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Abstract: Due to increasingly strong and varied performance requirements, cooperative wireless
communication systems today occupy a prominent place in both academic research and industrial
development. The technological and economic challenges for future sixth-generation (6G) wireless
systems are considerable, with the objectives of improving coverage, data rate, latency, reliability, mo-
bile connectivity and energy efficiency. Over the past decade, new technologies have emerged, such
as massive multiple-input multiple-output (MIMO) relay systems, intelligent reflecting surfaces (IRS),
unmanned aerial vehicular (UAV)-assisted communications, dual-polarized (DP) antenna arrays,
three dimensional (3D) polarized channel modeling, and millimeter-wave (mmW) communication.
The objective of this paper is to provide an overview of tensor-based MIMO cooperative communica-
tion systems. Indeed, during the last two decades, tensors have been the subject of many applications
in signal processing, especially for digital communications, and more broadly for big data processing.
After a brief reminder of basic tensor operations and decompositions, we present the main characteris-
tics allowing to classify cooperative systems, illustrated by means of different architectures. A review
of main codings used for cooperative systems is provided before a didactic and comprehensive
presentation of two-hop systems, highlighting different tensor models. In a companion paper cur-
rently in preparation, we will show how these tensor models can be exploited to develop semi-blind
receivers to jointly estimate transmitted information symbols and communication channels.

Keywords: cooperative communication systems; MIMO; relaying systems; tensor codings; tensor
models

1. Introduction

Since the pioneering work [1,2], cooperative multiple-input multiple-output (MIMO)
systems have emerged as promising techniques to improve the coverage, data rate, diversity,
and performance of wireless communications. Over the past decade, new technologies
have been developed, such as massive MIMO relay systems; intelligent reflecting surfaces
(IRS), also known as reconfigurable intelligent surfaces (RIS); unmanned aerial vehicular
(UAV)-assisted communications; dual-polarized (DP) antenna arrays; three dimensional
(3D) polarized channel modeling; and millimeter-wave (mmW) communication.

IRS- and UAV-assisted systems have recently received great attention for their po-
tential to control the ambient environment, to enhance signal coverage, and to reduce the
implementation costs and energy consumption of future wireless systems.

Note that, contrary to relays, IRSs that consist of quasi-passive elements are not
equipped with hardware to process signals, and therefore, they are not able to carry out
decoding and coding operations. IRS-assisted communication systems generally operate
in a supervised way, i.e., using a training sequence, for channel estimation. Such systems,
which operate similarly to relay-aided systems, have some advantage in terms of spectral
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and/or energy efficiency gains. A comparison of these two technologies can be found
in [3,4].

UAV-aided MIMO communications offer new perspectives for wireless networks and
Internet of Things (IoT) applications [5,6]. In such applications, UAVs, also known as
drones, can be viewed as mobile relays between IoT devices or users and a base station (BS).
UAVs can also be combined with IRS technology to enhance communication performance.
For instance, in an urban environment with multiple IRSs, a UAV can be used to assist
IRS data transmission to a BS [7]. Multiple UAVs can be employed as aerial mobile base
stations to transmit information to ground users with the help of an IRS, aiming to assist
terrestrial communication systems, e.g., to offload hotspot cellular traffic [8].

To improve system capacity and spectral efficiency, cooperative MIMO systems use
mmW transmission technology, allowing them to achieve gigabit-per-second data rates [9,10].

During the last two decades, numerous wireless communication systems have been
designed using tensor-based approaches, with the aim of taking different diversities (space,
time, frequency, code, polarization, etc) into account, and developing semi-blind receivers
for jointly estimating the channels and transmitted information symbols. The reader is
referred to the following work [11] for a survey of such systems.

The purpose of this paper is to provide an overview of tensor-based cooperative
communication systems, including relay systems and IRS- and UAV-assisted systems. This
overview, which concerns only the tensor modeling aspect, is by no means exhaustive. A
companion paper is being prepared [12] for presenting semi-blind receivers allowing to
jointly estimate information symbols and individual channels in the context of different
cooperative systems. Tensor model uniqueness of each system and parameter identifiability
conditions for each receiver will be analyzed and compared. Some Monte Carlo simulation
results will be provided for illustrating the performance of the considered systems and
receivers.

The main contributions of this paper can be summarized by the following points:

• A detailed introduction of the tensor operations and decompositions useful for de-
signing tensor-based cooperative communication systems; see Section 2.

• An overview of various MIMO cooperative systems, including relaying systems, IRS-
and UAV-assisted communication systems; see Section 3.

• An overview of the main codings used in MIMO cooperative systems, with a particular
emphasis on tensor codings proposed during the last decade in the context of point-
to-point and cooperative communication systems; see Section 4.

• A presentation in a didactic and unified way of several two-hop systems highlighting
different new tensor models. Some of these systems are extensions of existing ones;
see Section 5.

Notation: Table 1 summarizes the notations used in this paper.

Table 1. Notation.

Symbols Definitions

K = R or C set of real or complex numbers
〈N〉 , {1, · · · , N} Set of first N integers
iN , {i1, · · · , iN} Set of N indices
IN , I1 × · · · × IN Size of an Nth-order tensor
a, a, A, A Scalar, column vector, matrix, tensor
aiN

= ai1,i2,··· ,iN or [A]i1,i2,··· ,iN (i1, i2, · · · , iN)-th element of A ∈ KIN

AT Transpose of A
A∗ Complex conjugate of A
A† Moore-Penrose pseudo-inverse of A
Ai· (A·j) i-th (j-th) row (column) of A ∈ KI×J
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Table 1. Cont.

Symbols Definitions

A···in ··· or A(in) Mode-n tensor slice
AI1···IN−1×IN Tall mode-N matrix unfolding of A
e(N)

n nth canonical basis vector of the Euclidean space RN

vec(·) Vectorization operator
diag(·) Diagonalization operator which forms a matrix from its vector argument
Di(A) = diag(Ai.) Diagonal matrix whose diagonal entries are the elements of the i-th row of A ∈ KI×J

bdiag(·) Block-diagonalization operator
〈·, ·〉 Inner product
‖ · ‖F Frobenius norm
◦ Outer product
� Khatri-Rao product
⊗ Kronecker product
./ Block Kronecker product
×n Mode-n product
×n

m Contraction operation
tn Concatenation operation along mode n

2. Tensor Prerequisites

In this section, we first review some basic notions like slice, mode combination and
tensor matricization. Then, the most important tensor operations and decompositions used
throughout the paper are recalled. For complementary information on tensor tools, the
reader is referred to [13,14].

2.1. Some Definitions and Notion of Slice

In signal processing applications, an Nth-order tensor X ∈ KIN , of size IN , I1 × · · · × IN ,
is an array of real (K = R) or complex (K = C) numbers denoted X = [xiN

] = [xi1,··· ,iN ],
where iN , {i1, · · · , iN}. Each index in ∈ 〈In〉 , {1, · · · , In}, for n ∈ 〈N〉 , {1, · · · , N}, is
associated with a mode, also called a way. This explains the other appellation-like multiway
array for a tensor. The number of indices defines the order of the tensor, and the number of
elements in X is equal to ∏N

n=1 In, where In denotes the dimension of the nth mode. Note
that the special cases N = 2 and N = 1 correspond to the sets of matrices X ∈ KI×J and
column vectors x ∈ KI , respectively.

The identity tensor of order N and size I × · · · × I is denoted IN,I = [δi1,··· ,iN ], with
in ∈ 〈I〉, for n ∈ 〈N〉, or simply II . It is a diagonal hypercubic tensor whose diagonal
elements are equal to 1 and other ones to zero, defined using the generalized Kronecker
delta as:

δi1,··· ,iN =

{
1 if i1 = · · · = iN
0 otherwise

.

The Frobenius norm of X ∈ KIN is the square root of the inner product of the tensor
with itself, i.e.,:

‖X ‖F =
√
〈X ,X 〉 =

(
I1

∑
i1=1
· · ·

IN

∑
iN=1
|xi1,··· ,iN |

2

)1/2

. (1)

A slice is a sub-tensor obtained by fixing one or more indices. If we fix N − 1 indices
of an Nth-order tensor X ∈ KIN , we obtain a vector called a fiber. When fixing index in of
X , with n ∈ 〈N〉, we obtain a (N − 1) order tensor denoted X(in) ∈ KI1×···×In−1×In+1×···×IN .
Thus, for a third-order tensor X ∈ KI×J×K, fixing one index gives three types of ma-
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trix slices, called horizontal, lateral, and frontal, when the indices i, j, and k are fixed,
respectively, and denoted as follows:

Xi.. ∈ KJ×K, X.j. ∈ KK×I , X..k ∈ KI×J . (2)

Fibers and matrix slices of a third-order tensor X ∈ KI×J×K are illustrated in Figure 1.

𝒳𝐼

𝐽

𝐾

𝐱∙𝑗𝑘 𝐱𝑖𝑗∙𝐱𝑖∙𝑘

𝐗∙∙𝑘 𝐗𝑖∙∙𝐗∙𝑗∙

𝑓𝑖𝑏𝑒𝑟𝑠

𝑠𝑙𝑖𝑐𝑒𝑠

Figure 1. Fibers (column, row, and tube) and matrix slices (frontal, lateral, and horizontal) of a
third-order tensor X ∈ KI×J×K .

2.2. Notion of Mode Combination and Matricization

Mode combination is a very important operation in tensor calculus and can be viewed
as a transformation of a tensor of order N into a tensor of order N1 < N. Matricization, also
called matrix unfolding, of a tensor is a fundamental operation using mode combination to
transform an Nth-order tensor X ∈ KIN into a matrix.

Considering a partitioning of the set of modes S = 〈N〉 into two disjointed ordered
subsets S1 and S2, composed of p and N − p modes, respectively, with p ∈ 〈N − 1〉, a
general matrix unfolding formula for an Nth-order tensor X was given by [15] as:

XS1 ;S2 =
I1

∑
i1=1
· · ·

IN

∑
iN=1

xi1,··· ,iN

(
⊗

n∈S1

e(In)
in

)(
⊗

n∈S2

e(In)
in

)T
∈ KJ1×J2 , (3)

where e(In)
in is the in-th vector of the canonical basis of RIn , and Jn1 = ∏ In

n∈Sn1

, for n1 = 1 and 2.

We say that XS1 ;S2 is a matrix unfolding of X along the modes of S1 for the rows and along
the modes of S2 for the columns, with S1 ∩ S2 = ∅ and S1 ∪ S2 = 〈N〉.

For instance, in the case of a third-order tensor X ∈ KI×J×K, we have six flat unfold-
ings and six tall unfoldings. For S1 = 1 and S2 = {2, 3}, we have the following mode-1
flat unfolding XI×JK , X1 ; {2,3}, while for S1 = {2, 3} and S2 = 1, we obtain the following
mode-1 tall unfolding XJK×I , X{2,3} ; 1.

By convention, the order of the dimensions in a product ∏P
p=1 Ip , I1 · · · IP associated

with a combination of the indices (i1, · · · , iP) follows the order of variation of the indices,
with i1 varying more slowly than i2, which in turn varies more slowly than i3, etc. For
example, in the matrix unfolding XI×KJ , index k varies more slowly than j, which implies:

xijk = [XI×KJ ]i,(k−1)J+j = [XJ×IK]j,(i−1)K+k = [XK×J I ]k,(j−1)I+i. (4)

Figure 2 illustrates the construction of the unfolding XI×KJ obtained by horizontally
stacking the frontal slices X..k, for k ∈ 〈K〉.
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𝐗∙∙1 𝐗∙∙2 𝐗∙∙𝐾𝐼

𝐽

𝐾

𝐼

𝐾𝐽

𝒳
⋯

Figure 2. Matrix unfolding XI×KJ for X ∈ KI×J×K .

2.3. Recall of Some Tensor Operations

In Table 2, we present two multiplications with tensors, called mode-p or Tucker
product, and mode-(p, n) product, denoted ×p and ×n

p , respectively.

Table 2. Two multiplications with tensors.

Tensors Operations Definitions

X ∈ KIP , A ∈ KJ×Ip Y = X ×p A yi1 ,··· ,ip−1 ,j, ip+1 ,··· ,iP = ∑ip aj,ip xiP

X ∈ KIP ,Y ∈ KJN

Z = X ×n
p Y

zi1 ,··· ,ip−1 , ip+1 ,··· ,iP ,j1 ,··· ,jn−1 , jn+1 ,··· ,jN =

with Ip = Jn = K ∑K
k=1 ai1 ,··· ,ip−1 , k, ip+1 ,··· ,iP bj1 ,··· ,jn−1 , k, jn+1 ,··· ,jN

The mode-p product of a tensor X ∈ KIP with a matrix A ∈ KJ×Ip , denoted X ×p A,
corresponds to a summation over the index ip associated with the mode p of X and the
second index of A.

The mode-(p, n) product of two tensors X ∈ KIP and Y ∈ KJN corresponds to a
contraction operation performed for arbitrary modes (p, n) of X and Y , with Ip = Jn = K.
This multiplication gives a tensor Z of order P + N − 2 and size I1 × · · · × Ip−1 × Ip+1 ×
· · · × IP × J1 × · · · × Jn−1 × Jn+1 × · · · × JN . These two products can be carried out using
matrix unfoldings of the tensors involved in the products, as illustrated in Table 3. The
resulting tensor is then obtained by means of a reshaping operation based on the definition
of the dimensions for the tensor.

Table 3. Matrix unfoldings of products with tensors.

Dimensions Products Matrix Unfoldings Dimensions of Resulting Tensors

X ∈ KI×J×K , A ∈ KL×K Y = X ×3 A YI J×L = XI J×KAT Y ∈ KI×J×L

X ∈ KI×J×K×M , A ∈ KL×K Y = X ×3 A YI JM×L = XI JM×KAT Y ∈ KI×J×L×M

X ∈ KI×J×P,Y ∈ KL×M×N

Z = X ×m
p Y

zi,j,l,n = ∑K
k=1 ai,j,k bl,k,n

with P = M = K ZI J×LN = XI J×KYK×LN
Z ∈ KI×J×L×N

Remark 1. The mode-p and mode-(p, n) products satisfy the following properties.

• For two products of X ∈ KIP along the mode p, with A ∈ KJp×Ip and B ∈ KKp×Jp , we have:

Y = X×pA×pB = X×p(BA) ∈ KI1×···×Ip−1×Kp×Ip+1×···×IP . (5)

From this property, we can conclude that the double mode-p product is commutative only if
the matrices A and B commute (AB = BA).

• The contracted product ×n
p is associative; in other words, for any tensors A ∈ KIP , B ∈ KJN ,

and C ∈ KKQ such that Ip = Jn and Jm = Kq, with m 6= n, we have:

(A×n
p B)×

q
m C = A×n

p (B ×
q
m C) = A×n

p B ×
q
m C. (6)

This double contracted product corresponds to a double summation over the indices ip and jn
on the one hand, and over the indices jm and kq on the other hand. It provides a tensor of order
P + N + Q− 4.
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• Property (6) is valid when (m, n, p, q) bijectively positions the indices (jm, jn), ip and kq in the
sets j

N
, iP and kQ, respectively. When (m, n, p, q) represent mode numbers, the property (6) is

no longer valid because the result of the double-contracted product ×n
p and ×q

m depends on the
order in which these products are made. For instance, forA ∈ KI1×J1×R1 , B ∈ KR1×I2×J2×R2

and C ∈ KR2×I3×J3 , the double product can be written in two different ways, giving the
same result: (

A×1
3 B
)
×1

5 C = A×1
3
(
B ×1

4 C
)
∈ KI1×J1×I2×J2×I3×J3 . (7)

In the left member of this equality, the product ×1
3 is first computed, followed by the product

×1
5, while in the right member, the product ×1

4 is computed before the product ×1
3. We will say

that in the first case (resp. the second case), the modes-(1, p) products are performed from left
to right (resp. from right to left). This type of consideration is useful for writing the equation
of a tensor train decomposition (TTD). See [16].

Table 4 presents a few examples of outer products of vectors, matrices and tensors,
indicating the space to which the tensors resulting from these products belong, as well as
their order.

Table 4. Outer products of vectors, matrices and tensors.

Vectors/Matrices/Tensors Outer Products Spaces Orders

u(p) ∈ KIp , p ∈ 〈P〉 P◦
p=1

u(p)
KIP P

A(p) ∈ KIp×Jp , p ∈ 〈P〉 P◦
p=1

A(p)
KI1×J1×···×IP×JP 2P

A ∈ KIP ,B ∈ KJN A ◦ B KIP×JN P + N

A(p) ∈ K
JNp , p ∈ 〈P〉 P◦

p=1
A(p)

KJN1
×···×JNP ∑P

p=1 Np

Remark 2.

• The outer product of P non-zero vectors u(p) ∈ KIp , p ∈ 〈P〉 gives a rank-one tensor of order
P and size IP such that:

P◦
p=1

u(p) ∈ KIP ⇔
( P◦

p=1
u(p)

)
iP

=
P

∏
p=1

u(p)
ip

. (8)

For instance, the outer product of three non-zero vectors u ∈ KI , v ∈ KJ , and w ∈ KK gives
a rank-one, third-order tensor u ◦ v ◦w of size I × J × K such that:

(u ◦ v ◦w)ijk = uivjwk , i ∈ 〈I〉, j ∈ 〈J〉, k ∈ 〈K〉. (9)

Reciprocally, a Pth-order tensor A is a rank-one tensor if it can be written as the outer product
of P vectors u(p), with p ∈ 〈P〉. Hitchcock [17] showed that any tensor can be written as
a sum of rank-one tensors, and the rank R of the tensor is the smallest number of rank-one
tensors needed to write it as a linear combination, i.e.,: A = ∑R

r=1 a(1)r ◦ · · · ◦ a(P)
r , where

a(p)
r is the rth column of the pth matrix factor A(p), p ∈ 〈P〉. As shown in Section 2.4, when

R is minimum, such a decomposition is called a canonical polyadic decomposition (CPD) or
parallel factor (PARAFAC) analysis [18].

• Note that the outer product of A ∈ KIP with B ∈ KJN gives a rectangular tensor of order
P + N belonging to the space KIP×JN .
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Table 5 gives expressions for scalar elements of each tensor resulting from the outer
products in Table 4.

Table 5. Scalar elements of outer products.

Matrices/Tensors Outer Products Elements of X Indices

A(p) ∈ KIp×Jp X =
P◦

p=1
A(p) xi1 j1 ···iP jP = ∏P

p=1 a(p)
ip jp

ip ∈ 〈Ip〉 , p ∈ 〈P〉
jp ∈ 〈Jp〉 , p ∈ 〈P〉

A ∈ KIP ,B ∈ KJN X = A ◦ B xiP , jN
= aiP bjN

ip ∈ 〈Ip〉 , p ∈ 〈P〉
jn ∈ 〈Jn〉 , n ∈ 〈N〉

A(p) ∈ KINp X =
P◦

p=1
A(p) xiN1

, ··· , iNP
= ∏P

p=1 a(p)
iNp

iNp = (i1, · · · , iNp )

p ∈ 〈P〉

2.4. Recall of Basic Tensor Decompositions

Tensor decompositions, also called tensor models, are used to represent data tensors
by means of matrix factors and lower-order tensors, called core tensors. Many different
tensor models exist. Several of them have been developed through the design of new
wireless communication systems, as illustrated in this paper. In this section, we present the
Tucker and PARAFAC decompositions.

In Table 6, we give various forms of representation for these two decompositions in
the case of an Nth-order tensor X ∈ KIN : scalar writing, writings with mode-n products
and outer products, and general Formula (3) for matrix unfolding.

Table 6. Tucker decomposition and CPD of an Nth-order tensor.

Tucker Decomposition CPD

X ∈ KIN

G ∈ KRN

A(n) ∈ KIn×Rn A(n) ∈ KIn×R

xiN =
R1
∑

r1=1
· · ·

RN
∑

rN=1
gr1 ,··· ,rN

N
∏

n=1
a(n)in ,rn

Scalar writing xiN =
R
∑

r=1

N
∏

n=1
a(n)in ,r

Writing with

X = G
N
×

n=1
A(n) mode-n products X = IR

N
×

n=1
A(n)

X =
R1
∑

r1=1
· · ·

RN
∑

rN=1
gr1 ,··· ,rN

N◦
n=1

A(n)
.rn Outer products X =

R
∑

r=1

N◦
n=1

A(n)
.r

Matricization(
⊗

n∈S1

A(n)
)

GS1 ;S2

(
⊗

n∈S2

A(n)
)T

XS1 ;S2 =

(
�

n∈S1
A(n)

)(
�

n∈S2
A(n)

)T

Remark 3. The Tucker decomposition can be viewed as a generalization of the PARAFAC decom-
position that takes into account all the interactions between the columns of the matrix factors
A(n) ∈ KIn×Rn via the introduction of a core tensor G ∈ KRN . Contrary to PARAFAC, which has
the essential uniqueness property under mild conditions, the Tucker decomposition is not unique
in general.

In Table 7, the case of a third-order tensor X ∈ KI×J×K is considered.
A Tucker-(N1, N) model for an Nth-order tensor X ∈ KIN with N ≥ N1 corresponds

to the case where N − N1 factor matrices are equal to identity matrices [19].
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Table 7. Tucker decomposition and CPD of a third-order tensor.

Tucker Decomposition CPD

X ∈ KI×J×K

G ∈ KP×Q×S, A ∈ KI×P, B ∈ KJ×Q, C ∈ KK×S A ∈ KI×R, B ∈ KJ×R, C ∈ KK×R

xi,j,k =
P
∑

p=1

Q
∑

q=1

S
∑

s=1
gpqsaipbjqcks Scalar writing xi,j,k =

R
∑

r=1
airbjrckr

Writing with

X = G ×1 A×2 B×3 C mode-n products X = IR ×1 A×2 B×3 C

X =
P
∑

p=1

Q
∑

q=1

S
∑

s=1
gpqsA.p ◦ B.q ◦ C.s Outer products X =

R
∑

r=1
A.r ◦ B.r ◦ C.r

XI J×K = (A⊗ B)GPQ×SCT XI J×K = (A � B)CT

XJK×I = (B⊗ C)GQS×PAT Matrix unfoldings XJK×I = (B � C)AT

XKI×J = (C⊗A)GSP×QBT XKI×J = (C �A)BT

For example, if we assume that A(n) = IIn , which implies Rn = In, for n = N1 +

1, · · · , N, and hence G ∈ KR1×···×RN1×IN1+1×···×IN , then the equations of the Tucker model
in Table 6 become:

xi1,··· ,iN =
R1

∑
r1=1
· · ·

RN1

∑
rN1=1

gr1,··· ,rN1 ,iN1+1,··· ,iN

N1

∏
n=1

a(n)in ,rn
, (10)

X = G×1A(1)×2 · · · ×N1 A(N1)×N1+1IIN1+1 · · · ×NIIN (11)

= G
N1
×

n=1
A(n). (12)

For a third-order tensor X ∈ KI×J×K, two special cases are given by the Tucker-(2,3)
and Tucker-(1,3) models, often called Tucker2 and Tucker1, respectively. These models are
obtained by fixing one or two of the matrix factors equal to identity matrices.

Table 8 summarizes the equations of the Tucker-(2,3) and Tucker-(1,3) models in the
case where C = IK for Tucker-(2,3) and (B = IJ , C = IK) for Tucker-(1,3).

Table 8. Tucker-(2,3) and Tucker-(1,3) models.

Tucker-(2,3) Model Tucker-(1,3) Model

X ∈ KI×J×K

G ∈ KP×Q×K G ∈ KP×J×K

A ∈ KI×P, B ∈ KJ×Q, C = IK A ∈ KI×P, B = IJ , C = IK

xijk =
P
∑

p=1

Q
∑

q=1
gpqkaipbjq Scalar expression xijk =

P
∑

p=1
gpjkaip

X = G×1A×2B With mode-n products X = G×1A

XI J×K = (A⊗ B)GPQ×K XI J×K = (A⊗ IJ)GPJ×K

XJK×I = (B⊗ IK)GQK×PAT Matrix unfoldings XJK×I = GJK×PAT

XKI×J = (IK ⊗A)GKP×QBT XKI×J = (IK ⊗A)GKP×J

3. Overview of Cooperative Communication Systems

In Section 3.1, we first present how tensor-based cooperative systems can be classified.
Then, in Section 3.2, different architectures of cooperative systems will be described before
providing an overview of several systems in Section 3.3.

3.1. How to Classify Tensor-Based Cooperative Systems

Tensor-based cooperative wireless communication systems can be classified according
the following characteristics:

• the network architecture, which depends on the numbers of users (Q), hops (H) and
relays (B), as illustrated in Figure 3;
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• the modulation technology used in terms of channel access and multiplexing, like
CDMA (code division multiple access), TDMA (time-division multiple access), FDMA
(frequency-division multiplexing access), OFDM (orthogonal frequency-division mul-
tiplexing), or hybrid technique combining OFDM with CDMA, i.e., OFDM-CDMA,
also denoted OFCDM;

• the type of coding (matrix/tensor) used at the source and relay nodes, which makes
it possible to take into account several diversities, like space-time (ST) and space-
time-frequency (STF) codings, to obtain space, time and frequency diversities, i.e.,
redundancies of transmitted symbols in each of these domains; see Section 4 for a
presentation of different codings;

• the type of communication in the sense of two-way versus one-way communication,
i.e., with or without feedback from the receiver to the sender;

• the type of transmission in the sense of full-duplex (FD) versus half-duplex (HD)
transmission, i.e., using a bi-directional communication channel that can carry infor-
mation in both directions simultaneously or not, respectively; FD increases system
throughput;

• the relaying protocol: the two most common protocols are decode-and-forward (DF)
and amplify-and-forward (AF) ones, depending upon the relays decode or not the
received signals; with the DF protocol, the signals received at the relays are decoded
and then re-encoded before being forwarded to the destination, whereas with the
AF protocol, the received signals are simply amplified and retransmitted without
decoding;

• the use of a pilot (also called training) sequence at the receiver for channel estimation,
which corresponds to a pilot-assisted transmission resulting in a supervised system,
in contrast with an unsupervised or semi-blind one when only few pilot symbols
are used;

• the type of channel fading in frequency domain: frequency-flat fading versus frequency-
selective fading, based on whether or not all frequency components of the transmitted
signals are attenuated by the same fading. In the last case, the channel coefficients depend
on the frequency. Very often, a block fading is considered, i.e., the channel coefficients are
assumed to be constant during a transmission block; they can be time varying when the
transmitter and receiver are moving with respect to each other; channel characteristics also
concern the presence or non-presence of multipath propagation, and of directional angles
(direction of departure (DoD) and of arrival (DoA) angles); other channel properties can be
exploited, such as sparsity, low-rank, or reciprocity between forward and backward paths,
i.e., between two communication nodes; this property, commonly used in time-division
duplexing (TDD) communication networks, allows alleviating overhead requirements for
channel state information (CSI) feedback; see [20] for a study of channel reciprocity in
IRS-assisted wireless networks;

• the possibility or not of exploiting a direct link between the source and the destination
nodes, also called a direct line-of-sight (LOS) path, which is often assumed to be
unavailable due to the presence of large obstacles or long distances;

• the tensor models for signals received at the relay and destination, which conditions
the type of receiver; the order of the tensors mainly depends on the diversities taken
into account via the coding; in Table 9 (presented in Section 3.3), the tensor model
associated with each cooperative system is mentioned; a list of main tensor models
used in the context of cooperative communications is given at the end of this section;

• the type of receiver: SVD-based closed-form, like the Khatri-Rao factorization (KRF)
and Kronecker factorization (KronF) methods, versus iteratives like alternating least-
squares (ALS) or Levevenbergh-Marquardt (LM) algorithms.

• the use of intelligent reflecting surface (IRS), i.e., IRS-assisted communication sys-
tems, which can be viewed as relay systems employing 2D surfaces composed of a
large number of passive reflecting elements for enhancing the coverage of wireless
communications;
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• the use of unmanned aerial vehicular (UAV), leading to UAV-aided communication
systems.
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Figure 3. Cooperative systems: (a) one-way two-hop; (b) two-way two-hop; (c) one-way multi-hop;
(d) one-way two-hop multi-relay in parallel; (e) one-way three-hop multi-user multi-relay in parallel;
(f) two-way multi-user single-relay; (g) one-way two-hop multi-user IRS-assisted; (h) one-way
two-hop multi-user multi-UAV-assisted.

3.2. Different Architectures of Cooperative Systems

In Figure 3a–h, we present several architectures of relay-, IRS- and UAV-assisted com-
munication networks. Figure 3a represents a conventional MIMO one-way two-hop relay
system, composed of three nodes associated with a source (S) transmitting its information
to a destination (D), via a relay (R), as in [21–25]. The source and destination nodes are
equipped with MS and MD antennas, respectively, whereas the relay uses MR antennas for
reception and MT for transmission.
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The channel of the link between the source and relay nodes is denoted
H(SR) ∈ CMR×MS . Similarly, for the link relay—destination, the channel is denoted
H(RD) ∈ CMD×MT ; see Sections 5.1–5.3 for the presentation of three examples of two-hop
relay systems with a single user.

A two-way two-hop relay system is illustrated in Figure 3b, which corresponds to two
users/sources exchanging information via a relay, as in [26,27]. In [26], one of the pioneering
works on tensor-based approaches for cooperative communications, the authors propose a
two-way relaying system where each user sends a training sequence for partial channel
estimation. The relay combines the received signals and retransmits this combination after
amplification using an AF tensor that satisfies a CPD decomposition. The tensors of signals
received by each user satisfy a CPD model exploited to estimate the channels by means of
the KRF algorithm combined with iterative refinements.

Different architectures of cooperative systems result from various multi-relay and
multi-user configurations, as briefly described hereafter.

Use of multi-relay is shown in Figure 3c–e with relays in cascade or/and in parallel,
respectively. In the first case, we have a multi-hop relaying system [28–31], while the
second case corresponds also to a two-hop system with several relays in parallel [32–34].
In [35], a three-hop relaying system is considered with two relay groups (GR1 and GR2),
as illustrated in Figure 3e. Individual channels are estimated using a training sequence
sent by the source (S) to the destination (D), with a transmission protocol composed of
three phases: (1) S→ GR1 and GR2 ; (2) GR1→ GR2 and D ; (3) GR2→ D, which seems a
bit complicated from a synchronization point of view. See Section 5.5 for an example of a
system with parallel multi-relay.

In the multi-user case, we distinguish the configurations with a single relay or a single
IRS and multiple UAVs, as illustrated in Figure 3f–h, respectively. A multi-user two-way
massive MIMO system with a single relay node, as represented in Figure 3f, is proposed
by [36]. All nodes operate in half-duplex mode, with the purpose for each user to estimate
the channel matrices and the information signals sent by other users. See Section 5.4 for an
example of a multi-user system. Note that the tensor-based approach has recently been
considered for the design of cooperative mmW MIMO systems, as in [37–40].

Until now, little work exists regarding the use of tensorial approaches for the design
of IRS- and UAV-assisted systems, as briefly summarized below.

A tensor-based approach for a MIMO communication system composed of a base sta-
tion (BS) transmitting information to a user terminal (UT) via an IRS is proposed in [41,42].
The multi-user case is considered in [38,43], as illustrated by means of Figure 3g; see
Section 5.6 for the presentation of a new tensor-based IRS-assisted system.

In [44], a UAV-assisted IoT communication system is proposed using a simplified
KRST coding and a training sequence superimposed to encoded information signals for
each user. That leads to a combined nested CPD model for the two components of the
tensor of signals received at the BS associated with the training sequence and the encoded
information signals, respectively. This model is exploited for joint channel estimation and
symbol detection.

3.3. Overview of Cooperative Systems

In Table 9, we provide an overview of several cooperative systems highlighting
their characteristics in terms of modulation (OFDM), technology (mmWave, IRS, UAV),
communication (one-way vs two-way), coding, and tensor models. We also mention the
numbers of users (Q), hops (H) and relays (B). This triplet (Q, H, B) is directly linked with
the structure of the cooperative system, as illustrated in Figure 3.
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Table 9. Overview of cooperative systems.

Ref OFDM mmW IRS
One/Two

UAV
Q H B Coding

Tensor Models
Way Users Hops Relays Training

[21] one-way 1 2 1 Simplified KRST CPD-PARATUCK

[22,23] one-way 1 2 1 Simplified KRST Nested CPD

[24] one-way 1 2 1 TST NTD

[25] one-way 1 2 1
MKRST

CPD
MKronST

[26] two-way 2 2 1 Training CPD

[27] two-way 1 2 1 TST Block Tucker-2

[28] one-way 1 ≥2 ≥2 Simplified KRST Gen. Nested CPD

[29] one-way 1 ≥2 ≥2 TST HONTD

[30] one-way 1 ≥2 ≥2 Simplified KRST PARATUCK

[31] one-way ≥2 3 ≥2 KRST Nested CPD

[32] one-way 1 2 ≥2 Matrices+Training CPD

[33] one-way 1 3 2 TST-CPD NTD

[34] one-way 1 2 ≥2 TST Coupled NTD

[35] one-way 1 3 ≥2 Matrices+training
CPD +

structured Tucker

[36] two-way ≥2 2 1 TST Block Tucker2-CPD

[37] OFDM X one-way 1 2 1 Training Structured CPD

[38] OFDM X X one-way ≥2 2 Matrices+training CPD

[39] X one-way 1 2 1 Matrices+training CPD

[40] X one-way 1 1 Simplified KRST Nested CPD

[41,43] X one-way ≥2 2 1 Training CPD

[42] X one-way 1 2 1 Training CPD

[44] one-way X ≥2 2 ≥2
Simplified KRST

Nested CPD
+ Training

[45] two-way ≥2 2 1 TST Tucker-2

[46] one-way 1 3 2 TST NTD

[47] OFDM one-way 1 2 1
TST +

Coupled NTD
Simplified TSTF

[48] OFDM one-way 2 2 1 TST TTD

[49] OFDM one-way 1 2 1 KRSTF Nested CPD

Some comments are made below on the cooperative systems considered in Table 9.

• Most relay systems use the AF protocol. However, some use the DF protocol. In [25],
closed-form semi-blind receivers are proposed to jointly estimate individual channels
and symbol matrices, using multiple Khatri-Rao product-based space-time (MKRST)
and multiple Kronecker product-based space-time (MKronST) codings at the source
and relay nodes. AF and DF protocols are compared with the estimate-forward (EF)
protocol for which the estimated symbol matrices are directly re-encoded without
a decoding step. DF and EF protocols provide significant symbol error rate (SER)
performance improvements at the cost of additional computational complexity at
the relay.

• Various tensor models were developed for representing the signals received at the
relay and destination nodes:
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– CPD [25,26,32,38,39,41–43];
– Structured CPD (SCPD) [37];
– Nested CPD (NCPD) [22,23,31,40,44,49];
– Generalized nested CPD (GNCPD) [28];
– Tucker decomposition (TD) [45];
– Block TD [27,36];
– PARATUCK [30];
– CPD-structured TD [35];
– CPD-PARATUCK [21];
– Nested TD (NTD) [24,33,46];
– High-order NTD (HONTD) [29];
– Coupled NTD (CNTD) [34,47];
– Tensor train decomposition (TTD) [48];

• In the case of MIMO-OFDM relaying systems, different assumptions are made on
the channels. In [47,49], the channels are assumed to be constant and flat Rayleigh
fading, i.e., matrices, whereas in [37,38], the channels are fourth-order tensors with
two space (antennas) dimensions, one frequency dimension (sub-carrier), and one
time dimension, when the channels are assumed to be, respectively, time slot or frame
depending.

• With most relaying systems, the information symbols to transmit form symbol matrices
S ∈ CN×R containing R data streams composed of N symbols each. However, in the
case of OFDM systems, they can form third-order tensors S ∈ CN×R×F, where F is
the number of sub-carriers employed, as in [47].

• Depending on the transmission strategy used (in terms of time spreading) and the
structure of the relay system, the transmission process is divided into several phases.
For instance, in a one-way two-hop communication system, transmission may be
performed in P time-blocks, each consisting of N symbol periods. Time repetition
induces redundancy in the transmitted symbols, i.e., time diversity via coding.

4. Overview of Codings Used in Cooperative Systems

In Table 10, we summarize the main codings used in cooperative systems: Khatri-Rao
space-time (KRST), simplified KRST (SKRST), double KRSTF (DKRSTF), tensor space-
time-frequency (TSTF), simplified TSTF (STSTF), tensor space-time (TST), multiple symbol
matrices Kronecker product (MSMKron), multiple symbol matrices Khatri-Rao product
(MSMKR), and combined SKRST-MSMKR and TST-MSMKron codings.

Below, we make some comments on the codings considered in Table 10.

• The dimensions (M, P, J, F) represent the numbers of transmit antennas, transmission
blocks, time slots or chips, and sub-carriers, respectively. In the case of a single symbol
matrix S ∈ CN×R, R is the number of data streams, and N is the number of symbols
per data stream. When Q symbol matrices S(q) ∈ CNq×Rq are considered, Rq and Nq
represent the numbers of data streams and symbols per data stream in the qth symbol
matrix S(q), respectively, with q ∈ 〈Q〉.

• With the KRST coding [50], pre- and post-coding matrices (C ∈ CM×M, W ∈ CP×M)
are used for encoding the information symbols contained in the symbol matrix
S ∈ CM×R. The pre-coding one linearly combines the M symbols of each data stream
s.r to deliver the matrix of pre-coded signals V = ST C ∈ CR×M which are then
spread over P slots using the post-coding matrix W to give the third-order tensor
U ∈ CR×M×P of encoded signals, defined as:

U = V�
m

W = ST C�
m

W. (13)

In scalar form, we have: vr,m = ∑M
l=1 sl,r cl,m and ur,m,p = vr,mwp,m = ∑M

l=1 sl,r cl,mwp,m.
A tall mode-2 matrix unfolding of the coded signals tensor is given by URP×M =
V �W = ST C �W. This writing highlights the Khatri–Rao product of the pre-coded
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signals matrix V with the post-coding matrix W, which justifies the KRST name of
this coding.

• A simplified version of the KRST coding, denoted SKRST, was introduced in [21,22]
for designing tensor-based two-hop communication systems. This coding consists of a
simple Khatri-Rao product U = C � S ∈ CPN×M between a coding matrix C ∈ CP×M

and a symbol matrix S ∈ CN×M, where P is the code length. This coding introduces
time spreading of symbols.
The matrix U of coded signals can be transformed into a third-order tensor U ∈ CM×P×N ,
which satisfies the CPD model

[
[IM, C, S; M]

]
, such as:

um,p,n =
M

∑
q=1

δm,qcp,qsn,q = cp,msn,m. (14)

It should be noted that, contrary to SKRST coding, KRST coding does not impose that
the number R of data streams be equal to the number M of transmit antennas.

• The DKRSTF coding [51] can be viewed as an OFDM extension of the SKRST one
delivering a fourth-order tensor U ∈ CF×N×M×P for the coded signals given by
u f ,n,m,p = v f ,n,mwp,m = ∑M

l=1 a f ,lsn,lcl,mwp,m.
The third-order tensor V ∈ CF×N×M, which contains the space–frequency pre-coded
signals, satisfies the CPD model

[
[A, S, CT ; M]

]
and is as such: VFN×M = (A � S)C,

where the matrices C ∈ CM×M and A ∈ CF×M are associated with the space-frequency
pre-coding, whereas W ∈ CP×M is the time post-coding matrix. The space–time–
frequency coded signals tensor can also be written as

U = VFN×M�
m

W = (A � S)C�
m

W ∈ CF×N×M×P, (15)

which gives the following matrix unfolding: UFNP×M = VFN×M �W = (A � S)C �W.
This expression highlights the double Khatri–Rao STF (DKRSTF) coding, one corre-
sponding to a space–frequency pre-coding by means of the matrices (A, C), whereas
the other one corresponds to a time post-coding provided by the matrix W. The
DKRSTF coding is an extension of the SKRST one.

• The TSTF coding provides a fifth-order tensor of coded signals [15]. It can be viewed
as an extension of the TST coding [52] for an OFDM system with a multicarrier
transmission, which allows a supplementary spread of the information symbols in the
frequency and chip (or time slot) domains.

• Note that the KRST/TST, DKRSTF, and TSTF codings provide third-, fourth- and
fifth-order tensors U of coded signals, respectively, inducing a greater diversity gain
for the TSTF coding in comparison with the other codings [11].
A drawback shared by SKRST and DKRSTF codings concerns the constraint that the
number of data streams must be equal to the number of transmit antennas (R = M),
while for the KRST coding, this constraint relates to the number of symbols per data
stream (N = M). That is not the case of tensor codings (TST and TSTF). See the
dimensions of the symbol matrix S in Table 10.

• Multiple Kronecker and Khatri–Rao products of symbol matrices, denoted MSMKron and
MSMKR, can be viewed as extensions of the KRST coding [50] and as simplified versions
of the MKronST and MKRST codings proposed in [25] without a precoding matrix.
With these codings, each symbol s(q)i,j of a given symbol matrix S(q) is duplicated at

the transmission via the Khatri–Rao and Kronecker products of S(q) with the other
symbol matrices S(q′), q′ 6= q.
These multiple KR and Kron products induce a mutual ST spreading of transmitted
symbols and therefore an extra ST diversity. Note that efficient decoding methods
based on rank-one matrix/tensor approximations can be found in [11,13,25,33] for
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recovering each individual symbol matrix from an estimated KR or Kron product of
multiple symbol matrices.

• Combining MSMKR and MSMKron with SKRST and TST codings gave rise to the
SKRST-MSMKR and TST-MSMKron codings, respectively, proposed for the first time
in [53,54].

Table 10. Codings.

Codings Symbol Matrices Coding Matrices/Tensors Encoded Signals

KRST S ∈ CM×R C ∈ CM×M , W ∈ CP×M V = ST C ∈ CR×M , vr,m = ∑M
l=1 sl,r cl,m

[50] U = V�
m

W = ST C�
m

W ∈ CR×M×P

ur,m,p = vr,mwp,m = ∑M
l=1 sl,r cl,mwp,m

Simplified KRST S ∈ CN×M C ∈ CP×M U = C � S ∈ CPN×M ⇐⇒ U ∈ CM×P×N

[21] um,p,n = cp,msn,m

DKRSTF S ∈ CN×M A ∈ CF×M , C ∈ CM×M U = VFN×M�
m

W

W ∈ CP×M , V ∈ CF×N×M = (A � S)C�
m

W ∈ CF×N×M×P

[51] v f ,n,m = ∑M
l=1 a f ,lsn,lcl,m u f ,n,m,p = ∑M

l=1 a f ,lsn,lcl,mwp,m

TST S ∈ CN×R C ∈ CM×R×J U = C ×2 S ∈ CM×N×J

[52] um,n,j = ∑R
r=1 cm,r,j sn,r

TSTF S ∈ CN×R C ∈ CM×R×F×P×J U = C ×2 S ∈ CM×N×F×P×J

[15] um,n, f ,p,j = ∑R
r=1 cm,r, f ,p,jsn,r

Simplified TSTF S ∈ CN×R×F C ∈ CM×R×F×P U = C ×2 S ∈ CM×N×F×P

[47] um,n, f ,p = ∑R
r=1 cm,r, f ,psn,r, f

MSMKron S =
Q
⊗

q=1
S(q) ∈ CN×R sn,r = ∏Q

q=1 s(q)nq ,rq , r ∈ 〈R〉 , n ∈ 〈N〉

[25] S(q) ∈ CNq×Rq r = r(Q)
Q + (r(Q−1)

Q−1 − 1)RQ + · · ·+ (r(1)1 − 1)∏Q
q=2 Rq

R = ∏Q
q=1 Rq , N = ∏Q

n=1 nq n = n(Q)
Q + (n(Q−1)

Q−1 − 1)NQ + · · ·+ (n(1)
1 − 1)∏Q

q=2 nq

MSMKR S =
Q
�

q=1
S(q) ∈ CN×R sn,r = ∏Q

q=1 s(q)nq ,r , r ∈ 〈R〉 , n ∈ 〈N〉

[25] S(q) ∈ CNq×R n = n(Q)
Q + (n(Q−1)

Q−1 − 1)NQ + · · ·+ (n(1)
1 − 1)∏Q

q=2 Nq

N = ∏Q
q=1 Nq

SKRST-MSMKR S =
Q
�

q=1
S(q) ∈ CN×M C ∈ CP×M U = C � S ∈ CPN×M

[53] S(q) ∈ CNq×M , N = ∏Q
q=1 Nq up,n1 ,··· ,nQ ,m = cp,m ∏Q

q=1 s(q)nq ,m

TST-MSMKron S =
Q
⊗

q=1
S(q) ∈ CN×R C ∈ CM×R1 ···×RQ×P U = C ×1 IM ×2 S(1) ×3 · · · ×Q+1 S(Q) ×Q+2 IP ∈ CM×N1 ···×NQ×P

[54] S(q) ∈ CNq×Rq um,n1 ,··· ,nQ ,p = ∑R1
r1=1 · · ·∑

RQ
rQ=1 cm,r1 ,··· ,rQ ,p ∏Q

q=1 s(q)nq ,rq

5. Overview of Two-Hop Systems

In this section, we present several two-hop systems in an unified way. These systems
are composed of a source (S) which sends information symbols to a destination (D), via a
relay (R) or an IRS (I), as illustrated in Figure 3a,g. The multi-relay case of Figure 3d is also
considered.

With relay-assisted systems, the tensor-based approach allows deriving semi-blind
receivers for joint symbol and channel estimation, which depend on different codings.

The source and destination nodes are equipped with MS and MD antennas, respec-
tively, whereas the relay uses MR antennas for reception and MT for transmission.

The IRS is assumed to be composed of MI identical unit cells, which create attenuation
and phase shifts on the reflected signals, considered time-varying at each time slot p and
modeled by means of a matrix G ∈ CP×MI . Each row gp. contains the amplitude and phase
shift coefficients associated with the perturbations introduced by the MI cells of the IRS, at
the time slot p.
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The channels between the source and relay (SR) or IRS (SI) are modeled by means of
matrices H(SR) ∈ CMR×MS and H(SI) ∈ CMI×MS . Similarly, the channels between the relay
or IRS and the destination are denoted H(RD) ∈ CMD×MT and H(ID) ∈ CMD×MI .

The considered relay- and IRS-assisted systems are listed below:

• Relay-assisted two-hop system using SKRST codings at the source and relay nodes,
with AF protocol; see Table 11;

• Relay-assisted two-hop system using SKRST-MSMKR codings at the source and relay
nodes, with DF protocol and time-varying multipath channel; see Table 12;

• Relay-assisted two-hop system using third-order TST codings at the source and relay
nodes, with AF and DF protocols; see Table 13; an extension of the multi-user case is
also considered, illustrated by means of Figure 8.

• Multi-relay-assisted system using third-order TST codings at the source and relay
nodes, with AF protocol and B relays in parallel and with each relay equipped with a
different TST coding; see Table 14;

• IRS-assisted system using SKRST coding at the source; see Table 15.

Note that the direct link between the source and the destination nodes is assumed to
be unavailable. Moreover, for simplifying the presentation, the noiseless case is considered.

5.1. Relay Two-Hop System Using SKRST Codings

Equations of the system using SKRST coding matrices C(S) ∈ CP×MS and
C(R) ∈ CJ×MR at the source and relay, respectively, without decoding at relay, are summa-
rized in Table 11. These matrix equations can be reformulated using the tensor formalism
as follows.

Table 11. Two-hop systems with SKRST codings.

Ref./Signals Symbols/Codings Channels Encoded/Received Signals Dimensions

[22] S ∈ CN×MS

First hop

Signals coded at source C(S) ∈ CP×MS U(S)
PN×MS

= C(S) � S PN ×MS

Signals received at relay H(SR) ∈ CMR×MS X(R)
MR×PN = H(SR)U(S)

MS×PN MR × PN

= H(SR)(C(S) � S)T

Second hop

Signals coded at relay C(R) ∈ CJ×MR U(R)
JPN×MR

= C(R) � X(R)
PN×MR

JPN ×MR

= C(R) � (C(S) � S)
(
H(SR))T

Signals received at destination H(RD) ∈ CMD×MR X(D)
MD×JPN = H(RD)U(R)

MR×JPN MD × JPN

= H(RD)
(

C(R) � X(R)
PN×MR

)T

= H(RD)
(

C(R) � (C(S) � S)
(
H(SR))T

)T

As shown in Equation (14), the Khatri–Rao products defining the matrices U(S)
PN×MS

and U(R)
JPN×MR

of signals coded at source and relay can be associated with the third-order

tensors U (S) ∈ CMS×P×N and U (R)
c ∈ CMR×J×PN , which satisfy the following CPD models:

U (S) = IMS ×1 IMS ×2 C(S) ×3 S (16)

U (R)
c = IMR ×1 IMR ×2 C(R) ×3 X(R)

PN×MR
. (17)
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The matrices X(R)
MR×PN and X(D)

MD×JPN containing the signals received at relay and destina-

tion can also be associated with third-order tensorsX (R) ∈ CMR×P×N andX (D)
c ∈ CMD×J×PN ,

which satisfy CPD models respectively deduced from Equations (16) and (17) as follows:

X (R) = U (S) ×1 H(SR) ⇐⇒ X (R) = IMS ×1 H(SR) ×2 C(S) ×3 S (18)

X (D)
c = U (R)

c ×1 H(RD) ⇐⇒ X (D)
c = IMR ×1 H(RD) ×2 C(R) ×3 X(R)

PN×MR
. (19)

Note that U (R)
c and X (D)

c are contracted forms of fourth-order tensors U (R) ∈ CMR×J×P×N

and X (D) ∈ CMD×J×P×N resulting from a combination of third and fourth modes (p and n).
The contracted tensor X (D)

c satisfies a CPD model whose third matrix factor is a matrix
unfolding X(R)

PN×MR
of the tensor X (R), which satisfies itself a CPD model.

From the CPD models (18) and (19) of tensors X (R) and X (D)
c , with the matrix unfold-

ing X(R)
PN×MR

replaced by the scalar entry x(R)
mR ,p,n we deduce the following equations:

x(R)
mR ,p,n = ∑

mS

h(SR)
mR ,mS c(S)p,mS sn,mS (20)

x(D)
mD ,j,p,n = ∑

mR

h(RD)
mD ,mR c(R)

j,mR
x(R)

mR ,p,n. (21)

Replacing x(R)
mR ,p,n by its expression (20) into (21), the signal received at destination by the

mD-th antenna associated with the n-th symbol period of the p-th time-block (at the source)
and j-th time block (at the relay), is given by:

x(D)
mD ,j,p,n = ∑

mR
∑
mS

h(RD)
mD ,mR c(R)

j,mR
h(SR)

mR ,mS c(S)p,mS sn,mS . (22)

This equation corresponds to a nested CPD model [22,51], i.e., a nesting of two CPD models
that share a common matrix factor, for the fourth-order tensor X (D) of signals received
at destination. In (22), the blue color is associated with the sum over index mS due to the
CPD model (18) of the tensor X (R), while the red color is used for the sum over index
mR associated with the CPD model

[
[H(RD), C(R), (H(SR))T ; MR]

]
of the effective channel

tensorH ∈ CMD×J×MS between the source and the destination nodes, defined as follows:

hmD ,j,mS = ∑
mR

h(RD)
mD ,mR c(R)

j,mR
h(SR)

mR ,mS ⇐⇒ H = IMR ×1 H(RD) ×2 C(R) ×3 (H(SR))T . (23)

The matrix factor H(SR) shared by the CPD models ofH and X (R), is in green. The nested
CPD model of the tensor X (D) of signals received at destination is illustrated by means
of Figure 4, highlighting the CPD models of the tensorsH and X (R). An extension of the
multi-hop case is proposed in [28].

𝐒𝐂(𝑆)

ℐ𝑀𝑠𝐇(𝑆𝑅)

𝒳(𝑅)

𝐂(𝑅)𝐇(𝑅𝐷)

𝐇(𝑆𝑅) 𝑻ℐ𝑀𝑅

ℋ

Figure 4. Nested CPD model of a relaying system using SKRST codings.
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Remark 4. If we choose J = N, Equation (22) becomes:

x(D)
mD ,p,n = ∑

mR
∑
mS

h(RD)
mD ,mR c(R)

n,mR h(SR)
mR ,mS c(S)p,mS sn,mS . (24)

In this case, X (D) ∈ CMD×P×N is a third-order tensor that satisfies a PARATUCK model [21]. The
system then benefits from three diversities associated with the three dimensions of X D), correspond-
ing to space (MD), source code (P), and time (N) diversities. Compared with the relaying system
presented in Table 11, we conclude that the double SKRST coding at source and relay (with J 6= N)
allows us to introduce an additional relay code diversity (J), leading to a nested CPD model for the
fourth-order tensor X (D) described by Equation (22). This increase in diversity is at the origin of a
SER performance improvement, as illustrated in [22].

5.2. Relay Two-Hop System Using SKRST-MSMKR Codings, with DF Protocol and Time-Varying
Multipath Channel

In this section, we consider a MIMO relaying system equipped with uniform linear
arrays (ULAs) at each node, which uses SKRST-MSMKR codings at the source and relay
nodes. The transmission is composed of T blocks, meaning that each symbol matrix is
transmitted T times. The DF protocol, employed at the relay, consists of estimating the
information symbols and then re-encoding the estimated symbols before their transmission
towards the destination node. In the following, we first define the SKRST-MSMKR coding
at the source. Then, the source–relay channel will be described as a third-order tensor
H(SR) ∈ CMR×T×MS , which is time-dependent and satisfies a CPD model. Finally, the
signals received at the relay and destination nodes will be presented under the form of two
fourth-order tensors satisfying nested CPD and cascaded nested CPD models, respectively.

5.2.1. SKRST-MSMKR Coding

The information symbols are coded at the source using the coding matrix C(S) ∈ CP×MS

combined with MSMKR, which gives the following coded signals matrix:

U(S)
PN×MS

= C(S) � S = C(S) � S(1) � . . . � S(Q), (25)

where S =
Q
�

q=1
S(q) , S(1) � . . . � S(Q) ∈ CN×MS , with S(q) ∈ CNq×MS for q ∈ 〈Q〉, and

N = ∏Q
q=1 Nq, which gives the following third-order contracted tensor U (S)

c ∈ CMS×P×N of
coded signals:

u(S)
mS ,p,n = c(S)p,mS sn,mS ⇐⇒ U (S)

c = IMS ×1 IMS ×2 C(S) ×3 S. (26)

Replacing S by its MSMKR expression leads to the following developed form of the coded
signals tensor U (S) ∈ CMS×P×N1×···×NQ :

u(S)
mS ,p,n1,··· ,nQ = c(S)p,mS

Q

∏
q=1

s(q)nq ,mS ⇐⇒ U (S) = IMS ×1 IMS ×2 C(S) ×3 S(1) · · · ×Q+2 S(Q). (27)

5.2.2. Channel Modeling

The channel between the source and the relay nodes is assumed to be characterized
by L paths, DoD and DoA angles (φl , θl), with l ∈ 〈L〉, and fading coefficients wt,l which
depend on the transmission block t and path l. The steering matrices A(S) and A(R) at
source and relay, respectively, are given by:

A(S) = [a(S)(φ1), · · · , a(S)(φL)] ∈ CMS×L (28)

A(R) = [a(R)(θ1), · · · , a(R)(θL)] ∈ CMR×L, (29)
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with (i2 = −1):

a(S)(φl) = [1, e−iπ sin(φl), · · · , e−iπ (MS−1) sin(φl)]T ∈ CMS (30)

a(R)(θl) = [1, e−iπ sin(θl), · · · , e−iπ (MS−1) sin(θl)]T ∈ CMR . (31)

The matrix of fading coefficients is formed by T rows wT
t ∈ C1×L, t ∈ 〈T〉, written as:

W =

 wT
1

...
wT

T

 ∈ CT×L. (32)

Note that the DoD and DoA angles are assumed to be constant during T blocks. The
channel between source and relay nodes during the time block t satisfies the following
equation:

h(SR)
mR ,t,mS

=
L

∑
l=1

a(R)
mR ,lwt,la

(S)
mS ,l ⇐⇒ H(SR)

MR×MS
(t) = A(R)Dt(W)[A(S)]T , t ∈ 〈T〉, (33)

with Dt(W) = diag(wt). Equation (33) can be interpreted as the t-th lateral slice of the
third-order channel tensor H(SR) ∈ CMR×T×MS , which satisfies the rank-L CPD model[
[A(R), W, A(S); L]

]
, whose tall mode-3 unfolding is given by:

H(SR)
TMR×MS

= (W �A(R))(A(S))T ∈ CTMR×MS . (34)

The coded signals (27) are transmitted by the MS antennas of the source through the
l-th path according to the following equation:

t(S)l,p,n1,··· ,nQ
=

MS

∑
mS=1

a(S)mS ,lu
(S)
p,n1,··· ,nQ ,mS =

MS

∑
mS=1

a(S)mS ,lc
(S)
p,mS

Q

∏
q=1

s(q)nq ,mS . (35)

Using the contracted form (26) of coded signals allows us to rewrite the tensor T (S) ∈
CL×P×N1×···×NQ in a contracted form T (S)

c ∈ CL×P×N such as:

t(S)l,p,n =
MS

∑
mS=1

a(S)mS ,lu
(S)
p,n,mS =

MS

∑
mS=1

a(S)mS ,lc
(S)
p,mS sn,mS . (36)

This equation corresponds to the CPD model
[
[(A(S))T , C(S), S; MS]

]
of the contracted

tensor T (S)
c of symbols transmitted at the source, obtained by combining the last Q modes.

From this CPD model, we deduce the following flat mode-1 unfolding of T (S)
c :

T(S)
L×PN = (A(S))T(C(S) � S)T . (37)

5.2.3. Signals Received at the Relay

The signals received at relay during T blocks result from the transmission of the coded
signals tensor U (S) through the channel tensorH(SR) via the following matrix equation:

X(R)
TMR×PN = H(SR)

TMR×MS
U(S)

MS×PN . (38)

Replacing H(SR)
TMR×MS

and U(S)
MS×PN by their expressions (34) and (25) gives:

X(R)
TMR×PN = (W �A(R))(A(S))T(C(S) � S)T . (39)



Entropy 2023, 25, 1181 20 of 31

This equation highlights the nesting of the CPD model of the channel tensorH(SR) (in red
color) with the CPD model of the transmitted signals contracted tensor T (S)

c (in blue color),
where the matrix factor A(S) (in green) is shared by both CPD models. The nested CPD
model of the received signal’s contracted tensor X (R)

c ∈ CMR×T×P×N is shown on the right
part of Figure 5.

෠𝐒

ℐ𝑀𝑆𝐁(𝑅)
𝑻

𝐁(𝐷)

𝐁(𝑅)ℐ𝐿𝒳𝐶
(𝐷)

=

𝐕 𝐂(𝑅) 𝐒

ℐ𝑀𝑆𝐀(𝑆)
𝑻

𝐀(𝑅)

𝐀(𝑆)ℐ𝐿𝒳𝐶
(𝑅)

=

𝐖 𝐂(𝑆)

ℋ(𝑅𝐷) 𝒯𝐶
(𝑅) ℋ(𝑆𝑅) 𝒯𝐶

(𝑆)

Figure 5. Cascaded nested CPD model of a time-varying two-hop multipath system using DF protocol
and SKRST-MSMKR codings.

The nested CPD model (39) of X (R)
c can also be interpreted as the contraction between

the channel tensor H(SR) and the contracted tensor U (S)
c of coded signals, along their

common mode mS; that means:

X (D)
c = H(SR) ×1

3 U
(S)
c . (40)

5.2.4. Signals Received at Destination

Due to the DF protocol used at relay, equations of both hops are similar, with the
following correspondences:

(C(S), A(S), A(R), W, S,H(SR)) ←→ (C(R), B(R), B(D), V, Ŝ,H(RD)) (41)

(MS, MR, P) ←→ (MS, MD, J). (42)

Using these correspondences (41), Equation (39) becomes the signal received at destination:

X(D)
TMD×JN = (V � B(D))(B(R))T(C(R) � Ŝ)T . (43)

We conclude that the contracted tensor X (D)
c of signals received at destination satisfies

a new cascaded nested CPD model, as shown in Figure 5. This system constitutes a two-hop
extension of the point-to-point system presented in [53].

In Table 12, we summarize the matrix equations of the relaying two-hop system using
SKRST-MSMKR codings, with DF protocol and time-varying multipath channel.

Note that, differently from the relaying system presented in Table 11, the signals

encoded at relay are now the symbol matrices (Ŝ =
Q
�

q=1
Ŝ(q)) estimated at relay, and not the

signals received at relay. That implies the numbers of transmit antennas at source and relay
must be equal (MT = MS).

It is worth noting that comparing Figures 4 and 5 highlights the following correspon-
dences between these two relaying systems. For the first hop, we have:(

S, C(S), H(SR), C(R), H(RD)
)
⇐⇒

(
S, C(S), (A(S))T , W, A(R)) (44)

and for the second hop:(
S, C(S), H(SR), C(R), H(RD)

)
⇐⇒

(
Ŝ, C(R), (B(R))T , V, B(D)

)
(45)
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that means the channel matrices (H(SR), H(RD)) are replaced by the steering matrices
((A(S))T , A(R)) for the first hop, and ((B(R))T , B(D)) for the second hop, whereas the coding
matrices (C(S), C(R)) are respectively replaced by (C(S), W) and (C(R), V).

Table 12. Two-hop systems with SKRST-MSMKR codings and DF protocol.

Signals Symbols/Codings Channels Encoded/Received Signals Dimensions

S =
Q
�

q=1
S(q) ∈ CN×MS

S(q) ∈ CNq×MS for q ∈ 〈Q〉
First hop

Signals coded at source C(S) ∈ CP×MS U(S)
PN×MS

= C(S) � S = C(S) � S(1) � S(Q) PN ×MS

Signals transmitted by source A(S) ∈ CMS×L T(S)
L×PN = (A(S))T(C(S) � S)T L× PN

Signals received at relay A(R) ∈ CMR×L X(R)
TMR×PN = H(SR)

TMR×MS
U(S)

MS×PN TMR × PN

W ∈ CT×L = (W �A(R))(A(S))T(C(S) � S)T

Second hop

Signals coded at relay C(R) ∈ CJ×MS U(R)
JN×MS

= C(R) � Ŝ JN ×MS

Signals transmitted by relay B(R) ∈ CMS×L T(R)
L×JN = (B(R))T(C(R) � Ŝ)T L× JN

Signals received at destination B(D) ∈ CMD×L X(D)
TMD×JN = H(RD)

TMD×MS
U(R)

MS×JN TMD × JN

V ∈ CT×L = (V � B(D))(B(R))T
(

C(R) � Ŝ
)T

Remark 5. Semi-blind receivers can be developed to jointly estimate the individual channels and
the multiple Kronecker S of the symbol matrices. Then, in a second stage, a closed-form algorithm
called the Kronecker factorization (KronF) algorithm is used to separate the symbol matrices. Such
receivers will be presented in a companion paper.

5.3. Relay Two-Hop Systems Using TST Codings

In Table 13, we summarize the equations of the two-hop system proposed in [24] using
a third-order TST coding at both the source and relay, with the AF protocol at the relay, i.e.,
without decoding at the relay.

Table 13. Two-hop systems with TST codings.

Ref./Signals Symbols/Codings Channels Encoded/Received Signals Dimensions

[24] S ∈ CN×R

First hop

Signals coded at source C(S) ∈ CMS×P×R U (S) = C(S) ×3 S MS × P× N

Signals received at relay H(SR) ∈ CMR×MS X (R) = U (S) ×1 H(SR) MR × P× N

Second hop

Signals coded at relay C(R) ∈ CMT×J×MR U (R) = C(R) ×1
3 X (R) MT × J × P× N

Signals received at destination H(RD) ∈ CMD×MT X (D) = U (R) ×1 H(RD) MD × J × P× N

From the equations in Table 13, we can write the tensor X (D) ∈ CMD×J×P×N of signals
received at destination as:

X (D) = U (R) ×1 H(RD) = C(R) ×1 H(RD) ×1
3 X (R), (46)

with:
X (R) = C(S) ×1 H(SR) ×3 S ∈ CMR×P×N . (47)

Noting that the third-order tensor C(R) ×1 H(RD) ∈ CMD×J×MR satisfies the Tucker-(1,3)
model

[
[C(R); H(RD), IJ , IMR ]

]
and the tensor X (R) satisfies the Tucker-(2,3) model

[
[C(S);

H(SR), IP, S]
]
, Equation (46) can be interpreted as a contraction operation, denoted ×1

3,
along the common mode mR of these two tensors.
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Equations (46) and (47) can also be written as:

X (D) =H(RD) ×1
2 C(R) ×1

3 X (R) (48)

X (R) =H(SR) ×1
2 C(S) ×2

3 S. (49)

Combining these equations leads to the following expression for the tensor X (D):

X (D) = H(RD) ×1
2 C(R) ×1

3 H(SR) ×1
2 C(S) ×2

3 S. (50)

This writing highlights the Tucker train model of X (D), illustrated by means of Figure 6.

𝒳(𝐷) 𝐒𝐇(𝑅𝐷) 𝐇(𝑆𝑅)
𝒞(𝑅) 𝒞(𝑆)=

𝑀𝑆𝑀𝑅𝑀𝑇 𝑅

𝑀𝐷 𝐽 𝑃

𝒰(𝑆)ℋ

𝑁

𝒳(𝑅)

Figure 6. Tucker train model of a relaying system using TST codings.

Now, let us define the effective channel tensor H ∈ CMD×J×MS between the source
and destination nodes as:

H = H(RD) ×1
2 C(R) ×1

3 H(SR) = C(R) ×1 H(RD) ×3 (H(SR))T . (51)

This tensor satisfies the Tucker-(2,3) model
[
[C(R); H(RD), IJ , (H(SR))T ]

]
, with the following

scalar expression:
hmD ,j,mS = ∑

mT
∑
mR

c(R)
mT ,j,mR

h(RD)
mD ,mT h(SR)

mR ,mS . (52)

Taking into account the definitions (51) of H and U (S) = C(S) ×3 S ∈ CMS×P×N , given in
Table 13 allows us to rewrite (50) as the contraction of the tensorsH and U (S) along their
common mode mS:

X (D) = H×1
3 U (S). (53)

This contraction is another way to interpret the Tucker train model represented by means
of Figure 6. From Equations (46) and (47), we deduce:

x(R)
mR ,p,n = ∑

mS
∑

r
h(SR)

mR ,mS c(S)mS ,p,rsn,r (54)

x(D)
mD ,j,p,n = ∑

mT
∑
mR

h(RD)
mD ,mT c(R)

mT ,j,mR
x(R)

mR ,p,n. (55)

Replacing x(R)
mR ,p,n by its expressions (54) into (55) gives the signal received at destination

by the mD-th antenna, during the n-th symbol period of the p-th time-block (of the source)
and j-th time block (of the relay):

x(D)
mD ,j,n,p = ∑

mT
∑
mR

∑
mS

∑
r

h(RD)
mD ,mT c(R)

mT ,j,mR
h(SR)

mR ,mS c(S)mS ,p,rsn,r, (56)

where the blue color is associated with the sum over indices mS and r corresponding to
the Tucker-(2,3) model of the tensor X (R), while the red color is used for the sum over
indices mT and mR associated with the Tucker-(2,3) model of the effective channelH. The
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matrix factor H(SR) shared by both Tucker models is in green. Thus, the Tucker train model
of the fourth-order tensor X (D), represented in Figure 6, can also be viewed as a nested
Tucker decomposition (nTD) model, as illustrated by means of Figure 7. This figure is to be
compared with Figure 4 of the nCPD model of the relaying system using SKRST coding.

𝐒

𝒞(𝑆)𝐇(𝑆𝑅)

𝒳(𝑅)

𝐇(𝑅𝐷)

𝐇(𝑆𝑅) 𝑻
𝒞(𝑅)

ℋ

Figure 7. NTD model of a relaying system using TST codings.

Remark 6. Recalling that the third-order tensor U (S) ∈ CMS×P×N satisfies the Tucker-(1,3) model[
[C(S); IMS , IP, S]

]
, we have:

u(S)
mS ,p,n = ∑

r
c(S)mS ,p,rsn,r. (57)

From Equations (52) and (57), we can also write (56) as:

x(D)
mD ,j,p,n = ∑

mS

hmD ,j,mS u(S)
mS ,p,n, (58)

which is the scalar writing of the contraction operation (53).

In conclusion, the signals received at destination form a fourth-order tensor
X (D) ∈ CMD×J×P×N , which satisfies a Tucker train model, represented by means of
Equation (50) and Figure 6. This model can also be viewed as a nTD model represented
in Figure 7 corresponding to the nesting of two Tucker-(2,3) models. An extension of the
multi-hop case can be found in [29].

Remark 7. If the DF protocol is employed at the relay, the tensors of signals received at the relay
and destination nodes satisfy the following two Tucker-(2,3) models:

X (R) = C(S) ×1 H(SR) ×3 S ∈ CMR×P×N (59)

X (D) = C(R) ×1 H(RD) ×3 Ŝ ∈ CMD×J×N , (60)

where Ŝ denotes the symbol matrix estimated at the relay before its encoding with the TST code
C(R) ∈ CMT×J×R. From the Tucker models (59) and (60), we deduce the following matrix unfoldings
of X (R) and X (D):

X(R)
MR N×P = (H(SR) ⊗ S)C(S)

MSR×P (61)

X(D)
MD N×J = (H(RD) ⊗ Ŝ)C(R)

MT R×J . (62)

Assuming the coding tensors C(S) and C(R) known at the relay and the destination, respectively,
and choosing these tensors such as their unfoldings C(S)

MSR×P and C(R)
MT R×J are row-orthonormal,
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which implies the necessary conditions P ≥ MSR and J ≥ MT R, the LS estimates of the Kronecker
products between the channels and symbol matrices are calculated as:

̂H(SR) ⊗ S =X(R)
MR N×P(C

(S)
MSR×P)

H (63)

̂H(RD) ⊗ Ŝ =X(D)
MD N×J(C

(R)
MT R×J)

H . (64)

These estimated Kronecker products can be used to estimate the channels and symbol matrices by
means of the KronF algorithm; this will be detailed in a companion paper [12].

5.4. Multi-User Relay System Using TST Codings

In this section, we propose an extension of the previous system to the multi-user case.
Let us consider Q users equipped with Mq antennas each, and assume that the q-th user, for
q ∈ 〈Q〉, sends the symbol matrix S(q) ∈ CN×Rq to the destination node equipped with MD
antennas via the relay having MR receive and MT transmit antennas. Each user q codes
his symbols to transmit using the TST code C(q) ∈ CMq×P×Rq to deliver the coded signals
tensor U (q) = C(q) ×3 S(q) ∈ CMq×P×Nq . The signals received from the Q users at the relay
are concatenated in the tensor X (R) ∈ CMR×P×N such as:

X (R) = t3(U (q) ×1 H(qR)) = t3(C(q) ×1 H(qR) ×3 S(q)), (65)

where t3 denotes the concatenation along the mode-3 of the Q tensors U (q) ×1 H(qR) ∈
CMR×P×Nq , for q ∈ 〈Q〉, N = ∑Q

q=1 Nq, and H(qR) ∈ CMR×Mq is the channel between user
q and the relay. As in Table 13, the signals received at relay are coded by means of the
TST code C(R) ∈ CMT×J×MR and sent to destination via the channel H(RD) ∈ CMD×MT ,
which gives:

X (D) = C(R) ×1 H(RD) ×1
3 X (R) ∈ CMD×J×P×N . (66)

Compared with the previous system, the main difference is in the tensor X (R). Let us
define the global source coding tensor C(S) ∈ CMS×P×R, whose p-th lateral slice is given
by diag

(
C(1)

.p. , · · · , C(Q)
.p.
)
, where C(q)

.p. ∈ CMq×Rq , with MS = ∑q Mq and R = ∑q Rq. We
now define the global symbol and channel matrices containing the Q symbol and channel
matrices as:

S , [S(1), · · · , S(Q)] ∈ CN×R , H(SR) , [H(1R), · · · , H(QR)] ∈ CMR×MS . (67)

Then, X (R) defined in (65), can be rewritten as:

X (R) = C(S) ×1 H(SR) ×3 S. (68)

From the above construction of the global coding tensor C(S) and symbol and channel
matrices (S, H(SR)), we obtain an expression of X (R) similar to Equation (47). Equation (66)
can be interpreted as the contraction between the tensor C(R) ×1 H(RD) which satisfies
the Tucker-(1,3) model

[
[C(R); H(RD), IJ , IMR ]

]
with the tensor X (R), defined by means of

Equation (68), which satisfies the block Tucker-(2,3) model
[
[C(S); H(SR), IP, S]

]
along their

common mode mR. That corresponds to a new block Tucker train model illustrated in
Figure 8, composed of the cascade of a Tucker-(1,3) model with a block Tucker-(2,3) model.



Entropy 2023, 25, 1181 25 of 31
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𝑇

⋮
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⋯

⋯

Figure 8. Block Tucker train of a multi-user relay system using TST codings.

5.5. Parallel Multi-Relay Two-Hop Systems Using TST Codings

We now consider a two-hop system using B relays in parallel, operating sequentially,
as illustrated in Figure 3d, with third- and fourth-order TST codings, C(S) ∈ CMS×P×R and
C(R) ∈ CMT×J×MR×B, at the source and relay nodes, respectively. Note that the coding
tensor at each relay b ∈ 〈B〉 is different. That explains dimension B of the tensor C(R),
which contains along its fourth mode the relay numbers. Similarly, the source–relay and
relay–destination channels depend on the relay, which explains the third-order channel
tensorsH(SR) ∈ CMR×MS×B andH(RD) ∈ CMD×MT×B, respectively. The equations of this
system are summarized in Table 14. The transmission is composed of B + 1 steps, the
first one corresponding to the transmission from the source to the relays; the B other steps
correspond to a sequential transmission from the B relays to the destination.

Table 14. Two-hop systems using B relays in parallel with TST codings.

Ref. Signals Symbols/Codings Channels Encoded/Received Signals Dimensions

[34] S ∈ CN×R

First hop

Signals coded at source C(S) ∈ CMS×P×R U (S) = C(S) ×3 S MS × P× N

Signals received at relay H(SR) ∈ CMR×MS×B X (R) = U (S) ×2
1 H(SR) MR × P× N × B

Second hop

Signals coded at relay C(R) ∈ CMT×J×MR×B U (R) = C(R) ×1
3 X (R) MT × J × P× N × B

Signals received at destination H(RD) ∈ CMD×MT×B X (D) = U (R) ×2
1 H(RD) MD × J × P× N × B

Noting that U (R) ×2
1 H(RD) = H(RD) ×1

2 U (R) and U (S) ×2
1 H(SR) = H(SR) ×1

2 U (S),
equations in Table 14 lead to the following fifth-order tensor X (D) ∈ CMD×J×P×N×B

containing the signals received at destination:

X (D) =H(RD) ×1
2 U (R) = H(RD) ×1

2 (C(R) ×1
3 X (R))

=H(RD) ×1
2 C(R) ×1

3 (H(SR) ×1
2 U (S))

=H(RD) ×1
2 C(R) ×1

3H(SR) ×1
2 C(S) ×2

3 S. (69)

This equation highlights the contraction operations represented by the mode-(i, j)
products, denoted ×1

2 , ×1
3 and ×2

3. Each mode-(i, j) product is associated with a sum over
the index shared by the tensors involved in the product. Equation (69) therefore implies
sums over the indices mT , mR, mS and r. These sums lead to the following scalar expression
of the signal x(D)

mD ,j,p,n,b received at destination from relay b at the mD-th antenna of the
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destination node during the n-th symbol period associated with the p-th code of the source
and j-th code of the b-th relay:

x(D)
mD ,j,p,n,b = ∑

mT
∑
mR

∑
mS

∑
r

h(RD)
mD ,mT ,b c(R)

mT ,j,mR ,b h(SR)
mR ,mS ,b c(S)mS ,p,rsn,r. (70)

Defining the effective channel tensor as:

H = H(RD) ×1
2 C(R) ×1

3H(SR) ∈ CMD×J×MS×B, (71)

Equation (69) can also be written as:

X (D) = H×1
3 U (S) = H×1

3 (C(S) ×3 S). (72)

This equation corresponds to B coupled Tucker trains, called a coupled Tucker train
model, as illustrated by means of Figure 9. The coupling is due to the tensor U (S) of the
signals coded at source, which is common in the tensors of signals transmitted by the B
relays via the effective channel tensorH.

Comparing Figures 6 and 9, we conclude that, for the multi-relay system, the signal
received at destination is composed of B signals sequentially received from the B relays,
which explains the B parallel branches in Figure 9. The multi-relay system allows one to
increase the system diversity to estimate the information symbols due to the repetition of
signals received at destination.

𝒳(𝐷)

𝐒

𝐇∙∙1
(𝑅𝐷)

𝐇∙∙1
(𝑆𝑅)

𝒞∙∙∙1
(𝑅)

𝒞(𝑆)= 𝑀𝑆

𝑀𝑅𝑀𝑇

𝑅

𝒰(𝑆)ℋ

𝐇∙∙𝐵
(𝑅𝐷)

𝐇∙∙𝐵
(𝑆𝑅)

𝒞∙∙∙𝐵
(𝑅)

𝑀𝑅𝑀𝑇

⋮ ⋮ ⋮

Figure 9. Coupled Tucker train model of a multi-relay system using TST codings.

5.6. IRS-Assisted Two-Hop Systems Using SKRST Coding

In this section, we extend the relay-assisted two-hop system described in Section 5.1
to an IRS-assisted two-hop system, as represented in Figure 3g, with a single source.

In Table 15, we summarize the equations of an IRS-assisted uplink communication
between a source and a BS, equipped with MS and MD antennas, respectively. The in-
formation symbols contained in the symbol matrix S ∈ CN×MS are coded by the source
using SKRST coding and sent during T time slots, each time slot being composed of N
symbol periods. The reflector cells are assumed to be varying at each time slot t ∈ 〈T〉, and
modeled by means of the matrix G ∈ CT×MI , where MI is the number of cells.
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Table 15. IRS-assisted two-hop system using SKRST coding.

Signals Symbols/Coding Channels Received Signals Dimensions

S ∈ CN×MS

First hop

Signals coded at source C(S) ∈ CP×MS U(S)
PN×MS

= C(S) � S PN ×MS

Signals received at IRS H(SI) ∈ CMI×MS X(I)
MI×PN = H(SI)U(S)

MS×PN MI × PN

Signals reflected by IRS at time slot t G ∈ CT×MI U(I)
MI×PN(t) = Dt(G)X(I)

MI×PN MI × PN

= Dt(G)H(SI)U(S)
MS×PN

Second hop

Signals received at destination at time slot t H(ID) ∈ CMD×MI X(D)(t) = H(ID)U(I)
MI×PN(t) MD × PN

The matrix equations in Table 15 are now reformulated using the tensor formalism.
Similar to Equation (18), the signals received at IRS form a third-order tensor X (I) ∈
CMI×P×N such as:

X (I) = U (S) ×1 H(SI) ⇐⇒ X (I) = IMS ×1 H(SI) ×2 C(S) ×3 S, (73)

with U (S) ∈ CMS×P×N defined in (16). From equations in Table 15, it is easy to derive the
following equation satisfied by the signals received at destination at time slot t:

X(D)(t) =H(ID)Dt(G)H(SI)U(S)
MS×PN

=H(ID)Dt(G)H(SI)(C(S) � S)T ∈ CMD×PN . (74)

This equation can be interpreted as the t-th lateral slice of the contracted tensor
X (D)

c ∈ CMD×T×PN .
Let us define the third-order effective channel tensor H ∈ CMD×T×MS , whose t-th

lateral slice is given by:

H.t. = H(ID)Dt(G)H(SI) ∈ CMD×MS . (75)

This tensor H satisfies the CPD model
[
[H(ID), G, (H(SI))T ; MI ]

]
. Equation (74) can then

be interpreted as the contraction between tensorsH and U (S) along their common mode
mS; that means:

X (D) = H×1
3 U (S). (76)

This equation is to be compared with (40) and (72). SinceH and X (I) satisfy two third-order
CPD models sharing the matrix factor H(SI), Equation (74) can also be interpreted as a
nested CPD model, as illustrated by means of Figure 10.

𝐒𝐂(𝑆)

ℐ𝑀𝑠𝐇(𝑆𝐼)

𝒳(𝐼)

𝐆𝐇(𝐼𝐷)

𝐇(𝑆𝐼) 𝑻ℐ𝑀𝐼

ℋ

Figure 10. Nested CPD model of an IRS-assisted system using SKRST coding.
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This figure is similar to Figure 4, highlighting the following correspondences:

(H(RD), C(R), H(SR), C(S), S;X (R)) ←→ (H(ID), G, H(SI), C(S), S;X (I)) (77)

(MR, MS, P, J) ←→ (MI , MS, P, K). (78)

We can conclude that the coding matrix C(R) ∈ CJ×MR at the relay in Figure 4 is replaced
by the reflector matrix G ∈ CK×MI in Figure 10, with the code length J replaced by the
number T of time slots, meaning that the code diversity is replaced by the time diversity
represented by the dimensions J and T, respectively, in the tensor X (D) of signals received
at destination.

Assuming the coding matrix C(S) and the reflector matrix G are known at destination,
the nested CPD model of the received signal’s tensor, X (D), can be exploited to develop
semi-blind receivers for jointly estimating the individual channels and symbol matrices
(H(SI), H(ID), S). Such receivers will be presented in a companion paper [12].

6. Conclusions and Perspectives

In this paper, we first introduced basic tensor operations commonly used in the ex-
ploitation of tensor models. The Tucker decomposition and CPD, which are the basis of
several of the models highlighted in this paper for the design of different cooperative
communication systems, were recalled. Then, we described the main characteristics allow-
ing us to classify cooperative wireless communication systems, before illustrating several
architectures of relay-, IRS- and UAV-assisted communication networks. An overview of
several cooperative systems has been provided in a synthetic and comparative way, high-
lighting the characteristics of each system in terms of modulation, technology and coding
employed, and tensor models for representing the received signals. Then, we provided an
overview of the main codings proposed in the context of both point-to-point and multi-hop
systems. Finally, to illustrate the tensor-based approach for the design of cooperative
systems, several two-hop systems have been described in a didactic and unified way,
using different codings and by detailing, for each system, the signals coded, transmitted
and received both at the relay or IRS and at the destination. Some of the presented
systems are extensions of existing ones, which led to the introduction of several new
tensor models.

In a companion paper under preparation, a focus will be made on how these ten-
sor models can be exploited to develop semi-blind receivers for jointly estimating the
transmitted information symbols, the individual channels and eventually the channels
parameters, like DoA and DoD angles. The uniqueness of the tensor models of each system
and parameter identifiability conditions for each estimation algorithm will be analyzed and
compared. Monte Carlo simulation results will be provided to illustrate and compare the
effectiveness of the considered cooperative systems and associated semi-blind receivers.

As perspectives of this work, we plan to pursue the tensor-based approach to develop
new IRS- and UAV-assisted systems using different codings and under various configura-
tions in terms of massive MIMO and DD-DP channels, with the objective of reducing the
parametric complexity of tensor models and the computational complexity of receivers.
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Abbreviations
The following abbreviations are used in this manuscript:

AF Amplify-and-forward
CPD Canonical polyadic decomposition
DF Decode-and-forward
DoA Direction of arrival
DoD Direction of departure
IRS Intelligent reflecting surface
KronF Kronecker factorization
KRF Khatri-Rao factorization
KRST Khatri-Rao space-time
KRSTF Khatri-Rao space-time-frequency
MIMO Multiple-input multiple-output
MSMKR Multiple symbol matrices Khatri-Rao product
MSMKron Multiple symbol matrices Kronecker product
mmW Millimeter-wave
OFDM Orthogonal frequency-division multiplexing
PARAFAC Parallel factor analysis
SKRST Simplified Khatri-Rao space-time
STF Space-time-frequency
SVD Singular-value decomposition
TST Tensor space-time
TSTF Tensor space-time-frequency
UAV Unmanned aerial vehicular
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