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Abstract: We considered discrete and continuous representations of a thermodynamic process in
which a random walker (e.g., a molecular motor on a molecular track) uses periodically pumped
energy (work) to pass N sites and move energetically downhill while dissipating heat. Interestingly,
we found that, starting from a discrete model, the limit in which the motion becomes continuous
in space and time (N → ∞) is not unique and depends on what physical observables are assumed
to be unchanged in the process. In particular, one may (as usually done) choose to keep the speed
and diffusion coefficient fixed during this limiting process, in which case, the entropy production is
affected. In addition, we also studied processes in which the entropy production is kept constant
as N → ∞ at the cost of a modified speed or diffusion coefficient. Furthermore, we also combined
this dynamics with work against an opposing force, which made it possible to study the effect of
discretization of the process on the thermodynamic efficiency of transferring the power input to
the power output. Interestingly, we found that the efficiency was increased in the limit of N → ∞.
Finally, we investigated the same process when transitions between sites can only happen at finite
time intervals and studied the impact of this time discretization on the thermodynamic variables as
the continuous limit is approached.

Keywords: thermodynamic process; entropy production; discrete state space; continuous state space;
stochastic thermodynamics

1. Introduction

Nonequilibrium thermodynamics deals with general laws of a (driven) system trans-
ferring energy from one or more heat bath(s) to useful work. The second law, however,
restricts this transformation as only part of the input energy may be “accessible”, as the
entropy production, related to heat production, must not decrease [1–3]. The “system” is
usually described by many degrees of freedom, e.g., 1023 gas particles with individual
fluctuating trajectories, where the exchanged heat and the extracted work are determined
from statistical averages over all these particles trajectories [4]. For “small” systems, such as
(bio)polymers, colloid particle, enzymes, or molecular motors, the dynamics is described by
only few degrees of freedom and the fluctuation of individual “state” trajectories becomes
more prominent [3,5,6]. Notably, it has been shown, e.g., see Refs. [7–9], that the resulting
(relative) fluctuations of a statistical averaged observable, like the number of steps R of a
molecular motor mimicked by a random walk along a track of molecules, can be related to
the entropy production. A relative uncertainty or fluctuation ∆R2 = 2D/v2 of the motor
steps along the molecular track with the diffusion coefficient D and velocity v requires at
least an entropy production rate σ̇ of 2kB/∆R2. This leads to the inequality, known as the
thermodynamic uncertainty relation (TUR) [7,8]:

σ̇
2D
v2 ≥ 2kB. (1)
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Different approaches are used for describing small system dynamics including fluctu-
ations and the resulting (stochastic) thermodynamic properties. Two of these approaches
have been prominently elaborated in recent years [3]:

(i) Dynamics on a discrete set of states: A system is described by its microstates whose
dynamics is captured by a master equation. The rates to interchange between microstates
is governed by the local detailed balance relation determined by a thermal bath [3];

(ii) Dynamics on continuous trajectories: Consideration of individual continuous
trajectories of a (driven) colloidal particle whose velocity is described by a Langevin
equation where the probability distributions of a particle at position x with velocity v and
diffusion D are determined by the Fokker–Planck equation.

Starting from discrete set of states, we can approximate the dynamics by a contin-
uous description, such as the Fokker–Planck equation by standard procedures like the
Kramers–Moyal expansion, when (infinite) many states may be visited during the time
of observation, e.g., a chemical reaction network of multiple reaction steps [10–14]. Sim-
ilarly, starting from a continuous description for the dynamics, a discrete representation
is obtained by standard mathematical steps of replacing derivatives by finite difference
quotients. While such mathematical transformations are expected to lead to equivalent
descriptions of the underlying physics, we show below that not all physical observables
can be kept invariant under such transformations. In particular, we show that the dis-
crete to continuous limiting process is not unique and depends on which observables are
chosen to be invariant under this process. Recent studies have already shown that the
entropy production might differ under different coarse-graining schemes since, under
coarse-graining, some “information” is lost while also the mathematical derivation of the
differential entropy starting from the discrete Shannon entropy has revealed some discrep-
ancy (Remark: Note that the Shannon entropy S = −kB ∑i pi ln pi is defined for a discrete
propability distribution of i states (each state with the respective probability pi). Going
to the continuous state-space description for the probability distribution pi → p(xi)∆x,
the continuous entropy s∆x = −kB

∫
dxp(x) ln p(x)− lim∆x→0kB ∑i p(xi)∆x ln(∆x) differs

by a potentially infinite offset (since ln(∆x) → −∞ for ∆x → 0), which needs to be sub-
stracted, see discussion in [15]. However for the discussion on entropy production (change
in entropy and its change per time (entropy production rate)), we note that the infinte
offset vanishes) [15–17]. Here, we suggest a different point of view by showing that it is
possible to impose an invariant entropy production (or a given heat exchanged with the
thermal environment) when proceeding from the discrete to the continuous description of
the system dynamics. Under such restriction, some other system observable cannot be kept
invariant. Alternatively, one may even ask whether this observation may be translated into
realistic system processes. Put differently, can we, by adding intermediate states between an
initial and a target state, optimize the process of transferring input energy into useful work.

The aim of the present manuscript is to investigate the transition from a discrete to a
continuous state-space system for an exactly solvable master equation by keeping distinct
system observables constant while studying the impact on other observables. Explicitly,
we consider a simple model: a Brownian particle moving on a downhill slope with an
energy-pumping step taking place at constant length intervals L that restores the energy of
the particle into its initial value, which represents a cycle. In the discrete representation,
the particle is a random walker moving among N equally spaced sites per fixed length L.
N → ∞ represents the continuous limit for the cyclic dynamics. More details about the
model are provided in Section 2. Other processes with period boundary conditions can
be mapped into this form. One realization of such a process for walking in discrete steps
is that of molecular motors, which transform free energy liberated in a chemical reaction
by a succession of steps on a track into mechanical work (motion) [5,8]. Driven rotational
Brownian particles through periodic potential wells to experimentally test thermodynamics
laws represent another example, though there are many others [18]. Given the specific
chosen conditions, like constant speed v and the entropy production rate of the cycle, we
can study the diffusion coefficient D in dependence of the number of sites N per cycle
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and the continuous limit when N → ∞. Interestingly, under an additional action of an
opposing force during the process under study, we can also determine the impact of the
number of sites per cycle on thermodynamic performance by transferring input energy
into useful work. Furthermore, when keeping the energy drop per cycle and the speed
constant, we interestingly found that, in the limiting case N → ∞, the diffusion coefficient
(equivalent to the variance in the site distribution) approaches the thermal Einstein relation
when N → ∞, which is usually only expected for small velocities in the linear response
limit of small driving.

The paper is structured as follows. In Section 2, we describe the cyclic process as
biased random between (energy) sites governed by a master equation restricted by periodic
boundary conditions. We further discuss the implication for the entropy and heat produc-
tion. In Section 3, we study the entropy production rate and heat transfer rate into the
environment of the cyclic process given the velocity v and diffusion constant D for different
number of sites N in the dynamical (relaxation from initial site) and in a steady state. We
then determine the performance in transferring input power to useful output power for the
cycle process under an opposing force by varying N and, so, by going from the discrete
to the continuous (N → ∞) state space. In Section 4, we study the transition to N → ∞
given constant entropy production for the process, and, under either constant velocity v or
diffusion coefficient D. The impact on the respective system variable when increasing N is
discussed. Section 5 is devoted to examining the randomness parameter of the cycle, which
is dependent on the number of sites N, while maintaining various physical observables as
constants. Through this randomness factor, we can also determine the variance in the cycle
completion time and study its dependence on N. In Section 6, we investigate the process
by the same biased random walk, but where the system evolves at finite time intervals,
and study the impact of this time discretization on the entropy production and diffusion
coefficient. Section 7 concludes this work.

2. Cyclic Process

We consider a cyclic process, where the n = 1, . . . , N sites are aligned on a circle such
that each site has two neighboring sites with the periodic boundary condition N + n = n
with N ≥ 3. The process dynamics is captured by a biased one-step random walk with
forward and backward transfer rates α and β, which are equal at each site, such that the
classical (Markovian) master equation for the probability distribution of the n-site of the
cycle reads [10,13,14]

Ṗ(n, t) = αP(n− 1, t) + βP(n + 1, t)− (α + β)P(n, t). (2)

Starting from a well-defined site at t = 0, one finds in the limit of long times t → ∞ the
(nonequilibrium) steady-state distribution for the n site to be P(n, t → ∞) = 1/N (see
Appendix C). When writing the master Equation (2) in the form Ṗ = MP, we see that the
matrix M is irreducible with the dominant eigenvalue λ = 0 while all other eigenvalues
have a strictly negative real part according to the Perron–Frobenius theorem, signaling the
existence of a stable steady-state vector [19,20]. While our cyclic process can take place in
the state space of any given system, it is convenient to consider the equivalent random walk
with forward and backward rates α and β on a cycle of constant circumference L = 2πR.
In this equivalent random walk problem, the velocity v and diffusion constant D at steady
state are defined by [14]

v ≡ 〈n〉∆x
t

= (α− β)∆x (3)

and

2D ≡ (〈n2〉 − 〈n〉2)∆x2

t
= (α + β)∆x2, (4)
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where ∆x = 2πR/N is the equidistant step size, with R and N being the radius of the cycle
and the number of total sites N of the cycle, respectively. Evidently, the time for completing
a full cycle is τ = N(α− β)−1.

The transition between the neighboring sites, n→ n± 1, are considered as autonomous
Markov jump processes where each site has its energy E(n). Thermodynamic consistency
is introduced by the local detailed balance condition

α

β
= e

1
kBT

(
E(n)−E(n+1)

)
, (5)

where, for simplicity, we assume isothermal conditions with T on all sites, and where
∆E = E(n)− E(n + 1) > 0 is taken to be the same for all nearest neighbor sites. Note that
we count the heat exchange with the bath as Q ≡ −∆E, i.e., if Q < 0, the amount of heat
is taken from the system to the bath; while the environment provides heat to the system
if Q > 0. This implies that during a cycle, the amount of heat ∆Q ≡ −N∆E = kBTN ln

(
α
β

)
is dissipated, so E(N + 1) ≡ E(1)−N∆E may be compared to a downhill process of energy
loss N∆E. To remain consistent with the periodic boundary conditions, we further assume
that, between sites N and N + 1 = 1, an upward energy jump occurs, in which the same
amount of work, W = N∆E, is returned to the system.

Next, we calculate the time-dependent change of the Boltzmann–Gibbs entropy,
Ṡ(t) = −kB ∑n Ṗ(n, t) ln P(n, t), [2,21] for the system using the master Equation (2). We
obtain

Ṡ(t) = −kB

N

∑
m=1

N

∑
n=1

[
αP(n− 1, t) + βP(n + 1, t) (6)

− (α + β)P(n, t)
]

ln
P(n, t)
P(m, t)

= kB

N

∑
m=1

N−1

∑
n=m−1

[
αP(n, t)− βP(m, t)

]
ln

P(n, t)
P(m, t)

(7)

= kB ∑
m,n=m−1

[
αP(n, t)− βP(m, t)

]
ln

P(n, t)α
P(m, t)β

(8)

− kB ∑
m,n=m−1

[
αP(n, t)− βP(m, t)

]
ln

α

β
.

Note that in Equation (6), we could replace ln P(n, t) by ln[P(n, t)/P(m, t)] because
the sum that multiplies ln P(m, t) vanishes. The result (8) can be recast in the form
Ṡ(t) = Ṡe + σ̇(t), [22,23] where, using ∑n P(n, t) = 1,

Ṡe = −kB ∑
m,n=m−1

[
αP(n, t)− βP(m, t)

]
ln

α

β
(9)

= −kB
[
α− β

]
ln

α

β
,

and

σ̇(t) = kB

[[
α− β

]
ln

α

β
(10)

+ ∑
m,n=m−1

[
αP(n, t)− βP(m, t)

]
ln

P(n, t)
P(m, t)

]
.

Next, we show that the first term Ṡe (Equation (9)) is the entropy flow into the envi-
ronment, while the second term is the entropy production rate σ̇(t) (Equation (10)).
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Consider first Equation (9). Because the rates α and β were assumed not to depend on
the site identity, Ṡe is time-independent. Ṡe can be written as

Ṡe = J
Q
T

, (11)

where J ≡ α− β is the cumulative flux: the sum over nearest neighbor site-pair fluxes (see
first expression in Equation (9)). Q is the heat exchanged during a single nearest neighbor
transfer event with the environment according to the local detailed balance relation in
Equation (5). The product JQ in Equation (11) is the heat flux into the thermal environment
of temperature T per cycle. For the given model, this heat exchange is time-independent.

According to the Clausius principle, the change in system entropy is bounded by the
(negative) heat amount exchanged with the environment Ṡ ≥ JQ

T where equality is reached
for reversible processes [1]. Motivated by this inequality, one defines the total entropy
production rate by σ̇(t) = Ṡ− JQ

T ≥ 0. Indeed, the second term σ̇(t) (Equation (10)) meets
the two important properties: (i) It is non-negative because the first term in Equation (8)
can be recast into (x− y) ln(x/y) ≥ 0; and (ii) it vanishes for thermal equilibrium, when
microscopic reversibility or the detailed balance condition, αP(m, t) = βP(n, t), is obeyed
and no entropy is produced. In a (nonequilibrium) steady state, Equation (6) is zero and
the entropy production equals the negative entropy flow into the environment σ̇ = −Ṡe,
Refs. [23,24].

In the following, we investigate the entropy production rate σ̇(t) and the physical
measurable entropy or heat flow Ṡe into the environment for the prototype N-site cyclic
process given different conditions. In particular, we are interested in the limit N → ∞ to
investigate the transition from the discrete to the continuous state space.

3. N-Site Cyclic Process under Constant Velocity v and Diffusion Constant D

We first consider the dependence of the number of sites N per cycle on the system that
is performed under the conditions that (a) the speed v (Equation (3)) and (b) the diffusion
constant D (Equation (4)) are kept constant. The first condition requires that the time,
τ = N(α− β)−1, for a full completion of the cycle remains constant. Together with the
second condition, the forward and backward rate must depend on N. We obtain

α =
DN2

4π2R2 +
vN

4πR
, (12)

β =
DN2

4π2R2 −
vN

4πR
. (13)

To ensure the positivity of the rate (13), β ≥ 0, it immediately follows that v ≤ ND/Rπ.
Note that under the conditions restricted by Equations (12) and (13), the detailed balance
relation ∆E = kBT ln

(
α
β

)
(Equation (5)) will be a nonlinear function of N.

Consider the entropy production rate σ̇(t) (Equation (10)) given a well-defined initial
cycle site n = 1 at t = 0, so P(n = 1, t = 0) = 1. The entropy production rate (the entropy
produced per unit time) decreases over time before reaching a (N-dependent) steady-state
value, see Figure 1.

This observation can be understood as follows. Initially, the system starts at a given
site and evolves in its cyclic dynamics according to the master Equation (2). At later time t,
the system will be found at a given site n with probability P(n, t) (see Appendices A–C).
The loss of the initial “knowledge” about the exact system site n increases the entropy
of the system. As the probability distribution relaxes to its steady-state distribution
Pn,SS ≡ P(n, t→ ∞) = 1/N (see Appendix C), the entropy production rate, σ̇, decreases to
its steady-state value

σ̇SS = kB(α− β) ln
[

α

β

]
=

kBN
2πR

v ln
[ 2DN

2πR + v
2DN
2πR − v

]
. (14)
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Note that entropy is produced at constant rate when running the cyclic process under
steady-state conditions. Interestingly, as seen in Figure 1, the more sites N are included
in the cycle of finite length the faster the entropy production rate decreases to its steady-
state value. At steady state, the entropy production equals the negative (in this model
time-independent) entropy flow into the environment σ̇SS = −Ṡe.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2

σ.

/k
B

tv
2
/D

N=3

N=4

N=6

v
2
/D

Figure 1. Entropy production rate σ̇(t) against time plotted for different N-site cycles by keeping
the velocity v and diffusion coefficient D constant. The velocity v (here chosen to be v = 3D

2πR ) needs
to be within the bounds implied by β ≥ 0 of Equation (13) for N ≥ 3. The steady-state value v2/D
(black curve) is reached for N → ∞.

Consider the N-dependence of the the steady-state entropy production rate σ̇SS for
an N-site cycle, Equation (14). The dependence is shown in Figure 2. For N → ∞,
the steady-state entropy production rate (14) is reduced to kBv2/D. This minimum
entropy production rate in this limit can be understood as the forward and backward
rates (Equations (12) and (13)) become more alike. Therefore, consecutive transitions be-
tween sites n and n + 1 become more time-symmetric and less entropy per step, ∆E/T =
ln [α(N)/β(N)]/T, is produced.

Interestingly, for N → ∞, the TUR relation, the minimal required entropy production
rate σ̇ for a given relative fluctuation 2D/v2 (as introduced in Equation (1) for a molecular
motor moving along a molecular track) states equality, σ̇2D/v2 = 2kB. In this limit,
the dynamics of the cyclic process is comparable to a continuous Brownian diffusive
motion of a particle of constant speed v and diffusion D described by a Fokker–Planck
equation [25].
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 0.24
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σ.

S
S
/k

B

N

v
2
/D

Figure 2. Entropy production rate at steady state σ̇(t→ ∞) ≡ σ̇SS[= −Ṡe] against the number of sites
N per cycle by keeping the velocity v and diffusion coefficient D constant. The velocity v (here chosen
to be v = 3D

2πR ) needs to be within the bounds implied by β ≥ 0 of Equation (13) for N ≥ 3. The red
line is the entropy production rate in the limit N → ∞ and takes the value σ̇SS(N → ∞) = v2/D.

Assume that a forward (downhill) step on the cycle takes place against a con-
stant applied force f . Then, the local detail balance relation (5) must be redefined by
∆Ẽ ≡ E(n)− E(n + 1)− f ∆x = ∆E− f ∆x > 0, as part of the energy per step ∆E is trans-
ferred to work f ∆x, where ∆x is the step size. We defined the system’s heat exchange per
step with the bath as Q ≡ −∆Ẽ, while Q < 0 is the amount of heat taken from the system
to the bath. At steady state, the heat flow from the system into the bath is −Q̇ = Tσ̇SS,
see discussion in Section 2. The power output per cycle when running against the force at
steady state is

P ≡ ∑
m,n=m−1

[
αP(n)− βP(m)

]
f ∆x = (α− β)∆x f (15)

= v f .

In Equation (15), αP(n)− βP(n + 1) is the probability flux between neighboring sites and
where ∑n P(n) = 1. By the first law of thermodynamics, the total supplied power must be
P− Q̇ such that we can define the thermodynamic efficiency as [8]

η(N) ≡ P
P− Q̇

=
f v

f v + Tσ̇SS(N)
, (16)

where σ̇SS(N), Equation (14), depends on the total number of sites N per cycle. The cycle
can be compared to a process of going down a slope against a constant force and with
friction. The friction force is usually taken as Ff r = γv such that the related heat dissipated
in the cycle per unit time is Ff rv = γv2. By identifying γv2 ≡ Tσ̇SS(v, N), we can calculate
the friction coefficient γ(v) = Tσ̇SS(v)/v2 for the present cycle process using Equation (14).
Note that, as expected, the friction coefficient γ goes to its linear response value for a small
velocity, γ(v → 0) → kBT/D, independent of N. Surprisingly, as depicted in the inset
of Figure 3, γ also takes the same value for finite v in the limit of N → ∞. In this limit,
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the system assumes some features similar to equilibrium even though the flux is finite.
Not only in the limit v → 0, but also in the limiting process can N → ∞ be compared
to thermodynamic cycles where the system changes adiabatically slowly to always be in
thermal equilibrium throughout the process.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  2  4  6  8  10  12  14

η

N

v1
v2
v3

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  0.2  0.4  0.6  0.8  1

γ

v

N=3

N=4

N=6

N=15

Figure 3. Efficiency at steady state η plotted against the number of sites N per cycle by keeping
the velocity v and diffusion constant D constant. We depict η for v1 = 0.5v, v2 = 0.8v and v3 = v,
where we chose v = 3D

πR to be within the bounds implied by β ≥ 0 of Equation (13) for N ≥ 3. We
chose the force f ≡ vTσ̇SS(N → ∞) = 3kBT/πR. Inset: Damping constant γ ≡ γ(v)D/(kBT) =

TDσ̇SS/(v2kBT) in dependence of the velocity for different N.

Equivalently, in the limit N → ∞, we can write the thermodynamic efficiency (16) as

η =
1

1 + kBTv/D f
. (17)

Note that in the limit of linear response the velocity v and force f are linearly related
by the mobility µ f = v. Assuming the Einstein relation D = µkbT holds under linear
response such that the efficiency in the limit N → ∞ reach η = 1/2.

Figure 3 portrays the efficiencies for different N. As expected, the efficiency increases
with N as less heat −Q̇ = Tσ̇SS will be produced per cycle given constant power output P.
Interestingly, the slower the chosen velocity v, the more one can reach maximal efficiency.
The efficiency is bound from above, η ≤ 1, while equality is reached for v = 0 or f → ∞,
D → ∞, see Equation (17). The last conditions, however, do not produce useful output
power, as the cycle will stop.

4. Cyclic Process with Constant Velocity v or Diffusion Constant D and Constant
Energy Drop Per Cycle

As stated in the introduction, the process of going to the continuous description for
the state-space dynamics (N → ∞) is not unique. We, therefore, use the same methodology
as above to describe the unicyclic process as a 1D random walk at steady state but where
we now require the total entropy produced per cycle to be constant (given by the constant
energy drop per cycle) and either (A) the velocity v or (B) the diffusion coefficient D to be
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constant. We assume that all energy invested into the system is dissipated as heat to the
environment, so W = σT. The steady-state entropy production σ is

σ = kBN ln
(

α

β

)
, (18)

where N is the total number of sites. At steady state, the entropy production equals the
heat going into the environment, see Section 2.

(A) Given the constant velocity v, Equation (3), the forward and backward rates are

α =
vN

2πR
(
1− e

−σ
NkB
) , (19)

β =
vN

2πR
(
e

σ
NkB − 1

) , (20)

where R is the radius of the cycle (see Section 2).
(B) Given the constant diffusion coefficient D, Equation (4), the forward and backward

rates are

α =
2DN2

(2πR)2
(
1 + e

−σ
NkB
) , (21)

β =
2DN2

(2πR)2
(
e

σ
NkB + 1

) . (22)

Consider first case (A). Equation (4) with Equations (19) and (20) leads to

D =
1
2
(α + β)

(
2πR

N

)2

=
vπR

N
coth

[
σ

2NkB

]
, (23)

which is shown in Figure 4. The diffusion coefficient decreases with increasing N. As the
diffusion coefficient is the variance of the site distribution on our equivalent cycle, see
Equation (4), the related fluctuations in localization of a site is reduced during a cycle
with an increase in N. Assuming that the energy falls uniformly along the cycle, so that
∆E = Tσ/N, we find that, in the regime of linear response v→ 0 and in the limit N → ∞,
the diffusion coefficient is captured by the (Einstein) relation D = v/FkBT = µkBT with the
mobility µ = v/F and the related force F = Tσ/2πR in analogue to the friction coefficient
(as discussed in Section 3) [26,27].

Next, consider case (B). Equation (3) with Equations (21) and (22) leads to the velocity
on N

v = (α− β)
2πR

N
=

DN
πR

tanh
[

σ

2NkB

]
. (24)

The velocity v increases with N and so the time of a full completion of the system cycle
τ = 2πR/v is reduced and minimizes for N → ∞, see Figure 5.
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Figure 4. Diffusion constant D plotted against the number N of sites per cycle by keeping the
entropy σ per cycle and velocity v constant for N ≥ 3. We chose the produced entropy per cycle to be
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Figure 5. Velocity v plotted against the number N of sites per cycle by keeping the entropy σ per
cycle and the diffusion coefficient D constant for N ≥ 3. We chose the produced entropy per cycle to
be σ/kB = 5. The red line is the value v(N → ∞)→ Dσ/πRkB in the limit of N → ∞.

5. Randomness Parameter and Variance in Cycle Completion Time

In the previous Sections 3 and 4, we analyzed, for a biased random process, the de-
pendence of different physical observables on the number intermediate sites N taken to
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complete a given cycle of operation, as a way to demonstrate the nonuniqueness of going
to the continuous limit (N → ∞) of this process. Another perspective of this problem is
studied in Refs. [28–31], where the values of physical observables associated with enzyme-
catalyzed cycles were used to set bounds on the number of intermediate cycle steps (Note
that in difference to enzymic cycles where the step size is considered as constant, we reduce
the stepsize ∆x = L/N in a cycle of finite lenght L = 2πR with increasing N to study
the impact of the limit N → ∞ on the physical observables). It was pointed out that, in
addition to the average speed v and diffusion coefficient D, their ratio provides important
information on the observed walk statistics [28–31]. Explicitly, we characterize the ran-
dom process in terms of their forward and backward rates, α and β, respectively, and an
equidistant step length ∆x. If the process starts at n = 1 and a random site n is reached
at time t, then the process will be on average at site 〈n〉 = vt/∆x, whilst the random
diffusive process produces a variance in the site by 〈δn2〉 ≡ 〈n2〉 − 〈n〉2 = 2Dt/∆x2, see
Equations (3) and (4) in the limit t → ∞. These two quantities can be combined into a
randomness parameter, which, for the given step size ∆x, reads [28–31]

r ≡ 〈δn2〉
〈n〉 =

2D
∆xv

=
α + β

α− β
, (25)

where v and D are defined by Equations (3) and (4), respectively. Alternatively, we may
consider the random passage time τ at which, starting from n = 1, the walk reached the
site N for the first time, namely, a distance N∆x from the starting point. For walks of
uniform step length and finite bias, it has been shown [28,29] that, for a large enough
N, the randomness parameter can be expressed in terms of the first two moments of the
passage time distribution

r =
〈τ2〉 − 〈τ〉2
〈τ〉2 =

〈δτ2〉
〈τ〉2 , (26)

where 〈τ〉 is the average time for a cycle completion and 〈δτ2〉 is its variance. Note that
for many enzyme reaction cycles, the backward reaction rates are often sufficiently low as
to be negligible. In such cases, the pathway consists of a sequence of N forward reactions
only and the randomness parameter (r = N−1

min) can be used to estimate the minimal
number of kinetic sites that compose the underlying kinetic model [29,31]. In general, when
considering forward and backward steps and using the average cycle completion time 〈τ〉,
we can calculate the variance in cycle completion time to

〈δτ2〉 = r〈τ〉2. (27)

We can now apply the results of Sections 3 and 4 to examine the behavior of these
observables in our different limiting cases. In our case, N corresponds to the number
of sites per cycle and, consequently, τ is the time for the process to complete the cycle.
Increasing N is achieved by eventually approaching a continuous description, so the cycle
length N∆x = 2πR is kept fixed.

Consider first the condition of a constant velocity and diffusion constant by increasing
the number of sites N, see Section 3. Using Equations (12) and (13) in (25), the randomness
parameter is

r =
D

πRv
N (28)

and is linear in N.
Next, for the condition of constant entropy production σ per cycle under either con-

stant velocity v or constant diffusion D, see Section 4, we find in both cases, using the
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respective rates in Equations (19) and (20) or Equations (21) and (22), the randomness
parameter to be

r = coth
[

σ

2NkB

]
. (29)

The randomness parameter (29) is determined by the number of sites N and the thermody-
namic entropy production or heat dissipation into the environment, which equals, when
neglecting the movement against an external force, the energy drop per cycle, see Section 2.
Note that r tends to infinity in the limit σ → 0 and in the continuous limit N → ∞ since
both limits reflect the equilibrium situation where forward and backward rates will be
alike. In the limit σ → ∞, given finite N, we find r = 1, which is expected for the so-
called “Poisson” motion since the infinite energy drop per cycle leads to an unidirectional
motion [28].

With the randomness parameter at hand, we can now study the variance in the cycle
completion time (Equation (27)). It has been shown that, for a biased random walk for
a large N, the average completion time 〈τ〉 = N(α− β)−1 [32]. Consider first the cases
(A) of keeping the velocity and diffusion coefficient constant and (B) keeping the entropy
production per cycle and velocity constant. We find for (A) the given Equation (28), together
with Equations (12) and (13) in Equation (27), where 〈τ〉 = N(α− β)−1, the variance in
cycle completion time to be

〈δτ2〉 = 4DπR
v3 N, (30)

and, equivalent for case (B), by using Equation (29), together with Equations (19) and (20)
in Equation (27)

〈δτ2〉 = coth
[

σ

2NkB

]
4π2R2

v2 . (31)

In both Equations (30) and (31), the variance in the cycle completion time increases
monotonously with the site number N. This reflects the fact that, with an increasing
number of sites N per cycle, the intersite rates become more alike, which increases the
overall “randomness”, and, thus, 〈δτ2〉 for the total cycle completion.

In contrast, when N is changed while keeping a constant diffusion coefficient and
entropy production, Equation (26), together with (24) and (29) lead to

〈δτ2〉 = coth3
[

σ

2NkB

]
4(πR)4

D2N2 . (32)

Interestingly, 〈δτ2〉 goes through a minimum with increasing site number N, see Figure 6.
It should be kept in mind, however, that Equation (26) and, consequently, Equation (27),
were derived under the assumption that N is large so that this observation should not be
regarded as conclusive.
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Figure 6. Variance in cycle completion time 〈δτ2〉 plotted against the number N of sites per cycle by
keeping the entropy σ per cycle and the diffusion coefficient D constant for N ≥ 3, while the velocity
v(N) results from Equation (24). We show 〈δτ2〉 for three different choices of σ.

6. N-Site Process with Time Step Discretization

Consider now the same biased random walk process in which a cycle of length 2πR
is traversed in N steps, so that N∆x = 2πR, but where the system is restricted to move
(by intersite distance ∆x) only at finite time intervals ∆t. Indeed, small systems which are
periodically driven can be thought of as discrete-time processes, see [33]. As shown below,
∆x and ∆t are not independent of each other but some freedom exists in their choices. N∆E
is the energy drop per such cycle (see Section 2, and recall that ∆E determines the detailed
balance ratio of the forward and backward rates according to Equation (5)). The probability
to be at site n, namely, at position x = n∆x on the cycle at time t = M∆t, is governed by
the Makrov chain (Note that in contrast to other descriptions of random walks in forms of a
discrete Markov chain, e.g,. for waiting time distributions [34], where after a time interval,
sampled from such a distribution, a “jump” always happens with constant probabilities p
and 1− p for a forward backward jump, respectively, here, the “walker” can also remain at
its original position after ∆t and where the probabilities depend linearly on ∆t) [34]

P(x, t + ∆t) = α∆tP(x− ∆x, t) + β∆tP(x + ∆x, t) (33)

+ (1− α∆t− β∆t)P(x, t).

Here, α∆t and β∆t are the probabilities (both assumed linear in ∆t) to move a step
forward and backward, respectively. Note that (α + β)∆t ≤ 1 has to be imposed in
Equation (33) to ensure positivity. As before, the process has periodic boundaries so that,
after the final site n = N has been reached, it restarts at the beginning n = 1 and its original
energy is restored by some external work reservoir between sites N and N + 1 = 1 (see
discussion in Section 2). We use this model to study the effect of time discretization on the
dynamical properties of the process. To calculate the velocity v and diffusion coefficient
D, we determine the generating function P(s, t) = ∑x sxP(x, t) where the moments can be
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calculated by 〈xm〉 = (s∂/∂s)mP(s, t)|s=1. For the initial condition P(x = 0, t = 0) = 1 (so
that P(s, t = 0) = 1), we find the generating function to be

P(s, t =M∆t) (34)

= [α∆ts∆x + β∆ts−∆x + (1− α∆t− β∆t)]M.

The velocity and diffusion coefficient are determined as follows. Starting at x = 0, we
find in the long time limit (at steady state) t→ ∞ (see details in Appendix D)

v =
〈x〉

t
= (α− β)∆x; (35)

2D =
〈x2〉 − 〈x〉2

t
= (α + β)∆x2 − (α∆x− β∆x)2∆t (36)

= (α + β)∆x2 − v2∆t.

The velocity v, Equation (35), is the same as in the continuous time case (Equation (3)),
whereas the diffusion coefficient in Equation (36) is smaller by v2∆t in comparison to the
continuous time case of Equation (4). Refs. [35,36] associate the bigger variance in the
continuous-time master equation with higher fluctuations in the total number of hops
observed in a given time interval. Next, consider the process as N increases. As in
Sections 3 and 4, we may consider an increase in N while keeping v and D constant or
while keeping only one of them together with N∆E constant. As examples of the effect of
moving in discrete time steps, we study the cases (A) constant v and D and (B) constant v
and N∆E.

(A) Keeping v and D constant, we scale the rates again analog to Equations (19) and (20)
with the total site number N (given by the intersite distance ∆x = 2πR/N)

α =
(D + v2∆t/2)N2

(2πR)2 +
vN

4πR
, (37)

β =
(D + v2∆t/2)N2

(2πR)2 − vN
4πR

. (38)

Note that the modification of the rates α and β depends on ∆t. As before, this rescal-
ing also implies a change in ∆E (see discussion in Section 3) so that the detailed bal-
ance relation is maintained. The condition (α + β)∆t ≤ 1 in Equation (33) together with
Equations (37) and (38) restricts the choices for ∆t given ∆x = 2πR/N to

0 ≤ ∆t ≤ −D
v2 +

√
D2

v4 +
∆x2

v2 , (39)

which implies that ∆t and ∆x cannot be assigned independently of each other. In the limit
N → ∞ (∆x → 0), this inequality (Equation (39)) becomes 0 ≤ ∆t ≤ ∆x2/2D.

Next, consider the entropy production for this discrete hopping process. The average
entropy change per step is

∆σ = kBα ln
[

α

β

]
+ kBβ ln

[
β

α

]
, (40)
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where the two terms represent the entropy change in a forward and backward step mul-
tiplied by the probabilities that the respective step occurs. The rate of entropy change at
steady state (the entropy production rate) is given by

σ̇SS = kB
∆σ

∆t
= kB(α− β) ln

[
α

β

]
(41)

=
kBN
2πR

v ln
[ (D+v2∆t/2)N2

(2πR)2 + v N
4πR

(D+v2∆t/2)N2

(2πR)2 − v N
4πR

]
.

Interestingly, comparing the resulting expression (41) to its analog (14) for the continuous
master equation, we obtain a similar result, but with an additional term v2∆t/2 added to the
diffusion constant. The additional term effectively modifies the TUR relation (Equation (1))
as the relative uncertainty 2D/v2 changes. A similar observation was made in Ref. [37].
The resulting entropy production rate in Equation (41) for a given site number N per cycle is
reduced if we choose a finite ∆t (given the restriction on choices of ∆t by Equation (39)), see
Figure 7. This might be understood since, during a given time interval, the variance in posi-
tion x on the cycle is reduced ((Equation (36)) by allowing intersite hops only in intervals
∆t. In the continuous limit (N → ∞, ∆x → 0 and ∆t→ 0), however, Equation (41) yields

σ̇SS = kB

[
v2

D

]
, (42)

which is the same result as that obtained in this limit in Section 3 (see Equation (14)).
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Figure 7. Entropy production rate at steady state, σ̇SS, against the number per cycle N by keeping
the velocity v and diffusion coefficient D constant. Here, v (chosen to be v = 3D

2πR ) needs to be
within the bound implied by β ≥ 0 of Equation (38) for N ≥ 3. (i) The blue circled line represents
the entropy production rate in the continuous time limit ∆t → 0. (ii) The black squared line is the
entropy production rate for a discrete time process using the maximal ∆t allowed by Equation (39),
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(B) Next, consider the dependence on N under the condition of a constant energy drop
N∆E per cycle and constant velocity v. This is the analogue consideration as in Section 4,
but where the intersite hops are only allowed at time intervals ∆t (which are restricted by
the given N according to Equation (46) below). We assume that all energy invested into the
system is dissipated as heat into the environment, so the steady-state entropy production
per cycle is

σ = N
∆E
T

= kBN ln
(

α

β

)
, (43)

where N is the total number per cycle.
Given the constant velocity, Equation (35), the forward and backward rates are equiva-

lent to Equations (19) and (20):

α =
vN

2πR
(
1− e

−σ
NkB
) , (44)

β =
vN

2πR
(
e

σ
NkB − 1

) . (45)

The restriction (α + β)∆t ≤ 1 in Equation (33), together with Equations (44) and (45), limits
the choices for ∆t given ∆x = 2πR/N to

0 ≤ ∆t ≤ ∆x
v

tanh
[

σ

2NkB

]
. (46)

In the limit N → ∞ (∆x → 0 and ∆t → 0), the inequality in Equation (46) becomes
0 ≤ ∆t ≤ ∆xσ/(vNkB).

For a given N and ∆x = 2πR/N, the time step ∆t needs to satisfy the inequality (46).
Here, we take

∆t = a
∆x
v

tanh
[ σ

2NkB

]
(47)

with 0 ≤ a ≤ 1 and use Equation (36) to obtain

D =
1
2

(
(α + β)∆x2 − v2∆t

)
(48)

=
vπR

N

(
coth

[
σ

2NkB

]
− a tanh

[
σ

2NkB

])
.

Interestingly, the dependence on time discretization translates here to a dependence of
D on the choice of a, see Figure 8. Given N for different finite time ∆t (scaled between
0 ≤ a ≤ 1), the diffusion coefficient, and consequently, the variance in x = n∆x, are
strongly reduced for increasing ∆t (less fluctuations in the total number of transitions for
finite ∆t). As expected, in the limit N → ∞ and ∆t → 0, the diffusion constant takes
the form D = v/FkBT = µkBT with the mobility µ = v/F and the corresponding force
F = Tσ/2πR, [26,27], see discussion in Section 4. Therefore, given the chosen ∆t and its
above-discussed effect on D, the latter increases or decreases with N to the final value
D = µkBT as depicted in Figure 8.

To summarize this section, when describing the dynamics of a (cyclic) process in
discrete time intervals, the thermodynamic properties of the process, e.g., the entropy
production or diffusion coefficient, are affected by this time discretization. The discretiza-
tion in time, however, cannot be chosen arbitrarily but must obey the bounds given by
the state-space discretization of the process. If the process dynamics become continuous
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state-space dynamics (N → ∞), the time evolution needs to be described by intervals
∆t→ 0, i.e., equivalently by a continuous time scale and all effects vanish.
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Figure 8. The diffusion coefficient D plotted against the number of sites N per cycle by keeping
the entropy production per cycle σ and velocity v constant. The chosen time interval ∆t for given
N is restricted by the inequality (46). We take ∆t(a, N) = a ∆x

v tanh
[

σ
2NkB

]
(where 0 ≤ a ≤ 1) and

depict D(a, N) with a = 0 (blue curve), a = 0.6 (black curve), and a = 1 (green curve). We chose the
produced entropy per cycle to be σ/kB = 10 for N ≥ 3.

7. Conclusions

In this paper, we investigate a cyclic and unithermal thermodynamic process using
a model of a biased random walk between N sites on a cycle of a given length with an
exact solvable master equation. We note that many dynamical site (state)-space processes
with periodic boundary conditions may be equivalently mapped to this process. The limit
N → ∞ corresponds to the continuous limit that is usually captured by a Fokker–Planck
equation. This limit is taken by keeping low order moments of system observables, i.e., the
velocity v and diffusion coefficient D, constant. We show that the entropy produced, or,
equivalently, the energy drop per cycle, is reduced when moving towards this continuous
description. This has direct consequences for the efficiency of transferring input power
into useful output power when an opposing force acts on the cyclic process. In particular,
more power can be extracted from the process with an increasing number of sites N per
cycle length.

An important outcome of our analysis is that the procedure in going to the continuous
description of the process is not unique and depends on the physical observables that
are assumed to be invariant under this limiting process. In addition to taking the limit
N → ∞ while keeping v and D constant, we also analyzed this limiting process while
keeping v or D and N∆E constant. Interestingly, considering the limiting process under
constant v and N∆E, we show that the diffusion coefficient D for a finite cycle velocity v
in the limit N → ∞ takes the same value as in linear response v → 0 limit. Additionally,
when analyzing the cycle randomness statistics and, in particular, the variance in the cycle
completion time 〈δτ2〉, we found that, with increasing N, 〈δτ2〉 increases, signaling the
increasing randomness in the cycle. Finally, we studied the dependence on N in the case



Entropy 2023, 25, 1218 18 of 21

where the transitions between sites are only allowed at fixed time intervals ∆t. We found
that not only the entropy production rate per cycle (when v and D are kept constant),
but also the diffusion coefficient D (when v and N∆E are kept constant), are strongly
affected by the way time discretization is introduced for a given N.

In conclusion, one can use the total site number N as a control parameter to design
“useful” physical and thermodynamic (cycle) processes by keeping desirable observables
constant and affecting others. It may provide valuable insights into the engineering of
small (molecular) machines capable of performing specific tasks with high efficiency and
precision. Further investigations of the discrete to continuous transition in state space and
its potential impact on information-to-work conversion are avenues for future research.
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Appendix A. Three-Site Cycle

Consider a three site system with sites 1, 2 and 3 where the transition rates
k1→2 = k2→3 = k3→1 = α and k2→1 = k1→3 = k3→2 = β. The master equation can be
written as Ṗ1

Ṗ2
Ṗ3

 =

−(α + β) β α
α −(α + β) β
β α −(α + β)

P1
P2
P3

. (A1)

Assuming the initial condition P(t = 0) = (1, 0, 0), the probabilities to be on site n have the
solution

P1(t) =
1
3

(
1 + 2e−3Φt cos(

√
3Ψt)

)
, (A2)

P2(t) =
1
3

(
1− 2e−3Φt cos(

√
3Ψt− π/3)

)
, (A3)

P3(t) =
1
3

(
1− 2e−3Φt cos(

√
3Ψt + π/3)

)
, (A4)

where Φ = (α + β)/2 and Ψ = (α− β)/2.
The entropy production rate for the three site system reads

σ̇(t) = (α− β) ln
α

β
+ (P1(t)α− P2(t)β) ln

(
P1(t)
P2(t)

)
(A5)

+ (P2(t)α− P3(t)β) ln
(

P2(t)
P3(t)

)
+ (P3(t)α− P1(t)β) ln

(
P3(t)
P1(t)

)
, (A6)

and the (constant) entropy flow

Ṡe(t) ≡ Ṡe = −(α− β) ln
α

β
. (A7)
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At stationary state, the entropy production and flow satisfy σ̇ = −Ṡe.

Appendix B. Four-Site Cycle

With the same methodology as before but now with four sites in a cycle, we find

P1(t) =
1
4

(
1 + e−2Φt + 2e−Φt cos(Ψt)

)
, (A8)

P2(t) =
1
4

(
1− e−2Φt + 2e−Φt sin(Ψt)

)
, (A9)

P3(t) =
1
4

(
1 + e−2Φt − 2e−Φt cos(Ψt)

)
, (A10)

P3(t) =
1
4

(
1− e−2Φt − 2e−Φt sin(Ψt)

)
, (A11)

where Φ = (α + β) and Ψ = (α− β). The entropy production rate for the four site system
reads

σ̇(t) = (α− β) ln
α

β
+ (P1(t)α− P2(t)β) ln

(
P1(t)
P2(t)

)
(A12)

+ (P2(t)α− P3(t)β) ln
(

P2(t)
P3(t)

)
+ (P3(t)α− P4(t)β) ln

(
P3(t)
P4(t)

)
(A13)

+ (P4(t)α− P1(t)β) ln
(

P4(t)
P1(t)

)
, (A14)

and the (constant) entropy flow

Ṡe = −(α− β) ln
α

β
. (A15)

At stationary state, the entropy production and flow satisfy σ̇ = −Ṡe.

Appendix C. N-Site Cycle

We perform a discrete Fourier transform of the master Equation (2) we obtain with
P(s, t) = ∑N

n=1 zn
s P(n, t) where zs = exp (2πis/N). We obtain

Ṗ(s, t) = [αe2πis/N + βe−2πis/N − (α + β)]P(s, t) (A16)

= [(α + β) cos(2πis/N) + i(α− β) sin(2πis/N)− (α + β)]P(s, t). (A17)

Its solution reads

P(s, t) = e[(α+β) cos(2πis/N)+i(α−β) sin(2πis/N)−(α+β)]tP(s, t = 0), (A18)

where we assumed P(s, t = 0) = ∑N
n=1 zn

s P(n, t = 0). We now perform a little algebraic
transformation in Equation (A18):

P(s, t) = e
√

αβt
(
(
√

α
β +
√

β
α ) cos(2πis/N)+i(

√
α
β−
√

β
α ) sin(2πis/N)

)
e−(α+β)tP(s, t = 0) (A19)

= e
√

αβt
(√

α
β e2πis/N+

√
β
α e−2πis/N

)
e−(α+β)tP(s, t = 0) (A20)

= e
[

α(zs−1)+β
(

1
zs −1

)]
tP(s, t = 0) = eλstP(s, t = 0). (A21)
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The Fourier back transform then reads

P(n, t) =
1
N

N

∑
s=1

z−n
s eλstP(s, t = 0), (A22)

where zs = exp (2πis/N). The stationary state is reached for t→ ∞. In this case, only the
term with s = N in Equation (A23). The mode s = 1 corresponds to zN = 1 and λs = 0.
In this limit

P(n, t→ ∞) =
1
N

P(N, t = 0) =
1
N

N

∑
n=1

P(n, t = 0) =
1
N

, (A23)

where we assume to start a specific site, say n = 1 at t = 0, so P(n = 1, t = 0) = 1.
The probabilities in the stationary state become constant and independent of the site n.
The other eigenvalues λs determine the relaxation time of the mode s and, thus, how quick
the stationary state is reached. For N � 1 and finite s, we find

λs = α(zs − 1) + β
( 1

zs
− 1
)
' (α− β)

2πis
N
− (α + β)

4π2s2

N2 . (A24)

Appendix D. Discretization in Time Space

To calculate the velocity v and diffusion constant D, we determine the generating
function P(s, t) = ∑x sxP(x, t) where the moments can be by 〈xn〉 = (s∂/∂s)nP(s, t)|s=1.
For the initial condition P(s, t = 0) = 1, we find the generating function to be

P(s, t) = [α∆ts∆x + β∆ts−∆x + (1− α∆t− β∆t)]M, (A25)

where t = M∆t.
The first moment can be determined to be

〈x〉 = (α− β)∆x∆tM = (α− β)∆xt. (A26)

The second moment reads

〈x2〉 = (α∆x2 + β∆x2)∆tM + (α∆x− β∆x)2∆t2M(M− 1) (A27)

= (α + β)∆x2t + (α∆x− β∆x)2(t2 − t∆t). (A28)

The variance can then be found to be

〈x2〉 − 〈x〉2 = (α + β)∆x2t− (α∆x− β∆x)2t∆t. (A29)
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