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Abstract: Information retrieval across multiple modes has attracted much attention from academics
and practitioners. One key challenge of cross-modal retrieval is to eliminate the heterogeneous
gap between different patterns. Most of the existing methods tend to jointly construct a common
subspace. However, very little attention has been given to the study of the importance of different
fine-grained regions of various modalities. This lack of consideration significantly influences the
utilization of the extracted information of multiple modalities. Therefore, this study proposes a novel
text-image cross-modal retrieval approach that constructs a dual attention network and an enhanced
relation network (DAER). More specifically, the dual attention network tends to precisely extract
fine-grained weight information from text and images, while the enhanced relation network is used
to expand the differences between different categories of data in order to improve the computational
accuracy of similarity. The comprehensive experimental results on three widely-used major datasets
(i.e., Wikipedia, Pascal Sentence, and XMediaNet) show that our proposed approach is effective and
superior to existing cross-modal retrieval methods.

Keywords: dual attention network; data augmentation; cross-modal retrieval; enhanced relation network

1. Introduction

With the accelerated advance of multimedia information, a large number of applica-
tions require cross-modal retrieval, especially using the text queries to look for relevant
images and vice versa. Cross-modal retrieval is emerging as a new technology of informa-
tion retrieval, which aims to determining whether information from different modalities
point to the same content [1]. Cross-modal retrieval normally involves two important
stages, including data feature extraction and similarity calculation [2]. Data feature extrac-
tion is about withdrawing the vital features from data that uniquely identifies them [3],
while the similarity calculation refers to computing the similarity between different modal
data [4]. It is important to note that different information modalities have unbalanced and
complementary relationships. For example, although the same semantic contents are de-
scribed in image and text, the information that they contain can be completely different [5].
It is hard to directly measure the correlation between cross-modal information due to the
distribution gap and heterogeneity.

Many information retrieval techniques have been proposed for information retrieval
in recent years (e.g., [6,7]). Some focus on one-way information retrieval (e.g., using a
text query to search for images) or single-modal application scenarios (e.g., within text
or images), which lack sufficient attention to multi-modal information fusion (e.g., [8,9]).
Some develop image and text cross-modal retrieval methods that are mainly based on
shallow models to learn linear projections of image and text features (e.g., [10,11]). It can
be arguable that such methods are limited for data with nonlinear subspace structure [12].
Others that investigate the nonlinear mapping of data (e.g., [13]) present difficulties in
kernel selection and massive data handling.
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Among these techniques, deep learning-based methods (e.g., CNN and RNN) are
popularly used for cross-modal retrieval, which can not only perform linear or nonlinear
mapping of data, but process a large scale of data [14]. Such methods employ a common
technique that transforms the samples from altered modalities into an accepted represen-
tation space, making connections to data from different modalities in this space. Then,
the similarity is calculated by using a predefined distance calculation formula, such as the
cosine similarity formula [15]. However, the significant defects of the deep learning-based
methods can be found in terms of the feature extraction and the similarity calculation from
the cross-modal retrieval process. More specifically, regarding extracting text features, the
deep learning-based methods usually assume that each word can fully express the user’s
true intention with the same level of importance in the text. In fact, information from
different modalities (e.g., images and text) are often unbalanced and unequal [16]. The
eigenvectors between different modalities are difficult to precisely match. For similarity
calculations, the deep learning-based methods also assume that images and text have equal
amounts of information. Actually, it is difficult to directly use distance calculation formulae
to measure the similarity between different modalities.

Thus, it is important to develop an efficient approach that can eliminate the cross-
modal gap [17], increase the efficiency of information usage [18], and address users’ needs
for cross-modal information retrieval [19]. To this end, this study primarily focuses on the
cross-modal retrieval method of image and text. More specifically, the following research
questions are investigated: (1) How can the weights of different fine-grained size regions in text
and images be precisely extracted? (2) How can the similarity between text and images be accurately
calculated? To answer these questions, in this study, a novel method for cross-modal retrieval
is proposed that integrates a dual attention network and an enhanced relational network.
The dual attention network is used for precisely extracting the features from images and
texts, while the enhanced relational network aims to improve the computational accuracy
of relational networks.

This study contributes to cross-modal information retrieval research by developing
a novel image-text retrieval method. This method addresses the dual attention network
and the enhanced relational network with different activation functions to fit in the dimen-
sion gap between the cross-modal information. Such a method not only minimizes the
discrepancy between heterogeneous information, but keeps the nonlinear ability to learn
the common representation space. Moreover, this study increases the understanding of the
multiple stages of cross-modal retrieval of images and text, as well as strengthening the
knowledge of feature extraction and the similarity calculation between different modalities.
Finally, this study offers deeper insights into the use of attention mechanisms in the process
of image and text feature extraction, and multimodal features’ similarity calculation, which
are beneficial for achieving more desirable cross-modal retrieval outcomes.

The paper is structured as follows. A systematic review of cross-modal retrieval is
introduced in Section 2. This is followed by describing our proposed cross-modal retrieval
approach (Section 3). Section 4 reports and discusses the comprehensive experimental results.
Section 5 concludes this work and points to the limitations and future research directions.

2. Related Work

Cross-modal information retrieval is an important information retrieval technology
that attempts to find the same information from different modalities [20]. Common cross-
modal retrieval methods are generally categorized into two groups: traditional cross-
modal representation learning methods [21] and deep cross-modal representation learning
methods [22]. The traditional methods aim to map the features of different modalities into
a common space and produce a common accepted representation. Canonical correlation
analysis (CCA) is one of the most representative methods, which tends to gain the common
subspace of two modalities by maximizing the correlation between images and texts [22].
However, the correlation between images and texts is complicated and nonlinear, which
makes it difficult to build a linear projection model [23]. Thus, CCA is inadequate when
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mapping the nonlinear relationship between different modalities. Some nonlinear methods
are suggested to overcome the above issues. For example, Jia et al. [24] used a multi-
label kernel canonical correlation analysis (ml-KCCA) to enhance the kernel CCA through
the high-level semantic information reflected in multi-label annotations. Furthermore,
Xu et al. [25] employed a correlation-based cross-modal subspace learning method that
learns a subspace representation for each modality by maximizing the kernel dependence.
However, the challenges of selecting the most appropriate kernel function still remain.

Deep cross-modal representation learning methods can perform both linear and non-
linear mapping of data without addressing the kernel function. These methods can simulate
the way neurons work in the human brain and achieve great success with their robust
fitting ability in various tasks, such as pattern recognition and data classification [26].
Deep learning has the advantages of distributed feature representation, automatic feature
extraction and good generalization ability, which greatly alleviates the challenge of similar-
ity measurement between different modalities in cross-modal retrieval. The cross-modal
retrieval method based on deep learning can extract high-level semantic correlation on
large-scale datasets and can continuously optimize the processing of multi-modal data and
feature extraction problems. Several studies have developed diverse deep cross-modal
representation learning methods that utilize the neural networks to extract image and text
features and build relationships between different modalities. For example, Gao et al. [27]
proposed an image encoder, text encoder, and multi-modal encoder to extract text features
and image features and mine rich feature information. Viviana et al. [28] used convolutional
neural networks to deeply extract features from images and text in the stage of establishing
connections between different modal data. Similarly, Wu et al. [29] used MS2GAN to
label information to model inter-modal and intra-modal similarities through joint learning
of specific modes and shared feature representations. Although abovementioned deep
cross-modal representation learning methods can perform effective cross-model retrieval,
every piece of information within the cross-model data is assumed to be the equal im-
portance. Indeed, the importance of each piece of information in the data differs from
various tasks [30].

An attention network can distinguish the importance of different content in the data
within a diversity of tasks [31]. Moreover, it can overcome the challenges in recurrent neural
networks, such as performance degradation as input length increases, or computational
inefficiency due to unreasonable input order. An attention network is originally used in
natural language processing or machine translation [32]. It can also focus on certain regions
in the image and assign more weights to those regions, solving the problem of treating
all inputs equally in traditional neural networks [33]. Therefore, the attention mechanism
has attracted much attention in natural language processing (e.g., [34]), computer vision
(e.g., [35]), voice processing (e.g., [36,37]) and hash-based cross-modal retrieval of images
and texts (e.g., [30]). For example, Peng et al. [38] used a visual-textual bi-attention mecha-
nism to distinguish the visual and textual fine-grained patches as well as their relations
with different saliency. Jin et al. [19] proposed a coarse-fine-grained parallel attention
mechanism for video-text cross-modal retrieval, which enhances the relationship between
feature points in the same modal features. Peng et al. [39] proposed a cross-modal at-
tention block to shrink the gap between features from different modalities and focus on
the relevant correlations. Dong et al. [40] used the attention mechanism to select more
prominent features from images and texts, and filter out unimportant information in order
to gain a more discriminative feature representation in the common latent space. Addi-
tionally, Chen et al. [41] proposed an iterative matching with recurrent attention memory
(IMRAM) method that exploits the attention mechanism to explore the alignment between
the features of image and text. Furthermore, Wang et al. [42] adopted a self-constraining
and attention-based hashing network (SCAHN) for bit-scalable cross-modal hashing. The
results show that the hash codes can be more accurately ranked by using the attention to
weight the hash codes in the process of feature fusion.
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For precise similarity calculation between different modalities, a relation network is
importantly introduced, which can be described as a neural network structure that can
entirely mine the correlation between different objects without addressing the alignment
problem between the contents of the objects [14]. Sung et al. [43] proposed a two-branch
relation network, which is used to determine the category of the query image by com-
puting the distance between the query image and various types of images. Likewise,
Santoro et al. [44] investigated relation networks and relational reasoning in neural net-
works. Although similarity calculation has been achieved by adding feature representations
to relation networks, using excessive similarity relation during learning feature represen-
tation can weaken the modality-specific semantics and make unexpected noise, which
influences overall performance.

3. The Proposed Method

To fill the gaps in cross-modal data where the original representations of image and
text cannot directly measure the similarity, this study constructs a dual attention network
and an enhanced relation network (DAER) to learn modality-specific features from various
modalities to calculate the similarity between image and text. The overall framework of
our proposed DAER cross-modal retrieval approach is presented in Figure 1. The proposed
approach comprises three modules, including a text feature extraction module, an image
feature extraction module, and an enhanced relation network module. Specifically, for
text feature extraction module, the study uses Word2Vec and LSTM model to extract text
features initially. Then, the dual attention network is used to extract the weight information
of different region sizes in text. In the dual attention network, a larger pooled kernel is
employed to process the weight information of features in a larger region in the text, while
a smaller pooled kernel is implemented to process the weight information of features in
a smaller region in the text. These two different types of weight information are passed
through two multi-layer perceptions to further extract the weight information. As for the
image feature extraction module, this study adds a dual spatial attention network to the
bottleneck module of the MobileNetV3-large model. For the weight information of features
in a larger space in the image, a larger convolution kernel is used to extract the weight
information of features. Regarding the weight information in the smaller space in the
image, the smaller convolution kernel is used to extract the weight information of features.
Finally, the image features and text features are concatenated by the enhanced relational
network module, and the concatenated data are enhanced exponentially. The similarity
between images and texts is calculated by multi-layer perceptron.
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3.1. Text Feature Extraction Module

Within the text feature extraction module, this study uses Word2Vec and LSTM [45] to
initially extract the data features of the text. These features also contain the contextual rela-
tionships in the text. Furthermore, a dual region attention network is employed to analyze
the importance of different fine-grained words in the text. Two pooling kernels of different
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sizes are processed for the representation Xt
q of the q-th text obtained from Word2Vec

and LSTM. For the small pooling kernels, the maximum pooling and the average pooling
methods are used with the purposes of processing text data. The outcomes generated from
these two methods are added and passed through a multi-layer perceptron. After that, the
smaller fine-grained weight information can be gained by the sigmoid function (see the
formula in Equation (1)). The same process is also conducted for the large pooling kernels
to obtain the larger fine-grained weight representation Xtb

q of the text (see the formula in
Equation (2)). The representations of the text with the different fine-grained importance
levels are obtained by multiplying Xts

q , Xtb
q and Xt

q (see the formula in Equation (3)).

Xts
q = σ

(
fθ

(
W0

(
Fs

avg

)
+ W0(Fs

max)
))

(1)

Xtb
q = σ

(
fϑ

(
W1

(
Fb

avg

)
+ W1

(
Fb

max

)))
(2)

Xt f
q = Xts

q ∗ Xtb
q ∗ Xt

q (3)

where Xts
q represents a smaller fine-grained weight representation of the text obtained by

a smaller pooling kernel, and Xtb
q represents a larger fine-grained weight representation

of the text obtained by a larger pooling kernel. σ is the sigmoid activation function. fθ

represents a multi-layer neural network; θ represents the parameters of this neural network.
Fs

avg is the smaller average pooling kernel, Fs
max is the smaller max pooling kernel, Fb

avg is
the bigger average pooling kernel, Fb

max is the bigger max pooling kernel, W0 is the shared
weight matrix of the smaller pooling kernels and W1 is the shared weight matrix of the
bigger pooling kernels. Xt

q represents the q-th text representation obtained from Word2Vec
and LSTM.

The output dimension of this module is unified through the fully connected layers.
This study uses the stochastic gradient descent method to perform the classification training
on the text dataset, and employs the cross-entropy loss function to optimize the neural
network of this module.

3.2. Image Feature Extraction Module

Within the image feature extraction module, the image data features are extracted
based on MobileNetV3 model [46]. More significantly, this study incorporates a dual spatial
attention network in the bottleneck module of MobileNetV3-large module. The structure
of the improved bottleneck module is presented in Figure 2.
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As showed in Figure 2, average pooling and the max pooling are conducted to obtain
the pooled representation of the original data. Convolution kernels with different sizes are
employed to perform the convolution operations on the polling results. The results of these
two convolutions are passed through a sigmoid activation function. Finally, the original
representation of the image is combined with the outputs of the spatial attention network
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to gain the final representation of the image. The specific formulas of these processes are
described in Equations (4)–(6), respectively.

Xis
p = σ

(
f n∗n([Favg; Fmax

]))
(4)

Xib
p = σ

(
f m∗m([Favg; Fmax

]))
(5)

Xi f
p = Xis

p ∗ Xib
p ∗ Xi

p (6)

where p represents the p-th image, Xis
p represents the smaller fine-grained weight represen-

tation of the image obtained through the smaller convolution kernel, and Xib
p represents

the larger fine-grained weight representation of the image obtained through the larger
convolution kernel. σ is the sigmoid activation function, F_avg is the average pooling
kernel, and F_max is the max pooling kernel, while f (.) represents the convolution op-
eration. n is the dimension of the smaller convolution kernel and m is the dimension
of the bigger convolution kernel. Xi

p represents the image representation obtained from
MobileNetV3 model.

3.3. Enhanced Relation Network

The procedure of mutual retrieval of different modal data can be considered as the
classification process of distinguishing between one piece of modal data and another. The
data classification is based on the special distribution of the data in a certain space. The
changes of the data distribution and the growth of the discrepancy between the distribution
of various data categories can make for more accurate data classification. Taking the text
retrieval based on images as an example, first we obtain the data features of the image, and
then pick out the category that has a similar distribution of images and texts. Therefore,
the process of cross-modal retrieval is actually a process of classifying data according to
the different distribution characteristics of data. The exponential function can change the
original distribution state of the data according to the characteristics of the data itself. By
choosing the appropriate power, the differences between the different types of data can be
enlarged while ensuring the original distribution characteristics of the data.

As presented in Figure 3, normal distribution is used as an example. The original
distribution of these two normal kinds of data is shown on the left, and the distribution of
these two kinds of data after exponential enhancement is presented on the right. It seems
clear that there are many intersections between these two kinds of data in the original
distribution. However, the intersections between the two kinds of data are largely reduced
after the exponential enhancement. This evidence of using the exponential functions can
increase the difference between different categories of data.
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To make full use of the characteristics of the extracted image and text data, we first
combine the features extracted from both text and images, and this fusion mechanism is
denoted as Equation (7).

Rti
qp = g

(
Rt

q; Ri
p

)
(7)

where Rt
q represents the final representation of the q-th text passed through the text feature

extraction module, Ri
p is the final representation of the p-th image passed through the

image feature extraction module,Rti
qp is the fused representation of the q-th text and the p-th

image. g
(

Rt
q; Ri

p

)
represents the fusion mechanism. Then, we perform data enhancement

operation on Rti
qp; the specific formula is shown in Equation (8),

Rtie
qp = pow

(
Rti

qp, k
)

(8)

where Rtie
qp represents the data after data augmentation, pow(.) represents the power opera-

tion, and k represents the power of the data. For the negative numbers in the original data,
we first find their absolute value, then find the k power of the absolute value; after that, we
multiply it by −1, keeping its sign unchanged. This process is as shown in Equation (9),

Rti ′′
qp = −1 ∗ pow(abs(R

ti ′
qp

), k) (9)

where Rti ′
qp are the negative values in Rti

qp, and abs(·) represents the operation of getting the
absolute value of Rti ′

qp .
Finally, we use several layers of neural networks to calculate the similarity of the

paired image-text data. The specific formula is described in Equation (10),

Sti
qp = R

(
Rtie

qp; θr

)
(10)

where Sti
qp represents the similarity between the q-th text and the p-th image. R(.) represents

the neural networks and θr represents their parameters.
Following [17], we use the following Equation (11) as the objective function to optimize

the relational network:
Loss = ||T − P||2F (11)

where T represents the actual image-text similarity matrix, and P represents the image-text
similarity matrix predicted by the model. ||·||F is the Frobenius norm.

3.4. Process of Model Training

In the process of text-image cross-modal retrieval, it is important to perform model
training. The overall procedure of DAER is indicated in Algorithm 1.
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Algorithm 1: The training process of DAER.

Input: The image data Xi, the text data Xt, the corresponding class label set Yi and Yt
Output: The optimized DAER model.
The training phase:

Step 1: Train the text feature extraction module:
Make it perform text classification training and save its model-specific parameters.

Step 2: Train the image feature extraction module:
Make it perform image classification training and save its model-specific parameters.

Step 3: Train the relation network:
While not converging the following:
Step 3.1: Extract text features using the initially trained image feature extraction module;
Step 3.2: Extract image features using the initially trained image feature
extraction module;
Step 3.3: Fuse the image and text representations according to Equation (7) as:

Rti
qp = g

(
Rt

q; Ri
p

)
Step 3.4: Perform data enhancement on the fused data according to Equation (8) as:

Rtie
qp = pow

(
Rti

qp, k
)

Step 3.5: Use Equation (11) as the objective function to optimize the relation network
and adjust the parameters of image and text feature extraction modules by stochastic
gradient descent.

Loss = ||T − P||2F
Step 4: End while.
Step 5: Save the parameters of the overall model.

4. Experimental Work

The experimental work details the experiment design to validate our proposed DAER
model. It covers the datasets, evaluation metrics, comparison methods, and experi-
ment implementation.

4.1. Datasets

Three standard benchmark datasets were selected and used to experimentally verify
the capabilities of our proposed DAER model in this study. They are Wikipedia, Pascal
Sentence, and XmediaNet. The data partition scheme in this study follows the setting
in [43], in which each dataset is split into three subsets, covering 80% of pairs for training,
10% pairs for verification, and 10% pairs for testing. Wikipedia is the most widely used
dataset for measuring the performance of the cross-model retrieval method. It is collected
from “the featured articles” and composed of 2866 image-text pairs, which are grouped
into 10 popular categories [11]. Each image relates to a complete text article. Similar
to the data partition scheme of [43], we also grouped the database into three subsets,
including 2292 pairs for training, 286 pairs for verification, and 287 pairs for testing. Pascal
Sentence consisted of 1000 image-text pairs, which can be categorized into 20 semantic
groups [13]. Each image was produced from the 2008 PASCAL development kit, and
their corresponding text samples were obtained by distinct annotators of the Amazon
Mechanical Turk. There were 800 pairs for training, 100 pairs for verification, and 100 pairs
for testing. XmediaNet is a large-scale dataset, which covers five major sections, containing
40,000 texts, 40,000 images, 10,000 audio files, 10,000 videos, and 2000 3D models. Each
section has about 200 classes [17]. This study exploited images and texts only to evaluate
the effectiveness of the proposed methods. Thus, we finally obtained 40,000 image-text
pairs. The training set had 32,000 pairs, the validation set had 4000 pairs, and the testing
set had 4000 pairs.
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4.2. Evaluation Metric

To assess the performance of cross-modal retrieval, two types of cross-modal retrieval
tasks were performed on the selected datasets. One type of task was text retrieval based on
the given image (image to text), another was image retrieval based on the given text (text
to image). Mean average precision (mAP) was employed as the evaluation metric for our
proposed approach, as mAP is the mean value of average precision (AP) scores for each
query. The definition of AP is given as Equation (12):

AP =
1
R∑n

k=1
Rk
k
∗ relk (12)

where n is the number of total instances, and R is the number of relevant instances. Rk is
the number of relevant instances in the top k returned results. relk is set to be 1 when the
k-th returned result is relevant. Otherwise, relk is set to be 0.

4.3. Comparison Methods

To validate the effectiveness of our proposed DAER model, eight existing image-
text cross-modal retrieval methods were selected in our comparative experiments. These
included four traditional cross-modal retrieval methods, namely CCA [22], KCCA [23],
MvDA-VC [47], and JRL [48], and four deep learning-based methods, namely ACMR [16],
CM-GANs [49], FGCrossNet [18], and MCSM [4].

Regarding the traditional cross-modal retrieval methods, CCA learns projection ma-
trices to map the features of different modalities into a common space by maximizing the
correlations between images and texts [22]. KCCA adopts the kernel function to extend
CCA for common space learning. In these experiments, the Gaussian kernel was employed
as the kernel function [23]. MvDA-VC optimizes the generalized Rayleigh quotient, which
can maximize the inter-class variation and minimize the intra- and inter-view variation
within a common space [47]. JRL uses semi-supervised regularization and dispersed reg-
ularization to apprentice the accepted amplitude with semantic information [48]. Note
that the key distinction between the above traditional methods and our proposed DAER is
that our approach focuses on the deep learning method that addresses the dual attention
networks to extract features of the image and text, giving different weights to different
information in the extracted features.

Deep learning-based methods usually use a predefined similarity calculation formula
to directly process the image and text data. Specifically, ACMR finds common spaces
between data of different modalities by exploiting adversarial networks [16]. CM-GANs
leverage adversarial networks to generate common representations between modalities,
thereby bridging the heterogeneity gap between modalities [49]. FGCrossNet is a fine-
grained cross-modal retrieval method, which addresses three constraints in the common
space, including the centrality constraint, the classification constraint, and the ranking
constraint [18]. MCSM uses a recurrent attention network with an attention-based joint
embedding loss to model the specific features within each modality [4]. It is important
to note that having extracted the features of images and texts with different fine-grained
weight information in this study, the data of images and texts were augmented by keeping
the original distribution of data and expanding the differences between different categories
of data. After that, the relationship network was employed to compute the similarity
between the extracted features.

Moreover, to further explore the validity of our proposed DAER model and gain deep
insights into the specific impacts of our proposed model, four variants of the DAER were
developed and comparatively evaluated in this study. These variants were DAER-C (i.e., no
improvement and using as a blank control test), DAER-I (i.e., only adding improvements
to the image feature extraction module), DAER-T (i.e., only adding improvements to the
text feature extraction module), and DAER-I-T (i.e., adding improvements to both text and
image feature extraction modules).
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4.4. Experiment Implementation

In the experiments, we followed the feature exaction strategies. For the text feature
extraction, the representation dimension of each word was set as 300, and the number of
neurons in the LSTM was set as 300. In the dual region attention module, the size of the
small pooling kernel was set as 3 and the size of the large pooling kernel was set as 7. The
number of the hidden layers at the excitation stage was set as 3, and the numbers of the
neurons on each layer were 512, 1024, and 512, respectively. For a single text, the final
output dimension of this module was 1 × 300.

To extract the image feature, the size of each image was initially changed to 224× 224 pixels,
and the size of the smaller convolution kernel was set as 3 × 3 in the dual spatial attention
module. We also set the size of the larger convolution kernel as 7× 7. Finally, the classification
layer was removed from the MobileNetV3-large structure after initial training completion.
For a single image datum, the final output dimension of this module was 1 × 300.

For integrating image and text in the relational network, we adopted the fusion method
of splicing [17]. We set 0.6 as the most appropriate number of powers in data augmentation.
The relational network was implemented by a four-layer neural network, and the numbers
of the neurons on each layer were 600, 1024, 512, and 1, respectively.

The proposed DAER was implemented with the Tensorflow2.4, and the experimental
work was conducted on a PC with a i9-10900k CPU, 64G, NVIDIA Quadro RTX4000 8G,
and Windows 10. Figure 4 presents the examples of image and text queries using the
Wikipedia dataset.
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5. Results and Discussion
5.1. Comparison with Existing Methods

To verify the effectiveness of our proposed DAER approach, we compared our ap-
proach with eight existing cross-modal retrieval methods in the experiments, including four
traditional cross-modal retrieval methods, namely CCA [22], KCCA [23], MvDA-VC [47],
JRL [48], and four deep learning-based methods, covering ACMR [16], CM-GANs [49],
FGCrossNet [18], and MCSM [4]. Cross-modal retrieval accuracy was used to evaluate
the effectiveness of the learned common representation of both our proposed approach
and the compared methods. Table 1 shows the comparative results of three target datasets,
namely Wikipedia, Pascal Sentence, and XMediaNet. Overall, the results show that our
proposed DAER had the highest scores among the comparative methods in both retrieval
tasks (i.e., image-to-text retrieval and text-to-image retrieval) within three target datasets.
Furthermore, it can be found that the our proposed DAER approach achieved the greatest
scores of average accuracy in three target datasets, which were around 0.502, 0.689, and
0.691, respectively. These findings suggest that our proposed DAER approach had the
best cross-modal retrieval performance among the selected methods. This may be because
the dual attention network could accurately extract the weight information of image and
text data in different fine-grained spaces. Additionally, the enhanced relation network
could expand the difference between different modalities while maintaining the original
distribution characteristics, so as to achieve a more accurate similarity calculation between
different types of data.

To further verify the superiority of our proposed DAER approach, statistical tests
were also used to assess the differences between different search methods. This helped
determine if there were statistically significant differences in performance between different
methods. This study used the Wilcoxon signal-rank test [50] with a significance level of 95%
and the Bonferroni correction factor to control the error rate of multiple comparisons. As
shown in Table 2, almost all p-values were less than 0.006 (0.05/8), which may imply that
the performance difference between DAER and each comparison method was statistically
significant. However, the p-value of method ACMR was slightly greater than 0.006, which
may be because the same difference value existed in the MAP results of 10 random running
instances, making it difficult to perform an exact p-value calculation.

Table 1. Accuracy comparison of mAP in three datasets.

Method Image to Text Text to Image Average

D1 D2 D3 D1 D2 D3 D1 D2 D3

CCA [22] 0.357 0.225 0.544 0.326 0.227 0.546 0.341 0.226 0.545
KCCA [23] 0.438 0.488 0.573 0.389 0.446 0.577 0.414 0.467 0.575

MvDA-VC [46] 0. 419 0.652 0.650 0.382 0.672 0.627 0.401 0.662 0.638
JRL [47] 0.478 0.627 0.586 0.436 0.658 0.578 0.457 0.642 0.582

ACMR [16] 0.480 0.589 0.639 0.411 0.582 0.639 0.431 0.586 0.639
CM-GANs [29] 0.521 0.603 0.567 0.466 0.604 0.551 0.494 0.604 0.559

FGCrossNet [48] 0.457 0.637 0.629 0.429 0.662 0.633 0.443 0.650 0.631
MCSM [4] 0.516 0.598 0.540 0.458 0.598 0.550 0.487 0.598 0.545

DAER (ours) 0.526 0.682 0.693 0.478 0.696 0.689 0.502 0.689 0.691
Note: The highest score is indicated in boldface; D1 = Wikipedia; D2 = Pascal Sentence; D3 = XMediaNet.

Furthermore, the comparison results of the average retrieval accuracy show that the
deep learning-based methods had better performance than the traditional methods in three
target datasets. Such results may further confirm the superiority of the deep learning
methods for feature extraction. Additionally, the findings indicate that CCA had the lowest
retrieval accuracy among the four traditional cross-modal retrieval methods, which may
imply that the linear mapping of data cannot sufficiently extract the features of data. This
is also reflected by previous studies, showing that using a nonlinear model for data feature
extraction can be more effective than using a linear model [48]. Interestingly, the findings
show that JRL that utilizes a semi-supervised sparse regularization approach achieves
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greater retrieval accuracy than the deep learning-based methods, such as ACMR and
CM-GANs. This may suggest that the traditional methods are not always inferior to deep
learning-based methods in cross-modal retrieval accuracy. As indicated by Xu et al. [17],
JRL can outperform multi-modal DBNs in cross-modal search.

Table 2. Statistical test results comparing DAER and other methods in three datasets.

Method Image to Text Text to Image

D1 D2 D3 D1 D2 D3

CCA [22] 0.002 0.002 0.002 0.002 0.002 0.002
KCCA [23] 0.002 0.002 0.002 0.002 0.002 0.002

MvDA-VC [46] 0.002 0.002 0.002 0.002 0.002 0.002
JRL [47] 0.002 0.002 0.002 0.002 0.002 0.002

ACMR [16] 0.0076 0.002 0.002 0.002 0.002 0.002
CM-GANs [29] 0.002 0.002 0.002 0.002 0.002 0.002

FGCrossNet [48] 0.002 0.002 0.002 0.002 0.002 0.002
MCSM [4] 0.0059 0.002 0.002 0.002 0.002 0.002

Note: D1 = Wikipedia; D2 = Pascal Sentence; D3 = XMediaNet.

To further illustrate the efficiency of our proposed method, the comparison results
of the average retrieval accuracy on each dataset are presented in Figure 5. As shown
in the figure, our proposed DAER achieved the most significant improvements for both
retrieval tasks on the XMediaNet dataset, showing that the mAP values of our proposed
DAER in each task were improved by 8.45%, 7.82%, and 8.14%, respectively. This was
followed by the Pascal Sentence dataset, and the Wikipedia dataset placed last. Such
results point out the adaptability of our proposed DAER for the large dataset. As described,
the XMediaNet dataset was the largest dataset among three target datasets, containing
40,000 image-text pairs, while the Wikipedia and Pascal Sentence datasets only covered
2866 and 1000 image-text pairs, respectively.
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Furthermore, our proposed DAER had greater improvements than FGCrossNet in the
Pascal Sentence dataset, showing that the mAP values of our approach on both retrieval
tasks were improved by 7.06%, 5.14%, and 6.0%, respectively. A possible explanation may
be that the text in Pascal Sentence is generated by the corresponding images, which makes
the content of the text more concentrated, and the relationship between the text and its
corresponding image closer. Thus, there is no big difference between each model in text
feature extraction. For example, the mAP value of FGCrossNet was only 0.034 lower than
that of DAER in the task of retrieving images by text. Our proposed model improved the
average mAP value from 0.650 to 0.689 due to the use of the image dual spatial attention
mechanism and the enhanced relation network. The former can accurately extract the
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importance of different fine-grained spaces in the image, while the latter can make full
use of the characteristics of the data themselves to expand the gaps between different
types of data. By doing so, it can not only improve the accuracy of similarity calculation
between different modalities, but avoid the reduction of accuracy that is caused by the data
alignment issue between different modalities.

Figure 6 presents the performance of two retrieval tasks (i.e., image to text, and text to
image) using different methods in the Wikipedia, Pascal Sentence, and XMediaNet datasets,
respectively. Overall, it seems clear that our proposed DAER achieved greater mAP values
for both retrieval tasks in each dataset. These findings further support our previous results,
showing that our proposed approach achieved the best performance among the selected
cross-modal retrieval methods.
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Furthermore, the results show that there was a big gap between the two mAP values
of each selected method in the Wikipedia dataset. In particular, the mAP value of MCSM
on the image-to-text task was 12.7% higher than that on the text-to-image task, and the
mAP value of CM-GANs on the image to text task was 11.8% higher than that on the
text-to-image task. This may be because the content of each text was rich and complex in
the Wikipedia dataset, and the text contained information from two or more categories
at the same time, resulting in relatively small gaps between texts in different categories.
Therefore, it can be hard to correctly extract effective information when extracting text
features in Wikipedia.

5.2. Comparison with Variants of DAER

To measure the effectiveness of our proposed DAER approach, our DAER was com-
pared with four variants among three datasets, including DAER-C (i.e., no improvement
and using as a blank control test), DAER-I (i.e., only adding improvements to the image
feature extraction module), DAER-T (i.e., only adding improvements to the text feature
extraction module), and DAER-I-T (i.e., adding improvements to both text and image
feature extraction modules). The comparison results are summarized in Table 3.
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Table 3. Comparison results of mAP in the Wikipedia, Pascal Sentence, and XmediaNet datasets.

Method Image to Text Text to Image Average

D1 D2 D3 D1 D2 D3 D1 D2 D3

DAER-C 0.511 0.661 0.663 0.464 0.668 0.652 0.487 0.665 0.657
DAER-I 0.517 0.667 0.674 0.467 0.682 0.665 0.492 0.675 0.669
DAER-T 0.519 0.665 0.679 0.470 0.678 0.668 0.495 0.672 0.674

DAER-I-T 0.521 0.673 0.685 0.473 0.689 0.679 0.497 0.681 0.682
DAER 0.525 0.682 0.693 0.478 0.696 0.689 0.501 0.689 0.691

Note: The highest score is shown in boldface; D1 = Wikipedia; D2 = Pascal Sentence; D3 = XMediaNet.

As shown in Table 3, the average mAP values of DAER-C, which used the blank
control test, had the lowest scores among the three datasets, which were around 0.487,
0.665, and 0.657, respectively. In contrast, the average mAP values of DAER-I, which
added the dual spatial attention mechanism to the image feature extraction, had higher
scores, which reached about 0.492, 0.675, and 0.669 in the three datasets, respectively.
This may imply that the incorporation of the dual-region attention network into the text
feature extraction was helpful in extracting the importance of the different phrases and
sentences at the different fine-grained levels. Similarly, the average mAP values of DAER-T,
which applied the dual region attention mechanism to the text feature extraction, reached
around 0.495, 0.672, and 0.674 in the three datasets, respectively, which were also greater
than those of DAER-C. Such results may suggest that the addition of the dual spatial
attention network to the image feature extraction can better extract the importance of
information in different sizes of spatial locations for the entire image. Furthermore, the
average mAP values of DAER-I-T had the best scores among the four variants, which were
about 0.497, 0.681, and 0.682 in the Wikipedia, Pascal Sentence, and XMediaNet datasets,
respectively. This may suggest that the combination of the two dual attention mechanisms
achieved greater impacts. More significantly, compared with DAER-I-T, our DAER had
better average mAP scores in the three datasets, which reached about 0.501, 0.689, and
0.691, respectively. This may be because our approach not only used a dual-region attention
network in the text feature extraction and a dual spatial attention network in the image
feature extraction, but also used an enhanced relation network to calculate the similarity
between different modalities. By doing so, it increased the variation between data while
preserving the original distribution of the data, which allowed more accurate similarity
calculation between different modalities.

Figure 7 shows the different improvements of our proposed approach for the textual
dual-region attention mechanism, the image dual-space attention mechanism, and the
enhanced relational network used in the three databases. As shown in Figure 7, the text
dual- region attention mechanism showed the most improvement in the Wikipedia and
XMediaNet datasets, with average mAP values of 47% and 45%, respectively. In contrast,
the improvements of the average mAP values of the image dual spatial attention mecha-
nism in Wikipedia and XMediaNet were about 27% and 32%, respectively. These results
may imply that the dual regional attention mechanism was more accurate in extracting
information about the weight of different paragraphs and phrases in the text. Another pos-
sible explanation may be that our proposed dual spatial attention mechanism was adopted
based on the MobileNet V3-large model with the channel attention network. This may
have affected the retrieval accuracy performance of the dual spatial attention mechanism.

Interestingly, the image dual spatial attention mechanism caused the most improve-
ment in the overall performance of our approach in Pascal Sentence, with an average
mAP value of 40%, which was higher than the average mAP value of the text dual re-
gion attention mechanism. This may be because the text corresponding to the image was
generated based on the image itself in Pascal Sentence, where the content itself was more
concise, focused and closer to the description of the image. Therefore, the effects of the dual
regional attention mechanism on text feature extraction were not particularly significant in
Pascal Sentence.
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Furthermore, the improvements of the enhanced relation network to the overall
performance of our proposed approach were around 27%, 32%, and 29% in Wikipedia,
Pascal Sentence, and XMediaNet, respectively. These findings suggest that using the
characteristics of the data to exponentially augment the data themselves can increase the
variation between different categories of data while maintaining the characteristics of the
data distribution. Thus, the accuracy of the similarity calculation of different modal data
can be significantly enhanced.

6. Conclusions

The study of cross-modal retrieval has increasingly attracted attention from academics
and practitioners. One challenging task of cross-modal retrieval is to calculate the similarity
between heterogeneous data. Current cross-modal retrieval approaches tend to jointly
construct a common subspace, whereas these methods fail to consider the importance
of different fine-grained information in the data, and ignore the entire utilization of the
extracted data features. To overcome these challenges, this paper proposes a combination
method that integrates a dual attention network and an enhanced relation network for cross-
modal information retrieval. To carry out the study, a dual-region attention network was
used for the text feature extraction, which attempted to extract the importance of different
words and sentences at different fine-grained levels. Then, a dual space attention network
was employed for the image feature extraction in order to obtain different important pieces
of information of various spatial sizes. Third, according to the characteristics of the data,
our study used an enhanced relation network to exponentially expand the fused image
and text data, since an enhanced relation network can appropriately increase the difference
in the distribution of different categories of data without considering the problem of data
alignment between different modalities.

Our comparative results show that our proposed DAER had a better retrieval accuracy
performance than other existing methods, demonstrating the effectiveness of our proposed
approach for cross-model retrieval. Additionally, our findings confirm that the integration
of a dual region attention network to the text feature extraction is beneficial in extracting
the importance of different phrases and sentences at different fine-grained levels. Likewise,
using a dual spatial attention network in image feature extraction is helpful to extract the
importance of information in different sizes of spatial locations for the entire image. Our
results also show that calculations of the similarity between the different modalities can be
enhanced by using an enhanced relation network, since an enhanced relation network can
appropriately increase the difference between the data and retain the original distribution
of the data.

This study also has some limitations. First, this study selected three datasets to
experimentally validate our proposed method, which explains the exploratory nature of
our work. To give a more comprehensive assessment to draw persuasive conclusions,
further study could be carried out on a wider range of datasets. Another limitation is that
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this study only considered text-image cross-model retrieval. It would be more interesting
to extend our proposed approach to other modalities, such as video and audio, to explore
the effectiveness of our approach. This study is the first step and future studies can be
conducted. For example, we will focus on different perspectives of enhancing text-image
cross-model retrieval performance, such as integrating generative adversarial networks,
optimizing the constraints between different models in common representation space,
or developing prototypes for practical validation. The findings would be valuable for
developing more intelligent and effective approaches for cross-model retrieval. In addition,
more accurate semantic features can be found through further supplementary prediction of
semantic tags, so as to achieve more efficient cross-modal retrieval.
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