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Abstract: We consider the first detection problem for a one-dimensional quantum walk with repeated
local measurements. Employing the stroboscopic projective measurement protocol and the renewal
equation, we study the effect of tunneling on the detection time. Specifically, we study the continuous-
time quantum walk on an infinite tight-binding lattice for two typical situations with physical reality.
The first is the case of a quantum walk in the absence of tunneling with a Gaussian initial state. The
second is the case where a barrier is added to the system. It is shown that the transition of the decay
behavior of the first detection probability can be observed by modifying the initial condition, and
in the presence of a tunneling barrier, the particle can be detected earlier than the impurity-free
lattice. This suggests that the evolution of the walker is expedited when it tunnels through the barrier
under repeated measurement. The first detection tunneling time is introduced to investigate the
tunneling time of the quantum walk. In addition, we analyze the critical transitive point by deriving
an asymptotic formula.

Keywords: continuous-time quantum walk; first detection time

1. Introduction

Nowadays, quantum walk (QW), a counterpart of the classical random walk, plays a
key role in many quantum problems [1–10]. The quantum walk, introduced by Aharonov
et al. [11], can be realized in two distinct ways: the continuous-time quantum walk
(CTQW) [12–14] and the discrete-time quantum walk (DTQW) [4,15–17]. In the contin-
uous case, the evolution of a particle is described by the Schrödinger equation and the
Hamiltonian of a system is related to the transition matrix of graphs which represents
the transition rates of the corresponding continuous-time random walk. In the discrete-
time scenario, a unitary quantum coin operator is used to determine the direction of the
particle’s movement (e.g., left or right in a one-dimension lattice system), in addition to
a shift operator which describes the movement of the quantum walker. Studies of quan-
tum walks have demonstrated that these two approaches display the same qualitative
behaviors [4,14,18]. The quantum algorithm based on a CTQW is exponentially faster than
the classical algorithm of a classical random walk for the “glued trees” graph [14]. The
quantum search algorithm based on the DTQW has a quadratic speed-up O(

√
N) on a

database of N items [4]. Recently, different experimental implementations of quantum
walks have been performed by photons in waveguide, nuclear magnetic resonance, and
trapped atom systems [19–21].

In consideration of the acceleration property of the quantum walk in quantum al-
gorithms, quantum walks have drawn considerable attention, and much progress has
been achieved on first detection problems [22–33]. Krovi et al. defined the hitting time by
analogy to a classical random walk for a quantum walk on a hypercube [23,25]. Several
studies [27,29,34] have derived a quantum renewal equation for the first detection time
which is similar to the classical renewal equation and discussed dark states, uncertainty
principles, and transition times on various graphs. For example, in a closed ring system
with a repeated measurement interval τ the mean first detection return time is 〈n〉τ, with
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〈n〉 provided by the number of distinct energy levels of the system. Thiel et al. studied the
return and arrival problems of the first detection probability on the infinite line, where the
behavior is highly sensitive to the distance between the detection site and the initial local-
ized particle. Beyond all expectations, the total detection probability becomes independent
of the distance when it is large [27,32]. Considerable work on first detection probability
in quantum walks has investigated a single particle in systems with an absence of defects.
Unlike DTQW, which can perform a biased walk, a CTQW evolves as a ballistic spread
to both sides. Hence, we would like to adopt a Gaussian wave packet to dominate the
direction and the velocity of the initial condition. Moreover, the systems realizing the
quantum walk may comprise defects or disorder in realistic experimental realization. Thus,
quantum walks in impure systems should be addressed as well.

In this paper, we consider a quantum walk on a one-dimension lattice under tight
binding approximation. We investigate the effect of the initial Gaussian wavepacket with
some initial mean momentum, rather than the delta-function localized at a given site,
as considered previously [32]. We find that the long time behavior of the first detection
probability with a broad initial state decays monotonically, contrary to the case of the
quantum point source, where it decays with superimposed oscillations. We derive an
asymptotic formula to describe the relation between the width of the initial wave packet
and the oscillation of the first detection probability. The initial superposition lessens the
influence of the sampling time on the total detection probability. When the wave packet
is wide, the exceptional sampling time remains, and the total detection probability is a
smooth function relative to the sampling time rather than oscillating. This provides more
options in terms of the sampling time used to detect the particle.

We then study the system in the presence of a tunneling center on one lattice point,
that is, we consider the effects of a localized impurity on the first detection probability.
As Figure 1 shows, the impurity is modeled with a delta-like potential barrier, with a
height ε (units energy). We consider an incoming initial Gaussian wave packet with
a mean momentum traveling from left to right, setting the detector on the right of the
barrier. By employing the stroboscopic detection protocol [27], we study the first detection
probability and the total probability with different initial waves. In addition, we introduce
the tunneling time in the first detection time scenario to present the tunneling time and
multiple-defects tunneling. We find that the speed inside the barrier is faster than the speed
outside the barrier, that is, the evolution can be accelerated by the barriers but the detection
probability becomes lower. For the first detection case, the measurements play a crucial
role because of the backfire and modify the unitary evolution before the final successful
detection.

Figure 1. (a) The stroboscopic detection protocol. The particle propagates freely between two adjacent
measurements, and the detection time interval is τ. (b) The lattice system for the quantum walk. The
initial condition |ψin〉 is a wave packet, and we measure whether the particles arrive at the destination
by a projective operator D̂ = |ψdet〉〈ψdet|. The dashed line denotes a barrier located at a lattice. The
cases with and without a barrier are discussed in Sections 2.2 and 2.3, respectively.
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The rest of this paper is structured as follows. In Section 2, we introduce the basic
theoretical framework of the CTQW and the measurement protocol. The first detection
probability of the Gaussian wave quantum walk is derived. The quantum walk in the
system with a barrier is provided in this section as well. Section 3 shows the numerical
results of the first detection problems in the presence and absence of tunneling. In Section 4,
we present the asymptotic result of the first detection probability. Section 5 closes the paper
with our concluding remarks.

2. Theoretical Framework
2.1. Stroboscopic Protocol

We first recall the basics of the stroboscopic detection protocol. The CTQW, a quantum
analogy of the classical continuous-time random walk, replaces the classical vector of
probabilities with a vector of probability amplitudes (a state vector) and the transition
matrix with a unitary matrix. We consider a quantum walk on a one-dimension tight-
binding model with hopping to the nearest neighbor sites only. Its propagation can be
described by the Schrödinger equation, and the unitary U(t) is provided by the following
equation (we set h̄ = 1):

U(t) = e−iHt. (1)

The Hamiltonian H is defined as [1,8]

Hjj′ =

{
−γ, if j = j′ ± 1 ,
0, otherwise ,

(2)

where the integer indices j and j′ denote the lattice coordinates and γ is the hopping rate.
The state of the system in the absence of repeated measurements at time t is

|ψ(t)〉 = U(t)|ψin〉, (3)

with the initial state |ψin〉.
We define the projection operator, corresponding to a measurement to detect the

particle, as follows:
D̂ = |ψdet〉〈ψdet|. (4)

The probability of detecting the particle is

p1 = |〈ψdet|ψ〉|2 = 〈ψ|ψdet〉〈ψdet|ψ〉 = 〈ψ|D̂|ψ〉; (5)

correspondingly, the probability of non-detecting the particle is p′ = 1− p1. Based on the
projection measurement postulates of quantum mechanics [35], the state of the system after
a failed detection is immediately the normalized projection, namely,

|ψ′〉 = (1− D̂)|ψ〉√
1− p1

. (6)

The primes in p′ and |ψ′〉 represent other variables rather than the derivative. As shown in
Figure 1, we consider the stroboscopic measurement protocol [24,27,29]; a sequence of mea-
surements is described by employing the same projector with the time interval τ between
measurements. The probability of detection after the preceding (n− 1) measurements has
failed is

pn =
|〈ψdet|[U(τ)(1− D̂)]n−1U(τ)|ψin〉|2

∏n−1
m=1(1− pm)

. (7)
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Hence, the probability of first detection after n attempts is [24,27]

Fn = (1− p1)(1− p2)(1− p3) · · · (1− pn−1)pn

= |〈ψdet|[U(τ)(1− D̂)]n−1U(τ)|ψin〉|2.
(8)

It is convenient to define the amplitude of the first detection as [24,27,32]

ϕn = 〈ψdet|[U(τ)(1− D̂)]n−1U(τ)|ψin〉, (9)

and we can show that ϕn satisfies the following quantum renewal equation [27]:

ϕn = 〈ψdet|U(nτ)|ψin〉 −
n−1

∑
m=1

ϕm〈ψdet|U[(n−m)τ]|ψdet〉. (10)

In Equation (10), the first term describes the direct transition from the initial location to the
detector, and the second term the paths that arrive at the detector at the mth measurement
and then return in the remaining “time” (n − m). Equation (10) can be solved with a
generating function technique and convolution theorem [36].

Correspondingly, the total probability that the particle can be detected is

Ptot = ∑
n

Fn = |ϕn|2. (11)

To solve the quantum renewal equation Equation (10), as a useful technique for dealing
with discrete random events in time, we introduce the generating function here, which may
be considered as the discrete analogue of the Laplace transform [8,29,37,38]:

ϕ̂(z) =
∞

∑
n=1

zn ϕn, (12)

where z is an auxiliary variable. Using the convoluting quantum renewal equation of
Equation (10), we can obtain [27,29]

ϕ̂(z) =
〈ψdet|Û(z)|ψin〉

1 + 〈ψdet|Û(z)|ψdet〉
, (13)

where

Û(z) =
∞

∑
n=1

znUn(τ) =
∞

∑
n=1

zne−iHnτ . (14)

After ϕ̂(z) has been obtained, we can find ϕn by the inverse transformation

ϕn =
1
n!

dn

dzn ϕ̂(z)|z=0, (15)

or by

ϕn =
1

2πi

∮
C

ϕ̂(z)z−n−1dz, (16)

where C is a counterclockwise contour around the origin and is within the radius of
convergence of the generating function ϕ̂(z).

2.2. Gaussian Wave Packet Quantum Walk

For the tight-binding model, after considering Equation (2), we have the following
Hamiltonian [27,39]:

H = −γ ∑
j
(|j〉〈j + 1|+ |j + 1〉〈j|), (17)
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where |j〉 represents the state localized at site j. In addition, |j〉 is part of a complete
orthonormalized basis set, namely, 〈j′|j〉 = δj′ j and ∑j |j〉〈j| = 1. The set of sites {j} forms
an infinite lattice. We assume the hopping rate γ = 1 in the remainder of this work for the
sake of simplicity. The eigenvalues of the tight-binding model Hamiltonian of Equation (17)
are [27,32,39]

Ek = −2 cos k (18)

with eigenstates

|Ek〉 =
1√
2π

∑
j

eikj|j〉, (19)

where the wave vector is −π ≤ k ≤ π in the first Brillouin zone.
To demonstrate the quantum walk of a Gaussian wave packet, we suppose the nor-

malized initial wave function can be expressed as

|ψin〉 = ∑
j

cj|j〉, (20)

where, after supposing the mean position of the wave packet to be jc and its carrying lattice
momentum to be k0, the weights can be written as [40]

cj =
1√
A

e−ik0 je−
(j−jc)2

4σ2 (21)

with the normalized constant A = ∑j e−
j2

2σ2 , and σ as the width of the Gaussian wave
packet.

By employing the fact of the matrix elements of the propagator [27,32]

〈j′|U(nτ)|j〉 = 1
2π

∫ π

−π
eik(j′−j)e−inτEk/h̄dk

= ij′−j Jj′−j(2nτ),
(22)

we obtain the generating function of the first detection amplitude for a Gaussian wave
quantum walk

ϕ̂(z) =

∞
∑

n=1
zn

∞
∑

j=−∞
ijd−jcj Jjd−j(2nτ)

1 +
∞
∑

n=1
zn J0(2nτ)

, (23)

where i =
√
−1 as usual and Jµ(x) is the Bessel function of the first kind of order µ. The

generating function of the first detection amplitude of the Gaussian wave quantum walk
is the sum of the packet’s components with different weights, which are determined by
the initial Gaussian wave packet. This is clearly the superposition principle at work. The
order of the Bessel function in the numerator is only related to the distance between the
detection site and the initial position of every component. Using Equations (11) and (15),
we can obtain the first detection probability of the Gaussian wave packet quantum walk.

2.3. Quantum Walk with Tunneling

In this subsection, we consider the tight-binding model in which one of the diagonal
matrix elements is equal to ε; as a consequence, the Hamiltonian can be defined as [39,41]

H = H0 + H1 = −∑
j
(|j〉〈j + 1|+ |j + 1〉〈j|) + ε|0〉〈0|, (24)

where the barrier is located at site j = 0. In this paper, we assume that the magnitude
of the peculiar ingredient ε is positive, meaning that the quantum walker may reflect or
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transmit when it impinges the barrier. In order to calculate the first detection probability, it
is necessary to obtain the propagator. Using the theory of the Green function [41], which is
shown in Appendix A.1 for a tight-binding Hamiltonian with a single impurity, we can
obtain the matrix elements of the propagator as follows:

〈j′|U(nτ)|j〉 = ij′−j Jj′−j(2nτ) + e−inτ
√

ε2+4 2−|j
′ |−|j||ε|(ε−

√
ε2 + 4)|j

′ |+|j|
√

ε2 + 4
+

1
π

∫ π

0
dk

(
ei2nτ cos k iεe−ik|j|

2 sin k− iε
cos kj′ +

−iεeik|j′ |

2 sin k + iε
cos kj +

ε2eik(|j′ |−|j|)

4 sin2 k + ε2

)
.

(25)

Equation (25) is composed of the bound state ingredient and the scattered state ingre-
dient. Employing the definition of the generation function Equation (13) and the inverse
transformation Equation (15), we can obtain the first detection probability Fn. We calculated
the integral in Equation (25) and the series of the inverse transformation using Mathematica.

3. Numerical Results

In this section, we show the numerical results of the models discussed in Section 2.
We consider the quantum walk with a Gaussian wave packet which is centered at site jc
as an initial condition. The detection state is |ψdet〉 = |jd〉. In addition, we investigate the
tunneling time based on the first detection probability with an impurity.

3.1. Gaussian Wave Packet Quantum Walk with ε = 0

We consider the first detection probability distribution and the total detection proba-
bility in this subsection. Figure 2 demonstrates the first detection probability with different
widths σ of the Gaussian initial wave packet; the circles, squares, and crosses correspond to
the results of σ = 1/3, 1, 3, respectively. When the width of the Gaussian wave packet σ is
small, the behavior of the probability Fn is similar to the case of a single source exhibiting a
power-law decay superimposed with oscillations [27,32]. By increasing the width of the
initial wave packet, we thereby reduce its spread in terms of its momentum, and the decay
of the first detection probability changes from oscillatory to monotonic. In contrast to the
classical continuous-time random walk, although both decay monotonically, the rates of
power-law decay differ, with values of−3 (quantum) and−3/2 (classical), respectively [32].
In order to depict the velocity of the walker, we employ the incident time tin = ninτ when
the maximal peak of the first detected probabilities appears. When the initial condition is a
localized state, we find that the incident time is nin = |jd − jc|/vgτ, where vg denotes the
maximum group velocity and vg = max|E′k| = 2 [27,32]. As shown in Figure 2, a similar
behavior is found for σ = 1/3 (circles). For the wide wave packet, the transport time
tin is proportional to the initial fluctuation of the momentum, i.e., the width of the wave
packet in wave vector space can be obtained by the Fourier transformation or Heisenberg’s
uncertainty principle, and is no longer the ballistic spread exhibited by an initial localized
state.

In Figure 3, we display the total detection probability for different widths of wave
packets. The total probability is less than unity in this infinite lattice system because there is
a portion of the wave function propagating in the direction opposite to that of the detection
site. This is very different from the classical case, in which the motion is diffusive and
recurrent, and the walker will eventually be found. The probability in the vicinity of the
origin of the sampling time remains nearly zero, the evolution of walker being impeded
by the high frequency repeated measurements, that is, the Zeno effect [27,42,43]. The
exceptional sampling time τ satisfies the relation [27]

∆Eτ = 2πm, (26)

where ∆E = 4 is the width of the energy band in Equation (18), m is an integer, and
the derivative of the probability is not continuous. There is a jump in the vicinity of the
exceptional sampling time. Compared to the single localized initial condition in [32] or
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the σ = 1/3 scenario in Figure 3, the total probability increases monotonically between
the adjacent critical sampling times. As the width widens, the highest peak of the total
detection probability is not always at τ = π/2, and the optimal sampling time is not
unique.
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Figure 2. The probabilities of the first detection for different initial conditions (log−log). The initial
condition is a Gaussian wave packet which centered at jc = −10, and the detection state is |0〉. The
sampling time is τ = 1 and the momentum k0 = 0. The circles, squares, and crosses numerically
obtained by Equation (23) represent the results of the width of the Gaussian wave packet σ = 1/3, 1, 3,
respectively. Generally, Fn ∝ n−3 with superimposed oscillations, the latter vanish when the initial
width of the wave packet σ is large.
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Figure 3. The plot of the total detection probability. The horizontal ordinate τ is the sampling time
and the vertical coordinate represents the total probability given by Equation (11). For small τ, we
have the Zeno limit, namely, the particle cannot be detected at all. The non-analytical behaviour at
the sampling time provided by Equation (26) is visible with a finite width of the packet.

3.2. Quantum Walk with an Impurity

In this subsection, we present the numerical results of the first detection probability
and the total detection probability of the system with a single impurity.

First, we consider the relationship between the sampling time and the total detection
probability. As shown in Figure 4, the highest peak appears immediately after raising the
sampling time, and the sampling time of the peak is much smaller than the case without
the barrier, namely τ = π

2 . In presence of a barrier, the pedestrian will pass through the
barrier or be reflected by the barrier. Except for the left-moving initial wave, the reflected
waves have no contributions to the total probability. When the sampling time τ > π/2,
the total probability oscillates without monotonic behaviour and there are no conspicuous
peaks.

Figure 5 shows the probability distribution Fn as a function of the attempted number
of first detection for the transition problem in the presence of a barrier located at site
j = 0. The behaviors of σ = 1, 3, which are not shown in this figure, are similar to the case
σ = 5 with oscillations. In order to show different behaviors, the other two parameters are
selected for presentation in Figure 5. The transport velocity is same as in the impurity-free
case, that is, the wider packet propagates faster. There are many peaks resulting from the
barrier and the successive measurements, and the different components of wave packet
cross the barrier with different probabilities. The probability of wide wave packet decays
monotonously between the adjacent peaks in comparison to the narrow initial condition.
Because the narrow initial wave contains more components of wavenumbers, there is more
interference with other components after passing the barrier.



Entropy 2023, 25, 1231 9 of 17

0 /2 3 /2 2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 4. The total detection probability for different widths of the wave packet. The initial condition
is a Gaussian wave packet centered at jc = −10. The detection site is located at jd = 20, and the
magnitude of the barrier is ε = 2.

10
3

10
4

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

=5

=10

=20

Figure 5. The probability distribution Fn of first detection in the nth attempt for the different widths
of the wave packet (log−log). The initial condition is a Gaussian wave packet centered at jc = −100,
the wave vector is k0 = π/8, and the sampling time is τ = 0.1. We measured the particles at jd = 100,
and the magnitude of the barrier is ε = 2.

3.3. Tunneling Time on First Detection Probability

In the presence of a barrier, the time required for a wave packet to traverse the barrier
is a well-studied problem, though not free of controversies [14,44–54]. The analysis of
tunneling time is currently debated because of the unusual and subtle role that time plays
in quantum mechanics. In the community of traditional quantum mechanics, time is
thought of as a nonquantum ingredient of quantum mechanics. Previously, the tunneling
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time has been defined in different ways, such as phase time (or group delay) [49–51], dwell
time [51–53], and Larmor time [53,54].

Here, we introduce the first detection tunneling time, defined with the aforementioned
stroboscopic protocol, in analogy with the phase time, which can be calculated theoretically
by the frequency derivative of the transmission phase change or measured experimentally
at the time instant when the peak of a tunneling wave packet impinges and transmits the
barrier.

Corresponding to the phase time, we can utilize the most probable first detection time
to calculate the tunneling time; we measure the walker at the detected site, rather than the
boundary of the barrier. Replacing the single localized initial condition with a broad wave
packet |ψin〉 that is sharply peaked in the momentum space, we represent a particle with
momentum p = h̄k0 and velocity v = h̄k0/m. The distribution can be written as

|ψin〉 =
1√
A

eik0(j−jc)e−
(j−jc)2

4σ2 , (27)

where the center of the wave packet is located at 〈j〉 = jc and the width is ∆j = σ. The
initial wave packet in the momentum representation is the Fourier transform of the position
representation, that is, the wave function in the momentum representation is Gaussian as
well. The corresponding standard deviation is ∆k = 1/σ, and the average momentum is
〈k〉 = k0.

Based on the above considerations, we can investigate the tunneling time by comparing
the incident time of the barrier case to the impurity-free system. Thus, the tunneling time is
provided by

ttunnel = |∆nτ| = |n f ree
in − nbarrier

in |τ, (28)

where n f ree
in is the incident time in the absence of a barrier and nbarrier

in denotes the incident
time in the presence of the barrier. As demonstrated in Figure 6, we choose a wide initial
wave packet to ensure that the wave vector spread of the wave packet is narrow, and we
can obtain the tunneling time. A walker carrying more momentum takes the same time to
reach the detection site as one in the circumstance with no barrier. For a walker with less
momentum, the peak of the tunneling wave packet arrives at the detection site earlier than
normal free propagation. However, this seemingly anomalous behavior does not mean
a violation of Einstein causality. The so-called “phase time” cannot be regarded as the
velocity of the propagation of the tunneling wave, as it arises from the head start of the
initial broad wave.

Furthermore, we can extend the tunneling problem to multiple defects by simulating
the first detection problem of the quantum walk. In this multiple defects scenario, the
system can be expressed as

H = −∑
j
(|j〉〈j + 1|+ |j + 1〉〈j|) +

`−1

∑
=0

ε|〉〈|, (29)

where  is the location of the defect and ` is interpreted as the spread of the barrier. The
probability of the walker being detected at a specific point for the first time is determined
by the Schrödinger equation and the quantum renewal equation. As shown in Figure 7, the
first detection probabilities are plotted for a variety of values of `. Using the same method,
we compare the peak of the first detection probability distribution. For the scenario with
multiple defects, it takes more time for the walker to cross the barrier. However, after the
walker is successfully detected, the mean first passage time is less than with fewer defects.
In a sense, the defects give rise to an acceleration of the evolution, that is, the speed inside
the barrier is faster than the speed outside the barrier. In the meantime, the length and
strength of barriers enhance the acceleration effect. However, the first detection probability
would be reduced by broad barriers. This represents a trade-off between acceleration of
evolution and detection.
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Figure 6. The tunneling time of a quantum walk as a function of k0. The wide Gaussian wave packet
(σ = 20) is centered at jc = −100, the magnitudes of the barrier are ε = 3, corresponding to the
orange triangles, and ε = 5, corresponding to the purple diamonds, and the sampling time τ = 0.1.
We measure the walker at jd = 100. The tunneling time is provided by Equation (28).

Figure 7. The tunneling time of a quantum walk as a function of the number of the defects, denoted
by ` (log−log). The parameters of the simulation were as follows: the spread of the initial wave packet
was 10, the distance between the detector and the starting point was 200, the projective measurement
was operated at jd = 100, and the magnitude of the defects was 3.

4. Asymptotic Results

In the case of ε = 0, the decays of the long time limit of the detection probability
show different behaviors for different initial conditions: the oscillating probability, which
generally emerges in quantum mechanics, and the monotonous probability, which occurs
in classical mechanics (see Figure 2).
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In this section, we address the asymptotic formula to discuss when the first detection
probability oscillates for a small sampling time τ. Previously, Schrödinger studied the first
arrival time of Brownian motion, namely, the limit of the classical random walk [55]. He
demonstrated that the probability density function was a fat tail and decayed with the
power law −3/2. In [32], the large n limit of ϕn was obtained for a single source, namely,
an initial condition on one node of the graph. The behavior of ϕn exhibits a power-law
decay with oscillations, which is quite different from its classical counterpart, which decays
monotonically.

In Equation (23), the Bessel function can be expanded as an asymptotic formula for
large arguments [36]:

Jµ(x) ∼
√

2
πx

cos(x− µπ

2
− π

4
). (30)

Due to the linearity of quantum mechanics, all we need to do to consider a Gaussian
initial condition is to sum over the different amplitudes with the weights cj. Therefore, the
amplitude of the first detection for the Gaussian initial wave packet is

ϕn ∼∑
j

cj

√
τ

πn3

{
ei(2nτ+ π

4 )

(
1 + δjd−j,0

2
− i

π

∫ π

0
dk

sin2 k(jd−j)
2

tan(2τ sin2 k
2 )

)

+e−i(2nτ+ π
4 )

(
(−1)jd−j + δjd−j,0

2
+

i
2π

∫ π

0
dk

(−1)jd−j − cos k(jd − j)
tan[τ(1 + cos k)]

)}
.

(31)

Notice the n−3/2 over all decay of the first detection amplitude, and recall that this is
similar to the classical result. When squared, Fn will be proportional to n−3, with possible
superpositions of oscillations which depend on parameters such as the width. Then,
Equation (31) can be abbreviated with the auxiliary function r(ν, τ) and β(ν, τ) [32]:

ϕn ∼
√

4τ

πn3 ∑
j

cjr(jd − j, τ)trigjd−j

[
2nτ +

π

4
+ β(jd − j, τ)

]
. (32)

The auxiliary function satisfies the relation [32]

r(ν, τ)eiβ(ν,τ) =
1 + δν,0

2
− i

π

∫ π

0

sin2(νk/2)
tan[2τ sin2(k/2)]

dk, (33)

and the trigonometric function is

trigµ(x) =
eix + (−1)µe−ix

2
. (34)

In the limit of small sampling time τ [32],

r(µ, τ)eiβ(µ,τ) ∼ −i
µ

2τ
, (35)

thus, the first detection amplitude can be written as

ϕn ∼
√

1
4πτn3 ∑

j
icj(jd − j)(−1)jd−je−i(2τn+ π

4 ) −
√

1
4πτn3 ∑

j
icj(jd − j)ei(2τn+ π

4 ). (36)

Note that the periodicity is determined by 2τn ' 2π. We assume that the detection site
and the center of the initial wave packet are situated on even lattice points, and find
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ϕn ∼
√

1
πτn3

[
∑
jeven

cj(jd − j) sin
(

2τn +
π

4

)
− i ∑

jodd

cj(jd − j) cos
(

2τn +
π

4

)]

=

√
1

πτn3

[
∑
jeven

1√
A

e
−(j−jc)2

4σ2 (jd − j) sin
(

2τn +
π

4

)
−∑

jodd

i√
A

e
−(j−jc)2

4σ2 (jd − j) cos
(

2τn +
π

4

)]
.

(37)

Due to the symmetry of the wave packet, the prefactor of the trigonometric function of the
odd part can be written as

∑
jodd

cj(jd − j) = ∑
κ=1,3,5,···

1√
A

e
−κ2

4σ2 (2jd − 2jc) =
1√
A
(jd − jc)ϑ2(0, e−

1
σ2 ), (38)

and the even part is

∑
jeven

cj(jd − j) = ∑
λ=0,2,4,···

[
1√
A

e−
λ2

4σ2 (2jd − 2jc)
]
− 1√

A
(jd − jc)

=
1√
A
(jd − jc)ϑ3(0, e−

1
σ2 ),

(39)

where ϑν(z, q) is the Elliptic Theta function [56].
When σ < 1, the second-order Elliptic Theta function is not equal to the third-order one,

and the trigonometric function in the first detection probability stays alive; consequently,
Fn decays with added oscillations when σ < 1.

When σ ≥ 1, the two elliptic functions behave similarly, that is,

∑
jodd

cj(jd − j) = ∑
jeven

cj(jd − j). (40)

Thus, the trigonometric function vanishes and the first detection amplitude is

ϕn ∼
√

1
πτn3

1√
A
(jd − jc)ϑ3(0, e−

1
σ2 )ei(2τn− π

4 ). (41)

In the limit of large n, the first detection probability for σ ≥ 1 is

Fn ∼ |ϕn|2 =
(jd − jc)2ϑ3(0, e−1/σ2

)2

πτn3 A

=
(jd − jc)2ϑ3(0, e−1/σ2

)2
√

2π3στn3ϑ3(−jcπ, e−2σ2π2)
. (42)

In Figure 8, the asymptotic Equation (42) fits well with the exact result, and the first
detection probability decays monotonically with the power-law−3. The prefactor is related
to the width of the wave packet σ and the distance between the center of the wave packet
jc and the detection site jd. When the width is larger than the lattice constant, which in this
paper is 1, the probability decays monotonically with the power-law −3 in the absence of
oscillations present for narrower initial states.
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Figure 8. The plot of the asymptotic result of Equation (42) (log−log). The width of the Gaussian wave
is σ = 1, the detection state |ψdet〉 = |90〉, the initial state is centred at jc = −10, and the sampling time
τ = 0.2.

5. Conclusions and Discussions

We have investigated the first detection problems of a continuous-time quantum
walk on an infinite (im)pure lattice under the repeated measurement. The impurity in
the lattice is described as one of the diagonal elements of the Hamiltonian. We show the
relation between the decay of the first detection probability and the width of the initial
Gaussian wave. We found that the distribution of the first detection probability decays
while oscillating with the power-law −3 for the initial narrow wave, i.e., σ < 1. Conversely,
the distribution decays monotonically, as Schrödinger described when he considered the
first passage time of the Brownian motion. In the limit of large n, as Equation (42) shows,
the probability is sensitive to the distance between the detection site jd and the center of the
initial wave packet jc. For an impure lattice, the walker tunnels through the barrier with
different transmission probabilities which depend on the components of the momentum
of the initial wave. For large σ, i.e., corresponding to a single ingredient in momentum
space, the probability keeps decaying monotonically when the walker goes back and forth
between the barrier and the detection site. By comparing the incident time tin between the
barrier case and the pure system, we found that the incident time in the impure system is
smaller than the pure one, and is strongly sensitive to the width of the wave. In other words,
the evolution of the walker speeds up. Furthermore, the total probability of detection Ptot
is always less than unity, and there exits an optimal value in the vicinity of the critical
sampling time τ = mτ/2. However, the critical point is transformed by the presence of the
barrier and the period is destroyed.

By tuning the width of the initial wave and the distance between the detector and the
center of the wave, it is possible to succeed in detecting the particle more efficiently. Defects
and the nature of the materials can accelerate successful detection or reduce the probability
of successful detection. We hope that our results for the stroboscopically probed system
can help in optimizing the read-out of the state of a quantum computer.
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Appendix A

Appendix A.1

In this appendix, we present the Green Function for a tight-binding Hamiltonian with
a single impurity. Here, the Hamiltonian of the impurity system is

H = H0 + H1

= −∑
j
(|j〉〈j + 1|+ |j + 1〉〈j|) + ε|0〉〈0|, (A1)

while the eigenvalues and eigenfuctions of H0 have been exhibited in the main text,

Ek = −2 cos k, |ψk〉 =
1√
2π

∑
j

eikj|j〉. (A2)

The Green function corresponding to the Schrödinger equation satisfies

[E− H(l)]G(l, l′; E) = δ(l − l′), (A3)

and the solution of the aforesaid equation is

G = G0 + G0TG0

= G0 + G0|0〉
ε

1− εG0(0, 0)
〈0|G0,

(A4)

where G0(0, 0) = 〈0|G0|0〉, G0 is the Green function of the non-perturbed Hamiltonian. The
poles of G correspond to the discrete eigenvalues (bound state) of H. In the present case,
the eigenvalue of the bound state is provided by

G0(0, 0, Eb) =
1
ε

, (A5)

and the bound state is provided by

|ψb〉 = ∑
j

bj|j〉; bj =
G0(j, 0, Eb)√
−G′0(0, 0, Eb)

, (A6)
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where the prime denotes differentiation with respect to E and the Green function is as
follows:

G0(l, m, z) =

(
− z

2 +
√

z2

4 − 1
)|l−m|

√
z2 − 4

. (A7)

The eigenstates in the energy band are scattering states (|ψs〉), and can be written as

|ψs〉 = |ψk〉+ G+
0 (Ek)T+(Ek)|ψk〉. (A8)

Therefore, the j-site amplitude of ψs is

〈j|ψs〉 = 〈j|ψk〉+
〈j|G+

0 (Ek)|0〉ε〈0|ψk〉
1− εG+

0 (0, 0, Ek)
, (A9)

where the matrix elements are

〈l|G+
0 (Ek)|m〉 =

−i√
4− E2

k

−Ek
2

+ i

√
1−

E2
k

4

|l−m|

. (A10)

With the eigenfunctions from Equations (A6) and (A9), we can obtain the propagator
〈j2|U(nτ)|j1〉 as in the main text.
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