryless, can be improved by taking the memory in the

channel into account. Suppose that, e.g., m = 2 bits are extracted from T̃ by applying a
binary-reflected Gray labeling, i.e., the quantization intervals are mapped to “00”, “01”,
“11”, and “10” in the given order. We obtain

Pr
[
{1st bit is in error}

∣∣∣t̃ ] · (Q(b0)−Q(b2m)) · (1− γ(δ))

=


Q

(
b2 − t̃

σ
Ñ

)
if t̃ ∈ [b0, (b2 − δ

2 )]

Q

(
t̃− b2

σ
Ñ

)
if t̃ ∈ ((b2 +

δ
2 ), b4]

(16)

and

Pr
[
{2nd bit is in error}

∣∣∣t̃ ] · (Q(b0)−Q(b2m)) · (1− γ(δ))

=



Q

(
b1 − t̃

σ
Ñ

)
−Q

(
b3 − t̃

σ
Ñ

)
if t̃ ∈ [b0, (b1 − δ

2 )]

Q

(
t̃− b1

σ
Ñ

)
+ Q

(
b3 − t̃

σ
Ñ

)
if t̃ ∈ ((b1 +

δ
2 ), (b3 − δ

2 )]

Q

(
b1 − t̃

σ
Ñ

)
−Q

(
b3 − t̃

σ
Ñ

)
if t̃ ∈ ((b3 +

δ
2 ), b4].

(17)

Applying the law of total probability and Bayes’ theorem to Pr[{1st bit is in error}|t̃]
(or Pr[{2nd bit is in error}|t̃] ), we obtain the formula for the probability of the first (or
second) bit being erroneous conditioned on the event that the equalized transform coef-
ficient t̃ falls into the corresponding quantization interval. Since closed form expressions
do not seem to exist for these probabilities, we computed them numerically for various
parameters and observe that the multiplication of these two marginal probabilities was
generally not equal to the corresponding joint probability. Therefore, it is a numerically
computed proof on which errors in the first and second bits conditioned on a quan-
tization interval, which determines the mapped bit sequence, are dependent, i.e., the
channel PY|X is not memoryless; so, it is not optimal to use the FCS. We remark that a
memoryless channel model can still be used as a pessimistic reference model for which
correlations cannot be taken advantage of, which follows since the FCS treats secrecy
and reliability separately.
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Now, we define an alternative reliability metric Pc, called correctness probability, as the
probability that all extracted bits are correct, as proposed in [41]. This metric is a conserva-
tive metric, and we use it below in combination with the FCS. For an equalized transform
coefficient T̃ with QoSec parameter δ, we have the correctness probability

Pc(δ) · (Q(b0)−Q(b2m)) · (1− γ(δ))

=

(b1−δ/2)∫
b0

[
Q
( b0− t̃

σ
Ñ

)
−Q

( b1− t̃
σ

Ñ

)]
fT(t̃)dt̃

+
(2m−2)

∑
k=1

(b(k+1)−δ/2)∫
(bk+δ/2)

[
Q
( bk− t̃

σ
Ñ

)
−Q

( b(k+1)− t̃
σ

Ñ

)]
fT(t̃)dt̃

+

b2m∫
(b(2m−1)+δ/2)

[
Q
( b(2m−1)− t̃

σ
Ñ

)
−Q

( b2m− t̃
σ

Ñ

)]
fT(t̃)dt̃. (18)

where T is a random variable distributed according to a standard Gaussian distribution
with the probability density function fT .

6. QoSec Guarantee Effects on RO PUFs

We used the public RO output dataset [36], consisting of 100 noisy measurements of
32× 16 RO output arrays obtained from 193 different devices, but we considered only the
upper part of the array, such that we have

√
r = 16 to apply the transform coding steps

described in Section 4. In Step 1, we applied the ST to the 16× 16 RO array. Applying Steps
2–4, we computed the secure manufacturing yield β j(δ) by using (15) and Pc,j(δ) from (18),
respectively. We plot in Figure 3 the effects of δ on tuples (Pc,j, β j) for two randomly-chosen
transform coefficients that were uniformly quantized by using three different bit sequence
lengths, i.e., mj =3, 5, 7.

When δ increased, the percentage of realizations that could be used decreased, whereas
the correctness probability increased as depicted in Figure 3. We define the minimum
quantization interval length as

∆bj = min
kj∈[0:2

mj−1]
(bj,(kj+1)−bj,kj

) (19)

for all j ∈ [2 : r]. The allowed range of values for δ was chosen to be 0 ≤ δ ≤ ∆bj for
each coefficient, since at its maximum value, at least half of the realizations were removed,
and further removal might not be practical. We observe from Figure 3 that for most
transform coefficients the decreasing pattern of β j with respect to Pc,j for increasing δ was
different for small, medium, and large numbers mj of extracted bits. Thus, it seems difficult
to obtain a general algorithm that provides optimal operation points in terms secrecy,
reliability, QoSec, code rate, etc. Therefore, we next extended the thresholding approaches
proposed in [12,41] that impose thresholds only on Pc,j .
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Figure 3. Correctness probability Pc,j(δ) vs. secure manufacturing yield β j(δ) with the ST applied
to 16× 16 RO arrays from the dataset in [36]. We achieve (β j = 100, δ = 0), and β j decreases with
increasing δ. In row dj/16e and column (j mod 16), we have the j-th transform coefficient.

6.1. Proposed Joint Thresholding Approach for QoSec Guarantees

First, we assumed that a lower bound δ̄ ≥ 0 was imposed on the QoSec parameter
δ, which could be imposed, for instance, due to the data privacy regulations. Next, we
supposed that a linear ECC C could correct all error patterns in up to r̄ ≥ 1 transform
coefficients; thus, a lower bound Pc(δ) on each correctness probability Pc,j(δj) for j ∈ [2 : r]
was determined by the block error probability Pe such that

(r−1)

∑
j̄=(r̄+1)

(
(r− 1)

j̄

)
· (1−Pc(δ))

j̄ · Pc(δ)
r−1− j̄ ≤ Pe, (20)

where Pc(δ) is the minimum probability that satisfies the inequality. Furthermore, we
assume that a chip manufacturer determines a lower bound β on each β j as a practical

manufacturing constraint. The lower bound β corresponds to an upper bound δj on δ for
all j ∈ [2 : r], which follows from (14) and (15). Then, for the j-th transform coefficient,
the maximum number of bits that satisfies both thresholds simultaneously is assigned to
mj, and we choose the value δj = δj that corresponds to an operation point (Pc,j(δj), β j(δj)).
We can then guarantee a QoSec parameter of δ that is chosen as the minimum δj over all
transform coefficients, which provides a guarantee for the worst case security and reliability
of all sequences extracted from all PUFs; see also Remark 1.

Remark 1. Choosing δ = minj∈[2:r] δj does not necessarily provide the same security guarantee for
all bit sequences extracted from all PUFs because the noise variances for each transform coefficient
can be different. However, we observe that the noise variances for all transform coefficients were
similar for the transform coding method applied to the considered ROs; so, the security guarantee
follows for this setup.

To apply the proposed approach, we chose the number of bits mj ≥ 0 extracted
from each transform coefficient j ∈ [2 : r], such that all corresponding operation points
(Pc,j(δj), β j(δj)) simultaneously satisfied

1. δ ≥ δ;
2. Pc,j(δj) ≥ Pc(δ); and
3. β j(δj) ≥ β.
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Recall that the calculation of the lower bound Pc(δ) that should satisfy (20) assumes
that the number r̄ of transform coefficients that a given ECC C should correct is known,
which is not the case in practice. To determine the parameters of an ECC C that can correct r̄
transform coefficients, we first calculate the blocklength of the ECC, i.e., the total number of
extracted bits after bit concatenation, which is n = ∑r

j=2 mj. Moreover, we sort the numbers
mj of bits extracted from all transform coefficients in a descending order, i.e., m′j ≥ m′j+1 for

all j ∈ [2 : r]; so, the ECC C must correct all bit error patterns with up to e(r̄) = ∑
(r̄+1)
j=2 m′j

errors. Using a block code with minimum distance dmin ≥ 2e(r̄) + 1, this constraint can be
satisfied. Thus, our joint thresholding approach provides a practical method to design RO
PUFs with QoSec guarantees.

6.2. Effects of QoSec Guarantees on ECC Design

We next illustrate the effects of providing QoSec guarantees. First, we impose the
condition mj = 1 for all j ∈ [2 : n] to simplify the analysis, which also has the side benefit
that the error components are then not correlated, as discussed in Section 5. Thus, we have
n = 255 and e(r̄) = r̄ such that a block code with dmin = (2r̄ + 1) can be used. We impose
a practical block error probability constraint such that Pe ≤ 10−9, as in [12,42]. We then
consider a set of lower bounds

δj = {0, 0.01, 0.03, 0.05} × ∆bj, (21)

where ∆bj is as defined in (19) above, on the QoSec parameter δ that represents different
levels of security, which can be considered to be imposed by a legal entity to ensure IoT
device security. Furthermore, we assume that the manufacturer cannot afford to have a
lower manufacturing yield than the secure manufacturing yield determined by the legally
imposed lower bound on the QoSec parameter, i.e., δj = δ = δ for all j ∈ [2 : r]. Then, we
obtain the secure manufacturing yields of

β j(δ) = {100, 97.951, 93.850, 89.784}, (22)

for all j ∈ [2 : r] and for δ = δj values listed in (21), respectively. Moreover, we have the
average correctness probabilities of {0.990965, 0.997468, 0.999935, 0.999999} averaged over
all transform coefficients for δj values given in (21). We approximate the corresponding
measurement channels as BSCs with crossover probabilities

p = {9.035× 10−3, 2.532× 10−3, 6.541× 10−5, 6.918× 10−7, } (23)

which are obtained by subtracting the average correctness probabilities from 1. Thus,
by applying Theorem 2, while ignoring the O(1/n) term in (7), we obtain the finite-length
results that show that code dimensions

bnRsc = {208, 203, 186, 180} (24)

can be achieved by the crossover probabilities in (23), respectively. We also combine the
corresponding results of (21)–(24) in Table 1, given on the next page, for convenience. Note
that if we consider that the SK S that is bound to the PUF outputs in Figure 2 is used for
symmetric cryptography, e.g., for advanced encryption standard (AES) with 128 bits of SK,
this corresponds to a code dimension of 128 bits. The code dimensions given in (24) that
can be achieved for n = 255 and Pe = 10−9 suffice to use the SK S with AES-128. Thus,
the results in (22) and (24) illustrate that providing QoSec guarantees to PUFs does not
cause a significant performance degradation.
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Table 1. Effects of providing QoSec guarantees.

δj/∆bj 0 0.01 0.03 0.05

β j(δ) 100 97.951 93.850 89.784

p 9.035× 10−3 2.532× 10−3 6.541× 10−5 6.918× 10−7

bnRsc 208 203 186 180

7. Conclusions

In this work, we have developed realistic models for transformed RO outputs by
fitting truncated distributions to them. After illustrating that reliability and security cannot
be guaranteed for each PUF device by using the state-of-the-art methods, we proposed a
new transform coding method that takes a QoSec parameter into consideration to extract
SKs from PUFs. Our joint thresholding approach provides QoSec guarantees for target
SK sizes and block error probabilities. Using finite-length bounds on the region of all
(secret-key, privacy-leakage) rate pairs that are achievable by using the FCS, we showed
that QoSec guarantees can be given for each extracted bit of all PUF devices without a
significant performance degradation. In future, we plan to analyze the effects of random
and systematic variations in digital circuit outputs separately, rather than modeling the
total effect as an additive noise component, to provide a more accurate PUF model.
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