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Abstract: We consider the problem of multi-access cache-aided multi-user Private Information
Retrieval (MACAMuPIR) with cyclic wraparound cache access. In MACAMuPIR, several files are
replicated across multiple servers. There are multiple users and multiple cache nodes. When the
network is not congested, servers fill these cache nodes with the content of the files. During peak
network traffic, each user accesses several cache nodes. Every user wants to retrieve one file from
the servers but does not want the servers to know their demands. This paper proposes a private
retrieval scheme for MACAMuPIR and characterizes the transmission cost for multi-access systems
with cyclic wraparound cache access. We formalize privacy and correctness constraints and analyze
transmission costs. The scheme outperforms the previously known dedicated cache setup, offering
efficient and private retrieval. Results demonstrate the effectiveness of the multi-access approach.
Our research contributes an efficient, privacy-preserving solution for multi-user PIR, advancing
secure data retrieval from distributed servers.

Keywords: coded caching; private information retrieval; multi-access caches

1. Introduction

The problem of Private Information Retrieval (PIR), initially introduced in Chor et al.
(1995) [1], revolves around the confidential retrieval of data from distributed servers. Users
aim to retrieve a specific file from a collection of files stored across these servers while
keeping the servers unaware of the file’s identity. Sun et al. (2017) [2] present a PIR
scheme that minimizes the user’s download cost. Subsequently, the PIR problem has been
addressed in various other settings. For instance, in [3], PIR is studied with colluding
servers, and in [4], weakly private information retrieval is studied where some information
about the user demand is allowed to be known to the servers. In [5], the user is allowed to
have files stored as side information.

Currently, PIR is being explored in conjunction with coded caching for content delivery
scenarios. As first proposed in [6], the coded caching problem includes a number of users,
each with their own cache memories and a single server hosting a number of files. Users
fill their caches while the network is not busy, and during periods of high network traffic,
they request files from the server. The server broadcasts coded transmissions that benefit
multiple users simultaneously. Users can use the content in their caches to decode the files
they requested after receiving the broadcasts. A cache-aided PIR technique was recently
put up by Caire et al. [7], in which many users, each with access to their own dedicated
caches, attempt to privately recover files from non-colluding servers. The advantages of
coded caching from [2,6] are combined to provide an order-optimal MuPIR strategy.

In this paper, we use a variation of coded caching known as multi-access coded caching
in PIR. In multi-access coded caching, users do not have access to dedicated caches. Instead,
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there are helper cache nodes, which are accessed by the users. Multiple users can access one
helper cache, and a user can access multiple caches. This paper uses a multi-access setup
with cyclic wraparound cache access. In cyclic wraparound cache access, the number of
users and cache nodes are equal. Multi-access systems with cyclic wraparound cache access
are widely studied in the literature. In [8], Hachem et al. derive an order-optimal caching
scheme which judiciously shares cache memory among files with different popularities.
This idea was extended to a multi-access setup with cyclic-wraparound cache access. In [9],
Reddy et al. studied a multi-access coded caching design and proposed a new achievable
rate within a multiplicative gap of at most 2 compared to the lower bound for the said
problem provided uncoded placement. In [10], a delivery scheme is proposed for the
decentralized multi-access coded caching problem where each user is connected to multiple
consecutive caches in a cyclic wrap-around fashion. A lower bound on the delivery rate is
also obtained for the decentralized multi-access coded caching problem using techniques
from index coding. In [11], Cheng et al. propose a transformation approach to generalize
the MAN scheme to the multi-access caching systems, such that the results of [8] remain
achievable in full generality. In [12], the authors generalize one of the cases in [13], which
proposes novel caching and coded delivery schemes maximizing the local caching gain.

Notation 1. Consider integers a and b. Then, [a : b] , {n ∈ Z|a ≤ n ≤ b}. [a] , [1 : a]. For a
set S of size |S| and an integer N ≤ |S|, (SN) , {T ⊆ S : |T | = N}. For set {an : n ∈ [N]}
and N ⊆ [N], aN denotes the set {an : n ∈ N}. For the set of integers {ai : i ∈ [N]} we define
〈a1, a2, . . . , aN〉C to be the set {bi : bi = C if C | ai, otherwise bi = ai mod C, i ∈ [N]}.

The following subsections briefly explain the PIR, coded caching and multi-user
PIR problems. Firstly, we explain the single-user PIR problem of [2] and introduce the
concept of private retrieval from distributed servers. Then, we introduce the coded caching
problem [6] and its different variations, i.e., dedicated cache and multi-access coded caching
problems. We provide motivation behind the cyclic-wraparound multi-access model in
Section 1.3. Then, the combination of the dedicated cache-aided coded caching problem and
the PIR problem as described in [7] is introduced in Section 1.4. Finally, the contribution
of this paper, which considers a combination of PIR with a multi-access coded caching
problem, is summarized in Section 1.5.

1.1. Private Information Retrieval

The protocol of Private Information Retrieval [2] allows for the retrieval of a specific
file from a set of N filesW = {Wn}N

n=1. These files are replicated across S non-colluding
servers, with each file being of equal size. The objective of PIR is to retrieve the desired
file, denoted as Wθ , without disclosing its identity to the servers. In other words, the user
intends to conceal the index θ from the servers. To achieve this, the user generates S
queries {Qθ

s}
S
s=1 and sends query Qθ

s to server s. Upon receiving their respective queries,
the servers generate answers based on the query received and the files they possess. Server
s generates the answer Aθ

s (Qθ
s ,W) and sends it back to the user. After receiving answers

from all S servers, the user should be able to decode the desired file. The PIR protocol must
satisfy privacy and correctness conditions, which are formally defined as follows:

Privacy condition:
I(θ; Qθ

s ) = 0, ∀s ∈ {1, . . . , S};

Correctness condition:

H(Wθ |θ, Aθ
1(Q

θ
1,W) . . . Aθ

S(Q
θ
S,W), Qθ

1 . . . Qθ
S) = 0.

The transmission cost of PIR is defined as

RPIR =
∑S

s=1(H(Aθ
s (W)))

H(Wθ)
.
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A PIR scheme is provided in [2], which incurs the minimum possible transmission cost,
R∗PIR is given as a function of the number of servers S and the number of files is denoted
as N.

R∗PIR(S, N) = 1 +
1
S
+

1
S2 + . . . +

1
SN−1 . (1)

In the scheme provided in [2], every file has to be divided into SN subfiles, and every server
performs a transmission of size ( 1

S + 1
S2 + . . . + 1

SN )H(Wθ).
Note: In the literature, the term rate is used for the transmission cost (e.g., [6]) as we

use it here, whereas sometimes (e.g., [2]) the term rate is used for teh mean the inverse of
the transmission cost as used by us. We use the term “transmission cost” instead of rate in
this paper as in most of the coded caching literature [6,14,15].

1.2. Coded Caching

The authors in [6] propose a centralized coded caching system consisting of a server
storing N independent files W0, . . . , WN−1 of unit size and K users with a dedicated cache
memory of size M files. However, in recent years, multi-access coded caching systems
have been gaining attention, where C cache nodes exist, and each user can access several
of them.

Coded caching systems work in two phases. In the delivery phase, which corresponds
to low network traffic, the server fills the caches with the contents of the files. Then, in
the delivery phase, all users wish to retrieve some files from the servers, increasing the
network traffic. User k wishes to retrieve file Wdk

where dk ∈ [0 : N− 1]. Each user conveys
to the server the index of the file they want. The server broadcasts coded transmissions
X of size RCC in the unit of files after receiving the user requests. The transmission X is
a function of the files stored at the server and user demand. All users should be able
to retrieve their chosen files using the caches they can access after receiving the coded
transmission X. The quantity RCC is defined as the rate of the coded caching system, and it
measures the size of the server’s transmissions.

1.3. Multi-Access Coded Caching with Cyclic Wraparound Cache Access

Several approaches exist for users to access cache nodes in multi-access coded caching
systems. In [15], multi-access schemes are derived from cross-resolvable designs, and the
authors of [14] propose a system where each user can access L unique caches, resulting in
(C

L) users. This multi-access setting was further generalized in [16], showing that the rate
achieved in [14] is optimal for certain cases. In this paper, we focus on a cyclic wraparound
cache access approach where C = K and each user accesses L neighboring cache nodes. This
approach is reminiscent of circular wraparound networks, also known as ring networks,
that have been extensively studied in the literature. For example, circular soft-handoff
(SH) models in cellular networks [17] arrange nodes (base stations) in a circle, where users
access only two nodes, their local node, and the node in the left neighboring cell. Another
variant is the circular Wyner model, where nodes are arranged in a circle and users access
three nodes (base stations), its local node, and nodes in two neighboring cells. Such settings
were studied in [18], and Shannon-theoretic limits for a very simple cellular multiple-
access system were obtained. In [19], the Wyner model was studied again, and upper
and lower bounds on the per-user multiplexing gain of Wyner’s circular soft-handoff
model were presented. In [20], achievable rates were derived for the uplink channel of
a cellular network with joint multicell processing. The rates were given in closed form
for the classical Wyner model and the soft-handover model. There is extensive research
on circular wraparound cache access in multi-access coded caching settings [8–13]. Like
in cellular networks discussed above, this can occur when cache nodes are arranged in a
circular manner and users access the L nearest cache nodes.
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1.4. Dedicated Cache Aided MuPIR

In the dedicated cache setup described in [7], there is a collection of N files denoted
as {Wn}n∈[N], which are replicated across S servers. The system involves K users, each
equipped with a dedicated cache capable of storing M files. The users aim to retrieve their
desired files from the servers. The system operates in two distinct phases.

In the Placement Phase, the cache of each user is populated with certain content. This
cache content is determined based on the files stored across the servers and is independent
of the future demands of the users. Subsequently, in the Private Delivery Phase, each user
independently selects a file and seeks to privately retrieve their respective file from the
servers. To achieve this, the users collaboratively generate S queries and transmit them
to the servers. Upon receiving their respective queries, the servers respond with answers.
The users should be able to decode their desired files using the transmitted answers and
the content stored in their caches. In [7], an achievable scheme known as the product design
is proposed. The product design results in a transmission cost denoted as RPD, where

RPD(M) = min{K−M, R′PD(M)} and (2)

R′PD(M) =
K(1− M

N )
KM
N + 1

R∗PIR(S, N) (3)

whenever M = tN/K for some integer t ∈ [0 : K]. For other memory points, lower
convex envelope of points {(M, RPD(M)) : M = tN/K, t ∈ [0 : K]} is achieved by
memory sharing.

Cache-aided multi-user PIR setups with multi-access caches are also considered in [21,22].

1.5. Our Contributions

This paper presents a PIR scheme that enables multiple users, aided by multi-access
cache nodes, to privately retrieve data from distributed servers. The proposed scheme
focuses on the multi-access setup with cyclic wraparound cache access where there are
multiple non-colluding servers and all messages are replicated across these servers. The
servers are connected with the users through noiseless broadcast links.

The contributions of this paper are as follows.

• The paper comprehensively describes the system model for the MACAMuPIR setup
with cyclic wraparound cache access. It outlines the key components and mechanisms
involved in the scheme.

• The paper presents an achievable scheme for the multi-access problem described
above and characterizes its transmission cost.

• A comparison is made between the transmission costs of the multi-access setup and a
dedicated cache setup proposed in previous work. The results show that the multi-
access setup outperforms the dedicated cache setup.

• The paper includes proofs that validate the privacy guarantees and transmission costs
mentioned in the scheme description. These proofs demonstrate the scheme’s ability
to preserve user privacy and ensure accurate retrieval of requested data.

1.6. Paper Organization

The rest of the paper is organized as follows:

• In Section 2, the problem statement is described, along with formal descriptions of
transmission cost, privacy and correctness conditions.

• Then, in Section 3, the main results of the paper are summarized. The achieved rate is
mentioned in this section.

• Section 4 has the scheme to achieve the transmission load mentioned in Section 3. We
first explain the scheme using a concrete example in Section 4.1. Then, we extend the
description to encompass general parameters in Section 4.2. We then specialize the
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scheme to the context of cyclic wraparound cache access in Section 4.3. Then, proof of
privacy and calculation of subpacketization level follows.

• After the specialized description of Section 4.3, we arrive at the critical observation
that to calculate the rate, it is essential to characterize the number of t+ L-sized subsets
of [K] that contain at least L consecutive integers, with wrapping around K allowed.
Here, t, K, L ∈ Z. This is calculated in Section 4.4 onward.

• Section 5 contains a discussion about the results and scope for future research, and Section 6
concludes the paper.

2. System Model: MACAMuPIR with Cyclic Wraparound Caches

The system consists of K users and N independent files, denoted as {Wn}n∈[N], which
are replicated across S ≥ 2 servers. Each file has a unit size. There are C cache nodes
available, and each cache can store up to M files. Each user is connected to a unique
set of L ≤ C cache nodes through links with infinite capacity. User k is connected to
cache nodes indexed by Lk ∈ ([C]L ). The system follows a multi-access setup with cyclic
wraparound cache access. In this setup, the number of users equals the number of cache
nodes, i.e., C = K. Each user accesses L consecutive caches in a cyclic wraparound fashion.
Specifically, user k ∈ [K] accesses caches indexed by Lk = 〈k + l : l ∈ [0 : L− 1]〉K. We
consider Figure 1; it is a multi-access system with cyclic wraparound access. In this system,
we have S = 2 servers and K = 4 users. There are four cache nodes, and every user is
accessing L = 2 cache nodes. The system operates in two phases described below.

Server 1 Server 2

Users:

Helper Cache

Figure 1. Multi-access coded caching setup with cyclic wraparound cache access with four users,
four helper cache and two servers. Each user is accessing two adjacent helper caches.

Placement Phase: During this phase, all C cache nodes are populated. We let Zc denote
the content stored in cache c ∈ [C]. The content Zc is determined based on the files W[1:N],
and all servers possess knowledge of the content stored in each helper cache.

Private Delivery Phase: In this phase, each user aims to retrieve a specific file from
the servers. User k selects dk ∈ [N] and desires to privately retrieve Wdk

from the servers.
The demand vector is denoted as d = (d1, d2, . . . , dK). To retrieve their desired files from the
servers while preserving privacy, users cooperatively generate S queries Qd

s , s ∈ [S] based
on their demands and the content stored in helper caches. These queries are designed in a
way that they do not disclose the demand vector d to any of the servers. After generating
the queries, each query Qd

s is sent to server s, ∀s ∈ [S]. Upon receiving their respective
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queries, each server s, ∀s ∈ [S], broadcasts the answer Ad
s to the users. The answer is a

function of the query Qd
s and the files W[1:N]. After receiving all S answers Ad

[S], each user
k, ∀k ∈ [K] decodes Wdk

using the caches accessible to that user.
To ensure the privacy of the user demands, the following condition must be satisfied:

I(d; Qd
s , Z[1:C]) = 0, ∀s ∈ [S],

This condition, known as the privacy condition, ensures that none of the servers have any
information about user demands. And

H(Wdk
|d, ZLk , Ad

[S]) = 0, ∀k ∈ [K],

known as the correctness condition, ensures that users experience no ambiguity concerning
their desired file.

We define the transmission cost R as the amount of data that has to be transmitted by
all the servers in order to satisfy the user demand.

R =
S

∑
s=1

H(Ad
s ).

Our goal is to design cache placement and private delivery schemes that satisfy privacy
and correctness conditions and minimize the transmission cost.

3. Main Results: Achievable Rate and Comparison

In this section, we present the main result of the paper. For a given multi-access
cache-aided MuPIR problem, we provide a scheme in Section 4 that can privately retrieve
files from S non-colluding servers. For the multi-access cache aided MuPIR problem with
cyclic wraparound cache access, the scheme incurs a transmission cost as described in
Theorem 1. Then we compare the results of Theorem 1 with the dedicated cache-aided
system of [7].

3.1. Achievable Rate

Before stating the transmission cost for cyclic wraparound cache access setup, we
define the quantity cyc(n, k, m) for integers m ≤ k < n as the number of k-sized subsets
of n distinguishable elements arranged in a circle, such that there is at least one set of m
consecutive elements amongst those k elements. An expression for cyc(n, k, m) is given in
Equation (4), the proof of which is given in Section 4.4.

cyc(n, k, m) =
k

∑
r=1

((n− k
r

)
+

(
n− k− 1

r− 1

)) r

∑
l=1

(−1)l−1
(

r
l

)(
k− l(m− 1)− 1

r− 1

)

+
k

∑
r=3

(
n− k− 1

r− 2

)( m−1

∑
l=2

(l − 1)
r−2

∑
j=1

(−1)j−1
(

r− 2
j

)(
k− l − j(m− 1)− 1

r− 3

)
(4)

+
k

∑
l=m

(l − 1)
(

k− l − 1
r− 3

))
+ k− 1.

Theorem 1. For the cyclic wraparound multi-access coded caching setup, with S servers, N files,
K helper caches and K users, where each user is accessing the L helper cache in a cyclic wraparound
manner and each cache can store M files and t = KM

N is an integer, the users can retrieve their
required file privately, i.e., without revealing their demand to any of the servers, with

R(t) = min{RPD(M), R′(t)}, where (5)

R′(t) =
cyc(K, t + L, L)

(K
t )

R∗PIR(S, N). (6)
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Proof. In Section 4, we present a scheme that achieves R′(t) as stated above for cyclic
wraparound cache access setup. As users in the multi-access setup with cyclic wraparound
cache access are accessing the caches, which the users of the dedicated cache setup are
also accessing, the transmission cost of the multi-access setup are no higher than that of
dedicated cache setup. For instance, if for some M, RPD(M) < R′(M), then the placement
and delivery strategy of the product design can be employed.

Theorem 1 characterizes a transmission cost in a multi-access setup where cache
memory M is the integer multiple of N/K. For intermediate memory points, lower convex
envelope of points

{(t, R(t))}t∈[0:K]

can be achieved by memory sharing.

3.2. Comparison with the Dedicated Cache Setup of [7]

We conduct a comparison between our scheme for cyclic wraparound multi-access
systems and the product design proposed in [7]. In this comparison, we assume that the
cache sizes and the number of users are identical in both settings. It is worth noting that the
parameter t = KM

N represents the number of times the entire set of N files can be replicated
across the caches. For example, if t = 2, it implies that the cache nodes can store 2N units
of data. Additionally, the total memory capacity of the system is tN units, which is equal to
KM. It is important to mention that the transmission cost incurred by the product design is
the same as the transmission cost presented in Theorem 1 for the special case where L = 1,
indicating that each user only accesses one cache node.

To compare the transmission costs of both settings, we consider K = 8 users, S = 2
servers, and N = 3 files, and plot the transmission cost for various values of t ∈ [8] and
L ∈ [7]. The results are depicted in Figure 2. It can be observed that due to the access to a
larger cache memory, the multi-access system outperforms the dedicated cache setup in
terms of transmission cost.

0.2 0.4 0.6 0.8 1.0

M/N

0

1

2

3

4

5

6

R
at

e

Rate for

L =1

L =2

L =3

L =4

L =5

L =6

L =7

Product Design

Figure 2. Comparison of transmission costs for dedicated cache (dotted lines) and multi-access (solid
lines) with cyclic wraparound cache access. Here, we take K = 8 users and cache nodes.

4. Achievable Scheme: Proof of Theorem 1
4.1. Example

In this section, we present an achievable scheme using an example. Let us consider
a cache-aided system with N = 8 files denoted as W1, W2, . . . , W8, C = 8 cache nodes,
and K = 8 users. Each user has access to L = 3 cache nodes in a cyclic wraparound manner.
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Since each user is connected to a unique set of three cache nodes, we can index each user
with a subset of [8] of size 3. For instance, the user connected to cache nodes indexed by
six, seven, and eight can be denoted as {6, 7, 8}. Here is the list of all eight users:

{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 7}, {6, 7, 8}, {1, 7, 8}, {1, 2, 8}.

Placement Phase: We let t = CM
N = 1. We divide each file into (8

1) = 8 subfiles, each
indexed by integers in [8].

Wn = {Wn,1, Wn,2, Wn,3, Wn,4, Wn,5, Wn,6, Wn,7, Wn,8}.

Then, we fill the cache nodes as follows:

Z1 = W[8],1 Z2 = W[8],2 Z3 = W[8],3 Z4 = W[8],4

Z5 = W[8],5 Z6 = W[8],6 Z7 = W[8],7 Z8 = W[8],8.

Delivery Phase: In this phase, every user chooses one of the file indexes. We enumer-
ate the demands of the users:

d{1,2,3} = 1 d{2,3,4} = 5 d{3,4,5} = 7 d{4,5,6} = 3

d{5,6,7} = 1 d{6,7,8} = 2 d{1,7,8} = 8 d{1,2,8} = 4.

For privately retrieving the files, users cooperatively generate queries as follows.
For every S ∈ ([8]4 ), such that S is the superset of at least one user index set, users generate
sub-queries. For example, for S = {3, 4, 5, 6}, we have users {3, 4, 5} and {4, 5, 6} as a
subset of {3, 4, 5, 6}. Therefore, the users generate

Qd,{3,4,5,6}
s ,

{
Q

d{3,4,5} ,{3,4,5,6}
[2] , Q

d{4,5,6} ,{3,4,5,6}
[2]

}

corresponding to {3, 4, 5, 6}, where Q
d{3,4,5} ,{3,4,5,6}
[2] are the queries generated by the users in

a single-user PIR setup if the demand is d{3,4,5} = 3 and the set of files are W[8],6, whereas
there is no user for which {1, 4, 6, 8} is a superset; therefore, no queries can be generated
corresponding to S = {1, 4, 6, 8}.

Then, for Qd,{3,4,5,6}
s , server s transmits

Ad4,5,6
s

(
Qd4,5,6,{3,4,5,6}

s , W[8],3

)
+ Ad3,4,5

s

(
Qd3,4,5,{3,4,5,6}

s , W[8],6

)
, (7)

where Ad4,5,6
s

(
Qd4,5,6,{3,4,5,6}

s , W[8],3

)
is the answer of server s in a single-user PIR setup if the

received query is Q
d{4,5,6} ,{3,4,5,6}
s and the set of files is W[8],3.

Decoding

We consider user {4, 5, 6} and subfiles W3,3 and W3,4. Subfile W3,4 is available to the
user from the cache node 4. Subfile W3,3 has to be decoded from the transmissions. Consider
the transmissions corresponding to S = {3, 4, 5, 6} from (7):

User {4, 5, 6} has access to subfiles {W[8],6}, and therefore it can reconstruct

Ad3,4,5
s

(
Qd3,4,5,{3,4,5,6}

s , W[8],6

)
using the contents in Cache 6. After removing Ad3,4,5

s

(
Qd3,4,5,{3,4,5,6}

s , W[8],6

)
from the trans-

mission corresponding to {3, 4, 5, 6}, user {4, 5, 6} obtains Ad4,5,6
s

(
Qd4,5,6,{3,4,5,6}

s , W[8],3

)
,

∀s ∈ {1, 2}. As these are the answers of a single-user PIR setup for demand d{4,5,6} = 3
and files W[8],3, user {4, 5, 6} can decode W3,3.
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4.2. General Scheme: K Users, Each Connected to a Unique Arbitrary Set of L Caches

Consider N independent unit size files {Wn}n∈[N] replicated across the S servers.
There are C cache nodes, each capable of storing M files, and K users each connected to a
unique set of L cache nodes. As each user is connected to a unique set of the L cache, we
index them with an L-sized subset of [C]. Specifically, user K, where K ∈ ([C]L ), is the user
connected to cache nodes indexed by K. We let U be the set of all users where

U ∈
(
([C]L )

K

)
.

Note that, for the special case of cyclic wraparound cache access, C = K andU = {Lk : k ∈ [K]}
where Lk = 〈k + l : l ∈ [0 : L− 1]〉K, ∀k ∈ [K].

Placement Phase: We let t = CM
N be an integer. Then, we divide each file into (C

t )
subfiles, each indexed by a t-sized subset of [C].

Wn =

{
Wn,T |T ∈

(
[C]
t

)}
.

Then, we fill cache node c with

Zc =

{
Wn,T |c ∈ T , T ∈

(
[C]
t

)}
.

Delivery Phase: In this phase, every user chooses one of the file indexes. We let user
K, ∀K ∈ U choose index dK ∈ [N]. User K then wishes to retrieve file WdK from the servers
without reveling the index of the demanded file to the servers. We let d = (dK)K∈U be the
demand vector. Users do not want the servers to obtain any information about the demand
vector. For privately retrieving the files, the users cooperatively generate S queries Qd

s as
follows. For every S ∈ ( [C]t+L), such that S ⊃ K for at least one K ∈ U , the users generate
sub-queries

Qd,S
s =

{
QdK ,S

s |K ∈
(
S
L

)
∩ U

}
(8)

where the sub-sub-query QdK ,S
s is the query sent to server s in a single-user PIR setup of [2]

if the user demand is dK. We note that {QdK ,S
s }s∈[S] for all K and for all S are generated

independently. The query sent to server s is

Qd
s =

{
Qd,S

s |S ∈
(

[C]
t + L

)
,S ⊃ K for some K ∈ U

}
. (9)

Now, for every Qd,S
s , server s transmits⊕

K∈(SL)∩U

AdK
s (QdK ,S

s , W[N],S\K), (10)

where AdK
s (QdK ,S

s , W[N],S\K) is the answer of server s in a single-user PIR setup if the

received query is QdK ,S
s and the set of files is {W[N],S\K}.

Now, we proceed to show that all the users are able to decode their required file from
these transmissions and the caches they have access to.

4.2.1. Decoding

We consider user K (i.e., the user connected to cache nodes indexed by K) and subfile
index T . If K ∩ T 6= φ, then the subfile WdK ,T is available to the user from the cache.
If K ∩ T = φ, then the subfiles have to be decoded from the transmissions. We consider
transmissions corresponding to S = K ∪ T .
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⊕
K′∈(K∪TL )∩U

AdK′
s (QdK ,K∪T

s , W[N],(K∪T )\K′)

= AdK
s (QdK ,K∪T

s , W[N],T )⊕⊕
K′∈(K∪TL )∩U\K

AdK′
s (QdK′ ,K∪T

s , W[N],(K∪T )\K′).

(11)

User K has access to all the subfiles in the second term of RHS above, and therefore it can
recover the first term from the above expression. After obtaining AdK

s (QdK ,K∪T
s , W[N],T ) for

all s ∈ [S], user K can recover subfile WdK ,T from the transmissions.

4.2.2. Proof of Privacy

Now, we show that query Qd
s sent to server s is independent of the demand vector

d, ∀s ∈ [S]. For some S , we consider Qd,S
s in (8). We show that Qd,S

s is independent of
the demand vector. From the privacy of the single-user PIR scheme, the demand of user
K ∈ (SL) ∩ U , i.e., dK is independent of sub-sub-query QdK ,S

s . Also, other sub-sub-queries
in Qd,S

s are similarly independent of dK as they correspond to the users other than K. This
means that Qd,S

s is independent of the demands of the users in (S
L) ∩ U . Moderover, all

QdK ,S
s for any K and S are constructed independently, so these are also independent of the

demands of users in U \ (SL). This shows that Qd,S
s is independent of the demand vector

d. Same analysis is true for any S ∈ ( [C]t+L) ∩ U where S ⊃ K for at least one K ∈ U , which
completes the proof of privacy for our scheme.

4.2.3. Subpacketization

As we can see, each file is divided into (C
t ) subfiles. According to the single-user PIR

scheme, each of these subfiles has to be further divided into SN sub-subfiles. Therefore, the
subpacketization level is (C

t )× SN .

4.3. General Scheme: Cyclic Wraparound Cache Access

For cyclic wraparound cache access systems, we have C = K and U = {Lk : k ∈ [K]}.
Therefore, transmissions are performed only for those S ∈ ( [K]t+L) for which Lk ⊂ S for
at least one k ∈ [K]. This is the same as the number of t + L-sized subsets of [K] that
contain at least L consecutive integers, with wrapping around K allowed. As shown in
Section 4.4, there are cyc(K, t+ L, L) such subsets of [K]. Now, cyc(K, t+ L, L) transmissions
are performed by each of the S servers, and every transmission is of size

( 1
S + . . .+ 1

SN

)
/(K

t )
units; therefore, the transmission cost incurred is

R(t) =
cyc(K, t + L, L)

(K
t )

(
1 +

1
S
+ . . . +

1
SN−1

)
.

Also, note that user k of the dedicated cache setup and that of the multi-access setup
with a cyclic wraparound cache access are accessing cache node k. In a dedicated cache
setup ( K

t+1), transmissions are required to satisfy user demands. Therefore, when cyc(K, t +
L, L) > ( K

t+1), we perform placement and transmissions as conducted for a dedicated cache
setup. In this scenario, the transmission cost incurred in a multi-access setup is only as high
as the transmission cost of a dedicated cache scenario with same cache sizes. For t ∈ [0 : K],
the transmission cost of a multi-access setup would be

min
{

RPD(
tN
K

),
cyc(K, t + L, L)

(K
t )

R∗PIR(S, N)
}

.
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We demonstrate our claim using an example for K = 8 caches and users, S = 2 servers,
N = 3 files and L = 2. In Figure 3, we see that for smaller values of the t cyclic wraparound,
cache access is incurring more transmission cost than the dedicated cache setup. For in-
stance, when M = 0.75 or t = 2, cyc(8, 4, 2) = 68, transmissions are performed for cyclic
wraparound cache access without memory sharing (and incurring transmission cost 4.25)
compared to (8

3) = 56 transmissions in a dedicated cache setup (and incurring transmission
cost 3.5). Therefore, when t = 2, transmissions corresponding to dedicated cache setup are
performed. But when M = 1.125 or t = 3, a multi-access system with a cyclic wraparound
cache access satisfy user demand with 56 transmissions (and an incurring transmission
cost 1.75) compared to a dedicated cache setup which requires 70 transmissions (and sn
incurring transmission cost 2.1875), and therefore transmissions, as described here, are
performed. For cache memory M, 0.75 < M < 1.125, memory sharing between these
two schemes can incur transmission cost lower than either of these schemes.

1 2 3 4 5 6 7 8

t

0

2

4

6

8

R
at

e

Rate for

Dedicated Cache Setup

Cyclic Wraparound Setup

Cyclic Wraparound Setup with Memory Sharing

Figure 3. Transmission cost for K = 8, L = 2, S = 2, N = 3. Multi-access setup with cyclic
wraparound cache access incur transmission cost only as high as dedicated cache setup with equal
total memory in both systems.

4.4. Proving the Expression for cyc(n, k, m)

In this section, we show that the number of ways of choosing k integers from the
set [n], such that there is a subset of at least m consecutive integers, with cyclic wrapping
around n allowed, is cyc(n, k, m) as defined in (4).

First, for every K ∈ ([n]k ), we denote il as the length of lth consecutive runs of integers
inside K and ol is the length of lth consecutive run of integers outside K. For instance,
if n = 10 and K = {1, 2, 4, 9, 10}, then i1 = 2 corresponding to elements {1, 2} in K,
o1 = 1 corresponding to {3} not in K, i2 = 1 corresponding to element {4} in K, o2 = 4
corresponding to {5, 6, 7, 8} not in K and i3 = 2 corresponding to {9, 10} in K. Now, every
K ∈ ([n]k ) can be uniquely determined by a sequence of positive integers consisting of il
and ol where every integer provides the length of consecutive runs of integers inside or
outside K, provided it is known if 1 is inside or outside K. For example, with n = 10 and
k = 6, if we are given the sequence of lengths of consecutive runs of the integers inside
and outside K as 3, 2, 3, 2 and it is known that 1 ∈ K, then we can uniquely figure out
K = {1, 2, 3, 6, 7, 8}.
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Now, the set of all k-sized subsets K of [n] with at least m cyclically consecutive
integers can be partitioned into four disjoint sets as follows:

1. 1 ∈ K and n 6∈ K. This corresponds to sequences of the form i1, o1, . . . , ir, or where
il , ol ≥ 1 for all l ∈ [r], ∑l∈[r] il = k, ∑l∈[r] ol = n − k, ∃l ∈ [r] such that il ≥ m,
∀r ∈ [k−m + 1]. We let the set of all such k-sized subsets be K1.

2. 1 6∈ K and n ∈ K. This corresponds to sequences of the form o1, i1, . . . , or, ir where
il , ol ≥ 1 for all l ∈ [r], ∑l∈[r] il = k, ∑l∈[r] ol = n − k, ∃l ∈ [r] such that il ≥ m,
∀r ∈ [k−m + 1]. We let the set of all such k-sized subsets be K2.

3. 1 6∈ K and n 6∈ K. This corresponds to sequences of the form o1, i1, . . . , or, ir, or+1
where il , ol ≥ 1 for all l ∈ [r + 1], ∑l∈[r] il = k, ∑l∈[r+1] ol = n− k and ∃l ∈ [r] such
that il ≥ m, ∀r ∈ [k−m + 1]. The set of all such k-sized subsets is denoted by K3.

4. 1 ∈ K and n ∈ K. This corresponds to sequences of the form i1, o1, . . . , or−1, ir where
il , ol ≥ 1 for all l ∈ [r], ∑l∈[r] il = k, ∑l∈[r] ol = n− k and ∃l ∈ [2 : r − 1] such that
il ≥ m or x1 + xr ≥ m, ∀r ∈ [k−m + 1]. We let the set of all such k-sized subsets be
denoted by K4.

Now, we have cyc(n, k, m) = |K1|+ |K2|+ |K3|+ |K4|. We proceed to calculate the
size of these sets individually.

4.4.1. Calculation of
∣∣K1

∣∣
Sets in K1 correspond to the positive integer sequences of the form i1, o1, . . . , ir, or.

Here, ∑l∈[r] il = k and ∑l∈[r] ol = n− k, and at least one il ≥ m and r takes all possible
values in [k−m + 1].

We let Ir
j denote the set of tuples of r positive integers with the sum of integers equal

to k and teh jth integer greater than or equal to m, i.e.,

Ir
j = {(i1, i2, . . . , ir) : ∑

l∈[r]
il = k, il ≥ 1, ∀l ∈ [r], ij ≥ m}.

For a given r, ∪j∈[r] Ir
j is the set of all r length sequences, (i1, . . . , ir), of positive integers

such that ∑l∈[r] il = k. For all such sequences i1, . . . , il there also exist (n−k−1
r−1 ) sequences of

positive integers o1, . . . , or such that ∑l∈[r] ol = n− k. Therefore,

|K1| = ∑
r∈[k−m+1]

(
n− k− 1

r− 1

)∣∣ ⋃
j∈[r]

Ir
j
∣∣.

From the inclusion–exclusion principle, we know that∣∣ ⋃
j∈[r]

Ir
j
∣∣ = r

∑
l=1

(−1)l−1 ∑
1≤j1<···<jl≤r

∣∣Ij1 ∩ · · · ∩ Ijl

∣∣,
where ∣∣Ij1 ∩ · · · ∩ Ijl

∣∣ = |{(i1, . . . , ir) : ∑
l∈[r]

il = k, il ≥ 1, ∀l, ij1 , . . . , ijl ≥ m}|

= |{(i1, . . . , ir) : ∑
l∈[r]

il = k− l(m− 1), il ≥ 1, ∀l ∈ [r]}|

=

(
k− l(m− 1)− 1

r− 1

)
,

which implies
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|K1| = ∑
r∈[k−m+1]

(
n− k− 1

r− 1

)∣∣ ⋃
j∈[r]

Ir
j
∣∣

= ∑
r∈[k−m+1]

((n− k− 1
r− 1

)
× ∑

l∈[r]
(−1)l−1 ∑

1≤j1<···<jl≤r

(
k− l(m− 1)− 1

r− 1

))
= ∑

r∈[k−m+1]

((n− k− 1
r− 1

)
× ∑

l∈[r]
(−1)l−1

(
r
l

)(
k− l(m− 1)− 1

r− 1

))
.

4.4.2. Calculation of
∣∣K2

∣∣
By the definition of the set K2 and from the sequence of integers o1, i1 . . . or, ir corre-

sponding to K2, it is clear that
|K2| = |K1|.

4.4.3. Calculation of
∣∣K3

∣∣
Here, we again see that we need a sequence of positive integers i1, . . . , ir such that

∑l∈[r] = k and ∃l ∈ [r] for which il ≥ m. We have already calculated this quantity for

|K1|, but for every such sequence of integers, there exist (n−k−1
r ) sequences o1, . . . , or+1 of

positive integers such that ∑l∈[r+1] ol = n− k. Therefore,

|K3| =
k−m+1

∑
r=1

(
n− k− 1

r

)
∑

l∈[r]
(−1)l−1

(
r
l

)(
k− l(m− 1)− 1

r− 1

)
.

4.4.4. Calculation of
∣∣K4

∣∣
We consider all sequences of integers i1, o1, . . . , or−1, ir corresponding to K4 such that

il , ol ≥ 1 for all l ∈ [r], ∑l∈[r] il = k, ∑l∈[r] ol = n− k and r ≥ 2 and ∃l ∈ [r] such that il ≥ m
OR i1 + ir ≥ m. K4 can be partitioned into two disjoint subsets, K41 corresponding to
sequences where i1 + ir < m and il ≥ m for at lest one l ∈ [2 : r− 1] and K42 corresponding
to sequences where i1 + ir ≥ m. Again, K4 = K41 ∪K42 and K41 ∩K42 = φ. We proceed to
calculate the cardinality of both these sets separately.

Calculation of
∣∣K41

∣∣
We consider the set of all r length positive integer sequences i1 . . . ir such that i1 + ir < m

and ∑l∈[r] il = k and il ≥ m for some l ∈ [2 : r− 1]. We note that, for such sequences, r > 3.
The number of such sequences is∣∣{(i1, . . . , ir) : ∑

l∈[r]
il = k, il ≥ 1, i1 + ir < m, ∃l s.t. il ≥ m}

∣∣
=

m−1

∑
s=2

(s− 1)
∣∣{(i2 . . . ir−1) :

r−1

∑
l=2

il = k− s, il ≥ 1, ∃l s.t. il ≥ m}
∣∣

=
m−1

∑
s=2

(s− 1)
r−2

∑
j=1

(−1)j−1
(

r− 2
j

)(
k− s− j(m− 1)− 1

r− 3

)
.

For every such r length sequence, there exist (n−k−1
r−2 ) positive integer sequences o1 . . . or−1

such that ∑l∈[r−1] ol = n− k, and we obtain

|K41| =
k−m+1

∑
r=3

((n− k− 1
r− 2

) m−1

∑
s=2

(s− 1)×
r−2

∑
j=1

(−1)j−1
(

r− 2
j

)(
k− s− j(m− 1)− 1

r− 3

))
.
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Calculation of
∣∣K42

∣∣
We consider the set of all r > 2 length positive integer sequences i1 . . . ir such that

i1 + ir ≥ m and ∑l∈[r] il = k. The number of such sequences is∣∣{(i1 . . . ir) : ∑
l∈[r]

il = k, i1 + ir ≥ m, il ≥ 1}
∣∣

=
k−(r−2)

∑
s=m

(s− 1)
∣∣{(i2 . . . ir−1) : ∑

l∈[2:r−1]
il = k− s, il ≥ 1}

∣∣
=

k−(r−2)

∑
s=m

(s− 1)
(

k− s− 1
r− 3

)
.

For every such r length sequence, there exist (n−k−1
r−2 ) positive integer sequences o1 . . . or−1

such that ∑l∈[r−1] = n − k, and when r = 2, there are k − 1 possible pairs of positive
integers i2, i2 which provides i1 + i2 = k, leading to

|K42| =
k−m+1

∑
r=2

(
n− k− 1

r− 2

) k−(r−2)

∑
s=m

(s− 1)
(

k− s− 1
r− 3

)
+ k− 1.

Finally, we have

cyc(n, k, m) = |K1|+ |K2|+ |K3|+ |K41|+ |K42|

=
k−m+1

∑
r=1

(
n− k− 1

r− 1

)
∑

l∈[r]
(−1)l−1

(
r
l

)(
k− l(m− 1)− 1

r− 1

)

+
k−m+1

∑
r=1

(
n− k− 1

r− 1

)
∑

l∈[r]
(−1)l−1

(
r
l

)(
k− l(m− 1)− 1

r− 1

)

+
k−m+1

∑
r=1

(
n− k− 1

r

)
∑

l∈[r]
(−1)l−1

(
r
l

)(
k− l(m− 1)− 1

r− 1

)

+
k−m+1

∑
r=3

(
n− k− 1

r− 2

) m−1

∑
s=2

(
(s− 1)

× ∑
j∈[r−2]

(−1)j−1
(

r− 2
j

)(
k− s− j(m− 1)− 1

r− 3

))

+
k−m+1

∑
r=3

(
n− k− 1

r− 2

) k−(r−2)

∑
s=m

(s− 1)
(

k− s− 1
r− 3

)
+ k− 1.

Defining (a
b) = 0 if a < b or if a < 0 or b < 0, the expression above can be simplified to (4).

5. Discussion

In this paper, we proposed an efficient and privacy-preserving scheme for multi-
user retrieval scenarios. By leveraging the benefits of multi-access setups with cyclic
wraparound cache access, we demonstrated improved transmission costs compared to the
dedicated cache setup. We conducted a comprehensive comparison with prior works that
utilize dedicated cache systems. Our results demonstrate the superior performance of our
proposed scheme.

Moreover, the placement and delivery schemes designed for dedicated cache-aided
MuPIR scenarios are applicable in our MAC-MuPIR scenarios with cyclic wraparound
cache access. This adaptability leads to consistently lower rates in our scheme compared
to the product design. Hence, we achieved even lower rates by utilizing memory sharing
between our setup and the dedicated cache-aided setup. For instance, if we consider
Figure 3, specifically for points t = 1, 2.5 and 4. At t = 1, the dedicated cache setup of [7]
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achieves a lower rate than the scheme provided in Section 4.3, so placement and delivery,
as described in [7], are performed, which still work in our setting. At t = 4, the scheme
provided in Section 4.3 has a lower rate, so placement and delivery are performed as
described in the section mentioned above. At t = 2.5, we can perform memory sharing
between dedicated cache and multi-access cache schemes and achieve a rate lower than
both of the schemes (dotted line in Figure 3, referring to scheme with memory sharing below
the lines corresponding to dedicated cache scheme and scheme mentioned in Section 4.3).

However, it is important to acknowledge some limitations of our study. Firstly, we
focused on noiseless broadcast links, which may not reflect real-world scenarios where
channel impairments exist. Future research could investigate the impact of channel condi-
tions on the performance of the proposed scheme. Additionally, we assumed non-colluding
servers and replicated messages across the servers. Exploring the scheme’s resilience in the
presence of adversarial behaviors or server failures could be an interesting direction for
further investigation.

6. Conclusions

In this study, we introduced a PIR scheme that enables multiple users to securely
retrieve data from distributed servers using a multi-access setup with cyclic wraparound
cache access. We described the system model, formally defined the privacy and correctness
constraints, and presented the transmission cost associated with our proposed scheme.

Our findings indicate that the multi-access setup with cyclic wraparound cache access
offers significant advantages over the dedicated cache setup. By comparing the transmis-
sion costs of both setups, we demonstrated that the multi-access setup outperforms the
dedicated cache setup, making it a more efficient and reliable approach for multi-user PIR
scenarios. For instance, in Figure 2, for caching ratio M/N = 0.25, we see that for L = 2 the
cyclic wraparound system and the dedicated cache system both achieve a rate of three. But
the rate decreases as cache access degree L increases and users have access to more caches.
For L = 3, 4, 5, 6 and 7, the rate of our scheme is 3, 1.5, 0.5, 0.0625 and 0, respectively. More
than a twofold improvement in download cost is shown compared to that of the dedicated
cache setup from L = 4 onward, i.e., accessing half of the available caches.

Furthermore, our scheme provides strong privacy guarantees, ensuring that users
can retrieve data without revealing their individual retrieval patterns or compromising
the privacy of the data. The proofs presented in Section 4.2.2 validate the privacy and
transmission costs associated with our scheme, reinforcing its effectiveness and security.
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