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Abstract: Currently, renewable energies, including wind energy, have been experiencing significant
growth. Wind energy is transformed into electric energy through the use of wind turbines (WTs),
which are located outdoors, making them susceptible to harsh weather conditions. These conditions
can cause different types of damage to WTs, degrading their lifetime and efficiency, and, consequently,
raising their operating costs. Therefore, condition monitoring and the detection of early damages are
crucial. One of the failures that can occur in WTs is the occurrence of cracks in their blades. These
cracks can lead to the further deterioration of the blade if they are not detected in time, resulting
in increased repair costs. To effectively schedule maintenance, it is necessary not only to detect the
presence of a crack, but also to assess its level of severity. This work studies the vibration signals
caused by cracks in a WT blade, for which four conditions (healthy, light, intermediate, and severe
cracks) are analyzed under three wind velocities. In general, as the proposed method is based on
machine learning, the vibration signal analysis consists of three stages. Firstly, for feature extraction,
statistical and harmonic indices are obtained; then, the one-way analysis of variance (ANOVA)
is used for the feature selection stage; and, finally, the k-nearest neighbors algorithm is used for
automatic classification. Neural networks, decision trees, and support vector machines are also used
for comparison purposes. Promising results are obtained with an accuracy higher than 99.5%.

Keywords: ANOVA; blades; cracks; k-nearest neighbors; machine learning; statistical features;
vibrations; wind turbines

1. Introduction

The generation of energy through renewable sources has significantly increased in
recent decades [1], especially currently, as caring for the environment is an important
issue [2]. In particular, wind energy is exploited via wind turbines (WTs) [3,4]. Among
the main components of a WT, the blades are of utmost importance as they account for
approximately 22.2% of the total cost [5]. In this regard, the study of blade damage is
crucial for timely maintenance and reducing replacement costs during operation. The early
detection of blade damage can also extend the useful life of WTs, reduce the costs of main-
tenance, and minimize downtime [6,7]. Different factors can impact the structural integrity
of WT blades, including corrosive environments, temperature changes, and mechanical
stresses from wind profiles and harsh weather conditions. These factors can produce small
cracks that, if left unattended, can propagate and lead to catastrophic blade failures [8–11].
Therefore, the development and application of methods to automatically detect cracks in
the blades of WTs and characterize their severity are of paramount importance.
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The analysis of vibration signals is a common approach to assess the condition of
blades since it allows us to examine their dynamic response to external forces, such as wind
profiles [12–15]. It is worth noting that this dynamic response changes if a blade presents
some modifications in its structure; therefore, vibration signals can provide valuable
information for damage detection [16]. In this regard, several studies have focused on
detecting vibration changes in order to perform WT condition monitoring. For example,
Ha et al. [17] presented a methodology that computes the rotor speed and the power of
a WT for the classification of different operating conditions; then, their obtained results
were correlated with the ones obtained from a vibration signal analysis. Colone et al. [18]
proposed a vibration-based method that detects changes in the mass of blades using their
natural frequencies and two statistical tests. Wang et al. [19] performed a vibration analysis
based on the ensemble empirical mode decomposition (EEMD) and fast Fourier transform
(FFT) methods to determine the natural frequencies of the blades of a WT and, thus, assess
its dynamic status. All these authors demonstrate and conclude that vibration-based
methods are a powerful tool for condition monitoring.

Within the field of WT condition monitoring studies, researchers have also employed
machine learning (ML) techniques [20], using methods such as neural networks, support
vector machines, and decision trees [21], which are computationally efficient methods to be
implemented either offline or online, even using low-end processors. Other advantages such
as their low design complexity and ease of implementation have been highlighted in other
fields such as structural health monitoring [22] and condition monitoring in machining [23]. In
addition, optimization strategies are also integrated to further improve computational costs,
as is the case of the work of Tang et al. [24], which uses the kNN algorithm along with the
optimum combination of three parameters for the intelligent diagnosis of wind turbine blades.
The KNN along with eigenvalue perturbation techniques (EPTs) and features such as recursive
Mahalanobis distance and recursive residual error have shown excellent results for the real-
time detection of WT downtimes [25]. In the above work, five classes (i.e., in operation, with
faults, without wind, under maintenance, and other events) from two wind farms located in
Ireland were considered. In particular, EPTs have received special attention because they have
been proven to be robust and efficient compared to other methods, exceling in dealing with
data uncertainty, assisting in the identification of system parameters, and enabling real-time
operation [26,27]. Regarding real-time monitoring systems, the recursive singular spectrum
analysis (RSSA) method has been also reported in the literature for structural damage detection
from vibration signals. In addition, the RSSA’s advantages, such as its replicability, scalability,
and transferability, have allowed for its integration into a single-sensor-based fault detection
solution [27–29]. As for ML techniques, they are based on obtaining relevant indicators from
physical variables and selecting an appropriate classification algorithm for automatic diagnoses.
Wang et al. [21] proposed a ML framework for the detection of cracks through images taken by
unmanned aerial vehicles (UAVs), in which the Haar-like features and a cascading classifier are
used; within this classifier, the LogitBoost method, decision trees, and support vector machines
are used. Joshuva et al. [22] carried out a study of the condition of the blades of a WT by using
statistical indicators, a J48 decision tree algorithm for feature selection, and the best-first tree
algorithm and functional trees as classifiers. Shihavuddin et al. [23] presented an automatic
analysis of images with the help of ML to detect damage in WT blades by using convolutional
neural networks. Xu et al. [30] proposed clustering by fast search and find of density peaks
(CFSFDP) for the identification of different damage modes by using acoustic emissions. Joshuva
et al. [31] conducted a study to discriminate different faults in WT blades by using histogram
features, a J48 decision tree algorithm, and different lazy classifiers, i.e., the nearest neighbor,
k-nearest neighbors, locally weighted learning, and the K-star classifier, of which the best
results were obtained by the locally weighted learning. From these previously reviewed works,
it is evident that promising results have been obtained, demonstrating the potential of ML
techniques; however, one crucial aspect that has not been thoroughly investigated is the impact
of wind turbine (WT) velocity on the performance of ML strategies for blade damage detection.
To further advance our understanding of this topic, it is crucial to explore how WT velocity
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affects the effectiveness and accuracy of classifiers. Specifically, there is a need to investigate how
the features extracted from vibration signals change under different WT velocities and different
damage severities, as well as how these variations impact the performance of the classifiers,
looking for a strategy that can be applied regardless of the WT velocity.

In order to contribute to the solution of the previously mentioned problem and harness
the full potential of ML capabilities and the information provided by vibration signals,
this work investigates and evaluates the effectiveness of a ML scheme for the detection of
cracks in a WT blade by using vibration signals, in which three different levels of severity
and three different levels of wind velocity are considered. Firstly, for feature extraction,
statistical indicators, impulse metrics, and signal processing metrics are computed over
the monitored vibration signals. Secondly, the obtained features are ranked from most to
least relevant by using a one-way analysis of variance (ANOVA). Lastly, the KNN method
is used as a pattern recognition method for the ranked indicators. It is worth noting that,
in this last stage, a balance between the obtained accuracy by the KNN method and its
computational load (i.e., the number of selected features) is sought. To compare the KNN
performance, decision trees (DTs), neural networks (NNs), and support vector machines
(SVMs) are also tested. These methods have been used in both the works mentioned in the
previous paragraph and in fault diagnoses of rotating machines [24]. The obtained results
demonstrate that the proposed ML strategy is a promising tool for crack detection with an
accuracy higher than 99.5%.

2. Theoretical Background

This section briefly introduces the concepts and algorithms used in the presented work.

2.1. Wind Turbine

A WT is an electrical machine that converts wind energy into kinetic energy and
subsequently converts kinetic energy into electrical energy. WTs are usually classified into
two main types: vertical and horizontal WTs, with the latter being one of the most common.
This classification is based on the orientation of their axis. Generally, a WT comprises
several blades, a rotor, a generator, and a nacelle [7,32]. Figure 1 shows a horizontal
five-blade WT, which also shows an example of a crack damage.
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As shown in Figure 1, the crack damage changes the blade structure, altering its
vibrational response.

Vibration Model

Vibration signals are widely used for monitoring the health of a WT. They reflect its
dynamics. Every time the blade passes through the tower of the WT, it causes a vibration,
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called the tower effect; if some abnormalities that generate an imbalance appear (e.g.,
cracks), a new set of vibrations will appear. The obtained vibration model is as follows [33]:

v(t) = ∑M
m=1 Am sin(mωt + ϕm) + ∑N

n=1 An sin(Bωt + ϕn) (1)

where the first section is caused by the rotor imbalance and the second section is caused
by the tower effect. Am and An are the m and n amplitudes of the vibrations caused in the
rotor by the imbalance and by the tower effect, respectively; B is the number of blades; ω is
the rotational speed of the rotor; and ϕm and ϕn are the mth and nth initial phases of each
vibration component.

From this model, it is possible to assume that the changes in the vibrations can be
characterized through a set of different indicators/features in order to distinguish different
WT conditions.

2.2. Signal Features

Signal features can be used for the detection of changes that may indicate the status of
the signal or the status of a system. These changes can be characterized by using statistical
features, impulsive metrics, and signal processing metrics [20]. During the analysis of these
indicators, it is expected that the obtained data will vary according to the WT conditions.

2.2.1. Statistical Features

Statistical features mainly rely on formulas that allow us to obtain the characteristics
of the signal. Among these features, the mean, the standard deviation, and the root mean
square (RMS) value are found. Additionally, there are indicators that provide information
about the distribution and shape of the signal, such as kurtosis and skewness.

The following formulas are used, where X represents a finite-length vector and N is
the vector size [34]:

Mean: the average value of a segment or vector given by the following formula:

x =
1
N

N

∑
i=1

Xi (2)

RMS: the value of the amplitude that is related to the amount of energy of the signal.
It is calculated by the following formula:

Xrms =

√√√√ 1
N

N

∑
i=1
|Xi|2 (3)

Standard deviation: the positive square root of the variance in relation to the mean of
the data according to the following equation:

S =

√
∑N

i=1(Xi − x)2

N − 1
(4)

Shape factor: the signal shape independent of the signal dimensions.

Xs f =
Xrms

1
N ∑N

i=1|Xi|
(5)

Kurtosis: the degree of the concentration of the values of a variable around the central
zone of the signal distribution.

Xkurt =
1
N ∑N

i=1(Xi − x)4(
1
N ∑N

i=1(Xi − x)2
)2 (6)
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Skewness: the asymmetry or symmetry of the data according to their distribution.

Skw =
1
N ∑N

i=1(xi − x)3(
1
N ∑N

i=1(xi − x)2
) 3

2
(7)

2.2.2. Impulsive Metrics

Impulsive metrics characterize the peaks of the signal.
Peak value: the maximum absolute value of the signal.

Xp = max | Xi | (8)

Crest factor: the relation between the peak value and the RMS levels of a signal.

C =
Xp√

1
N ∑N

i=1 x2
i

(9)

Impulse factor: the height of a peak value with the mean value of the signal.

Xi f =
Xp

1
N ∑N

i=1|Xi|
(10)

Clearance factor: the height of a peak value with the squared mean value of the square
roots of the absolute values of the signal samples.

L =
Xp[

1
N ∑N

i=1
√
|Xi|

]2 (11)

2.2.3. Signal Processing Metrics

The signal processing metrics are functions that characterize the distortion of a sig-
nal. The deterioration of the system can cause an increase in noise and a change in the
harmonic content.

Signal-to-noise ratio (SNR): the ratio between the desired information or the power
of a signal and the undesired signal or the power of the background noise.

SNR =
Psignal

Pnoise
(12)

Total harmonic distortion (THD): the ratio between the harmonic content and the
fundamental component of the analyzed signal.

THD =

√
∑n

i=2 X2
i

X1
(13)

Signal-to-noise and distortion ratio (SINAD): a measure of quality related the SNR
and THD.

SINAD = 10 ∗ log
1

10
−SNR

10 + 10
THD

10
(14)

As can be expected, all the previously mentioned signal features can have different
performance values according to the nature of the signal or system, including different
operating conditions, e.g., a damage condition. In this regard, it is necessary to sort or
rank the features in order to determine which feature or features provide more information
about the signal or system.
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2.3. One-Way Analysis of Variance (ANOVA)

A one-way ANOVA allows us to discover whether different groups of an independent
variable impact the response variable y in a different way [35]. This method is a linear
model defined as follows:

yij = αj + εij (15)

where yij are independent observations, in which i represents the observation number
and j represents a different group, αj represents the mean for the jth group, and εij is the
random error.

In general, an ANOVA helps us determine if the constants, αj, are all the same. There-
fore, it tests the hypothesis that the means of all the groups are the same, as opposed to
the alternative hypothesis that at least one group differs from the others. This criterion
can be used to observe which feature or features provide more discriminant information
to differentiate among classes/operating conditions. After the features have been ranked
according to their relevance by using an ANOVA (i.e., a feature selection method), they can
be selected and used for pattern recognition through ML classifiers.

2.4. Machine Learning Classifiers

In supervised ML, labeled datasets are used to train algorithms that classify new
outcomes. In this work, DTs, SVMs, and KNN- and NN-based algorithms are explored.

2.4.1. Decision Tree

A decision tree is a prediction model that consists of inductively learning from obser-
vations or conditions and logical constructions. It has a great similarity with rule-based
predictions used for categorizing different types of data. The learning process is represented
by a tree graph that contains a set of nodes and branches. The main node is the attribute
from which the process starts, and the internal nodes correspond to each of the cases to
be solved [36]. Figure 2 shows a basic model of decision trees, wherein a particular path
is chosen based on whether the required conditions are met. The statistical procedures to
construct DTs can be found in [36].

Entropy 2023, 25, x FOR PEER REVIEW 6 of 23 
 

 

푆퐼푁퐴퐷 = 10 ∗ 푙표푔
1

10 + 10
 (14)

As can be expected, all the previously mentioned signal features can have different 
performance values according to the nature of the signal or system, including different 
operating conditions, e.g., a damage condition. In this regard, it is necessary to sort or rank 
the features in order to determine which feature or features provide more information 
about the signal or system. 

2.3. One-Way Analysis of Variance (ANOVA) 
A one-way ANOVA allows us to discover whether different groups of an independ-

ent variable impact the response variable 푦 in a different way [35]. This method is a linear 
model defined as follows: 

푦 = 훼 + 휀   (15)

where 푦  are independent observations, in which 푖 represents the observation number 
and 푗 represents a different group, 훼  represents the mean for the 푗  group, and 휀  is 
the random error. 

In general, an ANOVA helps us determine if the constants, 훼 , are all the same. There-
fore, it tests the hypothesis that the means of all the groups are the same, as opposed to 
the alternative hypothesis that at least one group differs from the others. This criterion can 
be used to observe which feature or features provide more discriminant information to 
differentiate among classes/operating conditions. After the features have been ranked ac-
cording to their relevance by using an ANOVA (i.e., a feature selection method), they can 
be selected and used for pa ern recognition through ML classifiers. 

2.4. Machine Learning Classifiers 
In supervised ML, labeled datasets are used to train algorithms that classify new out-

comes. In this work, DTs, SVMs, and KNN- and NN-based algorithms are explored. 

2.4.1. Decision Tree 
A decision tree is a prediction model that consists of inductively learning from ob-

servations or conditions and logical constructions. It has a great similarity with rule-based 
predictions used for categorizing different types of data. The learning process is repre-
sented by a tree graph that contains a set of nodes and branches. The main node is the 
a ribute from which the process starts, and the internal nodes correspond to each of the 
cases to be solved [36]. Figure 2 shows a basic model of decision trees, wherein a particular 
path is chosen based on whether the required conditions are met. The statistical proce-
dures to construct DTs can be found in [36]. 

 
Figure 2. Simple decision tree model. Figure 2. Simple decision tree model.

2.4.2. Support Vector Machine

SVMs are a set of supervised learning algorithms that have emerged as classification
and regression methods. They operate on a dataset of dimension n and map it to a higher-
dimensional space using a kernel function. This transformation allows the data to be
treated as a linear problem in the new space, effectively solving the problem without
considering the original data dimensionality [37]. In this regard, it is a linear classifier that
seeks an optimal hyperplane between two distinct classes to derive a decision function for
classifying samples into specific classes. The decision function is constructed by using the
following formula [38]:

g(x) = ωT x + ω0 = 0 (16)
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where ω is the vector of the weights, x is the input vector, and ω0 is the bias. Figure 3
shows the sections of an SVM.
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2.4.3. K-Nearest Neighbors

Among the ML classifiers, the KNN algorithm is a method used for classification ac-
cording to space characteristics. This algorithm is considered one of the simplest algorithms
in the field of ML because the assignment is carried out by a majority vote of the nearest
neighbors, and the object (or set of inputs) is assigned to the most common class among its
k-nearest neighbors [39]. The mathematical model used is as follows [40]:

ŷi =
k

∑
j=1

bjyP(i,j) (17)

where ŷi represents the output estimation, P(i, j) is the index of the jth nearest neighbor for
the sample yi, and b represents the results of the Moore–Penrose inverse. Figure 4 shows
an example of the k-nearest neighbors with k = 3 and k = 7.
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2.4.4. Neural Network

NNs are systems capable of learning to solve problems by recognizing patterns. They
emulate the structure of the human brain, which enables them to perform pattern recogni-
tion tasks [41]. In this structure, information flows from the input layer to the output nodes,
passing through the hidden layer. To characterize the network weights, input/output
data pairs are presented. A training rule is then applied to adjust these weights. The
training process aims to minimize the error between the desired and calculated outputs
and continues iteratively until the overall error is deemed acceptable. The mathematical
model that describes each neuron is as follows:

y = f

(
I

∑
i=1

wixi + b

)
(18)

where y is the output, w represents the weights, x represents the inputs, b is the bias, f (·)
is the activation function, and I is the total number of inputs. Figure 5 shows a typical
configuration of an NN, which is composed of an input layer, a hidden layer, and an
output layer.
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3. Methodology

The proposed methodology is shown in Figure 6. In general, the methodology consists
of 3 stages. The first stage involves the obtaining of the vibration signals for the different
blade conditions (i.e., healthy, light damage, intermediate damage, and severe damage)
and different wind velocities (i.e., low, intermediate, and high velocity) measured by WT
rps (revolutions per second). In all these cases, the signals are acquired in steady state and
for the three axes (Vx, Vy, and Vz) through an accelerometer located at the top of the WT
nacelle. In the second stage, the signals are processed to obtain the indicators mentioned in
Section 2.2 for each axis. These indicators are separated by velocity, considering 4 conditions
(healthy, light damage, intermediate damage, and severe damage). These indicators are
then ranked/sorted using ANOVA, prioritizing the most relevant ones for classifying
the different damage conditions. Finally, once the indicators have been obtained and
sorted/ranked, the most significant ones are used in different ML classifiers to achieve the
best results, using the smallest possible number of indicators. The entire process is repeated
for each velocity using Matlab software. Three velocities, i.e., low, intermediate, and high,
are selected for the operating range of the WT.
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4. Experimental Setup and Results
4.1. Experimental Setup

Figure 7 shows the experimental setup used in the development of this work. It
includes a wind tunnel, which is used to generate the wind profiles (i.e., the three different
velocities: 4 rps, 8 rps, and 12 rps in a steady state). The low-power WT is an air X model
with 12 V and 400 W. For the crack damages, a healthy blade is gradually damaged. To
mitigate disturbances caused by the wind tunnel, the WT is mounted on an external base,
securely fixed to the ground.

In order to acquire the vibration signals of the WT, the accelerometer is mounted on
the WT nacelle. The accelerometer used is a KISTLER model 8395A10. For data acquisition,
a National Instruments (NI) USB-6211 board at a sampling rate of 10,000 samples/s is used.
The computer used for conducting these tests has the following hardware specifications:
a CPU with 2.30 GHz, 16 GB RAM, and a 64-bit operating system. The implementation
software for the overall methodology is MATLAB 2022a.
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4.2. Crack Information

As mentioned previously in the methodology section, this study involves working
with blades that have a notch at one end. This notch simulates a crack and its progression
across four conditions: healthy, light, intermediate, and severe (0 cm, 1 cm, 2 cm, and 3 cm,
respectively, with a cutting width of 1 mm). The total width of the blade is 7 cm. The
notch is made with a fretsaw. For each severity level, the depth of the notch is increased to
simulate the advancement of the crack. As can be seen in Figure 8, the cut is barely visible,
making it difficult to perceive with the naked eye. However, it is of vital importance to
detecting the presence of the crack and determining its severity accurately.
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4.3. Vibration Signals

Table 1 describes the dataset used in this work. There are four blade conditions:
healthy, light damage, intermediate damage, and severe damage. For each blade condition,
there are three velocities: low, intermediate, and high, in which 100 vibration signals are
acquired for the three axes, i.e., X, Y, and Z, giving a total of 1200 signals for each axis. The
three velocities correspond to 4 rps (i.e., 240 rpm or a low velocity), 8 rps (i.e., 480 rpm or
an intermediate velocity), and 12 rps (i.e., 720 rpm or a high velocity). With these values,
the entire range of the WT velocity (i.e., from ~3 to 12 rps) is taken into account. For all
these cases, the WT starts at 0 rps but the tests continue until it reaches the in-test speeds
and maintains a steady state.

Table 1. Dataset for the blade conditions.

Condition Velocity Axis X Axis Y Axis Z

Healthy
Low 100 100 100

Intermediate 100 100 100
High 100 100 100

Light damage
Low 100 100 100

Intermediate 100 100 100
High 100 100 100

Intermediate damage
Low 100 100 100

Intermediate 100 100 100
High 100 100 100

Severe damage
Low 100 100 100

Intermediate 100 100 100
High 100 100 100
Total 1200 1200 1200
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Figures 9–11 show examples of the acquired vibration signals for 4 rps, 8 rps, and
12 rps, respectively. Each analyzed signal has 1200 length samples, i.e., 0.12 s.

Entropy 2023, 25, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 9. Vibration signals for different blade conditions under a low velocity (i.e., 4 rps). They are 
measured as an acceleration in gravity: g = m/s2. 

 
Figure 10. Vibration signals for different blade conditions under an intermediate velocity (i.e., 8 rps). 
They are measured as an acceleration in gravity: g = m/s2. 

Figure 9. Vibration signals for different blade conditions under a low velocity (i.e., 4 rps). They are
measured as an acceleration in gravity: g = m/s2.

Entropy 2023, 25, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 9. Vibration signals for different blade conditions under a low velocity (i.e., 4 rps). They are 
measured as an acceleration in gravity: g = m/s2. 

 
Figure 10. Vibration signals for different blade conditions under an intermediate velocity (i.e., 8 rps). 
They are measured as an acceleration in gravity: g = m/s2. 

Figure 10. Vibration signals for different blade conditions under an intermediate velocity (i.e., 8 rps).
They are measured as an acceleration in gravity: g = m/s2.
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4.4. Statistical Feature Selection

Following the proposed methodology, the 13 features presented in Section 2.2 are
computed for the vibration signals described in the previous section. Due to the amount
of data, only the results for the low velocity are shown. Figures 12–14 show the obtained
results in form of histograms for the X-axis, Y-axis, and Z-axis, respectively. The histograms
show the frequency distribution of the data; in this regard, the non-overlapped zones
in Figures 12–14 allow us to distinguish between the blade conditions. For instance, the
histograms for the mean values (marked with dotted red rectangles) show that there are
some non-overlapped zones that can contribute to the differentiation between the different
blade conditions, e.g., the orange color for the X-axis/Figure 12 for light damage, the blue
color for the Y-axis/Figure 13 for healthy, and the yellow color for the Z-axis/Figure 13
for intermediate damage. Some colors seem darker due to their overlap. Despite the
non-overlapped zones, there are many regions that present some overlaps, avoiding linear
separation and consequently requiring the application of pattern recognition algorithms.

In order to quantitatively determine the contribution of each feature for distinguishing
the blade conditions, an ANOVA test is applied. Figure 15 shows the obtained results. In
this graph, the indicators are ranked and ordered in terms of their relevance for identifying
each severity condition, with the mean for the Y-axis being the most discriminant. For the
next stage in the proposed method, i.e., the classification stage, only the first ten features,
marked by the red rectangle, are used. Table 2 shows their numerical values. It is worth
noting that the use of 10 features is decided in a heuristic way; however, other strategies to
select the most appropriate number of features can be also implemented.
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Table 2. One-way ANOVA results.

Feature Axis One-Way ANOVA

Mean Y 45.898
Skewness Y 28.7428

RMS Y 26.7202
Std Y 24.4612

Mean Z 22.4664
SINAD Y 19.7261

EMS Z 18.9073
Shape factor Z 16.2734

SNR Z 15.4659
Std Z 15.0407

4.5. Classifiers

After ordering the indicators, a comparison of different ML classifiers, such as decision
trees, k-nearest neighbors, vector support machines, and neural networks, was carried
out. In this regard, the four classifiers are applied to the indicators of each velocity in a
separated way. To achieve a balance between the accuracy and computational load, all
of the 10 indicators were initially used and then gradually reduced by removing the less
relevant indicators. After making this reduction, the best results were obtained using three
indicators (i.e., the mean, RMS, and standard deviation) for each velocity. It is worth noting
that they correspond to the same axis, reducing the number of channels of the sensor for
future implementation. The obtained accuracy in each velocity can be seen in Figure 16.
For instance, at low velocities, a 95.5% accuracy for DTs is obtained; a 96% accuracy for
SVMs with the Gaussian kernel function, with a kernel scale of 0.43 and a one-vs-one
multiclass method, is obtained; a 97.8% accuracy for a feedforward NN with ReLU as the
activation function and one hidden layer of 100 neurons is obtained; a 99.5% accuracy for
the KNN is obtained with k = 5, an Euclidian distance metric, and an equal distance weight.
At high velocities, the four classifiers achieve accuracies higher than 99.5%. In all of the
classifiers, a cross validation of five was used, which is a typical value for small datasets. It
is worth noting that the hyper-parameters used in the classifiers were selected by testing
different standard configurations, such as linear, quadratic, cubic, and Gaussian kernels
for the SVMs, Euclidean, cosine, and Minkowski (cubic) distance metrics for the KNN
method, and ReLU and the sigmoid activation function for the NNs. The best results were
obtained with the KNN method using k = 5, an Euclidian distance metric, and an equal
distance weight. Although suitable results were obtained, some optimization strategies to
determine the best settings for the classifiers were used. Although, in general, similar and
good results are obtained in all of the classifiers, the best results for the three velocities are
obtained by using the KNN.

Figures 17–19 show the confusion matrices of the KNN classifier for low, intermediate,
and high velocities, respectively. This classifier obtained two errors at both a low velocity
and an intermediate velocity, but zero errors at a high velocity.

Table 3 shows the classifier settings and results for all of the velocities. On the other
hand, Table 4 shows the selected indicators for all the classifiers: the mean (orange color),
RMS (green color), and Std (blue color) for the Y-axis. These indicators are determined by
looking for similarities between the 10 best indicators of each velocity. This ensures that
the same classifier and the same three indicators are the potential solution for diagnosing
the severity of cracks in blades regardless of the velocity.

With these final results, it is important to mention that the computational time of the
proposal is 0.077178 s considering the computation of the three SIs and the application of
the KNN algorithm by using the hardware and software mentioned in Section 4.1. This
value is not enough to operate in real time if the sampling frequency of 10,000 samples/s
(or a sampling time of 0.0001 s) is considered. However, the proposal can be implemented
into a parallel computing platform (e.g., using parallel platforms on MATLAB or FPGA



Entropy 2023, 25, 1188 16 of 21

technologies) to operate with its inherent batch processing time, i.e., the proposal is based
on the batch processing of 1200 samples (or a time window of 0.12 s) of the vibration signal.
Thus, the next vibration data window can be acquired and stored while the result of the
previous data window is analyzed. In addition, operating in real time and as an integrated
hardware solution (e.g., using a single sensor and/or a single hardware unit) is fundamental
to applying opportune actions that minimize the negative impact of damages in WTs or any
structure and contributing to the solution of current infrastructure monitoring demands
worldwide [29].
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Table 3. KNN settings and results.

Low
Velocity

Intermediate
Velocity

High
Velocity

K value 5 5 5

Accuracy 99.5% 99.5% 100%

Prediction speed 8500 observation/s 12,000 observation/s 8400 observation/s

Training time 18.253 s 18.785 s 21.945 s

Distance metric Euclidean Euclidean Euclidean

Distance weight Equal Equal Equal

Table 4. Features sorted for each velocity.

Low Velocity Intermediate Velocity High Velocity
Feature One-Way ANOVA Feature One-Way ANOVA Feature One-Way ANOVA

AxisY/Mean 45.898 AxisZ/Mean 18.0144 AxisY/RMS 1.41 × 103

AxisY/Skewness 28.7428 AxisZ/RMS 13.3412 AxisY/Std 563.3356
AxisY/RMS 26.7202 AxisY/Mean 5.2677 AxisY/Mean 329.2885
AxisY/Std 24.4612 AxisY/Skewness 3.1481 AxisY/ShapeFactor 226.6165

AxisZ/Mean 22.4664 AxisY/PeakValue 2.4873 AxisY/PeakValue 214.3894
AxisY/SINAD 19.7261 AxisZ/Std 2.2055 AxisX/SNR 58.6886

AxisZ/RMS 18.9073 AxisZ/ShapeFactor 2.1075 AxisX/ShapeFactor 57.6459
AxisZ/ShapeFactor 16.2734 AxisY/Kurtosis 2.054 AxisY/ClearanceFactor 51.9998

AxisZ/SNR 15.4659 AxisY/RMS 1.9922 AxisZ/RMS 50.3171
AxisZ/Std 15.0407 AxisY/Std 1.9866 AxisX/Std 47.4861

5. Conclusions

Condition monitoring and early fault detection are of paramount importance in main-
tenance tasks for any system or piece of equipment. In WTs, the detection of cracks in
blades can reduce repair costs and avoid more severe damages. In this work, a ML method
to detect cracks in WT blades by using vibration signals is presented. The proposal is
validated experimentally in a low-power WT by considering three levels of severity and
three velocities. Although different severity levels with a higher resolution, e.g., mm by
mm, were not tested, it was found that the proposed method can diagnose different severity
levels. In a future work, the sensitivity of this method will be explored. Moreover, the three
velocities analyzed in this work cover the entire operating range of the WT; therefore, it can
be inferred that the proposed method can be adapted to any operating velocity of the WT.

Using the proposed ML method after the ANOVA test, it was found that the statisti-
cal indicators can provide important information to differentiate between various blade
conditions, with the mean, RMS, and standard deviation of the Y-axis being the ones that
provide the best results regardless of the velocity. With these indicators, four classifiers, i.e.,
DTs, NNs, SVMs, and KNNs, were tested, with the KNNs with k = 5 being the one that
provided the most accurate results, obtaining a 99.5% accuracy at low wind velocities and a
100% accuracy at high wind velocities. Although promising results were obtained through
the proposed Matlab software tool, these have to be considered as preliminary since further
research is needed.

In a future work, the proposed method will be applied and updated for time-varying
wind profiles. Furthermore, other damages in a single or combined way will be investigated,
mainly considering early or incipient damages. In addition, different simulations using the
finite element method (FEM) will be also carried out in order to validate and strengthen the
obtained results, as the proposed research work is based on experimentations in a controlled
laboratory. Finally, the developed method will be implemented in FPGA hardware with
the aim of providing a technological tool for online and real-time monitoring.
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Abbreviations

The following abbreviations are used in this manuscript:
ANOVA Analysis of Variance
DT Decision Tree
EEMD Ensemble Empirical Mode Decomposition
FFT Fast Fourier Transform
FPGA Field programmable gate array
KNN K-Nearest Neighbor
ML Machine learning
NN Neural Network
RMS Root Mean Square
RSSA Recursive singular spectrum analysis
SINAD Signal-to-Noise and Distortion ratio
SNR Signal-to-noise Ratio
SVM Support Vector Machine
THD Total Harmonic Distortion
WT Wind turbine
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