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Abstract: In this article, the authors analyzed the nonlinear effects of projective synchronization
between coupled memristive neural networks (MNNs) and their applications. Since the complete
signal transmission is difficult under parameter mismatch and different projective factors, the delays,
which are time-varying, and uncertainties have been taken to realize the projective synchronization
of MNNs with multi-links under the nonlinear control method. Through the extended comparison
principle and a new approach to dealing with the mismatched parameters, sufficient criteria have
been determined under different types of projective factors and the framework of the Lyapunov–
Krasovskii functional (LKF) for projective convergence of the coupled MNNs. Instead of the classical
treatment for secure communication, the concept of error of synchronization between the drive and
response systems has been applied to solve the signal encryption/decryption problem. Finally, the
simulations in numerical form have been demonstrated graphically to confirm the adaptability of the
theoretical results.

Keywords: nonlinear control mechanism; memristor; coupled neural networks; projective
synchronization; secure communication

1. Introduction

A fact that is well-known is that a chaotic system is essential in signal processing
and secure communication. However, some existing results for secure communication
are still based on traditional neural networks [1–3]. Actually, the memristor, the fourth
basic element of electrical circuits, was firstly raised by Prof. Leon Chua [4] in 1971;
the memristor exhibited better chaotic characteristics than the resistor in mimicking the
synaptic plasticity. Depending on such excellent attributes in biologicals, many scholars
have combined the memristor with neural networks (NNs) to propose the memristive
neural networks (MNNs) [5–9] for a better understanding of the structure and functions of
brain networks. Nevertheless, up to now, few researchers have conducted the memristor to
the chaotic system for signal encryption and decryption, which inspired us to consider the
MNNs for secure communication from the biological point of view.

In recent years, due to the superior mimic of the human brain, the synchronization
of MMNs has attached considerable attention from various fields and became a hot topic.
It is worth mentioning that as a principle dynamic behavior of MNNs, the accuracy of
synchronization determines the validity of encryption and decryption. Therefore, the
potential application of synchronization has extended to various areas, such as in image
protection [10], social networks [11], pattern recognition, etc. In [12], the cluster output
synchronization was investigated and two different control approaches were proposed.
Finite-time and fixed-time synchronization were investigated in [13,14]. Considering the
sensitivity of the channel for secure communication, Ref. [15] studied Dos attacks between
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the master and slave MNNs, and the results were applied to image encryption. However,
the problem with faster communication still exists [16] regardless of whether extending
binary digital to M-nary digital. For this issue, the projective synchronization was first
introduced by Mainieri et al. [17].

In a practical circumstance, different synchronizations are necessary between the
drive-response MNNs, even more so for secure communication. The impact caused by
various projective factors for different structures of neural networks has been regarded in
many studies [18–20]. Fu et al. [18], under a pinning control scheme, studied the projective
synchronization for fuzzy MNNs. The projective synchronization that is fix-time and with
discrete-time delay was investigated in [19]. Considering the lag factor of the system, the
projective synchronization was investigated in [20]. Nevertheless, in the synchronization
mechanism, parameter mismatch is unavoidable. The projective synchronization of delayed
NNs with parameter-mismatched has been studied in [21]. In [22], the quasi-projective
synchronization of the parameter-mismatched complex-valued NNs was realized under a
feedback controller that is linear. Later on, in [23], the impulsive effect on weak projective
synchronization in parameter-mismatched MNNs has been investigated. Uncertainty has
not been taken into account in previous studies. We found found that different models ought
to be described to meet the practical requirements in the complex situation. Therefore, time-
varying delays and uncertainties term in the modeling of MNNs are more essential [24–26].
The authors, therefore, have been inspired to go for the model that is less conservative to
explore the projective synchronization of MNNs.

To date, in order to realize the information storage and transmission, the multi-links
complex NNs were proposed in [27], which are divided into some subnets according to
various time-varying delays. They are more realistic than signal link neural networks in
the fields of transportation networks [28], social networks [29], brain networks [30], etc.
This means that different path transmission delays represent various sub-nets, reflecting
the flexibility and universality of the system. In view of these discussions, the muti-links
memristive neural networks are more reasonable and have a practical significance in
synchronization mechanisms; the authors have adopted coupled MNNs with multi-links.
The synchronization with finite time lag of multi-links MNNs under the adaptive control
scheme was studied in [31]. Zhao et al. [32] discussed the exponential synchronization of
coupled MNNs with multi-links. As far as we know, the dynamic behaviors of multi-links
coupled MNNs with time-varying delays and uncertainties remain untouched, especially
in dealing with projective synchronization under parameter mismatch situations. Thus,
this is the main inspiration for this paper.

For a secure communication mechanism, the plaintexts among the drive and response
systems are sent via switching back and forth continuously. The error system stability will
greatly affect the quality of signal decryption [33]. Through the event-triggered scheme,
quantized synchronization was used in secure communication. During the process of
chaotic secure communication, whether the chaos system is stable or not plays a crucial
part in the performance of signal processing. As a consequence, ref. [34] recovered the
image signals through stability analyses and deep learning methods. From the perspective
of synchronization, adaptive synchronization [35] and impulsive synchronization [36] were
applied to the security of networks and image encryption, respectively. Neural cryptogra-
phy was used in image sharing [37] and the synchronization of MNNs was investigated to
realize secure communication [38]. Accordingly, the chaotic states of NNs with fractional
order can also be employed in signal processing and image encryption [39]. As men-
tioned above, the projective synchronization mechanism of the proposed system is studied,
and its performance regarding signal encryption/decryption of secure communication is
investigated in this paper.

Inspired by the above consideration, the aim of this paper is to guarantee projective
synchronization of multi-links coupled MNNs with delays that are time-varying and with
uncertainties. The following are the novel aspects of current article:
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• Unlike previous coupled MNNs, the proposed model takes the time-varying delays,
uncertainties, and multi-links into consideration, which is a class of uncertain switch-
ing systems, and it is more helpful to verify the dynamic behavior of systems under
different communication situations.

• The principle of extended comparison and a new approach are proposed to deal with
the issue of parameters that are mismatched. To transform the state-depended-coupled
MNNs into a class of systems with interval parameters, the criteria of projective
synchronization are derived under the mechanism of the novel Lyapunov–Krasovskii
functional (LKF). Accordingly, less conservative results compared with the traditional
approaches are obtained in this paper. Moreover, the obtained outcomes can be easily
extended to various synchronization schemes, depending on the projective parameter.

• Considering the concept of synchronization, the chaotic sequences of drive and re-
sponse systems are employed in signal encryption and decryption of secure communi-
cation. Taking the advantage of projective synchronization into account, the adaptive
signal processing scheme is designed, and the keyspace can expand effectively com-
pared with the conventional methods.

The arrangement of the remaining current study is illustrated below. Section 2 intro-
duces the mathematical model of coupled MNNs, the useful definitions, considerations,
and lemmas. Section 3 illustrates the essential outcomes of the current study, involving
three theorems and one corollary. Numerical examples are presented to evaluate the
correctness of the presented outcomes in Section 4. Finally, the conclusions are given in
Section 5.

2. Model and Preliminaries
2.1. Coupled MNNs Model

Considering with the characteristic of the memristor Figure 1 a class of delayed MNNs
are expressed by the following equation
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Figure 1. The nonlinear behavioral model of the memristor.

cp
dxp(t)

dt
= −[(M f pg +Nhpg) +

1
Rp

]xp(t) +
n

∑
g=1

M f pg × sgnpg fg(xg(t))

+
n

∑
g=1

Nhpg × sgnpg fg(xg(t− τ(t))) + Ip(t),
(1)

where the voltage of capacitor is represented as cp, and the neural feedback functions
with non-delayed and time-varying delays are fg(xg(t)) and fg(xg(t− τ(t))). Consider
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the real behavior of solid-state memristors or emulators, M f pg illustrates the memristance
of the memristor between fg(xg(t)) and xp(t), then, Nhpg represents the memristance of
the memristor between fg(xg(t− τ(t))) and xg(t− τ(t)). Accordingly, τ(t) denotes the
time-varying delay,Rp is the resistor, and Ip(t) is an external bias.

For the propose of simplifying the mathematical model of the memristor on the
premise of obtaining the pinched hysteresis feature, we select a surrogate memristor model.

dxp(t)
dt

= −dp(xp(t))xp(t) +
n

∑
g=1

apg(xp(t)) fg(xg(t))

+
n

∑
g=1

bpg(xp(t− τ(t))) fg(xg(t− τ(t))) + Ip(t),
(2)

where dp(xp(t)) is the pth neuron self-inhibition, which represents as 1
cp
[(M f pg +Nhpg) +

1
Rp

]. apg(xp(t)) and bpg(xp(t− τ(t))) represent the memristive connection weights, which

denotes as 1
cp

∑n
g=1 M f pg × sgnpg and 1

cp
∑n

g=1 Nhpg × sgnpg; and fg(·) is the activation

function. We assume that the solution x(t) = (x1(t), x2(t), . . . , xp(t))T of system (2) with
initial conditions x(s) = φ(s) = (φ1(t), φ2(t), . . . , φp(t))T ∈ C([−τ, 0],RT) exists.

Regarding the characters of a memristor and simplified mathematical model of the
memristor Figure 2, the parameters of systems are supposed to meet the following conditions

dp(xp(t)) =


d́p, |xp(t)| ≥ Tp,

unchanged, |xp(t)| = Tp,
d̀p, |xp(t)| > Tp,

apg(xp(t)) =


ápg, |xp(t)| ≥ Tp,

unchanged, |xp(t)| = Tp,
àpg, |xp(t)| > Tp,

bpg(xp(t)) =


b́pg, |xp(t)| ≥ Tp,

unchanged, |xp(t)| = Tp,
b̀pg, |xp(t)| > Tp.
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Figure 2. The simplified mathematical model of the memristor.
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Consider of N time-varying uncertain coupled MNNs as follows

dxi(t)
dt

= −D(t)xi(t) + [A(t) +A1(t)] f (xi(t))

+ [B(t) + B1(t)] f (xi(t− τ0(t))) + σ
N

∑
j=1

w0
ijΓxj(t)

+ σ
N

∑
j=1

w1
ijΓxj(t− τ1(t)) + Ii(t), i = 1, 2, ..., N,

(3)

then, the delayed coupled MNNs as drive system contains N identical MNNs is described
as Equation (3), in which xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn are the state variables
of the i− th dynamical networks. τ0(t) and τ1(t) are time-varying delays, which satisfy
τ̇0(t) ≤ τ0 < 1, τ̇1(t) ≤ τ1 < 1, τ = max{τ0, τ1}. We make the uncertainties as A1(t)
and B1(t). Then, w0

ij is non-delayed coupled matrix, and w1
ij is delayed coupled matrix.

Additionally, we make w0
ii = −∑N

j=1,j 6=i w0
ij and w1

ii = −∑N
j=1,j 6=i w1

ij, and the following
conditions are satisfied [32]{

w0
ij = 1, w1

ij = 0 a directed edge from i to j,
w0

ij = 0, w1
ij = 1 others.

The constant σ > 0 stands for the coupling strength, the matrix Γ = (rij) ∈ Rn×n is
non-delayed inner connecting matrix, and the coupled matrix W = (wij)N×N represents
the topology structure of the whole networks.

Then, the following state-space equations represent the corresponding response system:

dyi(t)
dt

= −D(t)yi(t) + [A(t) +A2(t)] f (yi(t))

+ [B(t) + B2(t)] f (yi(t− τ0(t))) + σ
N

∑
j=1

w0
ijΓyj(t)

+ σ
N

∑
j=1

w1
ijΓyj(t− τ1(t)) + Ui(t) + Ii(t), i = 1, 2, ..., N,

(4)

where yi(t) stands for the state vector with initial condition y(s) = ϕ(s) = (ϕ1(t), ϕ2(t), . . . ,
ϕp(t))T ∈ C([−τ, 0],RT). A2(t) and B2(t) are the response uncertainties and Ui(t) de-
scribes the nonlinear controller that will be constructed later. We choose the parameters
similar to the drive system, that is,

D̂ = (d́ip)n×n, Ď = (d̀ip)n×n, Â = (ápg)n×n,

Ǎ = (àpg)n×n, B̂ = (b́pg)n×n, B̌ = (b̀pg)n×n.
(5)

Therefore, the drive-system (3) is modified as

dx(t)
dt

∈ −(D + co[−D̃, D̃])x(t) + [A + co[−Ã, Ã] +A1(t)] f (x(t))

+ [B + co[−B̃, B̃] + B1(t)] f (x(t− τ0(t))) + σW0Γx(t)

+ σW1Γx(t− τ1(t)) + I(t), i = 1, 2, ..., N,

(6)
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Then, we obtain

D∗ = max{D̂, Ď}, D∗∗ = min{D̂, Ď}, A∗ = max{Â, Ǎ},
A∗∗ = min{Â, Ǎ}, B∗ = max{B̂, B̌}, B∗∗ = min{B̂, B̌},

D =
1
2
(D∗ + D∗∗), D̃ =

1
2
(D∗ − D∗∗), A =

1
2
(A∗ + A∗∗),

Ã =
1
2
(A∗ − A∗∗), B =

1
2
(B∗ + B∗∗), B̃ =

1
2
(B∗ − B∗∗).

(7)

where x(t) = (xT
1 (t), xT

2 (t), . . . , xT
N(t))

T, f (x(t)) = ( f T
1 (t)(x1(t)), f T

1 (t)(x2(t)),
. . . , f T

1 (t)(xN(t)))T, W0 = (w0
ij)N×N , W1 = (w1

ij)N×N .
We define the inner couple matrix Γ as identity matrix. The measurable functions are

D(t) =
{

D̃, D = D̄
−D̃, D = D,

(8)

A(t) =
{

Ã, A = Ā
−Ã, A = A

(9)

B(t) =
{

B̃, B = B̄
−B̃, B = B

(10)

Consequently, from the set-valued mappings technique and differential inclusion
theory, the equation (6) can be transferred as:

dx(t)
dt

= −(D +D(t))x(t) + [A +A(t) +A1(t)] f (x(t))

+ [B + B(t) + B1(t)] f (x(t− τ0(t))) + σW0Γx(t)

+ σW1Γx(t− τ1(t)) + I(t), i = 1, 2, ..., N.

(11)

Remark 1. The interval parameters are introduced to transform Equations (3)–(11). Accordingly,
considering the state dependence characters of the memristor, we derived measurable function
Equations (8)–(10) to confirm the variables D(t), A(t) and B(t) cannnot get the maximum and
minimum values simultaneously. In other words, when D̂ > Ď or D̂ < Ď, the corresponding
Â > Ǎ or Â < Ǎ, B̂ > B̌ or B̂ < B̌ may not be satisfied.

Similarly, we have the response system as

dy(t)
dt

= −(D +D∗(t))y(t) + [A +A∗(t) +A2(t)] f (y(t))

+ [B + B∗(t) + B2(t)] f (y(t− τ0(t))) + σW0Γy(t)

+ σW1Γy(t− τ1(t)) + I(t), i = 1, 2, ..., N,

(12)

and D∗(t) ∈ [D∗, D∗∗], A∗(t) ∈ [A∗, A∗∗], B∗(t) ∈ [B∗, B∗∗].

2.2. Some Useful Definitions and Assumptions

Assumption 1. The parameters D(t), A(t), B(t), A∗(t), B∗(t) are norm-bounded and time-
varying, which satisfy

A(t) = H1F1(t)M1,A∗(t) = H1E1(t)M1,

B(t) = H2F2(t)M2,B∗(t) = H2E2(t)M2,
(13)

we setM1 equals to A∗ − A∗∗, andM2 equals to B∗ − B∗∗. H1 = H2 = diag{0.5, 0.5, . . . , 0.5}.
For measurable functions Fl(t) and El(t) (l = 1, 2), we have FT

l (t)Fl(t) ≤ I, ET
l (t)El(t) ≤ I.
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Assumption 2. The activation function f (x) is bounded and Lipschitez-continuous. There is a
real constant L > 0 such that

| fi(ξ1)− fi(ξ2)| ≤ L|ξ1 − ξ2|, (14)

for all ξ1 ∈ R, ξ2 ∈ R, i ∈ N, f (0) = 0.

Assumption 3. For all initial values x(s) = φ(s) = (φ1(t), φ2(t), . . . , φp(t))T ∈ C([−τ, 0],RT),
the solution of (11) is bounded, that is |xi(t)| ≤ M for t ∈ [−τ, ∞).

Assumption 4. Supposing universities are bounded, which means |Al(t)| ≤ Z, |Bl(t)| ≤ Z
(l = 1, 2), and satisfy

A1(t) = A1ωA(t),B1(t) = B1ωB(t),

A2(t) = A2µA(t),B2(t) = B2µB(t),
(15)

and ω2
A(t) ≤ 1, ω2

B(t) ≤ 1, µ2
A(t) ≤ 1, and µ2

B(t) ≤ 1.

Lemma 1. If P and Q represent the matrices with suitable dimensions, such that, such as

PTQ + QTP ≤ δPTP +
1
δ

QTQ, (16)

which δ > 0.

Definition 1. If there exist constant α > 0, that is, for any colution x(t) and y(t) of (11) and (12),
one can derive

lim
t→+∞

||y(t)− αx(t)|| = 0, (17)

then, systems (11) and (12) can achieve projective synchronization.

Notably, the error system e(t) = (eT
1 (t), eT

2 (t), . . . , eT
N(t))

T such that e(t) = y(t)− αx(t)
can be extracted from relations (11) and (12) as follows

de(t)
dt

= −(D +D∗(t))e(t) + [A +A∗(t) +A2(t)] f (e(t))

+ [B + B∗(t) + B2(t)] f (e(t− τ0(t))) + Υ(t)

+ σW0Γe(t) + σW1Γe(t− τ1(t)) + U(t),

(18)

where Υ(t) = [A + A∗(t) + A2(t)] f (αx(t)) + [B + B∗(t) + B2(t)] f (αx(t − τ0(t)))+
α(D∗(t) − D(t))x(t) − α[A + A(t) + A1(t)] f (x(t)) − α[B + B(t) + B1(t)] f (x(t − τ0(t))),
f (e(t)) = f (y(t))− f (αx(t)), f (e(t− τ0(t))) = f (y(t))− f (αx(t− τ0(t))).

Remark 2. If α > 0, systems (11) and (12) can achieve synchronization; if α < 0, systems
(11) and (12) can achieve anti-synchronization; if α = 0, system (11) is stable to the origin state
asymptotically.

3. Fudamental Results

The current section presents the solution to the adaptive synchronization problem of
uncertain coupled MNNs under the nonlinear control and its application.

Before starting our fundamental outcomes, the controller is designed as follows

U(t) = −Re(t)−Ωsign(e(t)) (19)
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where R = diag(ri1, ri2, . . . , rin)(i = 1, 2, . . . , N) stands for the feedback controller matrix
that will be constructed. Ω = diag(wi1, wi2, . . . , win), rip and wip, p = 1, 2, . . . , n describe
positive constants, and

ωip =
n

∑
l=0

2Lα(|d́ip − d̀ip|+ |ápg − àpg|+ |b́pg − b̀pg|+ 2Z)M. (20)

Theorem 1. Consider Assumptions 1–4; systems (11) and (12) are projective synchronization with
the control law (19), if there exist constants θ1 > 0, θ2 > 0, such that

Λ = 2D− 2D̃ + θ1 AAT +
3L2

θ1
+ θ1||M1||2HT

1 H1 + θ1||A2||2HT
1 A2

+ θ2BBT + θ2||M2||2HT
2 H2 + θ2||B2||2HT

1 B2 + σ2ΓW1WT
1 ΓT

+ σW0Γ− 2R < 0.

(21)

Proof. Assume the subsequent nonnegative function for system (18)

V(t) = eT(t)e(t) +
1

1− τ

[ 3
θ2

L2
∫ t

t−τ0(t)
eT(s)e(s)ds

+
∫ t

t−τ1(t)
eT(s)e(s)ds

]
.

(22)

We make

V1(t) = eT(t)e(t),

V2(t) =
1

1− τ

[ 3
θ2

L2
∫ t

t−τ0(t)
eT(s)e(s)ds +

∫ t

t−τ1(t)
eT(s)e(s)ds

]
.

(23)

Based on the trajectory of e(t), we get the derivative of V1(t) as follows

V̇1(t) = 2eT(t)ė(t)

= 2eT(t)
[
− (D +D∗(t))e(t) + Υ(t) + A f (e(t)) +A∗(t) f (e(t))

+A2(t) f (e(t)) + B f (e(t− τ0(t))) + B∗(t) f (e(t− τ0(t)))

+ B2(t) f (e(t− τ0(t))) + σW0Γe(t) + σW1Γe(t− τ1(t))

− Re(t)−Ωsign(e(t))
]
.

(24)

According to Assumptions 1–3 and Lemma 1, we deduce

2eT(t)(D +D∗(t))e(t) ≤ 2(D− D̃)eT(t)e(t). (25)

2eT(t)[A +A∗(t) +A2(t)] f (e(t))

≤ θ1eT(t)AATe(t) +
1
θ1

f T(e(t)) f (e(t)) + θ1eT(t)A∗(t)(A∗(t))Te(t)

+
1
θ1

f T(e(t)) f (e(t)) + θ1eT(t)A2(t)∆AT
2 (t)e(t) +

1
θ1

f T(e(t)) f (e(t))

≤ θ1eT(t)AATe(t) +
3
θ1

f T(e(t)) f (e(t))

+ θ1eT(t)MT
1 ET

1 (t)HT
1 H1E1(t)M1(t)e(t) + θ1eT(t)µT

A(t)AT
2 A2µA(t)e(t)

≤ eT(t)
(
θ1eT(t)AAT +

3
θ1

L2 + θ1||M1||2HT
1 H1 + θ1 AT

2 A2
)
e(t).

(26)
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Similarly, we get

2eT(t)B f (e(t− τ0(t))) + 2eT(t)B∗(t) f (e(t− τ0(t)))

+ 2eT(t)B2(t) f (e(t− τ0(t)))

≤ eT(t)θ2eT(t)BBTe(t) + eT(t)θ2||M2||2HT
2 H2e(t)

+ eT(t)θ2BT
2 B2e(t) +

3
θ2

L2eT(t− τ0(t))e(t− τ0(t)).

(27)

By usint Young’s inequality and Lemma 1, we have

2eT(t)σW1Γe(t− τ1(t))
≤ σ2eT(t)ΓW1WT

1 e(t) + eT(t− τ1(t))e(t− τ1(t)).
(28)

For Υ(t), we have

|[A +A∗(t) +A2(t)] f (αx(t))|
≤ |A + Ã + Z|| f (αx(t))| ≤ αL(A + Ã + Z)M.

(29)

Then we get

|[B + B∗(t) + B2(t)] f (αx(t− τ(0)(t)))| ≤ αL(B + B̃ + Z)M,

α|(D∗(t)−D(t))x(t)| ≤ 2αD̃M,
(30)

and

α|[A +A(t) +A1(t)] f (x(t))| ≥ αL(A− Ã− Z)M,

α|[B + B(t) + B1(t)] f (αx(t− τ(0)(t)))| ≥ αL(B− B̃− Z)M.
(31)

Consider (18) and mentioned above, we conclude

Υ(t) ≤ 2αL(Ã + B̃D̃ + 2Z)M. (32)

Then, we take U(t) into account for deduce

2eT(t)U(t) = −2ReT(t)e(t)− 2eT(t)Ωsign(e(t)), (33)

then we make

2eT(t)(Υ(t)−Ωsign(e(t)))

≤ 2
n

∑
p=0
|eip(t)|

[
2αL

n

∑
g=0

(ãpg + b̃pg + d̃pg + 2Z)M−ωip

]
= 0.

(34)

Similarly, the derivative of V2(t) is described as

V̇2(t) =
3L2

(1− τ)θ2
eT(t)e(t)− eT(t− τ1(t))e(t− τ1(t))

− 3L2

θ2
eT(t− τ0(t))e(t− τ0(t))

(35)

Combing the mentioned above, we have

V̇(t) ≤ eT(t)Λe(t). (36)
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Accordin to Definition 1, we get V̇(t) ≤ eT(t)Λe(t) < 0, that is, we make Λ < 0 can
realize the projective synchronization among systems (12) and (13).

The proof is now completed.

Corollary 1. As a particular case, we consider that there are no uncertainties between systems (11)
and (12). Now, the error system is rewritten as follows.

de(t)
dt

= −(D +D∗(t))e(t) + U(t) + Υ(t) + [B + B∗(t)] f (e(t− τ0(t)))

+ [A +A∗(t)] f (e(t)) + σW0Γe(t) + σW1Γe(t− τ1(t)),
(37)

where Υ(t) = [A +A∗(t)] f (αx(t)) + [B + B∗(t)] f (αx(t− τ0(t))) + α(D∗(t)−D(t))x(t)−
α[A + A(t)] f (x(t)) − α[B + B(t)] f (x(t − τ0(t))), f (e(t)) = f (y(t)) − f (αx(t)), f (e(t −
τ0(t))) = f (y(t))− f (αx(t− τ0(t))).

Suppose Assumptions 1–4 hold, the systems systems (11) and (12) can achieve projec-
tive synchronization with contrl inputs, if the parameters are choosen as θ1 > 0, θ2 > 0,
which satisfy

Λ = 2D− 2D̃ + θ1 AAT +
2L2

θ1
+ θ1||M1||2HT

1 H1

+ θ2BBT + θ2||M2||2HT
2 H2 + σ2ΓW1WT

1 ΓT + σW0Γ− 2R < 0.
(38)

Proof. Consider the nonnegative function, for system (37), the Lyapunov function is pro-
posed as follows

V(t) = eT(t)e(t) +
1

1− τ

[ 2
θ2

L2
∫ t

t−τ0(t)
eT(s)e(s)ds

+
∫ t

t−τ1(t)
eT(s)e(s)ds

]
.

(39)

This proof can be obtained immediately by considering the uncertainties as zero in
Theorem 1. Hence, it is neglected here.

Remark 3. During the process of synchronization, the control with discontinuous characteristics
is essential to the converge of the error system. However, the stochastic disturbance from various
uncertainties inevitably disturbs the practical communication among subsystems of coupled neural
networks. Therefore, a simple adaptive method is proposed for the projective synchronization of the
system (11) based on the designed Lyapunov function.

Theorem 2. Consider Assumptions 1–4, systems (11) and (12) are projective synchronization with
the adaptive control approach (41), if there are constants θ1 > 0, θ2 > 0, such that

Λ = 2(
1

1− τ
+ LA − D) + 2σW0 + σ2ΓW1WT

1 ΓT +
3L2

θ1
+ θ1

[
AAT

+ ||M1||2 + ||M1||2HT
1 H1 + A∗(A∗)T]+ θ2

[
BBT + ||M2||2

+ ||M2||2HT
2 H2 + B∗(B∗)T] < 0,

(40)

and the adaptive controller (41) as follows.{
U(t) = −R(t)e(t)−Ω sign(e(t))
Ṙ(t) = R∗eT(t)e(t)

(41)

where R∗ is positive constant.
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Proof. The subsequent Lyapunov function is established for the error system

V(t) = eT(t)e(t) +
(R(t) + LA)

2

R∗
1

1− τ

[ 3
θ2

L2
∫ t

t−τ0(t)
eT(s)e(s)ds +

∫ t

t−τ1(t)
eT(s)e(s)ds

]
.

(42)

For the first of (42) , we have

V̇1(t) = 2eT(t)ė(t)

= 2eT(t)
[
− (D +D∗(t))e(t) + Υ(t) + A f (e(t)) +A∗(t) f (e(t))

+A2(t) f (e(t)) + B f (e(t− τ0(t))) + B∗(t) f (e(t− τ0(t)))

+ B2(t) f (e(t− τ0(t))) + σW0Γe(t) + σW1Γe(t− τ1(t))

− R(t)e(t)−Λsign(e(t))
]
+ 2(R(t) + LA)eT(t)e(t).

(43)

Similar to the proof of Theorem 1, combining with Definition 1, we can obtain

V̇(t) ≤ eT(t)Λe(t), (44)

and

Λ = 2(
1

1− τ
+ LA − D) + 2σW0 + σ2ΓW1WT

1 ΓT +
3L2

θ1
+ θ1

[
AAT

+ ||M1||2 + ||M1||2HT
1 H1 + A∗(A∗)T]+ θ2

[
BBT + ||M2||2

+ ||M2||2HT
2 H2 + B∗(B∗)T] < 0.

(45)

Accordingly, we conclude the gain matrix with adaptive controller (41) as follows

ωip =
n

∑
g=0

2Lα(|d́ip − d̀ip|+ |ápg − àpg|+ |b́pg − b̀pg|+ 2Z)M. (46)

That is, with the synchronization criteria (21) and (46), systems (11) and (12) can realize
the complete projective synchronization under the adaptive control approach (41).

The proof is now completed.

Theorem 3. Consider the encrypted chaotic sequences x(t) from drive system (11) are added to the
plaintexts r(t), then we get the transmitted signals s(t) as follows

s(t) = x(t) + r(t). (47)

Accordingly, the recovered signal is obtained based on decrypted chaotic y(t) from response
system (12) as the following

r∗(t) = s(t)− y(t). (48)

Then, an adaptive observer synchronization of coupled MNNs approach is designed as:

dx(t)
dt

= −(D +D(t))x(t) + [A +A(t) +A1(t)] f (x(t))

+ [B + B(t) + B1(t)] f (x(t− τ0(t)))

+ σW0Γx(t) + σW1Γx(t− τ1(t))

+ I(t) + k1(r(t)− w(t)), i = 1, 2, ..., N,

(49)
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and

dy(t)
dt

= −(D +D∗(t))y(t) + [A +A∗(t) +A2(t)] f (y(t))

+ [B + B∗(t) + B2(t)] f (y(t− τ0(t)))

+ σW0Γy(t) + σW1Γy(t− τ1(t))

+ I(t) + U∗(t), i = 1, 2, ..., N,

(50)

where ẇ(t) = k2(r(t)− w(t)).
The proposed adaptive controller U∗(t) as follows

U∗(t) = U(t) + k1(s(t)− y(t)− w∗(t))
U(t) = −Re(t)−Ω sign(e(t))
ẇ∗(t) = k2(s(t)− y(t)− w∗(t))

(51)

where k1, k2 are positive constants.

4. Numerical Simulations

The current section presents various numerical examples to evaluate the correctness
of the developed theoretical results.

Example 1. Projective synchronization.

Assume the three-dimensional coupled MNNs (11) and (12) consists three neural
networks and the edge weights are 1. The topology structure of the system is illustrated as
the coupling strength σ = 1, the inner connecting matrix Γ, coupled matrix W0, and W1 are
as follows

Γ =

 1 0 0
0 1 0
0 0 1

, W0 = W1 =

 −2 1 1
1 −1 0
1 0 −1

.

For systems (11) and (12), the time-varying delay are τ0(t) = et/(et + 1), and τ1(t) =
tanh(t). The initial values for drive system are φ = [−1.57, 0.99, 1.31, 0.37,−1.21, 0.36, 1.11,
− 1.28,−0.97]T ∈ C([−τ, 0], then we make the intial valued for response system are ϕ =
[0.78, 2.11,−0.58, 2.04,−0.89,−1.44,−1.67, 1.89,−0.78]T ∈ C([−τ, 0]. The active function is
f (x) = |x+1|−|x−1|

2 − 1.
Based on the mismatched parameters for coupled MNNs transmission method, we

make the following parameters

D =

 1.25 0.9 0.9
1.05 1.1 0.95
1.0 1.0 1.05

, D̃ =

 0.25 −0.1 −0.1
0.25 0.1 −0.05
0.1 0 0.15

.

A =

 −1.65 −2.6 2.75
1.1 1.6 −1.4
1.0 1.65 −1.2

, Ã =

 0.15 −0.2 −0.25
−0.2 −0.1 −0.2
−0.2 −0.35 −0.2

.

B =

 0.35 0.25 0.8
−3.2 −3.55 −1.7
−4.2 −2.9 0.75

, B̃ =

 0.05 −0.05 0.25
−0.2 0.25 0.2
0.1 0.1 −0.25

.

Taken into the following uncertainties into consideration, we have

A1(t) = 0.3cos(t)

 1 1 1
1 1 1
1 1 1

,B1(t) = −0.1sin(t− et

et + 1
)

 1 1 1
1 1 1
1 1 1

.
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A2(t) = −0.2sin(t)

 1 1 1
1 1 1
1 1 1

,B2(t) = 0.5cos(t− et

et + 1
)

 1 1 1
1 1 1
1 1 1

.

According to Assunptions 1 and 2, we make

M1 =

 0.3 0.4 0.3
0.4 0.2 0.4
0.4 0.7 0.4

,M2 =

 0.2 0.2 0.3
0.2 0.2 0.5
0.5 0.5 0.4

.

H1 = H2 =

 0.5 0 0
0 0.5 0
0 0 0.5

, L =

 1 0 0
0 1 0
0 0 1

.

For drive/response systems (11) and (12), we choose three different initial values to
illustrate the chaotic for such system, the dynamic trajectories of states without controller
are presented in Figure 3. Additionally, Figure 3c shows the input of the ineffective control,
which means the states of such system is chaotic under the ineffective control method, and
the system will be controlled under the suitabl control methods as following.

For Theorem 1, when projective factor α = 1, we have the complete stable of error
system. Then we set R = 10 as control gains for feedback controller (19), as illustrated in
Figure 4, such controller can guarantee the stability of the system. When projective factor
α = −1, we obtain the antisynchronization between systems (11) and (12), which shown in
Figure 4e.
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Figure 3. Dynamic trajectories of systems (11) and (12) without controller. (a) Chaotic sequences of
drive system (11); (b) States of error system (18); (c) Input of the ineffective control.
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Figure 4. Dynamic trajectories of systems (11) and (12). (a) Chaotic sequences of drive system (11);
(b) States of drive system (11) without controller; (c) States of response system (12) without controller;
(d) Synchronization error of system (18) under feedback controller (19) with α = 1; (e) Anti-synchronization
error of system(18) under feedback controller (19) with α = −1; (f) Adaptive-synchronization error of
system (18) under adaptive controller (41).

For Theorem 2, we verify the effect of adaptive controller for such systems. It can be
seen from Figure 4f, the rationality and effectiveness of the designed controller (41)

Remark 4. For controller, we define as follows

sign(e(t))


−1, if e(t) < 0,
0, if e(t) = 0,
1, if e(t) > 0,

(52)
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but the characteristic of sign(e(t)) will lead to a buffeting phenomenon; thus we replace e(t)
e(t)|+K (K =

0.001) to to alleviate this phenomenon. The Figure 5 illustrates the effective of such method.
Figure 6a–c demonstrate the different types of controllers under buffeting phenomenon due to the
sign(e(t)) factor, and Figure 6d–f show the corresponding controllers, which get away from the
buffeting under the influence of e(t)

e(t)|+K .
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Figure 5. Dynamic trajectories of systems (11) and (12) without uncertainties. (a) Chaotic sequences
of drive system (11); (b) States of drive system (11) without controller; (c) States of response system
(12) without controller; (d) Synchronization error of system (18) under feedback controller (19) with
α = 1; (e) Anti-synchronization error of system (18) under feedback controller (19) with α = −1;
(f) Adaptive-synchronization error of system (18) under adaptive controller (41).

For Corollary 1, we make the uncertainties as zeros, the states of (37) without control
are presented in Figure 5a–c. It is shown that the error system (18) converges to zero
gradually, which verify the Corollary 1 is reasonable.
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Figure 6. Inputs from different types controllers. (a) Feedback controller (19) with buffeting phe-
nomenon; (b) Feedback anti-controller with buffeting phenomenon; (c) Adaptive controller (41)
with buffeting phenomenon; (d) Feedback controller (19) without buffeting phenomenon; (e) Feed-
back anti-controller without buffeting phenomenon; (f) Adaptive controller (41) without buffeting
phenomenon.

Example 2. Secure communication.

The secure communication process of the proposed algorithm is illustrated in Figure 7.
We make the same parameters as Corollary 1. Two plaintexts are r1(t) = sin(t) and
r2(t) = cos(t). For the process of encryption, two encryption chaotic sequences x1(t) and
x2(t) are chosen from the drive system (11). We combine plaintext signals and chaotic
sequences, and the transmitted signals as shown in Figure 8. Consider the process of
the decryption, two decryption chaotic sequences y1(t) and y2(t) are chosen from the
corresponding response system (12). For the adaptive controller (51), we set k1 = 0.03,
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k2 = 15. Figure 9 illustrated the trajectories of plaintexts and decrypted signals. From
Figure 10, we notice the error between plaintexts and decrypted signals converge to zero,
which means the projective synchronization approach can solve the encryption/decryption
problem effective in secure communication.

Figure 7. Secure communication process of proposed algorithm.
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Figure 8. The transmitted signals.
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Figure 9. Trajectories of plaintexts and decrypted siganls under adaptive control approach.
(a) r1(t) = sin(t); (b) r2(t) = cos(t).
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Figure 10. The error between plaintexts and decrypted siganls.

Remark 5. Comparing with current literature [40,41] for secure communication, the parameters
in the proposed model, that is, W0 and W1 can not only demonstrate the special structure of
MNNs, but also can build the internal connection between the sufficient condition and the projective
synchronization approach under the multi-links coupled condition. Consequently, in terms of the
effect of secure communication (e.g., number of keys, types of encryption and decryption), the
proposed method is more flexible and expandable than other approaches.

5. Conclusions

This paper focused on the projective synchronization of coupled multi-links MNNs
with uncertainties and delays that is time-varying. Aiming at the issue of parameter
mismatch, the principle of extended comparison and a new approach were employed to
transform the proposed system into one with interval parameters. Furthermore, according
to the designed LKF, several sufficient criteria for projective synchronization were derived
under the nonlinear controller. Finally, the chaotic sequences of drive and response systems
were applied in signal encryption and decryption of secure communication. Based on the
concept of projective synchronization, the adaptive control mechanism has been proposed
to improve the effectiveness of signal decryption and decryption in secure communication.
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