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Abstract: In the realm of time series data analysis, information criteria constructed on the basis of
likelihood functions serve as crucial instruments for determining the appropriate lag order. However,
the intricate structure of random coefficient integer-valued time series models, which are founded on
thinning operators, complicates the establishment of likelihood functions. Consequently, employing
information criteria such as AIC and BIC for model selection becomes problematic. This study intro-
duces an innovative methodology that formulates a penalized criterion by utilizing the estimation
equation within conditional least squares estimation, effectively addressing the aforementioned
challenge. Initially, the asymptotic properties of the penalized criterion are derived, followed by a
numerical simulation study and a comparative analysis. The findings from both theoretical exami-
nations and simulation investigations reveal that this novel approach consistently selects variables
under relatively relaxed conditions. Lastly, the applications of this method to infectious disease data
and seismic frequency data produce satisfactory outcomes.

Keywords: integer-valued time series; model selection; thinning operator; conditional least squares;
information criteria

1. Introduction

Integer-valued time series are ubiquitous in scientific research and everyday life, en-
compassing examples such as the daily count of hospitalized patients admitted to hospitals
and the frequency of crimes committed daily or monthly. Consequently, integer-valued
time series have increasingly garnered attention from scholars. However, traditional
continuous-valued time series models fail to capture the integer-valued characteristics,
only approximating integer-valued data through continuous-valued time series models.
This approximation may result in model misspecification issues, complicating statistical
inference. As a result, the modeling and analysis of integer-valued time series data have be-
come a growing area of focus in academia. Among the variety of integer-valued time series
modeling methods, thinning operator models have gained favor due to their resemblance
to autoregressive moving average (ARMA) models found in traditional continuous-valued
time series theory. Thinning operator models substitute the multiplication in ARMA models
with the binomial thinning operator introduced by Steutel and Van Harn [1]:

φ ◦Yi = ∑Yi
i=1 Bi (1)

In this equation, Yi represents a count sequence, while {Bi} denotes a series of
Bernoulli random variables independent of {Yi}. The probability mass function satis-
fies P(Bi = 1) = 1− P(Bi = 0) = φ with φ ∈ [0, 1). Building on this foundation, Al-Osh
and Alzaid [2] developed the first-order integer-valued autoregressive (INAR (1)) model
for t ∈ N+:

Yt = φ ◦Yt−1 + Zt (2)
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where Zt is regarded as the innovation term entering the model at period t, with its marginal
distribution being a Poisson distribution with an expected value of λ. Consequently,
model (2) is called the Poisson INAR(1) model. Later, Du and Li [3] introduced the INAR(p)
model and provided conditions for ensuring the stationarity and ergodicity of the INAR(p)
process. The incorporation of additional lag terms increased the model’s flexibility. Subse-
quently, Joe [4] and Zheng, Basawa, and Datta [5] developed the random coefficient thinning
operator model (RCINAR(1)) by allowing the parameter φ in the INAR(1) model to follow
a specific random distribution. Zheng, Basawa, and Datta [6] extended the RCINAR(1)
model to the p-th order integer-valued autoregressive model, known as the RCINAR(p)
model. Zhang, Wang, and Zhu [7] established a data-driven empirical likelihood inter-
val estimation for the RCINAR(p) model using the empirical likelihood (EL) estimation
method. By employing the geometric thinning operator (also referred to as the negative
binomial thinning operator) proposed by Ristić, Bakouch, and Nastić [8], Tian, Wang, and
Cui [9]) constructed an INAR(1) model capable of describing seasonal effects. Lu [10] inves-
tigated the prediction problem of the thinning operator model using the Taylor expansion.
For further discussions on thinning operator models, readers can consult the textbook
by Weiß [11].

In general, researchers engaged in statistical analysis, particularly during the initial
stages of time series data investigation, frequently encounter the challenge of model selec-
tion. Current model selection techniques can be broadly categorized into three groups: The
first group relies on sample autocorrelation (ACF) and partial autocorrelation (PACF) func-
tions for model selection, as exemplified by Latour [12]; the second group, which is the most
prevalent method for variable selection, comprises a series of information criteria founded
on maximum likelihood estimation. Akaike [13] introduced the Akaike Information Crite-
rion (AIC) by performing an unbiased estimation of the expected log-likelihood function,
while Schwarz [14] established the Bayesian Information Criterion (BIC) by employing
a Laplace expansion for the posterior estimation of the expected log-likelihood function.
Ding, Tarokh, and Yang [15] devised a novel information criterion for autoregressive time
series models by connecting AIC and BIC. Furthermore, given that empirical likelihood
estimation can substantially circumvent issues stemming from model misspecification and
maintain certain maximum likelihood estimation features, researchers have started to inves-
tigate data-driven information criteria based on empirical likelihood estimation. Variyath,
Chen, and Abraham [16] formulated the Empirical Akaike Information Criterion (EAIC)
and the Empirical Bayesian Information Criterion (EBIC) by drawing on the principles of
AIC and BIC with empirical likelihood estimation. They demonstrated that EBIC possesses
consistency in variable selection. Chen, Wang, Wu, and Li [17] addressed potential compu-
tational convergence problems in empirical likelihood estimation by incorporating external
estimators (typically moment estimators) into the empirical likelihood function, thereby
developing a robust and consistent information criterion. For additional discussions on
information criteria, readers may consult the textbook by Konishi and Kitagawa [18] and
the review article by Ding, Tarokh, and Hong [19].

In the specific domain of integer-valued time series analysis, our objective is to de-
termine which lagged variables of Yt ought to be incorporated into the model. Extensive
research has been conducted on model selection for integer-valued autoregressive condi-
tional heteroskedasticity (INARCH) models, which allow for relatively straightforward
likelihood function establishment. Notable examples include Weiß and Feld [20], who pro-
vided comprehensive numerical simulations for integer-valued time series model selection
using information criteria, and Diop and Kengne [21], who introduced consistent model
selection methods for INARCH models based on quasi-maximum likelihood estimation.
However, the process becomes more challenging when dealing with higher-order and
random coefficient INAR(p) models constructed using thinning operators. The complex-
ity of the likelihood functions and the substantial computational requirements make it
difficult to establish and utilize information criteria. Consequently, Zheng, Basawa, and
Datta [6] proposed estimating the model based on its conditional moments rather than
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relying on likelihood functions. While this approach facilitates the estimation of unknown
parameters for researchers, it creates complications for variable selection. To overcome
this hurdle, Wang, Wang, and Yang [22] implemented penalty functions and pseudo-
quasi-maximum likelihood estimation (PQML) for variable selection, demonstrating the
robustness of their method even when faced with contaminated data. Drawing inspiration
from these preceding studies, this paper endeavors to establish a novel model selection
method akin to information criteria founded upon the estimating equations in conditional
least squares (CLS) estimation. Furthermore, we attempt to demonstrate the consistency of
this innovative model selection method in addressing variable selection problems within
integer-valued time series. This approach circumvents the need for complex probability
distribution assumptions while preserving effective variable selection capabilities.

The organization of this paper is as follows: In Section 2, we revisit the RCINAR(p)
model, introduce the proposed information criterion, and outline its asymptotic properties.
In Section 3, we carry out numerical simulation studies on variable selection utilizing this
information criterion. In Section 4, we endeavor to apply this information criterion for
variable selection in real data sets. Lastly, in Section 5, we engage in a discussion and offer
concluding remarks.

2. RCINAR Model and Model Selection Procedure

In this section, we discuss the ergodic stationary RCINAR model and its associated
model selection methods.

2.1. RCINAR(p) Model and Its Estimation

The INAR(p) model with constant coefficients, as introduced by Du and Li [3], is
formulated as follows:

Yt = φ1 ◦Yt−1 + · · ·+ φp ◦Yt−p + Zt (3)

In this expression, given the vector
(
Yt−1, · · · , Yt−p

)′, the elements(
φ1 ◦Yt−1, · · · , φp ◦Yt−p

)′ are deemed to be mutually conditionally independent. This
conditional independence ensures that the autocorrelation function of the INAR(p) model
is congruent with that of its continuous-valued Autoregressive (AR(p)) counterpart. More-
over, Du and Li [3] substantiated that, under these model settings, the stationarity condition
for the INAR(p) model necessitates that the roots of the polynomial
h(z) = 1 − φ1z − · · · − φpzp = 0 are located outside the unit circle. This implies that
the INAR(p) model attains stationarity when the sum ∑

p
i=1 φi is less than 1. Building

upon these foundational insights, Zheng, Basawa, and Datta [6] extended the INAR(p)
model under the constant coefficient assumption, giving rise to the Random Coefficient
Integer-valued Autoregressive (RCINAR(p)) model.

Let {Yt}T
t=1 represent a non-negative integer-valued sequence. The RCINAR(p) model

is defined by the following equation:

Yt = φ
(t)
1 ◦Yt−1 + · · ·+ φ

(t)
p ◦Yt−p + Zt (4)

where “◦” denotes the thinning operator defined in Equation (1). Let θ0 =
(
φ10, . . . , φp0, λ0

)′
be the true parameter vector of this data-generating process, with θ0 ∈ Θ, where Θ is a com-
pact subset of Rp+1. θ =

(
φ1, . . . , φp, λ

)′ represents the p + 1 dimensional parameter vector

to be estimated. Here,
{

φ
(t)
j

}
are sequences of independent and identically distributed

random variables defined on [0, 1) with a mean of φj, and their probability density function
fφj(φ) ≥ 0, ∀φ ∈ [0, 1), with ∑

p
j=1 φj < 1.

Moreover, we do not assume a specific parametric distribution for {Zt}, only requir-
ing that {Zt} be an independent and identically distributed non-negative integer-valued
random variable sequence with a mean of λ and a probability mass function fZ(z) ≥ 0,
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∀z ∈ N. In this context, we consider the semiparametric INAR model as described by Drost,
Van den Akker, and Werker [23].

Remark 1. As can be discerned from the preceding discussion, the INAR(p) model (3) represents
a special case of the RCINAR(p) model (4). That is, when

{
φ
(t)
j

}
is a constant coefficient vector,

the RCINAR(p) model reduces to the INAR(p) model. As demonstrated by Zheng, Basawa, and
Datta [6], the statistical methods employed in the study of the RCINAR(p) model can also be directly
applied to the INAR(p) model. Consequently, in order to cater to a wider range of application
scenarios, the academic community tends to prioritize the study of the RCINAR model while
investigating thinning operator models. For instance, Kang and Lee [24] investigated the problem of
change-point detection in the RCINAR model by leveraging the Cumulative Sum (CUSUM) test.
Similarly, Zhang, Wang, and Zhu [7] proposed an interval estimation method for the RCINAR
model based on empirical likelihood estimation. Awale, Balakrishna, and Ramanathan [25], on
the other hand, constructed a locally most powerful-type test devised specifically for examining
structural changes within the framework of the RCINAR model. Therefore, this paper will center its
research on the RCINAR model.

To estimate the RCINAR(p) model and establish model selection criteria, we draw
inspiration from the assumptions delineated by Zhang, Wang, and Zhu [7]. These assump-
tions are as follows:

(A1) {Yt} constitutes an ergodic and strictly stationary RCINAR(p) process.
(A2) There exists δ > 0 such that E|Yt|4+δ < ∞.

Derived from Equation (4), the one-step-ahead transition probability is as follows:

P
(
Yt = i

∣∣Yt−1 = i1, · · · , Yt−p = ip
)

=
min(i,∑

p
j=1 ij)

∑
k=0

fZ(i− k) ∏
0≤∑

p
j=1 kj≤k

(
ij
kj
)

×
∫

0≤φ
(t)
1 ≤···≤φ

(t)
p <1

p
∏
j=1

(
φ
(t)
j

)kj
(

1− φ
(t)
j

)ij−kj
dP

φ
(t)
1 ,··· ,φ(t)

p

Here, P
φ
(t)
1 ,··· ,φ(t)

p
represents the joint distribution function of φ

(t)
1 , · · · , φ

(t)
p . Utilizing

this one-step-ahead transition probability function, we can construct the likelihood function:

L = P
(

Yp = i(p+1)
1 , · · · , Y1 = i(p+1)

p

) T

∏
t=p+1

P
(

Yt = i(t)
∣∣∣Yt−1 = i(t)1 , · · · , Yt−p = i(t)p

)
The likelihood function L for model (4) is notably complex, involving numerous mul-

tivariate numerical integrations within statistical computations, which demand substantial
computational resources. Consequently, Zheng, Basawa, and Datta [6] advocated for esti-
mating the model based on its conditional moments rather than employing the likelihood
function. This preference also underlies the prevalent use of conditional least squares (CLS)
estimation in the study of RCINAR(p) models within the scholarly community. In the
subsequent section, we offer a concise introduction to the CLS estimation methodology for
the RCINAR(p) model.

We can obtain the first-order conditional moment of model (4) as follows:

E(Yt|Ft−1) =
p

∑
j=1

φjYt−j + λ
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where Ft−1 = σ(Yt−1, Yt−2, · · · ). This derivation allows us to compute the conditional least
squares (CLS) estimation. Let

S(θ) =
T

∑
t=p+1

(
Yt −

p

∑
j=1

φjYt−j − λ

)2

represent the conditional least squares (CLS) objective function. The CLS estimator is then
given by:

θ̂ = argminθ(S(θ))

Let

St(θ) =

(
Yt −

p

∑
j=1

φjYt−j − λ

)2

Then the estimating equations are:

−1
2

∂St(θ)

∂θ
= 0 = Ψt(θ) =

(
ψ
(1)
t (θ), ψ

(2)
t (θ), . . . , ψ

(p+1)
t (θ)

)′
where

ψ
(s)
t =

(
Yt −

p

∑
j=1

φjYt−j − λ

)
Yt−s, 1 ≤ s ≤ p

ψ
(p+1)
t = Yt −

p

∑
j=1

φjYt−j − λ

For the estimating equation Ψt(θ), we introduce an additional assumption:

(A3) Ψt(θ) is identifiable, that is, E(Ψt(θ0)) = 0, and if θ is in the neighborhood of θ∗ 6= θ0,
then ‖E(Ψt(θ))‖ exists and ‖E(Ψt(θ))‖ > 0.

Assumption (A3) is the identifiability assumption, which further implies that the
model (4) is identifiable if only the currently specified model satisfies E(Ψt(θ0)) = 0. Based
on these assumptions above, the following lemma can be deduced:

Lemma 1. Based on assumptions (A1) to (A3), the subsequent conclusions are valid:

(i) E
(

Ψt(θ0)Ψt(θ0)
′
)

constitutes a positive definite matrix.

(ii) ∂2Ψt(θ)
∂θ∂θ′

remains continuous within the neighborhood of θ0.

(iii) Both
∥∥∥ ∂Ψt(θ)

∂θ′

∥∥∥ and
∥∥∥ ∂2Ψt(θ)

∂θ∂θ′

∥∥∥ possess upper bounds in the neighborhood of θ0.

Moreover, Zheng, Basawa, and Datta [6] established that θ̂CLS is a consistent estimator
with an asymptotic distribution:

√
T
(
θ̂ − θ

) d→ N(V−1(θ0)W(θ0)V−1(θ0)) (5)

where:
W(θ0) = E

(
Ψt(θ0)Ψt(θ0)

′
)

V(θ0) = E
(

∂E(Yt|Yt−1)

∂θ
·∂E(Yt|Yt−1)

∂θ′

)
−E

(
ut(θ0)

∂2E(Yt|Yt−1)

∂θ∂θ′

)
ut(θ0) = Yt −E

(
Yt

∣∣∣Y(t−1)

)



Entropy 2023, 25, 1220 6 of 29

2.2. Model Selection Procedure

For the data-generating process defined by Equation (4), we establish the
following settings:

1. A model m is a subset ofM = {1, 2, . . . , p, p + 1}, with its dimension denoted as |m|.
Consequently, p + 1 represents the maximum model dimension we consider, noted as
the full model, while the minimum model dimension we consider is 1, corresponding
to an independent and identically distributed non-negative integer-valued random
variable sequence. Let the true model be m0.

2. θ(m) is the parameter vector associated with model m, which can be extended to the

p + 1 dimensional vector
∼
θ (m) =

{(
θj
)

1≤j≤p+1 : θj = θ(m)j, i f j ∈ m; θj = 0, i f j /∈ m
}

.

For instance, if the considered model m is Yt = φ
(t)
1 ◦ Yt−1 + φ

(t)
3 ◦ Yt−3 + Zt, then

m = {1, 3, p + 1}, θ(m) = (φ1, φ3, λ), and it can be extended to the p + 1 dimensional

vector
∼
θ (m) = (φ1, 0, φ3, 0, . . . , 0, λ).

3. Let Θ(m) be the compact parameter space of model m,
∼
Θ(m) =

{(
θj
)

1≤j≤p+1 ∈ Rp+1 : θj = 0, i f j /∈ m
}

constitutes a compact subset of

Rp+1, and all possible
∼
θ (m) values, when restricted to the |m| dimensional vector

θ(m), are interior points of its corresponding compact subset Θ(m). Furthermore,

we denote
∼
θ = θ(M) as the parameter vector to be estimated in

∼
Θ(M) = Θ(M),

i.e., the parameter vector of the full modelM.

For model m, we partition
∼
θ into two components, i.e.,

∼
θ =

(∼
θ (1)(m)′,

∼
θ (2)(m)′

)′
,

where
∼
θ (1)(m) =

{(
θj
)
, j ∈ m

}
= θ(m) and

∼
θ (2)(m) =

{(
θj
)
, j /∈ m

}
. Correspondingly, it

is evident that if the model m is correctly specified, denoted as m = m0,
∼
θ (2)(m0) = 0, then

∼
θ 0 =

(∼
θ (1)(m0)

′,
∼
θ (2)(m0)

′
)′

=
(

θ(m0)
′, 0′
)′

. We can then divide the estimating equation

Ψt
(∼

θ
)

into two parts:

Ψt
(∼

θ
)
=

Ψ1t
(∼

θ
)

Ψ2t
(∼

θ
)

where

Ψ1t
(∼

θ
)
= −1

2
∂St
(∼

θ
)

∂
∼
θ (1)(m)

Ψ2t
(∼

θ
)
= −1

2
∂St
(∼

θ
)

∂
∼
θ (2)(m)

Let θ̂CLS(m) =
(

θ̂′(1),CLS(m), 0′
)′

, i.e., θ̂(1),CLS(m) is the solution to

Ψ1t

(∼
θ (1)(m), 0

)
= 0, where

∼
θ (2)(m) is constrained to be 0. Therefore θ̂(1),CLS(m) rep-

resents the CLS estimator of model m. Define the function:

H
(∼

θ
)
=

(
T

∑
t=p+1

Ψt
(∼

θ
))′( T

∑
t=p+1

Ψt
(∼

θ
)
Ψt
(∼

θ
)′)−1( T

∑
t=p+1

Ψt
(∼

θ
))

We can then derive the following lemma:
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Lemma 2. Given assumptions (A1)–(A3), as T → ∞ :

H
(∼

θ 0
)
→ χ2

p+1

Because the proof of this lemma closely resembles the proof of Theorem 1 in Zhang,
Wang, and Zhu [7], we omit the details. It is important to note that when m = M,

θ̂CLS(M) is the solution to the estimating equation ∑T
t=p+1 Ψt

(∼
θ
)
= 0, and in this case,

H
(
θ̂CLS(M)

)
= 0. Furthermore, Lemma 2 suggests that H

(∼
θ 0
)
= Op(1).

Definition 1. We propose the following penalized criteria:

H
(
θ̂CLS(m)

)
+ PT ·|m| (6)

where the penalty term PT is an increasing sequence, PT → ∞ and satisfies PT = O
(

T
1
2

)
and

log(T)
PT

= O(1).

Remark 2. Intuitively, in this penalized criterion, H
(
θ̂CLS(m)

)
serves as a measure of the model’s

fit to the data. If it can be demonstrated that the divergence rate of H
(
θ̂CLS(m)

)
is slower when

m0 ⊆ m compared to the divergence rate of H
(
θ̂CLS(m1)

)
when m0 * m1, then a smaller

H
(
θ̂CLS(m)

)
would suggest a superior fit of model m to the data. However, upon closer examination,

it becomes evident that if we merely adopt model M, then H
(
θ̂CLS(M)

)
= 0 . Consequently,

it is necessary to introduce a penalty term, PT ·|m|, to constrain the number of lagged variables
incorporated by model m. By striking a balance between the degree of data fitting H

(
θ̂CLS(m)

)
and the number of lagged variables PT ·|m|, Theorems 1–3 substantiate the ability to select the
appropriate model.

Under the correct model specification, the following theorem can be derived:

Theorem 1. Given assumptions (A1) and (A2), under the correct model specification

θ̂(1),CLS(m)−
∼
θ (1)(m0)= −

E

 ∂Ψt
(∼

θ 0
)

∂
∼
θ
′
(1)(m)



−1

1
T

T

∑
t=p+1

Ψ1t
(∼

θ 0
)
+ op

(
T−

1
2

)

and H
(
θ̂CLS(m)

)
converges in probability to ∑

p+1
j=1 Λjχ

2(1), where Λj is the eigenvalue of the

matrix Σ
1
2
11Σ′∗Σ

−1
11 Σ∗Σ

1
2
11, where

Σ∗ =

I −E

∂Ψt
(∼

θ 0
)

∂
∼
θ
′



(
E
(

∂Ψt

(∼
θ 0

)
∂
∼
θ
′
(1)(m)

))−1

0

0 0




Σ11 = E
(

Ψt
(∼

θ 0
)
Ψt
(∼

θ 0
)′)

Theorem 1 establishes the asymptotic distribution of θ̂(1),CLS(m) and H
(
θ̂CLS(m)

)
under the correct model specification, which serves as a crucial component in the deriva-
tion for the consistency of our penalized criteria (6). In the following, we discuss the
performance of H

(
θ̂CLS(m)

)
when the model specification m is incorrect.
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Theorem 2. Given assumptions (A1)–(A3), for any
∼
θ 1 in the neighborhood of

∼
θ
∗
6=
∼
θ 0, we have:

T−
1
2 H
(∼

θ 1
)
→ ∞

Theorem 2 and assumption (A3) ensure that if the model m is misspecified, H
(
θ̂CLS(m)

)
will diverge to positive infinity at a rate of at least T

1
2 . Combining Theorems 1 and 2, we

can present the primary conclusion of this paper. When the model is specified as m, we
have the following theorem.

Theorem 3. Given assumptions (A1)–(A3), we have:

P
(
min

(
H
(
θ̂CLS(m)

)
+ PT ·|m| : m 6= mo

)
> H

(
θ̂CLS(m0)

)
+ PT ·|m0|

)
→ 1

From the proof of Theorem 3, and Lemma A.1, we can observe that the divergence rate
of PT needs to be at least as fast as log(T). In practical applications, we may use settings
such as PT = T

1
5 . In such settings, although log(T)

PT
→ 0 , in finite samples, PT < log(T).

In fact, in the interval [4, 332, 106], T
1
5 < log(T), which may result in the performance of

PT = T
1
5 not being as effective as PT = log(T) in finite samples. Nevertheless, such penalty

term settings still hold value, and we will discuss this situation in the numerical simulation
section.

Theorem 3 provides the consistency of the penalized criteria (6) for model selection. It
becomes evident that Theorem 3 holds under very relaxed assumptions and relies solely
on the CLS estimation, which can be rapidly completed in any statistical software, and
the estimating equation constructed by first-order conditional moments, which is easy
to derive. This makes the penalized criteria (6) highly suitable for use in INAR models,
particularly in RCINAR models. Now let m̂ be the model selected by the criterion (6):

m̂ = argminm⊆M(H(m) + PT ·|m|)

We now present the asymptotic properties of the selected model:

Theorem 4. Given assumptions (A1)–(A3), we have:

√
T(θ̂CLS(m̂)−

∼
θ 0)

d→ N(V−1(
∼
θ 0)W(

∼
θ 0)V−1(

∼
θ 0))

where:

W
(∼

θ 0
)
= E

(
Ψt
(∼

θ 0
)
Ψt
(∼

θ 0
)′)

V
(∼

θ 0
)
= E

(
∂E(Yt|Yt−1)

∂
∼
θ

·∂E(Yt|Yt−1)

∂
∼
θ
′

)
−E

(
ut
(∼

θ 0
)∂2E(Yt|Yt−1)

∂
∼
θ∂
∼
θ
′

)

ut
(∼

θ 0
)
= Yt −E

(
Yt

∣∣∣Y(t−1)

)
Remark 3. From the inference process in this section, we can see that the estimating equation used
in constructing the penalized criteria (6) actually utilizes the information of E(Yt|Ft−1), where
Ft−1 = σ(Yt−1, Yt−2, · · · ) and does not involve the information of thinning operators. Therefore,
the penalized criteria (6) can be applied to models with the same linear form conditional expectations,
such as INARCH models and continuous-valued AR models. The likelihood functions of INARCH
and AR models can be established with relative ease, enabling us to compare the efficacy of the
penalty criteria (6) with that of AIC and BIC across both models.
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3. Numerical Simulations

In this section, we first conduct a simulation study to evaluate the performance of
the penalized criteria proposed in this paper for INAR models. Secondly, to compare the
proposed penalized criteria with the traditional likelihood-based AIC and BIC, we apply
these criteria to INARCH models and AR models. Finally, by utilizing innovation terms of
different random distributions, we carry out a simulation study on the robustness of the
penalized criteria proposed in this paper.

3.1. Performance of the Penalized Criteria in INAR Models

In this subsection, we consider the true data-generating process to be:

Yt = φ
(t)
1 ◦Yt−1 + φ

(t)
3 ◦Yt−3 + Zt (7)

where the mean of φ
(t)
1 is 0.4, the mean of φ

(t)
3 is 0.2, and λ = 2, i.e.,

∼
θ 0 = (0.4, 0, 0.2, 2)′. By

applying the penalized criteria (6), we attempt to select the true model from all RCINAR
models up to the third order. In Table 1 below:

i.i.d. represents an i.i.d. Poisson random variable sequence,

yt−1 represents the model Yt = φ
(t)
1 ◦Yt−1 + Zt,

yt−2 represents the model Yt = φ
(t)
2 ◦Yt−2 + Zt,

yt−3 represents the model Yt = φ
(t)
3 ◦Yt−3 + Zt,

yt−1, yt−2 represents the model Yt = φ
(t)
1 ◦Yt−1 + φ

(t)
2 ◦Yt−2 + Zt,

yt−1, yt−3 represents the model Yt = φ
(t)
1 ◦Yt−1 + φ

(t)
3 ◦Yt−3 + Zt,

yt−1, yt−3 represents the model Yt = φ
(t)
2 ◦Yt−2 + φ

(t)
3 ◦Yt−3 + Zt,

yt−1, yt−2, yt−3 represents the model Yt = φ
(t)
1 ◦Yt−1 + φ

(t)
2 ◦Yt−2 + φ

(t)
3 ◦Yt−3 + Zt.

In addition, “Coef” denotes the random distribution of the coefficient. In this subsec-
tion, we focus on the performance of penalized criteria in INAR models. We use boldface to
highlight the true model, i.e., yt−1, yt−3. We compare three different penalty term settings
PT = log(T), PT = T

1
3 , and PT = T

1
5 and consider three different distributions for φ

(t)
1

and φ
(t)
3 :

(i) Fixed coefficients, i.e., φ
(t)
1 = 0.4, φ

(t)
3 = 0.2, regardless of t;

(ii) φ
(t)
1 follows a uniform distribution on the interval [0, 0.8], φ

(t)
3 follows a uniform

distribution on the interval [0, 0.4];
(iii) φ

(t)
1 follows a beta distribution with a mean of 0.4, φ

(t)
3 follows a beta distribution

with a mean of 0.2. In this scenario, we fix the parameter vector (a, b) for the beta
distribution with a = 4 and control the parameter b to achieve different means.

We consider sample sizes T = 100, 200, 300, 500, 1000, and for each sample size T and
parameter setting, we perform 1000 independent repeated experiments.

As shown in Table 1, for the three penalty terms, the accuracy of model selection using
the penalized criteria (6) increases with the sample size T, consistent with the asymptotic
conclusion described in Theorem 3. However, when the sample size is large, we find that
the accuracy of PT = T

1
5 is slightly worse than PT = T

1
3 and PT = log(T). This is because

T1/5

log(T)
→ ∞

However, in the interval [4, 332, 106], T
1
5 < log(T), which may cause the performance of

PT = T
1
5 in larger finite samples to be not as good as PT = log(T). Nonetheless, the penalty

term setting PT = T
1
5 is not entirely without merit. As shown in Table 1, when the sample

size is small, i.e., T ≤ 500, the performance of PT = T
1
5 is better.
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Table 1. Frequency of model selection for INAR model of order 2 by the penalized criterion (6).

Yt=φ
(t)
1 ◦Yt−1+φ

(t)
3 ◦Yt−3+Zt

φ1=0.4, φ3=0.2 Models to be Selected

T Coef PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

100 Fixed T1/3 0.054 0.601 0.003 0.019 0.015 0.296 0.002 0.01

log(T) 0.05 0.599 0.003 0.018 0.016 0.301 0.002 0.011

T1/5 0.006 0.361 0.001 0.012 0.047 0.493 0.001 0.079

Uniform T1/3 0.059 0.596 0.005 0.037 0.015 0.275 0 0.013

log(T) 0.055 0.592 0.005 0.037 0.015 0.283 0 0.013

T1/5 0.01 0.366 0.001 0.018 0.049 0.475 0.004 0.077

Beta T1/3 0.072 0.585 0.002 0.029 0.026 0.281 0.002 0.003

log(T) 0.069 0.582 0.002 0.029 0.027 0.285 0.002 0.004

T1/5 0.013 0.369 0.002 0.017 0.056 0.479 0.003 0.061

200 Fixed T1/3 0 0.368 0 0.002 0.016 0.607 0 0.007

log(T) 0 0.326 0 0.002 0.017 0.644 0 0.011

T1/5 0 0.126 0 0 0.03 0.781 0 0.063

Uniform T1/3 0.001 0.429 0 0.002 0.016 0.545 0 0.007

log(T) 0 0.37 0 0.001 0.02 0.594 0 0.015

T1/5 0 0.159 0 0 0.032 0.721 0 0.088

Beta T1/3 0.002 0.363 0 0.001 0.021 0.602 0 0.011

log(T) 0.002 0.314 0 0 0.025 0.645 0 0.014

T1/5 0 0.122 0 0 0.029 0.768 0 0.081

300 Fixed T1/3 0 0.183 0 0 0.008 0.802 0 0.007

log(T) 0 0.132 0 0 0.007 0.845 0 0.016

T1/5 0 0.037 0 0 0.009 0.88 0 0.074

Uniform T1/3 0 0.252 0 0 0.01 0.725 0 0.013

log(T) 0 0.176 0 0 0.015 0.79 0 0.019

T1/5 0 0.06 0 0 0.02 0.842 0 0.078

Beta T1/3 0 0.218 0 0 0.012 0.766 0 0.004

log(T) 0 0.15 0 0 0.016 0.825 0 0.009

T1/5 0 0.06 0 0 0.021 0.859 0 0.06

500 Fixed T1/3 0 0.04 0 0 0.002 0.955 0 0.003

log(T) 0 0.014 0 0 0.003 0.974 0 0.009

T1/5 0 0.002 0 0 0.002 0.95 0 0.046

Uniform T1/3 0 0.062 0 0 0.004 0.932 0 0.002

log(T) 0 0.03 0 0 0.007 0.955 0 0.008

T1/5 0 0.007 0 0 0.006 0.919 0 0.068

Beta T1/3 0 0.046 0 0 0.003 0.936 0 0.015

log(T) 0 0.026 0 0 0.003 0.96 0 0.011

T1/5 0 0.005 0 0 0.003 0.932 0 0.06

1000 Fixed T1/3 0 0 0 0 0 0.999 0 0.001

log(T) 0 0 0 0 0 0.989 0 0.011

T1/5 0 0 0 0 0 0.964 0 0.036
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Table 1. Cont.

Yt=φ
(t)
1 ◦Yt−1+φ

(t)
3 ◦Yt−3+Zt

φ1=0.4, φ3=0.2 Models to be Selected

T Coef PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

Uniform T1/3 0 0 0 0 0 0.997 0 0.003

log(T) 0 0 0 0 0 0.99 0 0.01

T1/5 0 0 0 0 0 0.952 0 0.048

Beta T1/3 0 0 0 0 0 0.998 0 0.002

log(T) 0 0 0 0 0 0.992 0 0.008

T1/5 0 0 0 0 0 0.94 0 0.06

To investigate the performance of the three penalty terms under varying sample sizes
and coefficient mean settings, we continue to consider model (7), where φ

(t)
1 follows a beta

distribution with a mean of 0.4, and φ
(t)
3 follows a beta distribution with a mean of φ3. In

Figure 1, we report the impact of sample size on the accuracy of the penalized criteria
using the three penalty terms under different φ3 settings. In Figures 1 and 2, the red line
represents PT = T

1
3 , the black line represents PT = log(T), and the blue line represents

PT = T
1
5 , and the vertical axis of both figures represents the frequency of the penalized

criteria (6) selecting the correct model. It can be observed that when φ3 is small or the
sample size is small, the performance of PT = T

1
5 is superior. However, as φ3 gradually

moves further from 0 and the sample size increases, the performance of PT = T
1
5 becomes

slightly worse than PT = log(T) and PT = T
1
3 .

Figure 1. The impact of sample size on accuracy under different φ3 settings.
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Figure 2. The impact of φ3 settings on accuracy under different sample sizes.

In Figure 2, we report the frequency of selecting the model
Yt = φ

(t)
1 ◦ Yt−1 + φ

(t)
3 ◦ Yt−3 + Zt using the penalized criteria (6) as φ3 gradually varies

from 0 to 0.4 under different sample size conditions. It should be noted that when φ3 = 0,
Yt = φ

(t)
1 ◦ Yt−1 + φ

(t)
3 ◦ Yt−3 + Zt represents an incorrect model setting and the correct

model setting, in this case, should be Yt = φ
(t)
1 ◦Yt−1 + Zt. As shown in Figure 2, when the

sample size is small, particularly when the sample size is 100, the performance of PT = T
1
5

is notably improved compared to PT = log(T) and PT = T
1
3 . As the sample size increases,

this advantage gradually diminishes, but the penalty term setting PT = T
1
5 still maintains

an advantage when φ3 is relatively close to 0.
Based on the numerical simulation results presented in this subsection, we can offer

recommendations for applying the penalized criteria (6): when the sample size is small,
or some coefficients in the true model are relatively close to 0, we can employ the penalty
term setting PT = T

1
5 . In other cases, the performance of the penalty term settings PT = T

1
3

and PT = log(T) is comparable and slightly better than PT = T
1
5 . Furthermore, we also

conducted a simulation study on lag variable selection for the data-generating process:

Yt = φ
(t)
2 ◦Yt−2 + Zt

where the mean of φ
(t)
2 is 0.3. The results can be found in Table A1 in Appendix A.

3.2. Performance of Penalized Criteria in INARCH Models and AR Models

As stated in the Remark of Section 2, we can apply the penalty criteria (6) to both
INARCH and AR models. Because the likelihood functions for these two models can be
easily established, we can compare the performance of the penalty criteria (6) with that of
AIC and BIC for both these models.
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3.2.1. INARCH Model

In this subsection, we consider the true data-generating process as follows:

Yt|Ft−1 ∼ Poisson(λt)

λt = φ0 + φ1Yt−1 + φ3Yt−3

where φ1 = 0.4, φ3 = 0.2, and φ0 = 2. Fokianos, Rahbek, and Tjøstheim [26] proposed
this model and derived the conditions for its stationarity and ergodicity. By applying the
penalized criteria (6) alongside AIC and BIC, we attempt to select the true model from all
INARCH models up to the third order. In Table 2:

i.i.d. represents an i.i.d. Poisson random variable sequence,
yt−1 represents the model Yt|Ft−1 ∼ Poisson(λt)λt = φ0 + φ1Yt−1 ,
yt−2 represents the model Yt|Ft−1 ∼ Poisson(λt)λt = φ0 + φ2Yt−2 ,
yt−3 represents the model Yt|Ft−1 ∼ Poisson(λt)λt = φ0 + φ3Yt−3 ,
yt−1, yt−2 represents the model Yt

∣∣Ft−1 ∼ Poisson(λt)λt = φ0 + φ1Yt−1 + φ2Yt−2 ,
yt−1, yt−3 represents the model Yt

∣∣Ft−1 ∼ Poisson(λt)λt = φ0 + φ1Yt−1 + φ3Yt−3 ,
yt−1, yt−3 represents the model Yt

∣∣Ft−1 ∼ Poisson(λt)λt = φ0 + φ2Yt−2 + φ3Yt−3 ,
yt−1, yt−2, yt−3 represents the model Yt

∣∣Ft−1 ∼ Poisson(λt) ,

λt = φ0 + φ1Yt−1 + φ2Yt−2 + φ3Yt−3.

“Criterion” denotes the model selection criteria we use, and we use H + PT ·|m| to denote
penalized criteria (6). Furthermore, we have bolded the true model yt−1, yt−3. We consider
sample sizes T = 100, 200, 300, 500, 1000, and for each sample size T and parameter setting,
we conduct 1000 independent repeated experiments.

From Table 2, we can observe that, similar to the INAR case, the accuracy of PT = T
1
5

is slightly worse than PT = T
1
3 and PT = log(T) in larger sample sizes, but in smaller

sample sizes, i.e., T ≤ 500, the performance of PT = T
1
5 is superior. In addition, from

Table 2, we can observe that the accuracy of the penalized criteria proposed in this paper is
roughly equivalent to BIC when PT = T

1
3 and PT = log(T), while the accuracy is roughly

equivalent to AIC in small samples when PT = T
1
5 , but PT = T

1
5 is far better than AIC

when the sample size is large.

Table 2. Frequency of model selection for INARCH model of order 2 by the penalized criterion (6).

Yt|F t−1 ∼ Poisson(λt)

λt=φ0+φ1Yt−1+φ3Yt−3

φ1=0.4, φ3=0.2 Models to Be Selected

T Criterion PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

100 H + PT ·|m| T1/3 0.059 0.576 0.001 0.019 0.021 0.309 0.001 0.014

log(T) 0.057 0.568 0.001 0.017 0.021 0.32 0.001 0.015

T1/5 0.012 0.337 0 0.007 0.054 0.509 0.003 0.078

AIC 0.003 0.27 0 0.006 0.054 0.559 0.001 0.107

BIC 0.032 0.551 0.002 0.021 0.022 0.361 0.001 0.01

200 H + PT ·|m| T1/3 0 0.406 0 0.002 0.013 0.574 0 0.005

log(T) 0 0.359 0 0.001 0.017 0.612 0 0.011

T1/5 0 0.138 0 0 0.028 0.756 0 0.078

AIC 0 0.068 0 0 0.024 0.774 0 0.134

BIC 0 0.296 0 0.001 0.019 0.673 0 0.011
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Table 2. Cont.

Yt|F t−1 ∼ Poisson(λt)

λt=φ0+φ1Yt−1+φ3Yt−3

φ1=0.4, φ3=0.2 Models to Be Selected

T Criterion PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

300 H + PT ·|m| T1/3 0 0.22 0 0 0.07 0.767 0 0.006

log(T) 0 0.153 0 0 0.011 0.826 0 0.01

T1/5 0 0.041 0 0 0.01 0.874 0 0.075

AIC 0 0.016 0 0 0.006 0.832 0 0.146

BIC 0 0.127 0 0 0.008 0.855 0 0.01

500 H + PT ·|m| T1/3 0 0.035 0 0 0.03 0.958 0 0.004

log(T) 0 0.017 0 0 0.002 0.971 0 0.01

T1/5 0 0.001 0 0 0.002 0.934 0 0.063

AIC 0 0 0 0 0.001 0.841 0 0.158

BIC 0 0.012 0 0 0.004 0.976 0 0.008

1000 H + PT ·|m| T1/3 0 0 0 0 0 1 0 0

log(T) 0 0 0 0 0 0.991 0 0.009

T1/5 0 0 0 0 0 0.956 0 0.044

AIC 0 0 0 0 0 0.848 0 0.152

BIC 0 0 0 0 0 0.995 0 0.005

Additionally, we provide a simulation study on lag variable selection for the data-
generating process:

Yt|Ft−1 ∼ Poisson(λt)

λt = φ0 + φ1Yt−1.

The results can be found in Table A2 in the Appendix A.

3.2.2. AR Model

In this subsection, we consider the true data-generating process as follows:

Yt = φ0 + φ1Yt−1 + φ3Yt−3 + Zt (8)

where φ1 = 0.4, φ3 = 0.2, φ0 = 1, and Zt follows a normal distribution with a mean of 0
and a standard deviation of 2. By applying the penalized criteria (6) alongside AIC and BIC,
we attempt to select the true model from all AR models up to the third order. In Table 3:

i.i.d. represents an i.i.d. Normal random variable sequence,
yt−1 represents the model Yt = φ0 + φ1Yt−1 + Zt,
yt−2 represents the model Yt = φ0 + φ2Yt−2 + Zt,
yt−3 represents the model Yt = φ0 + φ3Yt−3 + Zt,
yt−1, yt−2 represents the model Yt = φ0 + φ1Yt−1 + φ2Yt−2 + Zt,
yt−1, yt−3 represents the model Yt = φ0 + φ1Yt−1 + φ3Yt−3 + Zt,
yt−1, yt−3 represents the model Yt = φ0 + φ2Yt−2 + φ3Yt−3 + Zt,
yt−1, yt−2, yt−3 represents the model Yt = φ0 + φ1Yt−1 + φ2Yt−2 + φ3Yt−3 + Zt,

“Criterion” denotes the model selection criteria we use, and we use H + PT ·|m| to
denote penalized criteria (6). We use boldface to highlight the true model:
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Table 3. Frequency of model selection AR model of order 1 by the penalized criterion (6).

Yt=φ0+φ1Yt−1+φ3Yt−3+Zt

φ1=0.4, φ3=0.2 Models to Be Selected

T Criterion PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

100 H + PT ·|m| T1/3 0.048 0.577 0.002 0.02 0.018 0.324 0.001 0.01

log(T) 0.048 0.564 0.002 0.02 0.018 0.336 0.001 0.011

T1/5 0.009 0.34 0.002 0.012 0.044 0.524 0.001 0.068

AIC 0.004 0.255 0.002 0.005 0.059 0.578 0.002 0.095

BIC 0.032 0.564 0.001 0.016 0.018 0.352 0.001 0.016

200 H + PT ·|m| T1/3 0.001 0.323 0 0.001 0.011 0.654 0 0.01

log(T) 0.001 0.279 0 0 0.014 0.693 0 0.013

T1/5 0 0.11 0 0 0.025 0.79 0 0.075

AIC 0 0.062 0 0 0.021 0.771 0 0.146

BIC 0.001 0.261 0 0 0.013 0.713 0 0.012

300 H + PT ·|m| T1/3 0 0.167 0 0 0.004 0.825 0 0.004

log(T) 0 0.116 0 0 0.004 0.874 0 0.006

T1/5 0 0.042 0 0 0.007 0.893 0 0.058

AIC 0 0.017 0 0 0.007 0.824 0 0.152

BIC 0 0.107 0 0 0.005 0.88 0 0.008

500 H + PT ·|m| T1/3 0 0.034 0 0 0.003 0.959 0 0.004

log(T) 0 0.013 0 0 0.004 0.975 0 0.008

T1/5 0 0.002 0 0 0.001 0.937 0 0.06

AIC 0 0 0 0 0 0.837 0 0.163

BIC 0 0.011 0 0 0.003 0.977 0 0.009

1000 H + PT ·|m| T1/3 0 0 0 0 0 0.996 0 0.004

log(T) 0 0 0 0 0 0.989 0 0.011

T1/5 0 0 0 0 0 0.951 0 0.046

AIC 0 0 0 0 0 0.846 0 0.154

BIC 0 0 0 0 0 0.988 0 0.012

From Table 3, we can observe that, similar to the INAR case, the accuracy of PT = T
1
5

is slightly worse than PT = T
1
3 and PT = log(T) in larger sample sizes, but in smaller

sample sizes, i.e., T ≤ 500, the performance of PT = T
1
5 is superior. The comparison of the

penalized criteria proposed in this paper with AIC and BIC in the AR model is analogous
to that in the INARCH model; thus further elaboration is not required.

3.3. Robustness of Variable Selection Procedure

In this section, we investigate the robustness of the penalized criteria (6) for different
distributions of the innovation term Zt in model (7). Specifically, we consider Zt to follow a
Poisson distribution, a geometric distribution with a mean of 2, and a uniform distribution
over {0, 1, 2, 3, 4}. In Table 4, “Zt” denotes the random distribution of the innovation term,
whereas “geom” denotes the geometric distribution.

Through Table 4, we observe that the penalized criteria (6) remain robust for various
distributions of the innovation term Zt. This finding suggests that the criteria proposed
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in this paper can effectively select the correct lag order even when the innovation term
adheres to different distributions. We use boldface to highlight the true model:

Table 4. Frequency of model selection of INAR model by the penalized criterion (6) with
Zt misspecification.

Yt=φ(t)
1 ◦Yt−1+φ(t)

3 ◦Yt−3+Zt

φ1=0.4,φ3=0.2 Models to Be Selected

T Zt PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

100 Poisson T1/3 0.045 0.587 0.003 0.018 0.018 0.319 0 0.01

log(T) 0.043 0.584 0.003 0.019 0.018 0.323 0 0.01

T1/5 0.005 0.349 0.002 0.008 0.053 0.514 0.003 0.066

Uniform T1/3 0.048 0.564 0.001 0.02 0.018 0.336 0.001 0.048

log(T) 0.043 0.559 0 0.019 0.02 0.345 0.001 0.043

T1/5 0.014 0.332 0 0.004 0.047 0.519 0 0.014

Geom T1/3 0.07 0.575 0.004 0.032 0.023 0.285 0.001 0.02

log(T) 0.067 0.57 0.004 0.032 0.024 0.292 0.001 0.02

T1/5 0.009 0.327 0.002 0.011 0.052 0.511 0.002 0.086

200 Poisson T1/3 0 0.37 0 0.001 0.008 0.612 0 0.008

log(T) 0 0.319 0 0.002 0.012 0.655 0 0.012

T1/5 0 0.109 0 0.001 0.02 0.795 0 0.075

Uniform T1/3 0 0.343 0 0 0.012 0.636 0 0.009

log(T) 0 0.29 0 0 0.016 0.681 0 0.013

T1/5 0 0.13 0 0 0.026 0.776 0 0.068

Geom T1/3 0.005 0.358 0 0 0.018 0.603 0 0.016

log(T) 0.004 0.312 0 0 0.02 0.643 0 0.021

T1/5 0 0.108 0 0 0.034 0.752 0 0.106

300 Poisson T1/3 0 0.193 0 0 0.003 0.801 0 0.003

log(T) 0 0.138 0 0 0.004 0.852 0 0.006

T1/5 0 0.044 0 0 0.005 0.878 0 0.073

Uniform T1/3 0 0.184 0 0 0.01 0.802 0 0.004

log(T) 0 0.122 0 0 0.012 0.851 0 0.015

T1/5 0 0.03 0 0 0.011 0.885 0 0.074

Geom T1/3 0 0.188 0 0 0.012 0.796 0 0.004

log(T) 0 0.133 0 0 0.015 0.834 0 0.018

T1/5 0 0.027 0 0 0.013 0.88 0 0.08

500 Poisson T1/3 0 0.027 0 0 0.005 0.962 0 0.006

log(T) 0 0.008 0 0 0.005 0.975 0 0.012

T1/5 0 0.002 0 0 0.003 0.923 0 0.072

Uniform T1/3 0 0.04 0 0 0.004 0.95 0 0.006

log(T) 0 0.02 0 0 0.002 0.964 0 0.014

T1/5 0 0.003 0 0 0 0.926 0 0.071

Geom T1/3 0 0.035 0 0 0.008 0.954 0 0.003

log(T) 0 0.018 0 0 0.007 0.964 0 0.011

T1/5 0 0.002 0 0 0.003 0.928 0 0.067
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Table 4. Cont.

Yt=φ(t)
1 ◦Yt−1+φ(t)

3 ◦Yt−3+Zt

φ1=0.4,φ3=0.2 Models to Be Selected

T Zt PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

1000 Poisson T1/3 0 0 0 0 0 0.998 0 0.002

log(T) 0 0 0 0 0 0.989 0 0.011

T1/5 0 0 0 0 0 0.952 0 0.048

Uniform T1/3 0 0 0 0 0 1 0 0

log(T) 0 0 0 0 0 0.995 0 0.05

T1/5 0 0 0 0 0 0.944 0 0.056

Geom T1/3 0 0 0 0 0 0.994 0 0.006

log(T) 0 0 0 0 0 0.982 0 0.018

T1/5 0 0 0 0 0 0.947 0 0.053

Furthermore, we compare the performance of the penalized criteria proposed in this
paper, AIC, and BIC when the innovation term Zt in AR model (8) follows a uniform distri-
bution over [−2, 2] while the assumption of Zt is a normal distribution with mean 0 and
unknown variance σ2

Z. In Appendix A, Table A3 shows that regardless of the distribution
of the innovation term, when the conditional mean is set correctly, the performance and
robustness of the penalized criteria proposed in this paper are generally equivalent to those
of AIC and BIC.

4. Real Data Application
4.1. COVID-19 Infection Data

The investigation of data related to infectious diseases constitutes a crucial application
of integer-valued time series models within the public health domain. In May 2020, the
Ministry of Health in Cyprus disseminated a national epidemic surveillance report, which
displayed the temporal data pertaining to the number of infections during the initial phase
of the COVID-19 outbreak. Conducting research on this data is instrumental for the public
health academia in uncovering the intrinsic mechanisms governing epidemic propagation.
Owing to the incubation period associated with the coronavirus, individuals who contract
the virus typically disclose their infection status to governmental statistical departments
after a lapse of several days. As a result, it becomes imperative to scrutinize the matter of
lag variable selection within this time series dataset, see Figure 3 below.

Figure 3. Number of COVID-19 infections in Cyprus, 13 March to 12 May 2020.
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Based on the ACF plot, it can be inferred that the data may stem from an autoregressive
data-generating process. The PACF plot suggests that selecting either the model:

Yt = φ
(t)
1 ◦Yt−1 + Zt

or
Yt = φ

(t)
1 ◦Yt−1 + φ

(t)
3 ◦Yt−3 + Zt

is reasonable, as the partial autocorrelation function for a lag of three periods does not
significantly exceed the critical value. Consequently, we employ the model selection
procedure (6) for variable selection, and we provide the result in the following Table 5.

Table 5. Result of model selection with COVID-19 data.

PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

T1/3 28.6 15.9 22.9 20.5 17.9 11.8 22.9 15.7

log(T) 28.7 16.3 23.3 20.8 18.4 12.3 23.4 16.4

T1/5 26.9 12.6 19.6 17.1 12.9 6.8 17.9 9.1

Given that the penalized criteria (6) favor the model

Yt = φ
(t)
1 ◦Yt−1 + φ

(t)
3 ◦Yt−3 + Zt

under all three penalty settings, we adopt this model. The estimated results for this
model are:

Yt = 0.5736 ◦Yt−1 + 0.2933 ◦Yt−3 + Zt
(0.1081) (0.1092)

where the mean of Zt is 1.8567; φ
(t)
1 and φ

(t)
3 as two non-negative random variables, have

expected values of 0.5736 and 0.2933, respectively. This finding suggests that during the
initial stages of the outbreak in Cyprus, the number of infections on a given day may have
been influenced by the number of infections one day and three days prior.

4.2. Seismic Frequency Data

The exploration of earthquake frequency constitutes a significant application frontier
for integer-valued time series models. As documented by Zucchini, MacDonald, and
Langrock [27], comprehensive annual data delineating global seismic occurrences of mag-
nitude seven or above, encompassing the period from 1900 to 2007, has been provided.
This wealth of data offers a promising platform for scholars seeking to unravel the intricate
mechanisms underpinning the mutual interactions among earthquakes. It is envisaged
that through a meticulous investigation of this time-series data associated with seismic
activities, one might gain insights into whether the interplay is mediated by crustal stress
dynamics or alternative conduits, see Figure 4 below.

Informed by the ACF, we hypothesize that the underlying data generation process
might be suitably modeled by an autoregressive construct. On the other hand, insights
gleaned from the PACF advocate for the application of a first-order autoregressive model.
To substantiate this conjecture further, we will proceed to invoke the penalized criterion (6)
as our analytical tool in the ensuing discourse, and we provide the result in the following
Table 6.
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Figure 4. Global frequency of earthquakes of magnitude seven or greater between 1900 and 2007.

Table 6. Result of model selection with seismic frequency data.

PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

T1/3 29.8 10.7 29.5 35.9 15.3 15.1 33.1 19.0

log(T) 29.7 10.6 29.3 35.8 15.0 12.9 32.8 18.7

T1/5 27.5 6.3 25.1 31.6 8.6 8.5 26.5 10.2

Given that under the three penalty settings, the penalized criterion (6) exhibits a
preference for the model

Yt = φ
(t)
1 ◦Yt−1 + Zt

we opt to adopt this model. The estimated results for this model are as follows:

Yt = 0.5799 ◦Yt−1 + Zt(0.0812)

In this model, the mean value of Zt is identified as 2.1014. The derived estimations posit
that every occurrence of a magnitude seven or higher earthquake in the preceding year
induces a count of similar-intensity earthquakes in the subsequent year, which manifests as
a discrete random variable with an expected value of 0.5799. Simultaneously, the number of
major earthquakes occurring independently each year is approximately two. These results
substantiate the existence of a year-on-year time-varying dependency mechanism in the
frequency of major seismic disasters.

5. Discussion and Conclusions

In this paper, we propose a model selection criterion based on an estimation equation
established in Conditional Least Squares estimation. This penalized method does not
rely on detailed distributional assumptions for the data-generating process. It circum-
vents the complex likelihood function construction in Random Coefficient Integer-Valued
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Autoregressive models and can consistently select the correct variables under relatively
mild assumptions.

In our numerical simulations, we compared the impact of three penalty term settings
on the performance of the penalty criteria. We found that the impact of these penalty
terms on the performance of the information criteria varies as partial coefficients in the
RCINAR model move farther away from 0 or as the sample size increases. Moreover,
we applied the model selection method proposed in this paper to both the INARCH and
traditional continuous-valued AR models. We discovered that in both scenarios where
likelihood functions can be easily constructed, the proposed model selection criteria and
the traditional likelihood-based information criteria, AIC and BIC, exhibit similar model
selection efficiency. Specifically, under the settings of PT = T

1
3 and PT = log(T), the

accuracy of the proposed model selection method is similar to that of BIC. However, in
cases with smaller sample sizes, the proposed model selection method with PT = T

1
5

performs similarly to AIC while outperforming AIC with larger sample sizes.
In the future, model selection methods based on estimation equations have con-

siderable potential for development. In this discussion section, we briefly introduce
three aspects:

(1) Distinguishing between different thinning operators or innovation terms with varying
distributions: The criterion (6) provided in this paper is primarily used for lag variable
selection but lacks the ability to differentiate between various thinning operators and
distinct distributions of innovation terms. It is well known that INAR models can
describe scenarios such as zero inflation, variance inflation, and extreme values by
flexibly selecting thinning operators and innovation terms. Therefore, if a model
selection criterion can distinguish between different thinning operators and varying
distributions of innovation terms, it will have a more extensive application scope.

(2) Incorporating higher-order conditional moments from the data-generating process

into the information criterion. Through the form of the H
(∼

θ
)

function:

H
(∼

θ
)
=

(
T

∑
t=p+1

Ψt
(∼

θ
))′( T

∑
t=p+1

Ψt
(∼

θ
)
Ψt
(∼

θ
)′)−1( T

∑
t=p+1

Ψt
(∼

θ
))

It is evident that criterion (6) only contains the mean structure information of the
model and lacks the ability to describe higher-order moment information. Since many
variants of the INAR model exhibit differences in higher-order moments, incorporat-
ing higher-order moment information into the model selection criterion would enable
criterion (6) to perform model selection within a broader context.

(3) Detecting change points. In the field of time series data research, the change point
detection problem has a long history. Specifically, within the integer-valued time
series domain, the change point problem refers to the existence of positive integers
τ1, τ2, · · · , τm, such that:

Yt =


φ(1) ◦Y{t−1) + Z(1)

t 0 < t ≤ τ1

φ(2) ◦Y{t−1) + Z(2)
t τ1 < t ≤ τ2

...
...

φ(m) ◦Y{t−1) + Z(m)
t τm < t ≤ T

For continuous-valued time series models, Chen and Gupta [28] introduced a method
for change point detection using AIC and BIC. Since parameter changes are promi-
nently reflected in the mean structure of INAR models, it is likely feasible to perform
change point detection using the criterion (6) based on the estimation equations.
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Appendix A

Appendix A.1 Proofs

Proof of Lemma 1.

(1) From Lemma 1 in Zhang, Wang, and Zhu [7], it can be proved immediately.

(2) Due to the construction of Ψt(θ), we have ∂2Ψt(θ)
∂θ∂θ′ = 0, which proves the statement.

(3) Because the construction of Ψt(θ) ensures that ∂Ψt(θ)
∂θ′ is a constant with respect

to the parameter vector θ and is only related to {Yt}, the conclusion holds under
Assumption (A1). �

Proof of Theorem 1. When model m is correctly specified, by Taylor expansion, we have:

T

∑
t=p+1

Ψt
(
θ̂CLS(m)

)
=

T

∑
t=p+1

Ψt
(∼

θ 0
)
+

T

∑
t=p+1

∂Ψt
(∼

θ 0
)

∂
∼
θ
′

(
θ̂CLS(m)−

∼
θ 0

)
+ op

(
T−

1
2

)

where, according to Equation (5), op
(∥∥θ̂CLS(m)−

∼
θ 0
∥∥) = op

(
T−

1
2

)
.

Since θ̂(2),CLS(m) =
∼
θ (2)(m) = 0, then:

0 = 1
T

T
∑

t=p+1
Ψ1t
(
θ̂CLS(m)

)
= 1

T

T
∑

t=p+1
Ψ1t
(∼

θ 0
)
+ 1

T

T
∑

t=p+1

∂Ψt

(∼
θ 0

)
∂θ′

(1)(m)

(
θ̂(1),CLS(m)−

∼
θ (1)(m0)

)
+ op

(
T−

1
2

)
Thus, we have:

θ̂(1),CLS(m)−
∼
θ (1)(m0) = −

(
1
T

T
∑

t=p+1

∂Ψt

(∼
θ 0

)
∂
∼
θ
′
(1)(m)

)−1
1
T

T
∑

t=p+1
Ψ1t
(∼

θ 0
)
+ op

(
T−

1
2

)
= −

(
E
(

∂Ψt

(∼
θ 0

)
∂
∼
θ
′
(1)(m)

))−1
1
T

T
∑

t=p+1
Ψ1t
(∼

θ 0
)
+ op

(
T−

1
2

)

https://www.mdpi.com/article/10.3390/e25081220/s1
https://www.mdpi.com/article/10.3390/e25081220/s1
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Therefore:

θ̂CLS(m)−
∼
θ 0 =

[
θ̂(1),CLS(m)−

∼
θ (1)(m0)

0

]

=

−
(
E
(

∂Ψt

(∼
θ 0

)
∂
∼
θ
′
(1)(m)

))−1
1
T

T
∑

t=p+1
Ψ1t
(∼

θ 0
)
+ op

(
T−

1
2

)
0


Hence:

1
T

T
∑

t=p+1
Ψt
(
θ̂CLS(m)

)
=

I −E
(

∂Ψt

(∼
θ 0

)
∂
∼
θ
′

)
(
E
(

∂Ψt

(∼
θ 0

)
∂
∼
θ
′
(1)(m)

))−1

0

0 0


 1

T

T
∑

t=p+1
Ψt
(∼

θ 0
)
+ op

(
T−

1
2

)
def
= Σ∗ 1

T

T
∑

t=p+1
Ψt
(∼

θ 0
)
+ op

(
T−

1
2

)

where I is the identity matrix, and let Σ11 = E
(

Ψt
(∼

θ 0
)
Ψt
(∼

θ 0
)′), then by Lemma 1,

we have:

H
(
θ̂CLS(m)

)
=

(
T
∑

t=p+1
Ψt
(
θ̂CLS(m)

))′( T
∑

t=p+1
Ψt
(
θ̂CLS(m)

)
Ψt
(
θ̂CLS(m)

)′)−1(
T
∑

t=p+1
Ψt
(
θ̂CLS(m)

))

=

(
T−

1
2

T
∑

t=p+1
Σ−

1
2

11 Ψt

(∼
θ 0

))′
Σ

1
2
11Σ′∗Σ

−1
11 Σ∗Σ

1
2
11

(
T−

1
2

T
∑

t=p+1
Σ−

1
2

11 Ψt

(∼
θ 0

))
+ Op(1)

Let Ω = Σ
1
2
11Σ′∗Σ

−1
11 Σ∗Σ

1
2
11 = Σ

1
2
11Σ′∗Σ

− 1
2

11 Σ−
1
2

11 Σ∗Σ
1
2
11, which implies that Ω is a positive

semi-definite matrix. Consequently, according to Johnston [29]’s Theorem 2.1.6, we have
Ω = UΛU′, where U is an orthogonal matrix, Λ is a diagonal matrix, and the diagonal
elements of Λ are the eigenvalues of Ω, denoted as Λ1, . . . , Λp+1. Thus,

H
(
θ̂CLS(m)

)
=

p+1

∑
j=1

Λj

[
T−

1
2

T

∑
t=p+1

Σ−
1
2

11 Ψt

(∼
θ 0

)]2

j

+ Op(1)

where [J ]j denotes the j-th element of vector J . Therefore, we obtain:

H
(
θ̂CLS(m)

) d→
p+1

∑
j=1

Λjχ
2(1)

Thus, it is known that Λj is the eigenvalue of the matrix Σ
1
2
11Σ′∗Σ

−1
11 Σ∗Σ

1
2
11,

and ∑
p+1
j=1 Λj = trace(Ω) = trace

(
Σ

1
2
11Σ′∗Σ

−1
11 Σ∗Σ

1
2
11

)
. �

Proof of Theorem 2. Due to assumptions (A1) and (A2), following steps similar to those in

Lemma 1 of Zhang, Wang, and Zhu [7], we know that E
(∥∥Ψt

(∼
θ
)∥∥2+ δ

2

)
is bounded above.
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For any
∼
θ 1 in the neighborhood of

∼
θ
∗
6=
∼
θ 0, by applying the Markov inequality,

we have:

∞

∑
i=1

P
(∥∥Ψt

(∼
θ 1
)∥∥2

> i
)
≤

∞

∑
i=1

E
(∥∥Ψt

(∼
θ 1
)∥∥2+ δ

2

)
i1+

δ
4

< ∞

By applying the Borel–Cantelli lemma, we can always find a sufficiently large natural
number N such that for any i > N, ‖Ψt(θ1)‖ ≤ i−

1
2 holds with probability 1. This further

implies that max
1≤t≤T

‖Ψt
(∼

θ 1
)
‖ = op

(
T

1
2

)
. Therefore:

H
(∼

θ 1
)
=

(
T
∑

t=p+1
Ψt
(∼

θ 1
))′( T

∑
t=p+1

Ψt
(∼

θ 1
)
Ψt
(∼

θ 1
)′)−1(

T
∑

t=p+1
Ψt
(∼

θ 1
))

≥
(

T
∑

t=p+1
Ψt
(∼

θ 1
))′(

max
t

∥∥Ψt
(∼

θ 1
)∥∥1′

T
∑

t=p+1
Ψt
(∼

θ 1
)′)−1(

T
∑

t=p+1
Ψt
(∼

θ 1
))

where 1 = (1, 1, . . . , 1)′. Due to assumption (A3), ∑T
t=p+1 Ψt

(∼
θ 1
)

= Op(T), we can
deduce that:

T−
1
2 H
(∼

θ 1
)
→ ∞

�

Lemma A1. H(m0) = op(log(T)).

Given:

H(m0) =

(
T

∑
t=p+1

Ψt
(
θ̂CLS(m0)

))′( T

∑
t=p+1

Ψt
(
θ̂CLS(m0)

)
Ψt
(
θ̂CLS(m0)

)′)−1( T

∑
t=p+1

Ψt
(
θ̂CLS(m0)

))

and

T
∑

t=p+1
Ψt
(
θ̂CLS(m0)

)
=

T
∑

t=p+1
Ψt

(∼
θ 0

)
+

 T
∑

t=p+1

∂Ψt

(∼
θ 0

)
∂
∼
θ
′
(1)(m)

−1(
θ̂(1),CLS(m)−

∼
θ (1)(m0)

)
+ op(1)

def
= Qt

(∼
θ 0

)

1
T

T

∑
t=p+1

Ψt
(
θ̂CLS(m0)

)
Ψt
(
θ̂CLS(m0)

)′
= Σ11 + op(1)

We can deduce that:
H(m0) =

1
T

Qt(
∼
θ 0)Σ−1

11 Qt(
∼
θ 0) + op(1)

Let V = Cov

(
1
T

T
∑

t=p+1
Ψt
(∼

θ 0
)
+E

(
∂Ψt

(∼
θ 0

)
∂
∼
θ
′
(1)(m)

)(
θ̂(1),CLS(m)−

∼
θ (1),0(m)

))
Notice that:

P(H(m0) ≥ log(T)) ≤
E
(

1
T Qt

(∼
θ 0
)
Σ−1

11 Qt
(∼

θ 0
))

log(T)
=

trace
(

Σ−1
11 V

)
log(T)

Using Lemma A2 below, we can conclude that H(m0) = op(logT).



Entropy 2023, 25, 1220 24 of 29

Lemma A2. trace
(

Σ−1
11 V

)
= Op(1).

Because both Σ−1
11 and V are semi-positive definite matrices:

0 ≤ trace
(

Σ−1
11 V

)
≤ trace

(
Σ−1

11

)
trace(V)

As Σ−1
11 = Op(1). Note that

(
θ̂(1),CLS(m)−

∼
θ (1),0(m)

)
= Op

(
T−

1
2

)
, and according to

Lemma 1, 1
T ∑T

t=p+1 Ψt

(∼
θ 0

)
= Op(1). Therefore, the proof is complete.

Proof of Theorem 3. We divide the proof of this theorem into two parts:

(1) If m0 * m, by applying Theorem 1 and Lemma A1 to m0, and Theorem 2 to m, we

know that for PT = O
(

T
1
2

)
and log(T)

PT
→ 0 :

H
(
θ̂CLS(m)

)
+ PT ·|m| − H

(
θ̂CLS(m0)

)
− PT ·|m0| → ∞

(2) If m0 ⊆ m, then by applying Theorem 1 and Lemma A1 to both m0 and m, we know
that for PT → ∞ :

H
(
θ̂CLS(m)

)
+ PT ·|m| − H

(
θ̂CLS(m0)

)
− PT ·|m0|

= PT(|m| − |m0|) + op(log(T))→ ∞

Therefore,

P
(
min

(
H
(
θ̂CLS(m)

)
+ PT ·|m| : m 6= mo

)
> H

(
θ̂CLS(m0)

)
+ PT ·|m0|

)
→ 1

�

Proof of Theorem 4. Following the steps in Diop and Kengne [21], we have:
For x = (xi)1≤i≤p+1, xi ∈ R, define:

FT(x) = P

 ⋂
1≤i≤p+1

√
T
(

θ̂CLS(m̂)−
∼
θ 0

)
i
≤ xi


Then we have:

FT(x) = P
( ⋂

1≤i≤p+1

√
T
(

θ̂CLS(m̂)−
∼
θ 0

)
i
≤ xi|m̂ = mo

)
P(m̂ = mo)

+P
( ⋂

1≤i≤p+1

√
T
(

θ̂CLS(m̂)−
∼
θ 0

)
i
≤ xi|m̂ 6= mo

)
P(m̂ 6= mo)

According to Theorem 3, as T → ∞ :

P(m̂ = m0)→ 1 , P(m̂ 6= m0)→ 0

Therefore:

P

 ⋂
1≤i≤p+1

√
T
(

θ̂CLS(m̂)−
∼
θ 0

)
i
≤ xi|m̂ 6= mo

P(m̂ 6= mo)→ 0
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Hence:

FT(x) = P
({ ⋂

i∈mo

√
T
(

θ̂CLS(m̂)−
∼
θ 0

)
i
≤ xi

}⋂{ ⋂
i/∈mo

√
T
(

θ̂CLS(m̂)−
∼
θ 0

)
i
≤ xi

})

Since
∼
θ (m0) ∈

∼
Θ(m0),

((
θ̂CLS(m0)

)
i

)
i/∈m0

=
(∼

θ i
)

i/∈m0
= 0 and (xi)i/∈m0

is a set of real
numbers, i.e., (xi)i/∈m0

< ∞, then by Lemma 1:

P
({ ⋂

i∈mo

√
T
(
θ̂CLS(m̂)−

∼
θ 0
)

i ≤ xi

}⋂{ ⋂
i/∈mo

√
T
(
θ̂CLS(m̂)−

∼
θ 0
)

i ≤ xi

})

= P
( ⋂

i∈mo

√
T
(
θ̂CLS(m̂)−

∼
θ 0
)

i ≤ xi

)
+ op(1)

→ P
((

Σ
(∼

θ 0
))− 1

2
Z ≤ (xi)i∈m0

)

where Σ
(∼

θ 0
)
= V−1(∼θ 0

)
W
(∼

θ 0
)
V−1(∼θ 0

)
, and Z is a standard normal random vector of

dimension |m0| �

Appendix A.2 Complementary Tables

Table A1. Frequency of model selection for INAR model of order 1 by the penalized criterion (6).

Yt=φ(t)
2 ◦Yt−2+Zt

φ2=0.3 Models to Be Selected

T Coef PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

100 Fixed T1/3 0.283 0.025 0.647 0.006 0.016 0.001 0.022 0

log(T) 0.281 0.025 0.648 0.006 0.016 0.001 0.023 0

T1/5 0.08 0.025 0.691 0.015 0.088 0.008 0.085 0.008

Uniform T1/3 0.304 0.033 0.618 0.01 0.011 0 0.023 0.001

log(T) 0.297 0.034 0.623 0.011 0.011 0 0.023 0.001

T1/5 0.104 0.038 0.652 0.015 0.087 0.003 0.085 0.016

Beta T1/3 0.287 0.029 0.64 0.011 0.011 0.001 0.021 0

log(T) 0.281 0.029 0.645 0.011 0.011 0.001 0.022 0

T1/5 0.118 0.032 0.666 0.01 0.076 0.005 0.081 0.012

200 Fixed T1/3 0.058 0.004 0.902 0.001 0.017 0 0.018 0

log(T) 0.045 0.003 0.902 0.001 0.021 0 0.024 0.001

T1/5 0.007 0 0.804 0.003 0.081 0 0.092 0.013

Uniform T1/3 0.091 0.006 0.882 0.002 0.006 0 0.013 0

log(T) 0.071 0.007 0.894 0.002 0.009 0 0.013 0

T1/5 0.017 0.002 0.809 0 0.074 0 0.09 0.008

Beta T1/3 0.059 0.004 0.912 0.001 0.011 0 0.012 0.001

log(T) 0.044 0.003 0.911 0.001 0.018 0 0.021 0.002

T1/5 0.009 0.001 0.803 0.001 0.081 0 0.092 0.013
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Table A1. Cont.

Yt=φ(t)
2 ◦Yt−2+Zt

φ2=0.3 Models to Be Selected

T Coef PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

300 Fixed T1/3 0.013 0 0.97 0.001 0.008 0 0.008 0

log(T) 0.007 0 0.96 0.001 0.015 0 0.017 0

T1/5 0.001 0 0.836 0 0.076 0 0.077 0.01

Uniform T1/3 0.017 0 0.956 0 0.016 0 0.01 0.001

log(T) 0.009 0 0.94 0 0.025 0 0.024 0.002

T1/5 0 0 0.839 0 0.081 0 0.264 0.016

Beta T1/3 0.011 0 0.967 0 0.012 0 0.01 0

log(T) 0.008 0 0.956 0 0.019 0 0.017 0

T1/5 0 0 0.857 0 0.078 0 0.058 0.007

500 Fixed T1/3 0 0 0.99 0 0.008 0 0.002 0

log(T) 0 0 0.977 0 0.012 0 0.011 0

T1/5 0 0 0.868 0 0.054 0 0.066 0.012

Uniform T1/3 0 0 0.991 0 0.003 0 0.006 0

log(T) 0 0 0.974 0 0.01 0 0.016 0

T1/5 0 0 0.874 0 0.047 0 0.073 0.006

Beta T1/3 0 0 0.993 0 0.004 0 0.003 0

log(T) 0 0 0.976 0 0.011 0 0.013 0

T1/5 0 0 0.879 0 0.056 0 0.058 0.007

1000 Fixed T1/3 0 0 0.998 0 0 0 0.002 0

log(T) 0 0 0.987 0 0.006 0 0.007 0

T1/5 0 0 0.916 0 0.04 0 0.043 0

Uniform T1/3 0 0 0.996 0 0.001 0 0.003 0

log(T) 0 0 0.978 0 0.012 0 0.01 0

T1/5 0 0 0.914 0 0.045 0 0.036 0.005

Beta T1/3 0 0 0.998 0 0.001 0 0.001 0

log(T) 0 0 0.987 0 0.005 0 0.008 0

T1/5 0 0 0.901 0 0.041 0 0.055 0.003

Table A2. Frequency of model selection for INARCH model of order 1 by the penalized criterion (6).

Yt|F t−1 ∼ Poisson(λt)

λt=φ0+φ1Yt−1

φ1=0.3 Models to Be Selected

T Criterion PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

100 H + PT ·|m| T1/3 0.09 0.849 0.003 0.02 0.032 0.022 0 0.002

log(T) 0.087 0.85 0.003 0.002 0.033 0.023 0 0.002

T1/5 0.024 0.746 0.006 0.002 0.109 0.094 0 0.019

AIC 0.011 0.713 0.005 0.001 0.125 0.116 0 0.029

BIC 0.06 0.888 0.002 0.003 0.023 0.023 0 0.001
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Table A2. Cont.

Yt|F t−1 ∼ Poisson(λt)

λt=φ0+φ1Yt−1

φ1=0.3 Models to Be Selected

T Criterion PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

200 H + PT ·|m| T1/3 0.001 0.958 0 0 0.017 0.023 0 0.001

log(T) 0.001 0.947 0 0 0.022 0.029 0 0.001

T1/5 0 0.821 0 0 0.071 0.09 0 0.018

AIC 0 0.719 0 0 0.113 0.129 0 0.039

BIC 0 0.959 0 0 0.019 0.021 0 0.001

300 H + PT ·|m| T1/3 0 0.986 0 0 0.005 0.009 0 0

log(T) 0 0.978 0 0 0.01 0.012 0 0

T1/5 0 0.854 0 0 0.065 0.075 0 0

AIC 0 0.707 0 0 0.124 0.148 0 0.021

BIC 0 0.977 0 0 0.009 0.014 0 0

500 H + PT ·|m| T1/3 0 0.994 0 0 0.004 0.002 0 0

log(T) 0 0.978 0 0 0.012 0.01 0 0

T1/5 0 0.878 0 0 0.06 0.057 0 0.005

AIC 0 0.704 0 0 0.135 0.126 0 0.035

BIC 0 0.973 0 0 0.017 0.01 0 0

1000 H + PT ·|m| T1/3 0 0.997 0 0 0.02 0.01 0 0

log(T) 0 0.979 0 0 0.008 0.013 0 0

T1/5 0 0.904 0 0 0.042 0.05 0 0.004

AIC 0 0.701 0 0 0.13 0.142 0 0.027

BIC 0 0.976 0 0 0.008 0.016 0 0

Table A3. Frequency of model selection for AR model by the penalized criterion (6) with Zt misspeci-
fication.

Yt=φ0+φ1Yt−1+φ3Yt−3+Zt

Zt ∼ Uniform([−2,2])

φ1=0.4, φ3=0.2 Models to Be Selected

T Criterion PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

100 H + PT ·|m| T1/3 0.046 0.595 0.001 0.016 0.016 0.317 0.001 0.008

log(T) 0.046 0.59 0.001 0.015 0.017 0.322 0.001 0.008

T1/5 0.003 0.366 0.001 0.008 0.039 0.516 0 0.067

AIC 0.003 0.269 0.001 0.003 0.059 0.554 0 0.111

BIC 0.026 0.578 0.001 0.012 0.021 0.349 0.001 0.012

200 H + PT ·|m| T1/3 0 0.356 0 0 0.008 0.63 0 0.006

log(T) 0 0.308 0 0 0.012 0.669 0 0.011

T1/5 0 0.115 0 0 0.026 0.794 0 0.065

AIC 0 0.069 0 0 0.027 0.787 0 0.117

BIC 0 0.283 0 0 0.014 0.691 0 0.012
300 H + PT ·|m| T1/3 0 0.157 0 0 0.002 0.832 0 0.009

log(T) 0 0.105 0 0 0.005 0.875 0 0.015

T1/5 0 0.029 0 0 0.009 0.901 0 0.061

AIC 0 0.01 0 0 0.008 0.851 0 0.131

BIC 0 0.098 0 0 0.006 0.883 0 0.013
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Table A3. Cont.

Yt=φ0+φ1Yt−1+φ3Yt−3+Zt

Zt ∼ Uniform([−2,2])

φ1=0.4, φ3=0.2 Models to Be Selected

T Criterion PT i.i.d. yt−1 yt−2 yt−3 yt−1,yt−2 yt−1,yt−3 yt−2,yt−3 yt−1,yt−2,yt−3

500 H + PT ·|m| T1/3 0 0.029 0 0 0.01 0.966 0 0.004

log(T) 0 0.013 0 0 0.01 0.975 0 0.011

T1/5 0 0.002 0 0 0.01 0.933 0 0.064

AIC 0 0 0 0 0.01 0.841 0 0.158

BIC 0 0.011 0 0 0.02 0.977 0 0.01

1000 H + PT ·|m| T1/3 0 0 0 0 0 0.999 0 0.001

log(T) 0 0 0 0 0 0.992 0 0.008

T1/5 0 0 0 0 0 0.962 0 0.038

AIC 0 0 0 0 0 0.864 0 0.136

BIC 0 0 0 0 0 0.992 0 0.008
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