
Citation: Zito, F.; Cutello, V.; Pavone,

M. A Machine Learning Approach to

Simulate Gene Expression and Infer

Gene Regulatory Networks. Entropy

2023, 25, 1214. https://doi.org/

10.3390/e25081214

Academic Editors: Sabrina Gaito and

Hocine Cherifi

Received: 10 April 2023

Revised: 20 July 2023

Accepted: 10 August 2023

Published: 15 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Machine Learning Approach to Simulate Gene Expression
and Infer Gene Regulatory Networks †

Francesco Zito , Vincenzo Cutello and Mario Pavone *

Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy
* Correspondence: mpavone@dmi.unict.it
† This paper is an extended version of our paper published in Complex Networks and Their Applications XI.

Abstract: The ability to simulate gene expression and infer gene regulatory networks has vast
potential applications in various fields, including medicine, agriculture, and environmental science.
In recent years, machine learning approaches to simulate gene expression and infer gene regulatory
networks have gained significant attention as a promising area of research. By simulating gene
expression, we can gain insights into the complex mechanisms that control gene expression and how
they are affected by various environmental factors. This knowledge can be used to develop new
treatments for genetic diseases, improve crop yields, and better understand the evolution of species.
In this article, we address this issue by focusing on a novel method capable of simulating the gene
expression regulation of a group of genes and their mutual interactions. Our framework enables
us to simulate the regulation of gene expression in response to alterations or perturbations that can
affect the expression of a gene. We use both artificial and real benchmarks to empirically evaluate
the effectiveness of our methodology. Furthermore, we compare our method with existing ones to
understand its advantages and disadvantages. We also present future ideas for improvement to
enhance the effectiveness of our method. Overall, our approach has the potential to greatly improve
the field of gene expression simulation and gene regulatory network inference, possibly leading to
significant advancements in genetics.

Keywords: reverse engineering; gene regulatory network; machine learning; time-series forecasting;
metaheuristic; complex network

1. Introduction

Understanding the intrinsic relationship between genes with the aim of treating
known diseases is currently one of the great challenges in genetics [1]. Although this topic
may seem to be only a biological problem, it actually involves many areas of computer
science. Due to the complexity of this problem, traditional mathematical methods such as
Ordinary Differential Equations (ODEs), which rely on estimates of gene expression levels
over time through a continuous model, may be inaccurate for a larger number of genes
and require high-quality data to create an acceptable model [2]. Machine-learning-based
techniques have emerged as a promising approach for gene regulatory network inference,
outperforming other methods based on mutual information [3]. These techniques can be
broadly classified into two categories. The first category involves using observations to
create a model that approximates the real system, which is then used to construct a complex
network that identifies the regulatory genes for other genes, known as the gene regulatory
network [4]. The second category involves the direct creation of a gene regulatory network
through observations, without the need to estimate a model representing the dynamics of
gene expression [3,5].

In this research work, we focus on the first category. The whole process of creating
a gene regulatory network is split into three phases: (1) creation of a model capable of
approximating the actual behavior of genes, as well as their interaction; (2) inference of the

Entropy 2023, 25, 1214. https://doi.org/10.3390/e25081214 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25081214
https://doi.org/10.3390/e25081214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1374-0510
https://orcid.org/0000-0002-7521-3516
https://orcid.org/0000-0003-3421-3293
https://doi.org/10.3390/e25081214
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25081214?type=check_update&version=1


Entropy 2023, 25, 1214 2 of 30

corresponding gene regulatory network showing the relationships between genes; (3) eval-
uation of the resulting gene regulatory network against benchmarks. This manuscript
aims to analyze each phase in detail, focusing in particular on the first step, which is the
main innovation of our approach. In our previous work [6], we addressed the problem
of inferring a gene regulatory network with a reverse engineering approach. The idea is
to build an artificial environmental setting capable of replicating the behavior of a real
case based solely on the observation of the variables of interest and to generate a complex
network that reveals the relationships among the variables in the system. In the gene
regulation problem, each variable represents the expression level of a gene that evolves
over time. By observing how the gene expression of a group of genes changes over time,
it is possible to train an artificial-neural-network-based model. In the present work, we
aim to extend and improve our model by addressing some of its weaknesses and to test it
on a different gene expression dataset such as the DREAM4 Challenge [7] and SOS DNA
Repair [8].

1.1. Related Work

Before the spread of machine learning in the field of genetics, Boolean networks were
generally used to describe gene regulatory networks. All biological components can be
described by binary states and their interactions by Boolean functions [9]. Boolean networks
are relatively simple to implement, but their implementation requires noise-free, discrete
data, which can be difficult to obtain when working with real-world data [10].

In recent years, several methods to extract a gene regulatory network have been
presented. In [11], the authors divided the methods for inferring a gene regulatory
network from gene expression data into three main groups: (i) model-based methods;
(ii) information-theory-based methods; and (iii) machine learning methods. Some exper-
imental tests have shown that machine learning methods can obtain a high accuracy in
predicting gene interactions [12]. One approach to inferring a gene regulatory network
from a gene expression dataset is to use differential equations. This requires a mathematical
model of the changes in gene expression over time using ordinary differential equations,
which can provide insight into the underlying dynamics of the system. By analyzing the
behavior of these equations, one can gain a better understanding of how genes interact
and regulate each other within the network [13]. The difficulty in such an approach is,
clearly, to build a differential equation model from data. To this end, several methods have
been proposed in the literature. An example can be found in [14], where a metaheuristic
was used to find the parameters of an S-system model describing the dynamics of gene
expression. Another example can be found in [15], where a complex-valued ordinary
differential equation model was created using genetic programming. In addition, it is
possible to directly predict the interaction between genes using a gene expression dataset.
One method used in this field is GENIE3 presented in [16] and its improvement called
DynamicGENIE3 presented in [17]. An improvement on the previously cited method in
this category can be found in [18], where different inference methods are combined to
increase the accuracy of the resulting gene regulatory network.

Rather than using a specific strategy to predict each arc of a gene regulatory network,
an alternative approach involves the construction of a comprehensive network that as-
sumes all possible interactions between genes, represented as a strongly connected graph,
and subsequently applying a pruning strategy to eliminate non-corresponding arcs. One
example of such a method, which employs an information–theoretic algorithm, is described
in [19].

1.2. Contributions

In light of the promising results of machine-learning-based methods for predicting
genetic interactions, in this article, we propose a general methodology based on machine
learning. Our goal is to lay the foundation for a reverse engineering approach to figure
out genetic interactions. However, unlike the works mentioned above, we are not so much



Entropy 2023, 25, 1214 3 of 30

interested in providing a specific method to directly infer a gene regulatory network, but
rather in providing a reverse engineering framework to replicate the actual behavior of
genes based on their observations and consequently understand their interactions. Within
such a framework, biologists or researchers in general can test hypotheses about how genes
function and how they respond to different stimuli, without having to conduct expensive
and time-consuming experiments in the lab. This can lead to a better understanding of how
genes work and how they can be manipulated to treat diseases and improve human health.

1.3. Outline of the Present Work

In Section 2, we introduce the meaning of gene expression and the used terminologies.
Our focus is not so much on the biological aspect, but rather on providing readers with
basic knowledge to understand the application domain in which our reverse engineering
framework is used. In particular, in Section 2.3, we discuss the datasets we used to validate
our methodology. In Section 3, we introduce and discuss our artificial environmental setting
and its entities used to replicate gene behavior. In Section 4, we describe the procedure for
creating such an artificial environmental setting from gene expression data. We provide
results and further analysis in Section 5. Finally, in Section 6, we present our conclusions
and proposals for future work.

2. Background

The process by which the instructions in our DNA are transformed into a functioning
product, such as a protein, is known as gene expression [20]. Gene expression allows a cell
to respond to changes in its environment. The regulation of gene expression (or just gene
regulation) is a very complex process that takes into account several biological factors to
respond, for example, to environmental stimuli or to adapt to new food sources [21,22].
Gene regulation involves a variety of mechanisms used by cells to increase or decrease the
production of certain gene products. Thus, it functions like an on/off switch that regulates
the amount of proteins produced.

Considering the huge amount of gene products that are present in a multicellular
organism, the regulatory mechanisms are represented in a directed graph, called the
regulatory network, to help better understand the regulatory mechanisms. A regulatory
network reveals the interactions between genes, proteins, mRNAs, and cellular processes
and provides important information about the development of diseases [23]. Knowledge
of a regulatory network for an entire organism or for a small group of genes is crucial for a
full understanding of the life process of an organism and how gene products interact with
each other [24]. Once this is clear, it is possible to send external chemical signals to inhibit
a gene that could be dangerous to the life of an organism, such as the development of a
cancer cell or a genetic disease [25].

2.1. Gene Regulatory Network

A gene regulatory network is a directed graph where the nodes represent genes,
and the directed arcs model the interactions between the genes [26]. Specifically, a Gene
Regulatory Network (GRN) represents the regulatory process of gene expression in an
organism. An arc between two nodes, i.e., genes, mainly provides information about the
regulatory process. In the context of inferring gene regulatory networks, the presence of
a direct arc from gene Gi to gene Gj indicates that Gi is a regulatory gene, also known
as a regulator [27]. This implies that any alteration in the expression of Gi will have a
consequential impact on the expression of Gj, according to the principle of cause and effect.
In other words, the regulatory gene Gi is capable of influencing the expression of its target
gene Gj, thereby establishing a cause-and-effect relationship between the two genes.

A gene regulatory network can, therefore, combine more-detailed regulatory informa-
tion. In fact, a regulatory gene controls the expression of its associated genes in a positive
or negative way. When the expression level of the regulator reaches a threshold, another
gene can be activated or inhibited based on that level [28]. This results in a change in the



Entropy 2023, 25, 1214 4 of 30

expression level of the regulated gene: if the gene expression decreases, the gene is inhib-
ited; otherwise, it is activated. Figure 1 shows an example of a gene regulatory network.
As can be seen, there are two types of arcs in a gene regulatory network: activation arcs
and inhibition arcs.

G2 G3

G5

G1

G4

activation
inhibition

Figure 1. An example of a gene regulatory network that includes gene regulation information.

2.2. Inferring a Gene Regulatory Network

The process of inferring a gene regulatory network for a cellular organism can be
divided into four distinct phases, which we label: observation; modeling; inference; and
validation. The whole process is shown in Figure 2.

Data

Modeling

Inference

Model

Ar�ficial
Environment

ODE

Valida�on

Observa�on

Microarray

Gene Regulatory Network

Figure 2. Process to infer a gene regulatory network.

1. Observation: The first step is to observe how the gene expression of a group of genes
responds to external perturbations in a real organism. This can be performed using
various strategies, such as microarray technology [29]. The level of gene expression
for each gene is recorded over time to create a time-series dataset containing gene
expression for the genes under observation. Typically, such a dataset is represented
as a matrix D ∈ RM×N , where N is the number of genes and M is the number of
observations for each gene over time.

2. Modeling: The gene expression time-series dataset is used to train a model that can
be based on differential equations [30] or design an artificial environmental setting,
which we will introduce in Section 3.

3. Inference: The model created in the previous phase is used to make predictions
about the relationships between genes in order to discover regulatory genes. This



Entropy 2023, 25, 1214 5 of 30

information can, therefore, be used to draw a complex network, i.e., a gene regulatory
network, showing these relationships.

4. Validation: Finally, to validate the accuracy of a predicted gene regulatory network,
it is essential to compare it with the target network. However, this comparison can
only be performed on an artificial dataset where the gene regulatory network is
known beforehand. In a real organism, we do not have access to a gene regulatory
network, and therefore, the validation of the predicted gene regulatory network must
be performed empirically and in the field.

2.3. Datasets

There are several datasets that can be used to validate a methodology of inferring
a gene regulatory network. These datasets can be broadly categorized into two types:
steady-state and time-series datasets. In the steady-state dataset, the expression level of
genes is reported in a stable state under different perturbations such as gene knockout,
gene knockdown, etc. On the other hand, time-series datasets contain the expression levels
of each gene at different time points. Another way to classify gene expression datasets is
based on their source, which can be either synthetic or real. Synthetic datasets are generated
using software that produces gene expression levels over time while preserving certain
properties of genes. For example, GeneNetWeaver [7] is a popular tool used to generate
synthetic datasets, such as those used in the DREAM4 Challenge. In contrast, real datasets
are obtained by observing the actual gene expression over time and how it responds to
perturbation. This can be achieved through the use of technologies, such as microarray
technology [24], that allow for the measurement of gene expression levels. To conduct our
experiments, we used several datasets, and their sources are summarized in Table 1.

Table 1. Gene expression time-series datasets.

Name Description Source

DREAM3
Artificial dataset generated by GeneNetWeaver. It contains
experiments with 10 and 50 genes. Each experiment has 21
observations.

[7]

DREAM4
Artificial dataset generated by GeneNetWeaver. It contains
experiments with 10 and 100 genes. Each experiment has 21
observations.

[11]

SOS DNA Repair Real dataset obtained by observing how the gene expression
of 8 genes evolves over time. [8]

3. Modeling

We propose a novel method for modeling the gene expression of group of genes of an
organism by machine learning. In the method of ordinary differential equations, as well
as in all other methods that follow this approach, distinct equations are formulated for
each gene to study its dynamic behavior. If we consider a group of n genes whose mutual
interaction and degree of correlation we want to estimate, the level of expression of the i-th
gene, denoted by xi(t), can be described over time by the following:

∂xi(t)
∂t

= gi

(
x1(t), . . . , xi(t), . . . , xn(t), t

)
+ Ki, ∀i = (1, 2, . . . , n), (1)

where gi(·) is a non-linear function representing the dynamics of the expression level of
the i-th gene and Ki is a constant. It follows that the gene expression level at time t is
strongly related to the expression level of the other genes. Each gene may have more or less
influence on gene i depending on how strongly it is correlated. The genes that have a greater
influence than others on the expression level of gene i are considered regulators according
to the definition of the term regulatory gene introduced in Section 2.1. If the mathematical



Entropy 2023, 25, 1214 6 of 30

expression for gi(·) were available, it would be possible to identify the regulatory gene
directly. However, since this information is not accessible, alternative methods such as
metaheuristics [13] or machine learning must be employed, as is the case in our study.

Equation (1) allows us to identify the regulatory genes, but it does not provide in-
formation on the actual gene expression levels at different time points. To address this
limitation, we propose in our model a modified approach. Rather than directly calculating
the derivative of gene expression with respect to time, denoted by gi(·), we reformulate the
equation as follows:

xi(t) = fi

(
x1(t), . . . , xi(t), . . . , xn(t), t

)
, ∀i = (1, 2, . . . , n), (2)

where xi(t) is the gene expression level of the i-th gene at time t and fi(·) is a non-linear
function, whose mathematical expression can be obtained from Equation (1), knowing the
initial condition, that is: fi

(
x1(t), . . . , xi(t), . . . , xn(t), t

)
=
∫ t

0 gi

(
x1(t), . . . , xi(t), . . . , xn(t), t

)
+ Ki∂t,

xi(0) = xi0 ,
(3)

where xi0 is the gene expression value of the i-th gene at the initial time, which in many
cases is zero.

Therefore, the behavior of the i-th gene is entirely defined by the function fi(·). The
task of modeling the function fi(·) for each gene is assigned to an ad hoc unit, denoted by
the term agent. Each agent can interact with other agents, just like genes, in the so-called
artificial environmental setting, which models a real environment. Before examining in
detail what an agent and an artificial environmental setting are, it is necessary to point
out that we are not looking directly for the mathematical expression of fi(·), but we
are generating as many agents as there are genes. Subsequently, the agents are used to
determine the expression levels of the genes over time just as well as if we had used
the mathematical expression. To simplify the discussion and since the time dependence
is already included in the expression level of the genes, we prefer to remove the direct
dependence on it within the function fi(·) in Equation (2), which is then rewritten as
follows:

xi(t) = fi

(
x1(t), . . . , xn(t)

)
, ∀i = (1, 2, . . . , n). (4)

While the function described earlier is continuous in time, practical considerations, due
to computational limitations, require us to use a discrete function instead. Thus, we will
introduce a new discrete function in the next subsection.

We will now describe three crucial concepts that form the backbone of our methodol-
ogy: the agent, the artificial environmental setting, and the simulation of gene expression.
By understanding these concepts, we can gain a deeper insight into the workings of our
approach and how it can be applied to various domains.

3.1. Agent

As mentioned in the preceding paragraph, agents play a crucial role in replicating gene
behavior. They determine whether a gene’s expression should be increased or decreased
based on the expression of other genes, which are themselves regulated by other agents.
Each agent is responsible for regulating the expression of a single gene. We will use
the notation Ai to refer to the agent responsible for regulating the i-th gene. Specifically,
an agent Ai acts as a predictor, forecasting the level of gene expression at time t based on
the expression levels of other genes at time t− 1. This behavior can be formally modeled
by a function hi : Rn → R, which, given the expression value of all genes at time t, returns
the expression value of gene i at time t + 1. Such a behavior can be seen as a consequence
of the principle of a causal relationship: when an agent receives as the input the expression



Entropy 2023, 25, 1214 7 of 30

level of a gene (cause), it regulates the expression level of its gene (effect). An agent Ai can
be formally defined as:

Ai : x(t+1)
i = hi

(
x(t)1 , . . . , x(t)n

)
, (5)

where the notation x(t)i represents the expression level of the i-th gene at time step t
(Figure 3).

Causes Effect

Figure 3. Visual representation of an agent.

A formulation of Equation (5) was presented in our earlier paper [6]. However, in our
experiments, we found that this formulation does not take into account the trend of a
gene expression level over time. Theoretically, an agent should regulate the level of gene
expression of a gene at time t + 1 by taking into account not only what happened at the
previous time t, but also some kind of history of gene expression from the initial time to t.
Practically, it follows that we have modified Equation (5) to accomplish this behavior.

Supposing that m indicates the number of time steps (m ≥ 1) and an agent is consid-
ering predicting the gene expression at time t + 1, the agent function can be redefined as
hi : Rn×m → R, that is:

Ai : x(t+1)
i = hi

(
X(t)

)
, (6)

where X(t) ∈ Rn×m is a matrix containing the gene expression levels of the n genes at time
points t−m, t−m + 1, . . . , t, and it can be expressed as follows:

X(t) =


x(t−m)

1 x(t−m+1)
1 . . . x(t)1

x(t−m)
2 x(t−m+1)

2 . . . x(t)2
...

...
. . .

...

x(t−m)
n x(t−m+1)

n . . . x(t)n

 (7)

Gene expression at time t + 1 can only be calculated from Equation (6) if t ≥ m. On
the contrary, if t is less than m, the matrix X(t) is filled with constant initial values obtained
by real observations. The practical implementation of the agent function hi(·) as defined
in Equation (6) can be performed using machine learning methods. In fact, they can learn
patterns from real observations, which can then be used to predict the gene expression of a
gene based on the gene expression of the genes in the previous time steps. For more details
on the process of modeling and training an agent, see Section 4.1.2.

3.2. Artificial Environmental Setting

Based on the definition of agent in Section 3.1, the gene expression of each gene is
regulated by an agent. We use the term Artificial Environmental Setting (AES) to refer to a
collection of elements, i.e., agents, that interact with each other according to well-defined
rules established during the design process. The interactions between the agents are indirect
because they do not occur simultaneously, but the inputs of each agent are the product of
the other agents from previous time steps. As a result, the process of regulating the gene
expression of a gene is more or less influenced by all agents in the AES.

Given an environment with n agents, the state of the environment, denoted by x(t) ∈ Rn,
is defined as a vector of n elements containing the gene expression level for each gene at



Entropy 2023, 25, 1214 8 of 30

time step t. The state of the environment is updated according to Equation (6) computed
by each agent. As a result, the state of the environment at time t + 1 is defined as:

x(t+1) =
(

x(t+1)
1 , x(t+1)

2 , . . . , x(t+1)
n

)
=

(
h1

(
X(t)

)
, h2

(
X(t)

)
, . . . , hn

(
X(t)

))
. (8)

Agents in the AES regulate gene expression by taking as input the same matrix X(t) defined
in Equation (7), which is named the state matrix. Although each agent has the same state
matrix as the input, its agent function hi(·) is always different as it is modeled to simulate
the actual behavior of a gene.

Unlike the state of the environment x(t), which is a vector containing the gene expres-
sion level of all genes and can also be viewed as a collection of the agents’ outputs, the state
matrix X(t) contains the gene expression level of all genes in the previous m time steps,
and it is used as the agents’ input to calculate the state of the environment at time t + 1.

3.3. Simulation

We will now study the possibility of simulating gene expression regulation. As
previously mentioned, each agent is responsible for regulating the gene expression of a
gene. The equation governing the interactions between agents is Equation (8). To simulate
gene expression regulation, it is sufficient to begin at a time point (i.e., an initial time point
of zero) and proceed to a target time point that we wish to study. To achieve this result, we
can use a clock signal that governs the transition from one time step to the next. At each
tick of the clock, each agent regulates the gene expression of its gene using Equation (8)
and updates the value of the state matrix. This updated value will then be used by agents
at the next tick of the clock.

At the start of the simulation (i.e., at t = 0), the state matrix has no values yet. As stated
in Section 3.1, the state matrix may contain empty values until t is less than m. Two solutions
can be used to address this issue: the first is to set empty values to zero; the second is
to populate empty values with real observations from gene expression datasets. In our
experiments, we chose the latter solution.

During simulation, it is also possible to manually perturb the environment to observe
how regulatory mechanisms respond. This is extremely important in understanding how
the gene expression of one gene can affect the regulation of the gene expression in other
genes. In this article, when an AES is said to be perturbed, we refer to a manual alteration of
the state matrix; namely, gene expression levels are updated without using Equation (8).

When there is a change in the state matrix at time t due to a perturbation in the gene
expression level of the i-th gene, it affects the gene expression regulation process of all
genes because all agents have the same state matrix as the input. As a result, the state of
the environment at time t + 1 is always calculated by Equation (8), but taking into account
as well the changes in the state matrix made at the previous time.

4. Methodology

After having introduced the process of gene regulation modeling using agents and
an AES, this section will explore the creation of an AES from a gene expression dataset
(Section 4.1) and its application for inferring a gene regulatory network (Section 4.2).

4.1. Model Estimation

For simplicity, the process of creating an AES is divided into three phases, labeled
preprocessing, learning, and evaluation. The first phase is to normalize the gene expression
dataset into a format compatible with our methodology (Section 4.1.1). In the second phase,
a metaheuristic algorithm selects the most-appropriate machine learning model for each
agent in the AES (one for each gene). The selected model is then trained on a dataset created
ad hoc from the original dataset (Section 4.1.2). Once all agents are created, the evaluation
process aims to determine the quality of the AES thus created. Ideally, an optimal AES



Entropy 2023, 25, 1214 9 of 30

should be able to produce the same response as a real environment, without any external
perturbations and with identical initial conditions. In Section 4.1.3, such a process is
examined in detail.

4.1.1. Data Preprocessing

Before proceeding with the discussion for creating an AES, it is appropriate to indicate
the format of the gene expression dataset we are considering for our experiments. First,
there are two versions of the datasets mentioned in Section 2.3: time-series dataset and steady-
state dataset. All experiments reported in this article were performed using the time-series
dataset. This is because we want to simulate how gene expression changes over time due
to the mutual influence with other genes. As a result, such a result can only be obtained by
using a time-series dataset, since it contains the real observations of gene expression over
time obtained in the field.

The original datasets were normalized using min–max normalization, which is com-
monly used for multivariate time-series forecasting [31]. Assuming that the normalized
dataset is a matrix D ∈ Rn×b, where n is the number of genes and b the number of observa-
tions for each gene, the dataset used to train each agent must be different. As defined in
Equation (6), an agent has as the input the state matrix, which can be represented as a vector
of (n ·m) elements, and as the output a real value representing the gene expression of the
next time point. Consequently, the dataset used to train an agent Ai can be represented as
(X̂, Ŷi), where X̂ and Ŷi are the input and output sets, respectively. With m the number of
time steps considered in the state matrix and b the number of observations in the dataset D,
the total number of samples contained in the dataset (X̂, Ŷi) is equal to (b−m), since the
whole sequence of observations must be split into multiple examples taking into account
m. In particular, X̂ is a matrix of size (b−m)× (n×m) in which each row of the matrix
represents a sample and is used as the input to the agent model. The corresponding output
is contained in Ŷi, which is a vector of size (b−m)× 1 and contains the observations of the
i-th gene shifted forward by one time unit.

4.1.2. Learning

The goal of this phase is to create a collection of agents, each of which forecasts the
expression of a gene over time. Each agent is created independently of the others and can
have a different architecture. This is because an agent must learn how to regulate the gene
expression of a single gene. The procedure for creating agents from gene expression data is
the same for all agents. For simplicity, we assume that we are creating an agent that refers to
the i-th gene, and such an agent will be referred to below as Ai. Each agent is associated with
a different dataset (X̂, Ŷi), which is split into two parts to define a training set and a test set on
which the agent is trained and evaluated. To create an agent, an appropriate machine learning
method is selected that can better generalize on this dataset than others. This is because each
machine learning method has its own properties and characteristics, so different methods
may perform differently on the same dataset. Indeed, we have already proven in [32,33]
that different machine learning models together can increase overall accuracy in multivariate
time-series forecasting. In our experiments, we considered three different types of neural
networks used to model the agent function hi(·). Table 2 lists the neural networks considered
and their basic architecture, as well as the layers used for each neural network. A distinctive
feature of our methodology is that the hyperparameters of each neural network listed are not
fixed, but are selected during the hyperparameter optimization procedure by a metaheuristic
algorithm [34]. More details can be found in Appendix A.

One approach for selecting the optimal neural network architecture for an agent is to train
all three available types of neural networks, namely Fully Connected Neural Network (FCNN),
Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN), on the training
set and evaluate their performance on the test set. The neural network with the lowest error
is then chosen as the agent Ai [35]. However, this approach may not be the most-effective
way to select the agent architecture in our model, as the final performance depends not only



Entropy 2023, 25, 1214 10 of 30

on a single agent, but on a group of agents that interact with each other through the state
matrix. Additionally, this approach can be computationally expensive. More details about the
algorithm used to select agent architectures can be found in Section 4.1.4.

Table 2. Neural network models and their architecture used to implement agents. The hyperpa-
rameters of the layers marked with * are chosen by a hyperparameter-tuning algorithm. For a
comprehensive explanation of the hyperparameter values for each layer and the available activation
functions, see Appendix A.

Neural Networks Layers

Fully Connected Neural Network (FCNN)

• Input Layer (Input Size n×m)
• Fully Connected Layer *
• Activation Function *
• Dropout Layer *
• Fully Connected Layer *
• Activation Function *
• Fully Connected Layer *
• Activation Function *
• Fully Connected Layer (Output Size 1)
• Output Layer

Convolutional Neural Network (CNN)

• Input Layer (Input Size n×m)
• Convolutional Layer 1D (Filter 64, Kernel 2)
• Activation Function *
• Max Pooling 1D (Pool Size 2)
• Fully Connected Layer *
• Activation Function *
• Dropout Layer *
• Fully Connected Layer *
• Activation Function *
• Fully Connected Layer (Output Size 1)
• Output Layer

Recurrent Neural Network (RNN)

• Input Layer (Input Size n×m)
• Long-Short-Term-Memory Units *
• Activation Function *
• Fully Connected Layer *
• Activation Function *
• Dropout Layer *
• Fully Connected Layer *
• Activation Function *
• Fully Connected Layer (Output Size 1)
• Output Layer

4.1.3. Evaluation

We used different evaluation metrics to assess the accuracy of gene regulation. Typically,
the gene expression dataset that is being analyzed contains multiple measurements of expres-
sion levels over time, referred to as experiments. However, when selecting the training and
testing datasets, not all k experiments are considered. Instead, a smaller subset is reserved
for evaluating the performance of the AES. To evaluate the performance of the AES, we
utilize a dataset DY ∈ Rn×b. This dataset consists of b observations and n genes, with each
element representing the average of k experiments. These experiments include both those
used to create the agents, as well as those that were not used. We used the average number
of experiments k to validate our model because it provides a more-accurate representation
of the underlying biological system. A single experiment may not capture the full range
of biological variability and may be subject to measurement noise or other experimental
artifacts. By averaging multiple experiments, we can reduce the impact of these factors and
obtain a more-reliable estimate of the true biological behavior. Furthermore, using a single



Entropy 2023, 25, 1214 11 of 30

experiment not used in training may not be sufficient to fully evaluate the performance of
the AES since it may exhibit different behaviors or responses under different experimental
conditions. By utilizing multiple experiments, we can capture a broader range of biological
variability and better assess the robustness and scalability of the AES.

Predicted gene expression is determined by the environment simulation, as described
in Section 3.3. In this case, the initial values of the AES are taken from the first m ob-
servations of the target dataset DY, and the simulation time is equal to the number of
observations contained in DY. During the simulation, the state of the environment changes
at each time point and its values are recorded in a matrix DX ∈ Rn×b and called predicted
gene expression. Given the target gene expression DY and the predicted gene expression
DX, it is possible to use similarity metrics to quantify the accuracy of the AES with real
numbers. Thus, such values, which we call AES reliability (R), are a measure of how much
our AES is able to replicate the real behavior. Formally, it is defined as:

Rmetric(DX , DY) =
1
n

n

∑
i=1

∣∣metric
(
dxi , dyi

)∣∣, (9)

where n is the number of genes; dxi and dyi are two vectors of (b−m) elements, containing,
respectively, the predicted gene expression values and the target gene expression values
over time of the i-th gene. To evaluate the accuracy of the predictions made by each agent
on the AES, we only use (b− m) out of b observations in total. This is because the first
m elements predicted from the AES are identical to those of the target dataset, since they
share the same initial conditions. Therefore, we excluded these elements and took into
account only actual predictions. In addition, the function denoted by metric

(
dxi , dyi

)
is a

metric function that returns a real value obtained by comparing these two vectors. Two
metrics were used to compute the AES reliability, namely Pearson correlation (ρ) and cosine
similarity (η) [36], whose mathematical expressions are

ρ
(
dxi , dyi

)
=

∑
(b−m)
j=1

(
dyij − d̄yi

)(
dxij − ¯dxi

)
√

∑
(b−m)
j=1

(
dyij − d̄yi

)2
√

∑
(b−m)
j=1

(
dxij − ¯dxi

)2
, (10)

η
(
dxi , dyi

)
=

∑
(b−m)
j=1 dyij dxij√

∑
(b−m)
j=1 d2

yij

√
∑
(b−m)
j=1 d2

xij

, (11)

where d̄yi and ¯dxi represent, respectively, the mean of the target and the predicted ob-
servations of the i-th gene. These two similarity metrics are commonly used to quantify,
with a real value, whether the predicted time-series is as similar as possible to the target
time-series [36]. Below, we refer to these two versions of environment reliability as Rρ and
Rη for reliability based on the Pearson correlation and cosine similarity, respectively.

In addition to reliability, we used two other metrics to quantify the error between gene
regulation by the AES and actual behavior. We define the AES error (Err) as the average
error of the single-gene regulations, that is:

Errmetric(DX , DY) =
1
n

n

∑
i=1

error
(
dxi , dyi

)
. (12)

The error metrics we have used are the Mean-Squared Error (MSE) and the Mean Absolute
Error (MAE), defined as follows:



Entropy 2023, 25, 1214 12 of 30

MSE
(
dxi , dyi

)
=

1
b−m

(b−m)

∑
j=1

(
dyij − dxij

)2
, (13)

MAE
(
dxi , dyi

)
=

1
b−m

(b−m)

∑
j=1

∣∣∣dyij − dxij

∣∣∣. (14)

We will refer to these two versions of AES reliability as ErrMSE and ErrMAE for reliability
based on the MSE and MAE, respectively.

4.1.4. Optimization Algorithm

The selection of the agent architecture type is crucial for improving the accuracy
of gene expression regulation, as previously mentioned. To identify the optimal neural
network architecture for an agent among those listed in Table 2, we used a genetic algorithm
for integer programming [37]. This algorithm assigns an integer value to each neural
network type, and so, it allows us to determine the most-effective combinations of agents.
By employing this algorithm, we can select the best-possible agents to enhance the accuracy
of gene expression regulation. A solution of the genetic algorithm is a vector of size equal
to the number of agents present in the AES and so the number of genes n. Each element of
the solution vector defines the type of architecture that is assigned for the corresponding
agent, which in our case can be just one of the three types, FCNN, CNN, and RNN.

The metaheuristic search generates good solutions according to the genetic operators
mutation and crossover and discards all solutions with a low fitness value. The fitness
of a solution is a real value that reflects the quality of that solution: the higher the fitness
value, the higher the quality of the solution is. Algorithm 1 shows the pseudo-code used to
compute the fitness of a solution S ∈ {FCNN, CNN, RNN}n.

Algorithm 1: Pseudo-code to compute the fitness of a possible configuration of
an environment.

Inputs:
• S = (S1, . . . , Sn): a possible configuration of the environment, where

Si ∈ {FCNN, CNN, RNN} ∀i = 1, . . . , n
• DT : a partition of a gene expression dataset used for training an agent
• DY: a partition of gene expression dataset used to evaluate an environment

Outputs:

• fv: fitness value of S
• E: the AES obtained from S

1 A← ∅ ; /* collection of agents */
2 for i = 1, 2, . . . , n do
3 (X̂, Ŷi)← prepareDataset (DT) ;
4 Ai ← createAgent (Si, (X̂, Ŷi)) ;
5 A← A ∪ Ai ;
6 end
7 E← makeEnvironment (A) ;
8 DX ← simulation(E, 0, b) ; /* the simulation starts at Time 0 and ends

after b time steps; the resulting matrix is an n× b matrix and
contains all predicted values for each variable for each time
point. */

9 fv ← [1 + RMSE(DY, DX)]
−1 ; /* the fitness value is inversely

proportional to the environment reliability, since the MSE is used
as a metric */

10 return fv, E;



Entropy 2023, 25, 1214 13 of 30

For each element of the solution, the corresponding agent is created. To explain the
process of creating an agent, consider the following example. We assume that Si ∈ S refers
to an architecture of type RNN. The first step is to prepare the dataset (X̂, Ŷi) that will
be used to train a recurrent neural network, as indicated in Section 4.1.1 (Line 3). The
procedure labeled createAgent in Line 4 has the function of creating the i-th agent based
on the recurrent neural network and training it with the previously created dataset. For
this procedure, we used a hyperparameter-optimization algorithm in order to find the
best hyperparameters for the layers of the recurrent neural network. The hyperparameter-
optimization algorithm tests different combinations of hyperparameters for the considered
neural network architecture on the dataset (X̂, Ŷi). Finally, the recurrent neural network
with the least error is returned and assigned as the i-th agent of the environment (Line 5).
Appendix A provides additional details on the process of selecting hyperparameters for
the neural network architectures.

Once all agents have been created according to S, the resulting environmental setting
is evaluated using the methods described in Section 4.1.3 (specifically, Lines 8 and 9). To
determine the fitness of S, we use the mean-squared error (as defined in Equation (13)) as a
metric function in Equation (9). Other than the fitness function, the other operators of the
discrete genetic algorithm are standard. In our experiment, we used a population size of
10, a mutation probability of 0.2, a crossover probability of 0.8, and tournament selection
with a tournament size of 3. We also set the maximum number of evaluations to 100.

4.2. Inferring a Gene Regulatory Network

We will now describe a methodology that allows us to extract a gene regulatory net-
work from simulations conducted in our AES. First, we simulate the gene expression until
all expression levels are within a certain range, then we employ some perturbations to alter
the gene expression of one gene and then measure the resulting changes in the expression of
other genes. By analyzing these changes, we can infer the regulatory relationships between
genes and construct a gene regulatory network. Finally, we use metrics to evaluate the
resultant gene regulatory network.

4.2.1. Perturb the State Matrix

To better understand this procedure, let us consider an example. Suppose we want to
test whether the i-th gene regulates the expression of other genes. At time t, we introduce a
perturbation of the i-th agent to manually alter its gene expression regulation. A perturba-
tion can be defined as a mathematical function ϕi : [t, t + ϕd] ⊂ N→ [0, Gimax ] ⊂ R, where
t is the time expressed in time steps in which the perturbation function operates and ϕd is
the duration of the perturbation. A perturbation function on gene Gi returns a real value
between [0, Gimax ] for each time step that represents the expression level of gene Gi. This
value is independent of the expression levels of other genes, and it is used to update the
state matrix that contains the expression levels of all genes at each time step. We denote by
Gimax the maximum expression level observed for gene Gi in the dataset.

The application of the perturbation function ϕi(·) to the i-th gene affects the state
matrix. In particular, the elements of the state matrix along the i-th row are not computed
by the agent function as in the case without perturbation (Equation (6)), but their values
depend directly on the perturbation function. Assuming that 1 < ϕd < m, the state matrix
of the environment at time t + m can be expressed as follows:

X(t+m) =



x(t−1)
1 x(t)1 x(t+1)

1 . . . x(t+ϕd)
1 . . . x(t+m)

1
...

...
...

. . .
...

. . .
...

x(t−1)
i ϕi(t) ϕi(t + 1) . . . ϕi(t + ϕd) . . . x(t+m)

i
...

...
...

. . .
...

. . .
...

x(t−1)
n x(t)n x(t+1)

n . . . x(t+ϕd)
n . . . x(t+m)

n .


(15)



Entropy 2023, 25, 1214 14 of 30

Depending on the type of perturbation function selected, different behaviors can be
observed. In our experiments, we tested several types of perturbation functions. However,
we only report two types of perturbation functions that have achieved the best performance
in terms of accuracy in identifying gene regulators. These two types are depicted in Figure 4.
In our previous work [6], the approach that we used to perturb the regulation of a gene by an
agent can be approximated in a similar way by using the function shown in Figure 4a, called
the instant perturbation function. This function increases immediately the gene expression of
the perturbed gene at time t by a quantity indicated by ϕw. An improvement of the instant
perturbation function is the trapezium perturbation function (Figure 4b), which consists of
increasing gradually the value of gene expression of a gene and maintaining the peak
value for a certain number of time steps indicated by ϕp, then decreasing gradually the
gene expression value of the perturbed gene until its initial value ϕb is reached. With this
behavior, it is possible to observe how other genes are influenced throughout the duration
of the perturbation and measure consequently the eventual dependence among genes.

(a) Instant perturbation function (b) Trapezium perturbation function

Figure 4. Representation of the perturbation functions considered. The two perturbation functions
(a,b) share the same parameters ϕb, ϕd, and ϕw, which denote the initial value of the i-th gene to
be perturbed, the overall duration of the perturbation and the width of the perturbation, respec-
tively. Additionally, the trapezium perturbation function (b) requires another parameter ϕp, which
represents the number of time steps for which the peak value is maintained.

4.2.2. Regulatory Value and Regulatory Matrix

To determine which genes are regulated by the i-th gene after a perturbation affects
its regulation process, it is necessary to identify the genes whose expression levels are
significantly changed by that perturbation. Therefore, if a group of genes shows a noticeable
change in their expression levels, then gene Gi may be their regulator. The procedure to
establish the genes regulated by gene Gi consists of the following steps:

1. The simulation starts with initial conditions and runs until all the variables reach a
steady state within a certain range. The time point at the end of this step is t f ;

2. The simulation continues for m more time steps to ensure the stability of the environ-
ment. The time point at the end of this step is t f + m;

3. A perturbation function ϕi(·) is applied to gene Gi for ϕd time steps. The time point
at the end of this step is t f + m + ϕd. The perturbation duration is a hyperparameter,
and we set it to m;

4. The simulation runs for m more time steps until the state matrix stabilizes after the
perturbation. The time point at the end of this step is t f + ∆tr, where ∆tr is (2m + ϕd)
and represents the instability interval caused by the perturbation;

5. Changes in the gene expression level of all genes between t f and t f + ∆tr are recorded
in a matrix Xr ∈ R∆tr×n;

6. For each gene, the regulatory value is computed as the slope in radians of a linear
regression model fit on the values between t f and t f + ∆tr.



Entropy 2023, 25, 1214 15 of 30

This procedure estimates the regulatory value of each gene in the environment with
respect to another gene. We denote by rij the regulatory value of gene Gi on gene Gj,
which quantifies the impact of a perturbation of gene Gi on the regulation of gene Gj. This
allows us to assess the degree of association between these two genes. Essentially, if we
extract the j-th column of the matrix Xr and denote it by Xrj ∈ R∆tr , the regulatory value is
computed as:

rij = arctan(αj), (16)

where αj is the slope of the linear regression fit on the values contained in Xrj . Therefore,
the regulatory value is always a quantity defined within the interval

[
−π

2 , π
2
]

according to
the definition of the arctangent.

In our previous approach [6], we computed the regulatory value by comparing the
state of the environment at time t f + ∆tr with the one at time t f . This allowed us to
determine whether a perturbation of the i-th gene affected the regulation of the gene
expression of some genes. However, we realized that this approach did not take into
account all the intermediate states assumed during the perturbation. By using this new
version, instead, we consider the influence that the perturbed gene Gi has on the other
genes and avoid the particular scenario mentioned above. The gene regulatory network
can be inferred from the regulatory genes obtained from this information. To figure out
which gene are regulatory genes, we introduce the concept of a regulatory matrix, denoted
by R ∈ Rn×n, which is a square matrix that contains the regulatory values for each pair of
genes. The regulatory values are computed for each gene in response to a perturbation of
another gene Gi, where i = 1, 2, . . . , n.

4.2.3. Interaction Probability Matrix

After having computed the regulatory matrix as above described, we must determine
the gene regulatory network. A regulatory value between a pair of genes (Gi, Gj) is defined
as a measure of how gene Gj is affected by gene Gi. The higher this value in terms of
absolute value, the higher the probability that gene Gi is a regulatory gene of gene Gj.
This section describes a procedure used to transform the regulatory matrix obtained by
perturbing each gene of the AES into a probability matrix. The probability matrix is denoted
by P ∈ Rn×n, where the generic element pij represents the probability that the i-th gene is
regulated by the j-th gene. This value is computed directly by the respective regulatory
value rij in the regulatory matrix.

A gene Gj can be considered to be regulated by another gene Gi (i and j might be the
same) only if the influence of the gene expression of gene Gj due to a perturbation of gene
Gi exceeds a certain activation threshold. On the other hand, Gj is inhibited by Gi if the
corresponding regulatory value is less than an inhibition threshold. Therefore, given the
activation threshold and the inhibition threshold for each gene, denoted, respectively, by
the symbols τ

p
j and τn

j , the regulatory value rij between genes Gi and Gj, and also taking
into account that rij is bounded between [−π

2 , π
2 ], the probability that Gi is a regulatory

gene of gene Gj is given by the following formula:

pij =



1
2 + 1

2
rij−τn

j
Rjmin

−τn
j

if Rjmin ≤ rij ≤ τn
j ,

−
r2

ij

2τ
p
j τn

j
+

τ
p
j +τn

j

2τ
p
j τn

j
rij if τn

j < rij < τ
p
j ,

1
2 + 1

2
rij−τ

p
j

Rjmax−τ
p
j

if τ
p
j ≤ rij ≤ Rjmax ,

(17)

where Rjmax and Rjmin are, respectively, the maximum and minimum value.
Figure 5 displays how a regulatory value rij is transformed into a probability value pij.



Entropy 2023, 25, 1214 16 of 30

Figure 5. Function to transform a regulatory value into a probability value.

To compute the probability matrix P and, thus, to determine if Gi is a regulatory
gene of Gj, the activation and inhibition thresholds need to be determined for each gene.
The performance of our methodology depends on the criteria used for choosing the thresh-
old value. The threshold values of the j-th gene are computed taking into account how
this gene responds to the perturbations on all the other genes, which can be observed by
looking at the regulatory values presented in the j-th column of the regulatory matrix. The
activation threshold of gene Gj denoted by τ

p
j is the median of the positive elements across

the j-th column of the regulatory metric R:

τ
p
j = med({rkj | rkj ∈ R and rkj > 0}). (18)

In a dual manner, the inhibition threshold of gene Gj denoted by τn
j is the median of the

negative elements across the j-th column of the regulatory metric:

τn
j = med({rkj | rkj ∈ R and rkj < 0}). (19)

Choosing the right threshold value is important because it directly affects the accuracy
and reliability of the inferred network. On the one hand, if the threshold values are too
high, many true interactions may be missed, resulting in a sparse network that does
not accurately reflect the underlying biology. On the other hand, if the threshold values
are too low, many false interactions may be included, resulting in a dense network that
contains many spurious connections. Therefore, it is important to choose threshold values
that balance the trade-off between sensitivity (the ability to detect true interactions) and
specificity (the ability to exclude false interactions). This can be achieved by carefully
considering the distribution of regulatory values and the underlying network structure
and by validating the inferred network using independent experimental data. At this initial
stage, we have chosen to set the threshold value at the median of the regulatory values
based on empirical testing. Indeed, biological networks are typically not highly dense,
and therefore, the use of the median to compute threshold values is a reasonable approach
for this type of network. However, in rare cases where the regulatory network is highly
connected with high density, this strategy may need to be revised, but to our knowledge,
this is a theoretical case that is not realizable in an actual biological network.



Entropy 2023, 25, 1214 17 of 30

4.2.4. Evaluation of a Gene Regulatory Network

After inferring a gene regulatory network, it is common to use performance metrics
such as the accuracy, precision, specificity, and sensitivity to evaluate the quality of the
predicted gene regulatory network. However, in cases where the output of the methodology
is a probability matrix P that contains the probability that a gene is a regulatory gene of
another gene, the Area Under the Curve of the Receiver Operating Characteristic (AUC-
ROC) is used as a performance metric instead [38]. Given a probability matrix P obtained
from the regulatory matrix R, it is possible to define a probabilistic network in which each
arc of such a network has a probability of appearing or not. Therefore, a vector p̂ ∈ Rn2

can
be defined that contains the probabilities of all possible arcs between genes in the network.
On the other hand, we define p ∈ {0, 1}n2

as a binary vector that represents the presence
(1) or absence (0) of an arc in the target network. Knowing p̂ and p makes it possible to
compute the AUC metric to determine the quality of the prediction.

5. Results

To show the benefits of our methodology, we present the results that we obtained from
our experiments in this section. The discussion is structured as follows:

• We start by proving that our method of creating models, capable of predicting gene
expression levels over time, works well on all datasets, including both real and artificial
datasets (Section 5.1).

• Then, we show that our strategy of using metaheuristics to select the appropriate neu-
ral network architecture for each agent is the key to accurate simulation (Section 5.2).

• Subsequently, we aim to prove that our AES responds and regulates the gene ex-
pression in accordance with the behavior present in the real world under specific
perturbations of specific genes (Section 5.3).

• Finally, we present and discuss the results obtained in terms of inferring a gene regula-
tory network, comparing our results with the state-of-the-art methodology (Section 5.4).

5.1. Environment Reliability Analysis

The first step in validating our methodology, as described in previous sections, is to
demonstrate the ability of our AES to learn how to regulate gene expression from time-
series datasets. As previously mentioned, each agent must learn gene expression regulation
that is as similar as possible to the real gene expression regulation process. Therefore,
we conducted experiments with the datasets described in Section 2.3 to demonstrate how
our model can simulate the regulation of gene expression for a group of genes. In these
experiments, we used both real datasets obtained by actual observations of gene expression
and the artificial datasets listed in Table 1.

Table 3 provides a concise summary of the results obtained from all the datasets
used in the study. Each row in the table corresponds to a specific dataset containing
a particular number of genes. To obtain these results, we first preprocess the dataset
according to the guidelines outlined in Section 2. Subsequently, we create an AES using
the method specified in Section 4.1.2. Finally, we evaluate the performance of the model
in this environment according to the criteria described in Section 4.1.3. The environment
reliability and environment error defined, respectively, in Equations (9) and (12) are
reported in the table. Note that the reliability values are always between 0 and 1, while
the environment error has no upper bound and should ideally be as small as possible.
In the table below, for convenience, we also report the reliability measurements in
percentage terms.



Entropy 2023, 25, 1214 18 of 30

All results and plots presented in this section were obtained using the methodology
previously described. The number of time steps was set to m, and the size of the state
matrix was set to 10. Since each dataset has a different number of experiments, we applied
the following rule to select which experiments to use to create the AES and, in turn, which
experiments to use to evaluate it: for each dataset, 60% of the available experiments were
used to create the AES, while an experiment obtained by averaging all experiments was
used to evaluate it. These parameters were used for all experiments. As mentioned earlier,
to simulate regulation, it is necessary to set the initial state matrix to correspond to the first
m observations of the dataset used for environment evaluation.

Figures 6 and 7 show a visual comparison between the regulation of gene expression
by the AES and that observed in the field. The first 10 steps correspond to those of the
target dataset. After 10 steps, the expression for each gene was estimated by the AES.
The simulation ended when the number of steps was equal to the number of observations
contained in the dataset.

The two figures refer to two datasets with IDs equal to 17 and 10, respectively. We
have chosen to report only on these two datasets because they contain a small number
of genes and are easier to display. However, the same considerations can be applied to
the other datasets. In these figures, the blue line represents the real gene expression data,
while the orange lines represent the regulation of gene expression estimated by an AES.
The horizontal axis represents relative time and not absolute time, while the vertical axis
represents gene expression normalized in an interval between 0 and 1.

Table 3. Values for reliability and error.

ID Name Genes ErrMSE ErrMAE Rρ (%) Rη (%)

1 DREAM3_Ecoli_size10_1 10 1.318× 10−3 1.554× 10−2 92.615 99.324

2 DREAM3_Ecoli_size10_2 10 1.108× 10−3 1.351× 10−2 89.568 99.229

3 DREAM3_Ecoli_size10_3 10 8.701× 10−4 1.299× 10−2 88.890 99.808

4 DREAM3_Ecoli_size50_1 50 1.710× 10−3 1.796× 10−2 85.484 99.343

5 DREAM3_Ecoli_size50_2 50 1.511× 10−3 1.671× 10−2 85.256 98.945

6 DREAM3_Ecoli_size50_3 50 1.707× 10−3 1.720× 10−2 84.315 98.302

7 DREAM4_insilico_size10_1 10 1.545× 10−3 1.773× 10−2 94.567 99.700

8 DREAM4_insilico_size10_2 10 1.841× 10−3 1.961× 10−2 93.248 99.683

9 DREAM4_insilico_size10_3 10 1.356× 10−3 1.780× 10−2 95.025 99.734

10 DREAM4_insilico_size10_4 10 1.165× 10−3 1.542× 10−2 96.231 99.710

11 DREAM4_insilico_size10_5 10 1.811× 10−3 2.195× 10−2 96.101 99.221

12 DREAM4_insilico_size100_1 100 2.581× 10−3 2.160× 10−2 83.616 98.840

13 DREAM4_insilico_size100_2 100 2.547× 10−3 2.157× 10−2 83.432 99.386

14 DREAM4_insilico_size100_3 100 3.164× 10−3 2.518× 10−2 81.984 98.877

15 DREAM4_insilico_size100_4 100 2.311× 10−3 2.127× 10−2 84.945 99.374

16 DREAM4_insilico_size100_5 100 1.935× 10−3 1.918× 10−2 83.300 99.182

17 SOS DNA Repair 8 4.440× 10−4 1.181× 10−2 99.126 99.800



Entropy 2023, 25, 1214 19 of 30

Figure 6. Regulation of expression of eight genes using the dataset with ID 17.

Figure 7. Regulation of expression of ten genes using the dataset with ID 10.



Entropy 2023, 25, 1214 20 of 30

5.2. Optimization Analysis

This subsection highlights the advantages of using optimization algorithms to create
an AES with the highest reliability, according to the definition of environment reliability
given in Equation (9). In order to generate a group of agents that regulate gene expression,
we employ a two-level optimization algorithm. The first level determines the type of neural
network that models the agent’s function, while the second level identifies the optimal
hyperparameters for that neural network to minimize the error. We evaluated various
configurations of the AES on the SOS DNA Repair dataset, which involves repairing DNA
damage caused by environmental stresses. The results of our optimization technique
(outlined in Section 4.1.4) are presented in Table 4. The table compares the performance of
optimized and non-optimized AES. The agent type column indicates the neural network
architecture used for all agents (FCNN, CNN, or RNN). The hyperparameter optimization
column shows whether the hyperparameters of a neural network were tuned or not.
The remaining columns are the metrics used for the evaluation. The last row shows the
results of our optimized version (also reported in Table 3). The results are compared to a
baseline without optimization and a partial optimization, where all agents have the same
neural network architecture (FCNN, CNN, or RNN), while the partial optimization only
tunes the hyperparameters of a neural network. Our optimization method outperforms
both alternatives.

The results reported in Table 4 suggest that gene expression regulation can vary
dynamically over time and that some models are more suitable than others for capturing
this variation.

To illustrate this point, Figure 8 compares how different types of models regulate the
expression levels of two out of eight genes in the SOS DNA Repair dataset. We selected
these two genes because they show a clear difference between models. We marked with
an asterisk (*) all the neural networks that have been optimized according to Section 4.1.4,
while the others have not been optimized. We also included the actual values of gene
expression for these two genes. Finally, in Table 5 are reported the neural network ar-
chitecture assigned to each agent/gene in order to maximize the AES reliability using
SOS DNA Repair dataset.

Table 4. Comparing the performance of optimized and non-optimized AES by using the SOS DNA
Repair dataset. Bold highlights the best results.

Agent Type Hyperparameter Optimization ErrMSE ErrMAE Rρ (%) Rη (%)

FCNN Yes 7.958× 10−3 5.461× 10−2 90.467 93.204

FCNN No 1.038× 10−2 6.130× 10−2 89.593 91.199

CNN Yes 5.228× 10−3 4.564× 10−2 92.434 95.476

CNN No 5.173× 10−3 4.718× 10−2 92.124 95.409

RNN Yes 4.906× 10−3 4.400× 10−2 92.062 95.459

RNN No 1.117× 10−2 5.949× 10−2 75.739 90.852

Mixed Yes 4.440 × 10−4 1.181 × 10−2 99.126 99.800



Entropy 2023, 25, 1214 21 of 30

(a) Gene expression of gene uvrD (b) Gene expression of gene RecA

Figure 8. Comparing gene expression regulation performed by different models on the SOS DNA
Repair dataset. The solid lines represent the actual values of gene expression for the two selected
genes, while the dashed lines are the predictions made by the models.

Table 5. List of the neural network architecture assigned to each agent in order to maximize the AES
reliability. The dataset considered is SOS DNA Repair.

Gene Names uvrD lexA umuDC recA uvrA uvrY ruvA polB

Agent Types RNN RNN CNN RNN CNN CNN RNN RNN

5.3. Inferring Method Validation

In this section, we present a case study on the SOS DNA Repair dataset to illustrate
the robustness of the proposed method. We chose this dataset because it reflects real
observations of genes involved in the biological process of DNA repair. Figure 9 shows the
GRN target that represents the gene interactions.

DNA Damage

ssDNA

RecA RecA*

LexA Cleavage

recA lexA umuDC uvrA

Figure 9. SOS DNA Repair [39].

One of the key genes in this process is lexA, which has a strong influence on and,
in turn, is influenced by other genes. lexA is a transcriptional repressor that regulates
the expression of genes involved in DNA damage repair and population dynamics in
Escherichia coli. The SOS response is an inducible pathway that allows bacteria to cope
with various types of DNA lesions by activating DNA repair mechanisms and increasing
mutation rates [40]. When DNA damage occurs, the recA protein becomes activated by
binding to single-stranded DNA and stimulates the autocatalytic cleavage of lexA, resulting
in derepression of the SOS genes [41]. lexA also regulates its own expression and that of
recA. To examine whether this behavior can be replicated by using our perturbation method,
we applied a trapezoid perturbation function on the gene lexA after the environment had
reached stability. As described in Section 4.2.1, if a perturbation of a gene affects the



Entropy 2023, 25, 1214 22 of 30

regulation of the gene expression of other genes, then there is a relation between them.
Figure 10 shows how the perturbation of lexA influences the expression of all other genes.
This plot confirms two important principles that were stated above: (1) a change in the
expression level of lexA induces a significant variation in the expression of all the other
genes involved in the SOS DNA repair process; and (2) lexA regulates the gene expression
of recA.

Figure 10. Trapezium perturbation function on the gene lexA in the SOS DNA Repair dataset.

Table 6 shows the regulatory matrix extracted from the perturbations of all genes
according to Equation (16). The second row indicates the regulatory values obtained from
the perturbation of lexA: in green are reported the relationship correctly inferred, while
in red the wrong ones. As seen in Section 4.2.1, the columns represent the regulatory
value of the corresponding gene measured during a perturbation of the related gene in the
corresponding table row. To confirm the presence or absence of relationships, we report the
absolute values. The greater the value, the higher the probability of an interaction between
two genes. As depicted in Figure 9, perturbing the gene lexA has a significant impact
on the genes uvrD, umuDC, recA, and polB. Conversely, perturbations of other genes
do not affect these genes as much as lexA, as there are no arcs between those genes and
lexA, except for recA. When analyzing the effect of perturbing recA on lexA, we observe a
value of approximately 4.77× 10−2, confirming recA as a regulator of lexA (green cells).
Although polB has a value of 6.4840× 10−2, which is close to recA, it is not considered a
regulatory gene of lexA, to the best of our knowledge, and in this case, we have a false
positive (red cells). On the other hand, a perturbation of lexA does not significantly affect
the gene uvrA, as the regulatory value obtained is very small. However, this contradicts
the actual relationship between lexA and uvrA, where lexA regulates uvrA as well. This
behavior represents a false negative for our methodology.

It is important to note that these values may not reflect the real behavior for several
reasons. The first reason is that we trained the AES using limited observations. Moreover,
these values need to be validated in the field by using microarray technologies. However,
with this method, we can only assert that there exists a relationship between lexA and all
the genes that are most affected by the perturbation. This behavior can be observed in
Figure 9.



Entropy 2023, 25, 1214 23 of 30

Table 6. Regulatory matrix of SOS DNA repair. The second row contains the regulatory value
obtained from a perturbation of the gene lexA. All the values reported are the absolute value of the
regulatory value computed according to Equation (16). Green cells indicate values that are consistent
with real-world observations, while red cells represent false relationships.

uvrD lexA umuDC recA uvrA polB
uvrD 2.4626× 10−3 1.5913× 10−2 5.8119× 10−2 2.0963× 10−2 2.6780× 10−2 1.1307× 10−2

lexA 3.4152× 10−1 1.7021× 10−2 1.5025× 10−1 2.3371× 10−1 8.6508× 10−3 9.4471× 10−1

umuDC 1.6370× 10−1 9.0818× 10−3 7.3554× 10−4 6.2446× 10−2 1.8608× 10−2 2.5642× 10−1

recA 1.0145× 10−1 4.7732× 10−2 7.8055× 10−2 1.4553× 10−4 1.9012× 10−3 1.9558× 10−1

uvrA 1.2966× 10−1 2.8761× 10−2 9.7740× 10−2 2.2303× 10−2 2.0379× 10−3 1.6112× 10−1

polB 3.5621× 10−2 6.4840× 10−2 4.2384× 10−2 1.8242× 10−2 1.8230× 10−3 5.6774× 10−3

5.4. Gene Regulatory Networks

We now discuss the inferring of a gene regulatory network given an AES trained
by gene expression datasets. We used the AUC-ROC as a metric to evaluate the quality
of our predictions. The results are reported in Figure 11. We inferred a gene regulatory
network considering two distinct perturbation functions, namely the instant and trapezium
perturbation function (see Section 4.2.1) and the same datasets used in Table 3. To perform
these experiments, we chose m as the perturbation duration ϕd and half of the maximum
value of gene expression as the perturbation width ϕw. In the trapezium perturbation
function, we chose a ϕp equal to 2.

The study found that gene regulatory networks inferred using an instant perturbation
function are more accurate when using artificial datasets than real datasets. Conversely,
gene regulatory networks inferred using a trapezium perturbation function achieve better
performance than those using an instant perturbation function when using real datasets.
Indeed, artificial datasets are typically generated using a random distribution as a baseline,
which can induce a rapid change in gene expression immediately. This is the reason why,
with artificial datasets, an instant perturbation function works better. On the other hand,
in an AES modeled by actual observations such as the SOS DNA Repair dataset (Dataset
ID equal to 17), agents’ reactions occur after several time steps. As a result, our approach
seems to be more suitable for use with real datasets, as the agents are able to learn the
actual regulation of gene expression. In an artificial dataset, the gene expressions at initial
time (t = 0) assume random values different from zero. This behavior is not present if we
consider actual observations, such as SOS DNA Repair, where the gene expression at the
initial time is set to zero because the system is in a quiet state.

If we consider the AUC value obtained with SOS DNA Repair, which was recorded
as 0.61389, upon comparison with the state-of-the-art, we observe that it surpasses the
current best result as stated in [11]. To provide a clear comparison for the reader, we have
included a figure (Figure 12) that displays the AUC values achieved by other inference
methods, as per the experiments conducted in the aforementioned study. Conversely, when
it comes to artificial datasets, such as those from the DREAM4 Challenges with 10 and
100 genes (dataset IDs 7 to 16), our results, when compared to state-of-the-art methods,
are not optimal, as can be seen in Figure 13. However, it is worth noting that our model
appears to perform slightly better with 100 genes (Figure 13b) than with datasets containing
only 10 genes (Figure 13a).



Entropy 2023, 25, 1214 24 of 30

Figure 11. Results obtained by our methodology taking into account the two types of perturbations:
instant perturbation function and trapezium perturbation function. The dataset ID is an identifier
that represents the dataset used in that experiment. The full list of datasets is reported in Table 3.

Figure 12. This figure presents a comparison between our approach (labeled as “Our”) and the
state-of-the-art method for the SOS DNA Repair dataset, with the results sourced from [11].

(a) DREAM4 in silico size 10 (b) DREAM4 in silico size 100

Figure 13. This figure compares the performance of our approach (labeled as “Our”) with the state-
of-the-art method for DREAM4 datasets. The values represent the average of the Area Under the
Curve (AUC) obtained for each instance, as per [11], where the results from other methods are used
for comparison.



Entropy 2023, 25, 1214 25 of 30

6. Conclusions and Future Work

Gene expression is a fundamental process in living organisms that involves the syn-
thesis of gene products such as proteins using genetic information. It plays a crucial role
in many biological processes such as development, differentiation, and disease. Gene
Regulatory Networks (GRNs) are complex systems of genes that interact with each other
to control gene expression. Understanding GRNs is essential for understanding the un-
derlying mechanisms of many biological processes. Machine Learning (ML) is a powerful
tool for analyzing large-scale biological data and has been widely used in bioinformatics
research. In our research, we use machine learning techniques in a novel way. Agents are
not viewed as classic predictors capable of predicting the time sequence of variables, but are
considered as specific units that have learned from data the capability to regulate the gene
expression of each single gene. An agent regulates the expression of the corresponding
gene based on the gene expression of other genes in the environment. The possibility to
have different architectures for agents is crucial for being able to replicate the behavior of
actual gene expression simulation.

We will now discuss four crucial concepts that have emerged in our paper: the capacity
to forecast gene expression over time, given the initial gene expression level at Time 0; the
validation of the results obtained with a perturbation applied to a gene; the differences in
performance between artificial and real datasets; the computational cost.

Finally, we will present our future work and discuss how we can improve this approach.

6.1. Gene Expression Forecasting

In the previous sections, we introduced a novel approach to modeling gene expression
using an artificial environmental setting. Our primary objective has always been to create a
framework that can accurately replicate gene expression behavior, thereby simplifying the
process of conducting experiments in the real world and providing researchers with more-
precise data. To validate our methodology, we conducted several experiments, the results
of which are presented in Section 5. Our simulation experiments demonstrated that our
model can accurately simulate the expression over time of a group of genes. The reliability
of the environment was high for all datasets considered, as evidenced by Figures 6 and 7,
which were extracted from two datasets as examples. These figures demonstrate that our
model can reliably forecast gene expression over time, given the initial gene expression
as the input.

6.2. Gene Regulation Validation

However, simply forecasting gene expression is not enough to determine the capacity
of our AES to replicate gene behavior. Therefore, in Section 5.3, we aimed to demonstrate
that introducing a perturbation to a gene causes other genes that are highly correlated
with it to alter their gene expression in a manner consistent with the expected behavior.
These alterations are presented in Table 6. It should be noted, however, that two incorrect
relations were identified: in the first case, a gene was classified as a regulator (polB on
lexA), resulting in a false positive; in the second case, a relation between the regulator and
the regulated gene was missing (lexA and uvrA), resulting in a false negative. Nevertheless,
this information, such as that presented in Table 6, can be highly valuable for biologists
in determining gene regulatory networks. The data obtained can be evaluated by experts
in the field to extract important knowledge about gene regulation. In fact, the analysis
of a regulatory matrix may be more important than the extraction of a gene regulatory
network itself, as it directly measures how pairs of genes interact with each other. It is
worth noting that our model was able to extract this information with only a small amount
of data. The SOS DNA Repair dataset contains four experiments, each with 50 observations.
Therefore, it is highly probable that, with a higher number of observations, we would
obtain results that are much more similar to reality.



Entropy 2023, 25, 1214 26 of 30

6.3. Artificial vs. Real Datasets

The last step involves inferring a gene regulatory network, and it is worth noting
that our methodology performs better with real datasets than with artificial ones. In fact,
when combined with SOS DNA Repair, we achieved a high AUC that surpassed the state-
of-the-art method, as reported in [11]. This is not surprising, as models trained on real
datasets are more likely to capture the complexity and variability of real biological systems.
Real datasets are inherently more complex, noisy, and biologically relevant, and they may
contain all the relevant features that are necessary for accurate modeling. In contrast,
artificial datasets are often designed to test specific aspects of a model’s performance and
may not include all the relevant features present in real biological systems [5]. As a result,
models trained on artificial datasets may be overfit and perform poorly when applied to
real biological data. Therefore, it is crucial to use real datasets to train gene regulatory
network models to ensure accurate predictions and capture the underlying biology.

6.4. Computational Cost

The issue of computational costs must necessarily be addressed when creating an AES
from a gene expression time-series. This process is more time-consuming than existing
methodologies, as it involves exploring several possible configurations of the AES and
discarding those that do not perform well. The computational cost of our methodology
mainly depends on two factors: neural network training (Section 4.1.2) and the running
time of the optimization algorithm (Section 4.1.4). The training of neural networks can
be computationally expensive, especially when dealing with large datasets and complex
models. Additionally, it is not possible to estimate the time needed to train a neural
network with absolute certainty due to the variability of the data and the model. Anal-
ogously, the running time of the genetic algorithm can also vary depending on various
factors, such as the solution size and the number of neural network types available for each
agent. To address these computational challenges, we adopted several techniques such
as multiprocessing (training each neural network from an agent in parallel) and caching
memory (training an agent’s neural network architecture once and using it for subsequent
configurations of the AES). By implementing these techniques, the time required to cre-
ate an AES can be significantly reduced. Obviously, as the number of genes increases,
the computation time also increases; however, once an AES is created for a specific dataset,
the process of extracting a regulatory matrix and inferring gene regulation is faster than
other methods, as it involves computing simple equations (reported in Section 4.2.3) and it
is also deterministic. Although creating an AES is computationally expensive, it is still less
expensive than conducting a real experiment in a laboratory.

6.5. Future Work

In this work, we presented a novel approach aimed at providing a new solution to gene
expression regulation and similar real-world problems. However, the proposed methodol-
ogy is still in its initial phases, and there is much room for improvement. The extraction of
gene regulatory networks from regulatory matrices may not work for all types of networks
under study. Nevertheless, the main focus of this work is not to infer gene regulatory
networks, but to extract a regulatory matrix that can be studied by experts in the field
and potentially discover new knowledge about gene interactions. As the number of genes
increases, there is a need for a method that can process the regulatory matrix autonomously,
and we are working on this.

In addition, we are also working to speed up the training process of our model.
The idea is to integrate more-advanced training techniques, such as the concept of con-
tinuous learning, which can speed up the training process of each agent related to genes.
Additionally, having an artificial environmental setting capable of replicating real-world
behavior can be very useful, and we are, therefore, focusing on improving its reliability as
well. Using a different time step in the matrix state can yield different results, and therefore,
we are analyzing the trade-off between reliability, overfitting, and computational cost.



Entropy 2023, 25, 1214 27 of 30

As can be seen, our method performs poorly with artificial datasets compared to real
datasets. Therefore, we are working to extract and test real gene expression from organisms’
cells containing thousands of genes and use the methodology to simulate gene regulation
behavior. These aspects will be analyzed in detail in future works.

Author Contributions: Authors contributed equally to the methodology, investigation, validation
and fomal analysis, as well as to the writing original and revised manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Acknowledgments: The authors would like to express their gratitude to the anonymous referees for
their helpful feedback that measurably improved the manuscript. M. Pavone would like to thank the
Advanced New Technologies Research Laboratory (ANTs lab.), Acireale-Catania, Italy, for its important
support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AES Artificial Environmental Settings
GRN Gene Regulatory Network
ODE Ordinary Differential Equation
MLP Multi-Layer Perceptron
RNN Recurrent Neural Network
CNN Convolutional Neural Network
MSE Mean-Squared Error
MAE Mean Absolute Error
n Number of genes
b Number of observations
m Number of steps considered in the state matrix
k Number of experiments
Ai A generic agent related to the i-th gene
h(·) Agent function
x State of the environment
X State matrix of the environment
Rρ Environment reliability based on Pearson correlation
Rη Environment reliability based on cosine similarity

ErrMSE Environment error based on MSE
ErrMAE Environment error based on MAE
ϕ(·) Perturbation function
ϕd Duration of a perturbation
∆tr Perturbation instability interval

Gimax
Maximum gene expression level observed for the i-th gene in the
dataset

Appendix A. Neural Network Hyperparameter Optimization

Neural network hyperparameter optimization is a crucial aspect of deep learning,
which involves the selection of optimal hyperparameters for a given neural network
architecture. Hyperparameters are parameters that are not learned during the training
process, but are set prior to training and can significantly impact the performance of the
model. Examples of hyperparameters include the learning rate, batch size, number of
hidden layers, and activation functions.

The process of hyperparameter optimization involves searching for the best combina-
tion of hyperparameters that results in the highest accuracy or lowest error rate on a given



Entropy 2023, 25, 1214 28 of 30

dataset. This process can be time-consuming and computationally expensive, as it often
involves training and evaluating multiple models with different hyperparameter settings.
Table A1 presents a comprehensive list of hyperparameter values that can be assigned to
each type of layer in a neural network, along with the training settings.

Table A1. Hyperparameters of a neural network with their possible values.

(a) Hyperparameters of Neural Network Layers

Layer Type Hyperparameter Possible Values

Fully Connected
Layer Output Size From 50 to 1000

Dropout Layer Dropout Rate From 0 to 1

Activation Function Non-Linear Function Name relu, Linear, elu, tanh, gelu, selu

LSTM Layer Number of LSTM Hidden Units From 2 to 1024

(b) Training Settings

Parameter Name Description Possible Values

InitialLearnRate
It determines the initial learning rate
of the neural network during train-
ing.

From 0.001 to 0.1

MaxEpochs
It determines the maximum number
of epochs (iterations) that the neural
network will be trained for.

From 50 to 500

Shuffle It determines whether the training
data are shuffled before each epoch. Enable, disable

Optimizer
It determines the optimization algo-
rithm used to update the weights of
the neural network during training

Stochastic Gradient Descent (SGD), Adam

There are several approaches to hyperparameter optimization, including manual
tuning, grid search, random search, and Bayesian optimization. We used a genetic algorithm
for hyperparameter optimization. It starts with a population of randomly generated
neural network hyperparameters and evaluates their performance on a validation set.
The hyperparameters with the best performance are selected for reproduction, and their
genetic material is combined to create a new population of hyperparameters. This process
is repeated for several generations until the optimal set of hyperparameters is found.

References
1. Gout, J.F.; Kahn, D.; Duret, L.; Paramecium Post-Genomics Consortium. The relationship among gene expression, the evolution

of gene dosage, and the rate of protein evolution. PLoS Genet. 2010, 6, e1000944. [CrossRef]
2. Karlebach, G.; Shamir, R. Modeling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 2008, 9, 770–780. [CrossRef]
3. Shu, H.; Zhou, J.; Lian, Q.; Li, H.; Zhao, D.; Zeng, J.; Ma, J. Modeling gene regulatory networks using neural network architectures.

Nat. Comput. Sci. 2021, 1, 491–501. [CrossRef]
4. Aubin-Frankowski, P.C.; Vert, J.P. Gene regulation inference from single-cell RNA-seq data with linear differential equations and

velocity inference. Bioinformatics 2020, 36, 4774–4780. [CrossRef]
5. Pratapa, A.; Jalihal, A.P.; Law, J.N.; Bharadwaj, A.; Murali, T.M. Benchmarking algorithms for gene regulatory network inference

from single-cell transcriptomic data. Nat. Methods 2020, 17, 147–154. [CrossRef]
6. Zito, F.; Cutello, V.; Pavone, M. A Novel Reverse Engineering Approach for Gene Regulatory Networks. In The Complex

Networks and Their Applications XI; Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S., Eds.; Springer International
Publishing: Cham, Switzerland, 2023. ._26. [CrossRef]

7. Schaffter, T.; Marbach, D.; Floreano, D. GeneNetWeaver: In silico benchmark generation and performance profiling of network
inference methods. Bioinformatics 2011, 27, 2263–2270. [CrossRef]

8. Raza, K.; Alam, M. Recurrent neural network based hybrid model for reconstructing gene regulatory network. Comput. Biol.
Chem. 2016, 64, 322–334. [CrossRef] [PubMed]

9. Schwab, J.D.; Kühlwein, S.D.; Ikonomi, N.; Kühl, M.; Kestler, H.A. Concepts in Boolean network modeling: What do they all
mean? Comput. Struct. Biotechnol. J. 2020, 18, 571–582. [CrossRef] [PubMed]

http://doi.org/10.1371/annotation/c55d5089-ba2f-449d-8696-2bc8395978db
http://dx.doi.org/10.1038/nrm2503
http://dx.doi.org/10.1038/s43588-021-00099-8
http://dx.doi.org/10.1093/bioinformatics/btaa576
http://dx.doi.org/10.1038/s41592-019-0690-6
http://dx.doi.org/10.1007/978-3-031-21127-0_26
http://dx.doi.org/10.1093/bioinformatics/btr373
http://dx.doi.org/10.1016/j.compbiolchem.2016.08.002
http://www.ncbi.nlm.nih.gov/pubmed/27570069
http://dx.doi.org/10.1016/j.csbj.2020.03.001
http://www.ncbi.nlm.nih.gov/pubmed/32257043


Entropy 2023, 25, 1214 29 of 30

10. Delgado, F.M.; Gómez-Vela, F. Computational methods for Gene Regulatory Networks reconstruction and analysis: A review.
Artif. Intell. Med. 2019, 95, 133–145. [CrossRef] [PubMed]

11. Zhao, M.; He, W.; Tang, J.; Zou, Q.; Guo, F. A comprehensive overview and critical evaluation of gene regulatory network
inference technologies. Briefings Bioinform. 2021, 22, bbab009. [CrossRef]

12. Pirooznia, M.; Yang, J.Y.; Yang, M.Q.; Deng, Y. A comparative study of different machine learning methods on microarray gene
expression data. BMC Genom. 2008, 9 (Suppl. S1), S13. [CrossRef]

13. Cao, J.; Qi, X.; Zhao, H. Modeling Gene Regulation Networks Using Ordinary Differential Equations. In Next Generation Microarray
Bioinformatics: Methods and Protocols; Wang, J., Tan, A.C., Tian, T., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 185–197.
[CrossRef]

14. Agostini, D.; Costanza, J.; Cutello, V.; Zammataro, L.; Krasnogor, N.; Pavone, M.; Nicosia, G. Effective calibration of artificial gene
regulatory networks. In Proceedings of the 2011 11th European Conference on Artificial Life (ECAL), Paris, France, 8–12 August
2011; p. 11.

15. Yang, B.; Bao, W.; Zhang, W.; Wang, H.; Song, C.; Chen, Y.; Jiang, X. Reverse engineering gene regulatory network based on
complex-valued ordinary differential equation model. BMC Bioinform. 2021, 22, 448. [CrossRef]

16. Huynh-Thu, V.A.; Irrthum, A.; Wehenkel, L.; Geurts, P. Inferring Regulatory Networks from Expression Data Using Tree-Based
Methods. PLoS ONE 2010, 5, e12776. [CrossRef] [PubMed]

17. Huynh-Thu, V.A.; Geurts, P. dynGENIE3: Dynamical GENIE3 for the inference of gene networks from time-series expression
data. Sci. Rep. 2018, 8, 3384. [CrossRef]

18. Åkesson, J.; Lubovac-Pilav, Z.; Magnusson, R.; Gustafsson, M. ComHub: Community predictions of hubs in gene regulatory
networks. BMC Bioinform. 2021, 22, 58. [CrossRef] [PubMed]

19. Hartemink, A.J. Reverse engineering gene regulatory networks. Nat. Biotechnol. 2005, 23, 554–555. [CrossRef] [PubMed]
20. Emmert-Streib, F.; Dehmer, M.; Haibe-Kains, B. Gene regulatory networks and their applications: Understanding biological and

medical problems in terms of networks. Front. Cell Dev. Biol. 2014, 2, 38. [CrossRef]
21. Emerson, J.J.; Li, W.H. The genetic basis of evolutionary change in gene expression levels. Philos. Trans. R. Soc. B Biol. Sci. 2010,

365, 2581–2590. [CrossRef]
22. Davidson, E.; Levin, M. Gene regulatory networks. Proc. Natl. Acad. Sci. USA 2005, 102, 4935–4935. [CrossRef]
23. Glubb, D.M.; Innocenti, F. Mechanisms of genetic regulation in gene expression: Examples from drug metabolizing enzymes and

transporters. WIREs Syst. Biol. Med. 2011, 3, 299–313. [CrossRef]
24. Huynh-Thu, V.A.; Sanguinetti, G. Gene Regulatory Network Inference: An Introductory Survey. In Gene Regulatory Networks:

Methods and Protocols; Sanguinetti, G., Huynh-Thu, V.A., Eds.; Springer: New York, NY, USA, 2019; pp. 1–23. [CrossRef]
25. Zhang, Z.; Lei, A.; Xu, L.; Chen, L.; Chen, Y.; Zhang, X.; Gao, Y.; Yang, X.; Zhang, M.; Cao, Y. Similarity in gene-regulatory

networks suggests that cancer cells share characteristics of embryonic neural cells. J. Biol. Chem. 2017, 292, 12842–12859.
[CrossRef]

26. Vijesh, N.; Chakrabarti, S.K.; Sreekumar, J. Modeling of gene regulatory networks: A review. J. Biomed. Sci. Eng. 2013, 6, 9.
[CrossRef]

27. Hecker, M.; Lambeck, S.; Toepfer, S.; van Someren, E.; Guthke, R. Gene regulatory network inference: Data integration in dynamic
models—A review. Biosystems 2009, 96, 86–103. [CrossRef]

28. Wang, Y.R.; Huang, H. Review on statistical methods for gene network reconstruction using expression data. J. Theor. Biol. 2014,
362, 53–61. [CrossRef] [PubMed]

29. Müller, U.R.; Nicolau, D.V. Microarray Technology and Its Applications; Springer: Berlin/Heidelberg, Germany, 2005.
30. Gebert, J.; Radde, N.; Weber, G.W. Modeling gene regulatory networks with piecewise linear differential equations. Eur. J. Oper.

Res. 2007, 181, 1148–1165. [CrossRef]
31. Al-Ghamdi, A.B.; Kamel, S.; Khayyat, M. Evaluation of Artificial Neural Networks Performance Using Various Normalization

Methods for Water Demand Forecasting. In Proceedings of the 2021 National Computing Colleges Conference (NCCC), Taif,
Saudi Arabia, 27–28 March 2021; pp. 1–6. [CrossRef]

32. Zito, F.; Cutello, V.; Pavone, M. Optimizing Multi-Variable Time Series Forecasting using Metaheuristics. In Proceedings of the
2022 14th Metaheuristics International Conference (MIC), Syracuse, Italy, 11–14 July 2022; Di Gaspero, L., Festa, P., Nakib, A.,
Pavone, M., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2023; Volume 13838. [CrossRef]

33. Zito, F.; Cutello, V.; Pavone, M. Deep Learning and Metaheuristic for Multivariate Time-Series Forecasting. In Proceedings
of the 2023 18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO),
Salamanca, Spain, 5–7 September 2023; Bringas, P.G., Pérez García, H., Martínez de Pisón, F.J., Martínez Álvarez, F., Troncoso
Lora, A., Herrero, Á., Calvo Rolle, J.L., Quintián, H., Corchado, E., Eds.; Lecture Notes in Networks and Systems; Springer: Cham,
Switzerland, 2023; Volume 749. [CrossRef]

34. Lee, S.; Kim, J.; Kang, H.; Kang, D.Y.; Park, J. Genetic Algorithm Based Deep Learning Neural Network Structure and
Hyperparameter Optimization. Appl. Sci. 2021, 11, 744. [CrossRef]

35. Thompson, P.A. An MSE statistic for comparing forecast accuracy across series. Int. J. Forecast. 1990, 6, 219–227. [CrossRef]
36. Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126,

1763–1768. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.artmed.2018.10.006
http://www.ncbi.nlm.nih.gov/pubmed/30420244
http://dx.doi.org/10.1093/bib/bbab009
http://dx.doi.org/10.1186/1471-2164-9-S1-S13
http://dx.doi.org/10.1007/978-1-61779-400-1_12
http://dx.doi.org/10.1186/s12859-021-04367-2
http://dx.doi.org/10.1371/journal.pone.0012776
http://www.ncbi.nlm.nih.gov/pubmed/20927193
http://dx.doi.org/10.1038/s41598-018-21715-0
http://dx.doi.org/10.1186/s12859-021-03987-y
http://www.ncbi.nlm.nih.gov/pubmed/33563211
http://dx.doi.org/10.1038/nbt0505-554
http://www.ncbi.nlm.nih.gov/pubmed/15877071
http://dx.doi.org/10.3389/fcell.2014.00038
http://dx.doi.org/10.1098/rstb.2010.0005
http://dx.doi.org/10.1073/pnas.0502024102
http://dx.doi.org/10.1002/wsbm.125
http://dx.doi.org/10.1007/978-1-4939-8882-2_1
http://dx.doi.org/10.1074/jbc.M117.785865
http://dx.doi.org/10.4236/jbise.2013.62A027
http://dx.doi.org/10.1016/j.biosystems.2008.12.004
http://dx.doi.org/10.1016/j.jtbi.2014.03.040
http://www.ncbi.nlm.nih.gov/pubmed/24726980
http://dx.doi.org/10.1016/j.ejor.2005.11.044
http://dx.doi.org/10.1109/NCCC49330.2021.9428856
http://dx.doi.org/10.1007/978-3-031-26504-4_8
http://dx.doi.org/10.1007/978-3-031-42529-5_24
http://dx.doi.org/10.3390/app11020744
http://dx.doi.org/10.1016/0169-2070(90)90007-X
http://dx.doi.org/10.1213/ANE.0000000000002864
http://www.ncbi.nlm.nih.gov/pubmed/29481436


Entropy 2023, 25, 1214 30 of 30

37. Deep, K.; Singh, K.P.; Kansal, M.; Mohan, C. A real coded genetic algorithm for solving integer and mixed integer optimization
problems. Appl. Math. Comput. 2009, 212, 505–518. [CrossRef]

38. Cutello, V.; Pavone, M.; Zito, F. Inferring a Gene Regulatory Network from Gene Expression Data. An Overview of Best Methods
and a Reverse Engineering Approach. Comput. Log. Comput. Biol.; Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2023; Volume 14070.

39. Ronen, M.; Rosenberg, R.; Shraiman, B.I.; Alon, U. Assigning numbers to the arrows: Parameterizing a gene regulation network
by using accurate expression kinetics. Proc. Natl. Acad. Sci. USA 2002, 99, 10555–10560. [CrossRef]

40. Kamenšek, S.; Podlesek, Z.; Gillor, O.; Žgur-Bertok, D. Genes regulated by the Escherichia coli SOS repressor LexA exhibit
heterogenous expression. BMC Microbiol. 2010, 10, 283. [CrossRef] [PubMed]

41. Podlesek, Z.; Bertok, D.Ž. The DNA Damage Inducible SOS Response Is a Key Player in the Generation of Bacterial Persister
Cells and Population Wide Tolerance. Front. Microbiol. 2020, 11, 1785. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.amc.2009.02.044
http://dx.doi.org/10.1073/pnas.152046799
http://dx.doi.org/10.1186/1471-2180-10-283
http://www.ncbi.nlm.nih.gov/pubmed/21070632
http://dx.doi.org/10.3389/fmicb.2020.01785
http://www.ncbi.nlm.nih.gov/pubmed/32849403

	Introduction
	Related Work
	Contributions
	Outline of the Present Work

	Background
	Gene Regulatory Network
	Inferring a Gene Regulatory Network
	Datasets

	Modeling
	Agent
	Artificial Environmental Setting
	Simulation

	Methodology
	Model Estimation
	Data Preprocessing
	Learning
	Evaluation
	Optimization Algorithm

	Inferring a Gene Regulatory Network
	Perturb the State Matrix
	Regulatory Value and Regulatory Matrix
	Interaction Probability Matrix
	Evaluation of a Gene Regulatory Network


	Results
	Environment Reliability Analysis
	Optimization Analysis
	Inferring Method Validation
	Gene Regulatory Networks

	Conclusions and Future Work
	Gene Expression Forecasting
	Gene Regulation Validation
	Artificial vs. Real Datasets
	Computational Cost
	Future Work

	Neural Network Hyperparameter Optimization
	References

