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Abstract: This paper is concerned with variational methods for open quantum systems with Marko-
vian dynamics governed by Hudson–Parthasarathy quantum stochastic differential equations. These
QSDEs are driven by quantum Wiener processes of the external bosonic fields and are specified by
the system Hamiltonian and system–field coupling operators. We consider the system response to
perturbations in these operators and introduce a transverse Hamiltonian which encodes the prop-
agation of the perturbations through the unitary system–field evolution. This approach provides
an infinitesimal perturbation analysis tool which can be used for the development of optimality
conditions in quantum control and filtering problems. As performance criteria, such settings employ
quadratic (or more complicated) cost functionals of the system and field variables to be minimized
over the energy and coupling parameters of system interconnections. We demonstrate an application
of the transverse Hamiltonian variational approach to a mean square optimal coherent quantum
filtering problem for a measurement-free field-mediated cascade connection of a quantum system
with a quantum observer.
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1. Introduction

In comparison with classical mechanics which considers macroscopic objects both
in deterministic and stochastic settings, quantum mechanics is concerned with physical
phenomena at atomic and subatomic scales and inherently incorporates randomness. In
particular, the squared absolute value of the wave function of a quantum mechanical
particle is interpreted as a probability density function, mixed quantum states are built
of pure ones using randomization, and the latter is present in the model of quantum
measurement [1,2]. However, in contrast to scalar-valued classical probability measures [3],
quantum probability describes statistical properties of quantum variables by using quantum
states in the form of density operators [4,5] on the same Hilbert space where those variables
act as linear operators.

The noncommutativity and canonical commutation structures originating from the
operator-valued nature of quantum variables and quantum states give rise to specific fea-
tures of quantum probability such as the absence of a classical joint probability distribution
and conditional expectations for a set of noncommuting quantum variables (whereas an
individual self-adjoint operator has a well-defined marginal distribution). Furthermore,
because the microscopic realm is less amenable to manipulation by conventional macro-
scopic tools (unlike, for example, coin tossing as a manageable “random number generator”
for thought and practical experiments in classical probability theory), its natural time
evolution makes the statistical properties of quantum systems particularly tied to their
dynamics. While an isolated quantum system undergoes a reversible evolution according
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to a one-parameter unitary group generated by the system Hamiltonian, a more realistic
open dynamics scenario [6] involves interaction of the system with its environment, which
can include other quantum or classical systems, measuring devices, and external quantum
fields such as quantized electromagnetic radiation.

The interaction of an open quantum system with its surroundings is accompanied by
energy exchange between the subsystems, and gives rise to dissipative effects. This provides
a way to influence statistical and dynamic properties of such systems by arranging them
into quantum networks [7] and varying the energy and coupling parameters of the resulting
interconnections, which can consist of a quantum plant coupled in a measurement-based
or coherent (that is, measurement-free) fashion to a controller or observer. This paradigm
is used in quantum control [8–10], which develops systematic methods for achieving
stability, robustness with respect to unmodelled dynamics, and optimality in the sense of
relevant performance criteria for quantum systems and their applications such as quantum
optics [11,12] and quantum information processing [13].

An important part in these developments belongs to quantum filtering, which, simi-
larly to its classical predecessor (see for example [14,15]), is concerned with mean square op-
timal real-time estimation of the internal variables of a quantum plant using a measurement-
based quantum Kalman filter [16–18] or a qualitatively different coherent quantum ob-
server [19,20]. The latter does not process classical observations and, in contrast to the
classical filters, does not compute the conditional expectations of the plant variables (this
conditioning and related Bayesian approaches are not applicable in the noncommutative
quantum case, as mentioned above). Instead, the coherent quantum filter is driven by the
output quantum fields of the plant to produce a quantum process, and its performance as
an estimator of the plant variables can be optimized in the sense of minimizing the mean
square value of the “estimation error” by varying the parameters of the Hamiltonian and
coupling operators of the filter.

The optimization problems arising in coherent quantum filtering and control (with the
latter considering more complicated feedback interconnections of a quantum plant and a
quantum controller) involve physical realizability (PR) constraints [21,22] which originate
from the canonical commutation structures of quantum dynamic variables, the energetics
of open quantum systems, and unitarity in the augmented system–environment evolution.
These features of open quantum dynamics are incorporated in Hudson–Parthasarathy
quantum stochastic calculus [23,24] (see also [25]), which is often employed as a unified
modelling framework in quantum filtering and control. In this approach, the external
fields at the input of a quantum system of interest are represented by a multichannel
quantum Wiener process with noncommuting components, which act on a symmetric Fock
space and drive the quantum stochastic differential equation (QSDE) governing the system
dynamics. In contrast to the classical SDEs with a standard Wiener process [26], the QSDE
reflects the unitarity of the augmented system–field evolution, and its drift and dispersion
terms (as well as the generator of Markovian quantum dynamics) are specified by the
Hamiltonian and coupling operators. These operators, together with a scattering matrix
which represents the photon exchange between the fields [24], describe the energetics of
the quantum system and its interaction with the environment, and are usually functions
(for example, polynomials or Weyl quantization integrals [27]) of the system variables. A
particular form of this dependence and the commutation structure of the system variables
affect the tractability of the quantum system under consideration.

In particular, quadratic dependence of the system Hamiltonian and linear dependence
of the system–field coupling operators on the quantum mechanical position–momentum
variables [28] lead to linear QSDEs for open quantum harmonic oscillators (OQHOs) [11,18],
which play the role of building blocks in linear quantum control theory [10,21,29–32]. The
dynamics of such systems are relatively well understood and are similar to the classical
linear SDEs in a number of respects, including the preservation of the Gaussian nature of
quantum states [33,34] in the case of vacuum input fields. However, the coherent quantum
analogue [35] of the classical linear-quadratic Gaussian (LQG) control problem [36,37] for
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OQHOs is complicated by the above mentioned PR constraints on the state-space matrices
of the quantum controller and by the impossibility of taking advantage of the classical
estimation–actuation separation principle and classical conditional expectations with their
variational properties [15].

One of the existing approaches to the coherent quantum LQG (CQLQG) control and
coherent quantum filtering (CQF) problems employs the Frechet derivatives of the mean
square cost (with respect to the state-space matrices subject to the PR constraints) in obtain-
ing the optimality conditions [20,38] and for numerical optimization [39]. This approach
takes into account the quantum nature of the underlying problem only through the PR con-
straints, being “classical” in all other respects, which has advantages from the viewpoint of
relying on well-developed conventional optimization methods. However, a disadvantage
of this approach is that it is limited to certain parametric classes of linear controllers and
observers. In particular, the resulting optimality conditions do not provide information on
whether nonlinear quantum controllers or observers can outperform linear ones for linear
quantum plants. For this reason, the coherent quantum control and filtering problems
require novel variational methods for their solution, which would be able to operate with
sensitivity of the system dynamics and relevant cost functionals to perturbations over
wider classes of the Hamiltonian and coupling operators in a “coordinate-free” fashion.

To this end, the present paper (several of its results were briefly announced in [40])
outlines a fully quantum variational method which allows the sensitivity of the internal
and output variables of a nonlinear quantum stochastic system to be investigated with
respect to arbitrary (that is, not only linear-quadratic) perturbations of the Hamiltonian and
coupling operators. This approach is based on using a transverse Hamiltonian, defined as an
auxiliary time-varying self-adjoint operator which encodes the propagation of such pertur-
bations through the unitary system–field evolution. More precisely, the perturbation of the
quantum stochastic flow, which describes the time evolution of a system operator (a func-
tion of the system variables), is expressed in terms of the commutator with the transverse
Hamiltonian. The resulting derivative processes for system operators lead to an infinitesimal
perturbation formula for quantum averaged performance criteria (such as the mean square
cost functional) which is applicable to the development of optimality conditions in coherent
quantum control and filtering problems over larger classes of controllers and observers.
In particular, this approach allows the sensitivity of OQHOs with quadratic performance
criteria to be studied with respect to general perturbations of the Hamiltonian and cou-
pling operators. We demonstrate its application to a CQF problem for a field-mediated
cascade connection of a quantum plant with a quantum observer. In fact, the transverse
Hamiltonian method has already been employed in [41] to establish the local sufficiency of
linear observers in the mean square optimal CQF problem [20] for linear quantum systems
with respect to varying the Hamiltonian and coupling operators of the observer along
linear combinations of the Weyl operators [27]. As an extended version of the conference
paper [40], the present work provides its results along with detailed proofs. Furthermore,
as part of the additional material we discuss the joint commutation structure, including the
cross-commutation relations, of the unperturbed system variables and their perturbations
(see Section 3), and elaborate on the case where the perturbations of the Hamiltonian
and coupling operators are in the Weyl quantization form (see Section 6). Note that our
approach is different from [42], which develops a quantum Hamilton–Jacobi–Bellman
principle for the density operator instead of the dynamic variables in a measurement-based
quantum feedback control problem. We also note a parallel between the perturbation
analysis discussed in the present paper and the fluctuation–dissipation theorem [43].

The rest of this paper is organized as follows. Section 2 specifies the class of quantum
stochastic systems under consideration. Section 3 discusses the sensitivity of the inter-
nal and output variables of OQHOs to parametric perturbations within the families of
quadratic system Hamiltonians and linear system–field coupling operators. Section 4 re-
turns to general QSDEs and introduces the transverse Hamiltonian associated with arbitrary
perturbations of the Hamiltonian and coupling operators of the system. The transverse
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Hamiltonian is used in Section 5 for infinitesimal perturbation analysis of system operators.
Section 6 extends the transverse Hamiltonian method to quantum averaged performance
criteria. Section 7 applies this approach to a mean square optimal CQF problem. Section 8
makes concluding remarks.

2. Quantum Stochastic Systems Being Considered

We consider an open quantum system which interacts with an external multichan-
nel bosonic field and is equipped with dynamic variables X1(t), . . . , Xn(t) evolving in
time t > 0 and assembled into a vector X(t) := (Xk(t))16k6n (vectors are organized as
columns unless indicated otherwise). These system variables are assumed to be self-adjoint
operators on a composite system–field Hilbert spaceH⊗F , where ⊗ is the tensor prod-
uct of spaces or operators (including the Kronecker product of matrices). Here, H is the
initial space of the system, which provides a domain for X1(0), . . . , Xn(0), and F is a sym-
metric Fock space [24] for the action of an even number m of quantum Wiener processes
W1(t), . . . , Wm(t). The latter are time-varying self-adjoint operators, which model the ex-
ternal fields and are assembled into a vector W(t) := (Wk(t))16k6m. Unlike the classical
Brownian motion [26] in Rm, the quantum Wiener process W consists of noncommuting
operator-valued components, and has a complex positive semi-definite Hermitian Ito ma-
trix Ω := (ωjk)16j,k6m (identified with its tensor product Ω⊗IF with the identity operator
IF on the Fock space F ) for its future-pointing Ito increments dW:

dW(t)dW(t)T = Ωdt, Ω := Im + i J. (1)

Here, the transpose (·)T acts on vectors and matrices of operators as if the latter were scalars,
Im denotes the identity matrix of order m, and i :=

√
−1 is the imaginary unit. Furthermore,

J is a real antisymmetric matrix of order m (we denote the subspace of such matrices by
Am) which specifies the canonical commutation relations (CCRs) for the constituent field
processes W1, . . . , Wm:

[dW(t), dW(t)T] = 2i Jdt, J := Im/2 ⊗ J, J :=
[

0 1
−1 0

]
(2)

with J spanning the one-dimensional subspace A2 of antisymmetric (2× 2)-matrices, which
is an incremental form of the two-point CCRs

[W(s), W(t)T] = 2i min(s, t)J, s, t > 0, (3)

where the commutator [α, β] := αβ− βα of linear operators α, β is extended to the com-
mutator matrix [ξ, ηT] := ([ξ j, ηk])16j6r,16k6s = ξηT − (ηξT)T for vectors ξ := (ξ j)16j6r,
η := (ηk)16k6s of operators ξ1, . . . , ξr, η1, . . . , ηs. These CCRs are closely related to the
continuous tensor–product structure of the Fock space [44] and are complemented by the
commutativity between the Ito increments of W and adapted processes ζ := (ζ(t))t>0 taken
at the same (or an earlier) moment of time:

[ζ(s), dW(t)] = 0, t > s > 0. (4)

The adaptedness of quantum processes on the system–field space H⊗F is understood
with respect to a filtration (Ht)t>0, where

Ht := H⊗Ft, (5)

and (Ft)t>0 is the Fock space filtration, such that for any t > 0 the operators Wj(t) act
effectively on Ft, while Xk(t) act on the subspaceHt.

The energetics of the quantum system and its interaction with the external fields is spec-
ified by a system Hamiltonian H(t) and system–field coupling operators L1(t), . . . , Lm(t)
which are time-varying self-adjoint operators organized as deterministic functions (for ex-
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ample, polynomials with constant coefficients) of the system variables X1(t), . . . , Xn(t)
and assembled into a vector L(t) := (Lk(t))16k6m. Accordingly, the operators H(0),
L1(0), . . . , Lm(0) act on the initial space H. Depending on the context, a system opera-
tor σ (a function of the initial system variables X1(0), . . . , Xn(0)) on the initial spaceH will
be identified with its extension σ⊗ IF to the system–field spaceH⊗F .

The system and the fields form a composite quantum system which evolves accord-
ing to a quantum stochastic flow as described below. This evolution is specified at any
time t > 0 by a unitary operator U(t) on H ⊗ F governed by the following stochastic
Schrödinger equation [23,24]:

dU(t) = −
(

i(H0dt + LT
0 dW(t)) +

1
2

LT
0 ΩL0dt

)
U(t), (6)

with initial condition U0 := IH⊗F , and so U(t) captures the internal dynamics of the system
and the system–field interaction over the time interval [0, t]. Here and in what follows, the
subscript 0 marks the initial values of time-varying operators (as well as vectors or matrices
of operators): H0 := H(0), L0 := L(0), U0 := U(0), while the time arguments are often
omitted for the sake of brevity. In addition, the units are chosen such that the reduced Planck
constant is } = 1. The quantum stochastic differential equation (QSDE) (6) corresponds
to a particular yet important case of the identity scattering matrix in which there is no
photon exchange between the fields and the gauge processes [24] can be eliminated from
consideration. The term LT

0 dW in (6) can be interpreted as an incremental Hamiltonian of
the system–field interaction, while 1

2 LT
0 ΩL0dt involves the quantum Ito matrix Ω from (1)

and counterbalances the Ito correction term dUdU† = LT
0 ΩL0dt (with (·)† denoting the

operator adjoint) in the differential relation d(UU†) = (dU)U† +UdU† + dUdU† = 0 that
describes the preservation of the co-isometry property U(t)U(t)† = U0U†

0 = IH⊗F for all
t > 0. The system variables at time t > 0, as operators on the system–field space H⊗F ,
are the images

Xk(t) = jt(Xk(0)), k = 1, . . . , n, (7)

of their initial values under the quantum stochastic flow jt, which maps a system operator
σ0 on the initial spaceH to the operator

σ(t) := jt(σ0) = U(t)†(σ0 ⊗ IF )U(t) (8)

on Ht in (5). The resulting quantum adapted process σ satisfies the following Hudson–
Parthasarathy QSDE [23,24]:

dσ = G(σ)dt− i[σ, LT]dW, G(σ) := i[H, σ] +D(σ), (9)

where use is made of the Hamiltonian and the coupling operators evolved by the flow jt
from (8) as

H(t) = jt(H0), L(t) = jt(L0) := (jt(Lk(0)))16k6m. (10)

Note that the flow acts on vectors and matrices of operators in an entry-wise fashion.
Furthermore, D in (9) is the decoherence superoperator, which acts on σ(t) as

D(σ) :=
1
2
(LTΩ[σ, L] + [LT, σ]ΩL) = −[σ, LT]ΩL− 1

2
[LTΩL, σ]. (11)

The second equality in (11) is applicable to the case where σ is a vector of operators on which
the superoperatorD acts entry-wise. The superoperator G in (9) is the Gorini–Kossakowski–
Sudarshan–Lindblad (GKSL) generator [45,46], which is a quantum counterpart of the
infinitesimal generators of classical Markov processes [26]. The identity (σ0 ⊗ IF )U = Uσ,
which holds for system operators σ in view of (8) and the unitarity of U(t), allows the QSDE
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(6) to be represented in the Heisenberg picture by using (10) along with the commutativity
(4) as

dU = −U
(

i(Hdt + LTdW) +
1
2

LTΩLdt
)

. (12)

In application to the vector X(t) of system variables, the quantum stochastic flow jt acts
entry-wise as

X(t) := jt(X0) = U(t)†(X0 ⊗ IF )U(t) (13)

in accordance with (7) and (8), and so the corresponding QSDE (9) can be represented in
vector–matrix form:

dX = Fdt + GdW, F := G(X), G := −i[X, LT], (14)

where the n-dimensional drift vector F = (G(Xj))16j6n and the dispersion (n×m) matrix
G = −i([Xj, Lk])16j6n,16k6m consist of time-varying self-adjoint operators onH⊗F .

The interaction of the system with the input field W produces the output fields
Y1(t), . . . , Ym(t) assembled into a vector

Y(t) := (Yk(t))16k6m = U(t)†(IH ⊗W(t))U(t), (15)

where the system–field unitary evolution is applied to the current input field variables,
reflecting the innovation nature of the quantum Wiener process and the continuous tensor
product structure of the Fock space mentioned above. The output field Y satisfies the QSDE

dY = 2JLdt + dW, (16)

where the matrix J is given by (2) and L is the vector of the system–field coupling operators
from (10). The system–field interaction makes the output field Y different from the input
field W only through the drift vector 2JL in (16).

The common unitary evolution in (13) and (15) preserves the commutativity between
the system variables and the output field variables over the course of time t > 0:

[X(t), Y(t)T] = U(t)†[X0 ⊗ IF , IH ⊗W(t)T]U(t) = 0, (17)

where the entries of X0, W(t) commute as operators on different spacesH, F . For a similar
reason, the output field Y inherits the CCR matrix J from the input quantum Wiener
process W:

[Y(t), Y(t)T] = U(t)†[IH ⊗W(t), IH ⊗W(t)T]U(t)

= 2itJU(t)†IH⊗FU(t) = 2itJ, (18)

where (3) is used with s = t. By means of (1) and (2), the relation (18) can also be established
as a corollary of the property that Y in (16) inherits the quantum Ito matrix Ω from W as
dYdYT = dWdWT = Ωdt.

In view of (6) (see also (12)), the quantum stochastic flow jt in (8) depends on the
system Hamiltonian H0 and the system–field coupling operators in L0. In turn, H0 and L0
are usually functions of the initial system variables X1(0), . . . , Xn(0), such as polynomials
or Weyl quantization integrals [27] (see also Equation (32) in [47]). The dependence of H0,
L0 on X(0) is inherited by H, L as functions of X and, along with a given commutation
structure of the system variables, specifies a particular form of the resulting QSDEs (14)
and (16), thereby influencing their tractability.

3. Open Quantum Harmonic Oscillators with Parametric Dependence

An important class of quantum stochastic systems is provided by multimode open
quantum harmonic oscillators (OQHOs) [18], which have an even number n of system
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variables X1, . . . , Xn (for example, consisting of n
2 conjugate position–momentum pairs [28])

satisfying the Heisenberg CCRs

[X(t), X(t)T] = 2iΘ (19)

on a dense domain inH⊗F , where the CCR matrix Θ ∈ An is identified with Θ⊗ IH⊗F
and remains unchanged over the course of time t > 0. The Hamiltonian H of the OQHO is
a quadratic function and the system–field coupling operators L1, . . . , Lm in (10) are linear
functions of the system variables:

H =
1
2

XTRX, L = NX, (20)

which are parameterized by a real symmetric energy matrix R of order n (we denote the
subspace of such matrices by Sn) and a coupling matrix N ∈ Rm×n. In this case, the QSDEs
(14) and (16) take the form

dX = AXdt + BdW, dY = CXdt + dW, (21)

where the drifts F = AX and 2JL = CX depend linearly on the system variables X1, . . . , Xn,
with A ∈ Rn×n and C ∈ Rm×n and the dispersion matrices G = B ∈ Rn×m and Im being
constant real matrices. This linearity makes several of the dynamic properties of (21) similar
to those of a classical linear stochastic system with a state-space realization quadruple
(A, B, C, Im) and the corresponding Cm×m-valued transfer function F on the complex plane:

F(s) := C(sIn − A)−1B + Im, s ∈ C, (22)

allowing for application of transfer function techniques [48]. However, in addition to the
noncommutative nature of quantum variables, the matrices of coefficients of these QSDEs
have a specific parameterization in terms of the energy, coupling, and CCR matrices:

A = 2Θ(R + NT JN), B = 2ΘNT, C = 2JN. (23)

Because the energy matrix R is symmetric and the CCR matrices Θ and J are antisymmetric,
the matrices A, B and C satisfy

AΘ + ΘAT + BJBT = 0, ΘCT + BJ = 0. (24)

These equalities pertain to the fulfillment of the CCRs (19) and the commutativity (17)
at any moment of time, and provide necessary and sufficient conditions for the physical
realizability (PR) [21,22] of the linear QSDEs (21) as an OQHO with the CCR matrix
Θ for the system variables. The first equality in (24) has the structure of an algebraic
Lyapunov equation (ALE) with respect to Θ, which has a unique solution if and only if
the Kronecker sum A ⊕ A := In ⊗ A + A ⊗ In is a nonsingular matrix, that is, no two
eigenvalues of A are centrally symmetric about the origin in C. The latter condition holds,
for example, when the matrix A is Hurwitz. For more general open quantum systems
(such as anharmonic oscillators, for which the dynamic variables satisfy the CCRs (19)
even though the Hamiltonian and the coupling operators are not necessarily quadratic and
linear functions of the system variables), the CCR preservation is secured by the unitary
evolution of the system variables in (13).

By analogy with the state-space realizations of transfer functions in classical linear
systems theory [36,37], we use the input–output map for the OQHO (21) with the matrix
quadruple (A, B, C, Im):

SA,B,C,Im : (X0, W) 7→ Y. (25)

Now, supposing that the energy and coupling matrices R and N, which specify the Hamil-
tonian and the coupling operators in (20), depend smoothly on an auxiliary parameter
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ε ∈ R (while the quantum Wiener process W is independent of ε), then so do the matrices A,
B, and C in (23) and the system and output variables which comprise the vectors X(t) and
Y(t). Here, the differentiability of X, Y is understood in the weak sense. The corresponding
partial derivatives

X(t)′ := ∂εX(t), Y(t)′ := ∂εY(t) (26)

at any t > 0 give rise to adapted quantum processes with self-adjoint operator-valued
entries satisfying the QSDEs

dX′ = (A′X + AX′)dt + B′dW, dY′ = (C′X + CX′)dt, (27)

the second of which is in fact an ODE (Y′)
�
= C′X + CX′ involving the time derivative ˙( )

of Y′, with zero initial conditions X′0 = 0, Y′0 = 0, because X0 and Y0 do not depend on ε.
Here,

A′ = 2Θ(R′ + N′T JN + NT JN′), B′ = 2ΘN′T, C′ = 2JN′ (28)

are the derivatives of the matrices A, B and C from (23) with respect to the parameter ε
satisfying the relations

A′Θ + ΘA′T + B′ JBT + BJB′T = 0, ΘC′T + B′ J = 0, (29)

which are obtained by differentiating the PR conditions (24) while the CCR matrices
Θ and J remain constant. Because the matrices Θ and J are antisymmetric, whereby
ΘA′T + BJB′T = −(A′Θ + B′ JBT)T, the first equality in (29) implies that

A′Θ + B′ JBT ∈ Sn. (30)

By assembling the system variables and their parametric derivatives from (26) to an aug-
mented vector

S :=
[

X
X′

]
, (31)

a combination of the QSDEs (21) and (27) allows the parametric derivative of the map (25)
to be represented as the input–output map

S′A,B,C,Im
= SA,B,C,0 : (X0, W) 7→ Y′ (32)

associated with
dS = ASdt + BdW, (Y′)

�
= CS . (33)

Here, in view of X′0 = 0, the initial condition S0 =

[
X0
0

]
is identified with X0, and the

matrices A ∈ R2n×2n, B ∈ R2n×m and C ∈ Rm×2n are given by

A :=
[

A 0
A′ A

]
, B :=

[
B
B′

]
, C :=

[
C′ C

]
. (34)

The same can be obtained by using the transfer functions of the corresponding linear
systems (including (22)) as

F(s)′ = C′(sIn − A)−1B + C(sIn − A)−1 A′(sIn − A)−1B + C(sIn − A)−1B′

= C
[

(sIn − A)−1 0
(sIn − A)−1 A′(sIn − A)−1 (sIn − A)−1

]
B = C(sI2n −A)−1B

for any s ∈ C which is not an eigenvalue of A. Here, use is made of a particular case of the
block matrix inverse formula [49]:[

α 0
γ β

]−1

=

[
α−1 0

−β−1γα−1 β−1

]
.
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The block lower triangular structure of the dynamics matrix A in (32) and (34) is closely
related to the Gateaux derivative of the matrix exponential eA in the direction A′ (see for
example [50]):

(eA)′ =
[
0 In

]
eA
[

In
0

]
=
∫ 1

0
e(1−s)A A′esAds. (35)

At any time t > 0, both X(t)′ and Y(t)′ depend linearly on the matrices R′ and N′ from (28)
in view of the following representation of the solutions of the QSDEs (27), which regards
A′Xdt + B′dW as a forcing term in the first of these QSDEs:

X(t)′ =
∫ t

0
e(t−s)A(A′X(s)ds + B′dW(s)), Y(t)′ =

∫ t

0
(C′X(s) + CX(s)′)ds, (36)

where

X(t) = etAX0 +
∫ t

0
e(t−s)ABdW(s) (37)

is the unperturbed solution of the first QSDE in (21) which does not depend on R′ and
N′. In the case of linear QSDEs with coefficients that depend smoothly on parameters, the
mean square differentiability of their solutions with respect to those parameters can be
verified directly by using the closed form (37) under certain integrability conditions for
the underlying quantum state (specified by a density operator ρ on the system–field space
H⊗ F ) in terms of relevant moments of the system variables such as E(XT

0 X0) < +∞.
Here, Eξ := Tr(ρξ) is the quantum expectation which extends entry-wise to vectors and
matrices of quantum variables.

An additional insight into the structure of the process X′ is provided by its cross-
commutation relations with X and W. In particular, because X′ inherits adaptedness from
the underlying system variables, it commutes with the Ito increments of the input field W
in accordance with (4), and so does S in (31):

[S , dWT] =

[
[X, dWT]
[X′, dWT]

]
= 0. (38)

Furthermore, the differentiation of (19) in ε, combined with the identity [ξ, ηT] = −[η, ξT]T

for vectors ξ and η of operators, leads to

0 = [X′, XT] + [X, X′T] = [X′, XT]− [X′, XT]T, (39)

whereby the cross-commutation matrix [X′, XT] is symmetric, which holds regardless
of a particular structure of the QSDEs (21) and remains valid for quantum anharmonic
oscillators with nonlinear dynamics. This matrix evolves in time (with zero initial condition,
as X′0 = 0) and has a steady-state value computed below.

Theorem 1. Suppose that the matrix A of the OQHO (21) in (23) is Hurwitz. Then, there exist
the following limits

lim
t→+∞

[X(t)′, X(t)T] = 2iΘ21, lim
t→+∞

[X(t)′, X(t)′T] = 2iΘ22, (40)

where the matrices Θ21 ∈ Sn and Θ22 ∈ An are found as unique solutions of the ALEs

AΘ21 + Θ21 AT + A′Θ + B′ JBT = 0, (41)

AΘ22 + Θ22 AT − A′Θ21 + Θ21 A′T + B′ JB′T = 0. (42)

Proof. In view of the CCRs (19), the commutator matrix for the vector S in (31) is orga-
nized as

Ξ := [S ,ST] =

[
[X, XT] [X, X′T]
[X′, XT] [X′, X′T]

]
=

[
2iΘ Ξ12
Ξ21 Ξ22

]
, (43)
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where the blocks Ξ21 := [X′, XT] = −ΞT
12, Ξ12 := [X, X′T] and Ξ22 := [X′, X′T] consist of

time-varying skew self-adjoint operators on the system–field spaceH⊗F . By using the
quantum Ito lemma [23,24] and the bilinearity of the commutator along with the QSDE (33)
and the commutativity (38), it follows that (43) satisfies the QSDE

dΞ = [dS ,ST] + [S , dST] + [dS , dST]

= [ASdt + BdW,ST] + [S ,STATdt + dWTBT] + [BdW, dWTBT]

= A[S ,ST]dt + B[dW,ST] + [S ,ST]ATdt + [S , dWT]BT + B[dW, dWT]BT

= (AΞ + ΞAT + 2iB JBT)dt,

which, similarly to Equation (56) in [21], reduces to the ODE

Ξ̇ = AΞ + ΞAT + 2iB JBT (44)

with the initial condition

Ξ0 =

[
2iΘ 0

0 0

]
(45)

in view of X′0 = 0. Hence, at any time t > 0 the matrix Ξ(t) is an imaginary antisymmetric
matrix which can be represented as

Ξ(t) = 2i
[

Θ Θ12(t)
Θ21(t) Θ22(t)

]
(46)

with time-varying matrices Θ12(t) = −Θ21(t)T ∈ Rn×n and Θ22(t) ∈ An. Substitution of
(46) into (44) followed by using (34) leads to the Lyapunov ODEs

Θ̇21 = AΘ21 + Θ21 AT + A′Θ + B′ JBT, (47)

Θ̇22 = AΘ22 + Θ22 AT + A′Θ12 + Θ21 A′T + B′ JB′T, (48)

with zero initial conditions Θ21(0) = 0 and Θ22(0) = 0 in accordance with the correspond-
ing blocks in (45). Now, the matrix Θ21(t) is symmetric at any time t > 0 due to (39). This
follows from (47) in view of the symmetry (30). Hence, Θ12 = −Θ21, and the ODE (48)
takes the form

Θ̇22 = AΘ22 + Θ22 AT − A′Θ21 + Θ21 A′T + B′ JB′T. (49)

If the matrix A is Hurwitz, then the solutions of the ODEs (47) and (49) converge to their
unique steady-state values which (slightly abusing notation) satisfy the ALEs (41) and (42)
and specify the limits (40).

The relations (28)–(36) and Theorem 1 provide infinitesimal perturbation analysis for
sensitivity of the internal and output variables of the OQHO to the matrices R and N. Under
the perturbations of R and N, the Hamiltonian H and the coupling operators in L given
by (20) remain in the corresponding classes of quadratic and linear functions of the system
variables. Accordingly, the above analysis is not applicable to more general perturbations,
for example, higher order polynomials of the system variables, and is restricted to linear
QSDEs, meaning that an alternative approach is needed in the general case.

4. Transverse Hamiltonian

For the general quantum stochastic system described in Section 2 and governed by
(14) and (16), we will now consider its response to arbitrary perturbations in the system
Hamiltonian H0 and the system–field coupling operators in L0. More precisely, suppose
that they are perturbed in directions K0 and M0 as

H0 7→ H0 + εK0, L0 7→ L0 + εM0. (50)



Entropy 2023, 25, 1179 11 of 24

Here, K0 and the entries of the m-dimensional vector M0 are self-adjoint operators on
the initial system spaceH, while ε is a small real-valued parameter as before, and hence,
K0 = H′0 and M0 = L′0. In what follows, the derivative (·)′ := ∂ε(·) is taken at ε = 0. The
perturbations K0 and M0 in (50) are assumed to be functions of the initial system variables
X1(0), . . . , Xn(0), and these dependencies describe

K(t) := jt(K0), M(t) := jt(M0) (51)

as functions of X(t) under the unperturbed flow (8). For example, in the case of OQHOs
considered in Section 3, the perturbations K and M, which are caused by the perturbations
in the energy and coupling matrices R and N, inherit the structure of the Hamiltonian as a
quadratic function and the coupling operators as linear functions of the system variables
in (20), respectively:

K =
1
2

XTR′X, M = N′X. (52)

Returning to the general case, at this stage we avoid technical assumptions regarding K0
and M0 in (50); thus, the calculations carried out below for arbitrary perturbations should
be regarded as formal. Because the operators H0 and L0 completely specify the dynamics
of the unitary operator U(t) in (6), which determines the evolution of the system and
output field variables, the response of the latter to the perturbations (50) of H0 and L0
reduces to that of U(t). Therefore, the propagation of the initial perturbations K0 and M0
of the operators H0 and L0 through the subsequent unitary system–field evolution can be
described in terms of the operator

V(t) := U(t)′, (53)

which satisfies V0 = 0, as U0 = IH⊗F does not depend on ε. The smoothness of dependence
of U(t) on the parameter ε is analogous to the corresponding property of solutions of
classical SDEs (under suitable regularity conditions [26,51] for their drift and dispersion)
and holds at least in the case of linear QSDEs discussed in Section 3. The following theorem
is closely related to Stone’s theorem on generators of one-parameter unitary groups [52].

Theorem 2. For any time t > 0, the operator V(t) in (53), associated with the unitary evolution
U(t) from (6), can be represented as

V(t) = −iU(t)Q(t). (54)

Here, Q(t) is a self-adjoint operator on the system–field spaceH⊗F , which satisfies the zero initial
condition Q0 = 0 and is governed by the QSDE

dQ = (K− Im(LTΩM))dt + MTdW, (55)

where the imaginary part Im(·) is extended to operators and matrices of operators as
Imµ := 1

2i (µ− µ#), with (·)# denoting the entry-wise operator adjoint. Furthermore, Q(t) de-
pends linearly on the initial perturbations K0 and M0 of the Hamiltonian and coupling operators
in (50) through their unperturbed evolutions in (51).

Proof. The differentiation of both sides of the unitarity relation U(t)†U(t) = IH⊗F with
respect to the parameter ε at ε = 0 leads to V†U + U†V = (U†V)† + U†V = 0, which
implies self-adjointness of the operator

Q(t) := iU(t)†V(t), (56)
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establishing (54). Now, consider the time evolution of Q(t). To this end, the differentiation
of (6) with respect to ε yields

dV =− (i(K0dt + MT
0 dW) + Re(LT

0 ΩM0)dt)U

−
(

i(H0dt + LT
0 dW) +

1
2

LT
0 ΩL0dt

)
V, (57)

where the real part Re(·) is extended to operators and matrices of operators as
Reµ := 1

2 (µ + µ#). By left-multiplying both sides of (57) by U† and recalling (56), it
follows that

U†dV =− i(Kdt + MTdW)− Re(LTΩM)dt

+
( i

2
LTΩLdt− Hdt− LTdW

)
Q

=
(
− iK− Re(LTΩM) +

( i
2

LTΩL− H
)

Q
)

dt

− (LQ + iM)TdW, (58)

where use is made of the evolved perturbations in (51). By a similar reasoning, a combina-
tion of (12) with (56) leads to

(dU†)V =
(

i
(

Hdt + LTdW
)
− 1

2
LTΩLdt

)
U†V

=
(

Hdt + LTdW +
i
2

LTΩLdt
)

Q, (59)

dU†dV = iLTdWU†dV = −iLTdWdWT(LQ + iM)

= LTΩ(M− iLQ)dt, (60)

where use is also made of (58) along with the quantum Ito product rules [24], (1) and (4). It
now follows from (56) and (58)–(60) that

dQ = i((dU†)V + U†dV + dU†dV)

= (K + iLTΩM− iRe(LTΩM))dt + MTdW

= (K− Im(LTΩM))dt + MTdW,

which establishes (55). The linear dependence of Q(t) on K0 and M0 follows from the
integral representation

Q(t) =
∫ t

0
((K(s)− Im(L(s)TΩM(s)))ds + M(s)TdW(s)) (61)

of the QSDE (55) and the property that the evolved perturbations K and M in (51) depend
linearly on K0 and M0, respectively.

In view of Theorem 2, for any fixed but otherwise arbitrary time t > 0, the relation (54),
represented as

U(t)′ = −iU(t)Q(t),

has the structure of isolated quantum dynamics in fictitious time ε, where Q(t) plays
the role of a Hamiltonian pertaining to the perturbation of the unitary operator U(t). In
order to reflect this property, we will refer to the time-varying operator Q as the transverse
Hamiltonian associated with the perturbations K and M of the system Hamiltonian H
and the system–field coupling operators in L. The computation of Q is illustrated by the
following two examples.
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Example 1

In the absence of perturbation of the system–field coupling, when the vector M0 in
(50) consists of zero operators (and hence, so does M in (51)), the transverse Hamiltonian
in (61) reduces to

Q(t) =
∫ t

0
K(s)ds. (62)

Moreover, if the system is isolated, that is, L = 0, then (6) reduces to the ODE U̇(t) =
−iH0U(t), which leads to

U(t) = e−itH0 , (63)

with the Hamiltonian being preserved in time: H(t) = H0 for all t > 0. In this case of
isolated system dynamics, (62) takes the form

Q(t) =
∫ t

0
eisH0 K0e−isH0ds =

∫ t

0
eisadH0 (K0)ds = tE(itadH0)(K0), (64)

where adH0(·) := [H0, ·]. Here, use is made of Hadamard’s lemma [28] along with an

entire function E(z) := ez−1
z = ∑+∞

k=0
zk

(k+1)! of a complex variable (with E(0) = 1 by
continuity) which plays a role in the solution of nonhomogeneous linear ODEs with
constant coefficients and constant forcing terms [50]. The Gateaux derivative (53) of (63)
can be represented using an operator version of (35) as

V(t) =
[
0 IH

]
exp

(
−it
[

H0 0
K0 H0

])[
IH
0

]
= −it

∫ 1

0
ei(s−1)tH0 K0e−istH0ds = −iU(t)

∫ t

0
eisH0 K0e−sH0ds, (65)

which provides an alternative verification of (54) for this particular case, with Q given
by (64).

Example 2

For the OQHO of Section 3, substitution of the perturbations from (52) into (61) leads
to the transverse Hamiltonian

Q(t) =
∫ t

0

((1
2

X(s)TR′X(s)− Im(X(s)TNTΩN′X(s))
)

ds + X(s)TN′TdW(s)
)

=
∫ t

0

(1
2

X(s)T(R′ + i(NTΩN′ − N′TΩN)
)
X(s)ds + X(s)TN′TdW(s)

)
=
∫ t

0

(1
2

X(s)T(R′ + N′T JN − NT JN′
)
X(s)ds + X(s)TN′TdW(s)

)
− 〈NΘ, N′〉 t (66)

which depends linearly on the matrices R′ and N′ as well as, in a quadratic fashion, on
the past history of the system variables. The latter are given by the unperturbed Equation
(37). The last term 〈NΘ, N′〉t= −Tr(ΘNTN′)t in (66) (with 〈α, β〉 := Tr(αTβ) denoting
the Frobenius inner product for real matrices) comes from the relation Im(i(NTΩN′ −
N′TΩN)) = NTN′ − N′TN, which follows from (1), and the identity XTΥX = i〈Υ, Θ〉,
which holds for any matrix Υ ∈ An in view of the CCRs (19).

5. Infinitesimal Perturbation Analysis of System Operators

Because the transverse Hamiltonian Q(t) in (56), (61) encodes the propagation of
the initial perturbations of the Hamiltonian and coupling operators in (50) through the
unitary system–field evolution over the time interval [0, t], it provides a tool for infinitesimal
perturbation analysis of general system operators. The following theorem is concerned with
an extended setting which, in addition to (50), allows for smooth dependence of a system



Entropy 2023, 25, 1179 14 of 24

operator σ0 on the parameter ε, meaning that an appropriate infinitesimal perturbation in
it is specified by an operator σ′0 on the initial spaceH, with σ′0 being a function of the initial
system variables X1(0), . . . , Xn(0).

Theorem 3. For any self-adjoint system operator σ0 on the initial spaceH, which smoothly depends
on the same scalar parameter ε as in (50) and is evolved by the flow (8), the derivative of its evolved
version σ(t) with respect to ε can be represented as

τ(t) := σ(t)′ = jt(σ
′
0) + φ(t), φ(t) := i[Q(t), σ(t)] (67)

at any time t > 0, where Q(t) is the transverse Hamiltonian from Theorem 2. Here, the operator
φ(t) satisfies the QSDE

dφ = (i[Q,G(σ)] + χ(σ))dt +
(
[Q, [σ, LT]]− i[σ, MT]

)
dW, (68)

with zero initial condition φ0 = 0, where G is the unperturbed GKSL generator from (9) and χ is a
linear superoperator given by

χ(σ) := i[K− Im(LTΩM), σ]− 2Re([σ, LT]ΩM). (69)

Proof. By using the Leibniz product rule together with (8), (53), (54) and the self-adjointness
of Q(t), it follows that

σ′ = U†(σ′0 ⊗ IF )U + V†(σ0 ⊗ IF )U + U†(σ0 ⊗ IF )V
= jt(σ

′
0) + (−iUQ)†(σ0 ⊗ IF )U − iU†(σ0 ⊗ IF )UQ

= jt(σ
′
0) + iQU†(σ0 ⊗ IF )U − iσQ = jt(σ

′
0) + i[Q, σ], (70)

which establishes (67), with the initial condition ϕ0 = 0 being inherited by φ from Q0 = 0.
We will now obtain a QSDE for the process φ. To this end, by combining the quantum Ito
lemma with the bilinearity of the commutator (similarly to the proof of Theorem 1) and
using the QSDEs (9) and (55), it follows that

d[Q, σ] =[dQ, σ] + [Q, dσ] + [dQ, dσ]

=[K− Im(LTΩM), σ]dt− [σ, MT]dW

+ [Q,G(σ)]dt− i[Q, [σ, LT]]dW

− [MTdW, i[σ, LT]dW]

=([K− Im(LTΩM), σ] + [Q,G(σ)] + 2iIm(i[σ, LT]ΩM))dt

− ([σ, MT] + i[Q, [σ, LT]])dW

=([K− Im(LTΩM), σ] + [Q,G(σ)] + 2iRe([σ, LT]ΩM))dt

− ([σ, MT] + i[Q, [σ, LT]])dW. (71)

Here, the quantum Ito product rules are applied together with the commutativity (4) be-
tween adapted processes and the Ito increments of the quantum Wiener process W. In the
second and third of the equalities (71), use is also made of the relations
[α, βTdW] = [α, βT]dW and [αTdW, βTdW] = 2iIm(αTΩβ)dt for appropriately dimen-
sioned adapted processes α and β with self-adjoint operator-valued entries. These relations
are combined with the identity Im(i[σ, LT]ΩM) = Re([σ, LT]ΩM) in the fourth equality
of (71). The QSDE (68) is now obtained my multiplying both sides of (71) by i and using
the superoperator χ from (69).
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As can be seen from (70), the process jt(σ′0) in (67) is the response of σ(t) to the initial
perturbation σ′0 of the system operator under the unperturbed flow (8) and satisfies the
QSDE (9):

djt(σ′0) = G(jt(σ′0))dt− i[jt(σ′0), LT]dW. (72)

In contrast to jt(σ′0), the operator φ(t) in (67) describes the response of the flow jt itself to
the perturbations (50) of the Hamiltonian and coupling operators and will be referred to
as the derivative process for the system operator σ. Accordingly, the term i[Q,G(σ)] in the
drift of the QSDE (68) is the derivative process for G(σ). At any given time t > 0, the last
equality in (67) is organized as the right-hand side of the Heisenberg ODE (in fictitious
time ε) of an isolated quantum system with the state space H⊗F and the Hamiltonian
Q(t). While jt(σ′0) (evolved by the unperturbed flow) depends linearly on σ′0, the derivative
process φ(t) depends linearly on the perturbations K0 and M0 of the Hamiltonian H0 and
the coupling operators in L0 through the transverse Hamiltonian Q and the superoperator
χ in (69).

In application to the vectors X and L of the system variables and the system–field
coupling operators, the QSDEs (68) and (72) and the definition (69) lead to

dX′ =(i([K− Im(LTΩM), X] + [Q, F]) + 2Im(GΩM))dt

+ i([Q, G]− [X, MT]
)
dW, (73)

dL′ =(G(M) + i([K− Im(LTΩM), L] + [Q,G(L)])− 2Re([L, LT]ΩM))dt

+ ([Q, [L, LT]]− i[L, MT]− i[M, LT])dW, (74)

where F and G are the unperturbed drift vector and the dispersion matrix from (14). In
(73), use is also made of the absence X′0 = 0 of initial perturbations in the system variables,
whereby jt(X′0) = 0 for any t > 0. Furthermore, in (74) we have used the relations
jt(L′0) = jt(M0) = M(t) in view of (50) and (51). Because the matrix J and the quantum
Wiener process W do not depend on the parameter ε, the derivative of the output field Y of
the system in (16) evolves according to the ODE

(Y′)
�
= 2JL′, (75)

where L′ is governed by the QSDE (74).
In particular, for the OQHO from Section 3 with the perturbations in (52), the QSDEs

(73)–(75) lead to the relations (27) and (28) which were obtained in Section 3 using more
elementary techniques. However, the latter are limited to quadratic perturbations of
the Hamiltonian and linear perturbations of the coupling operators in (52), whereas the
transverse Hamiltonian approach allows the system response to be investigated for general
perturbations of these operators. Therefore, this approach can be used for the development
of optimality conditions in quantum control and filtering problems for larger classes of
controllers and observers.

6. Sensitivity of Infinite-Horizon Quantum Averaged Functionals

Similarly to optimal control of classical time invariant stochastic systems [36,37],
suppose that the infinite-horizon performance of the quantum system under consideration
is described by a cost functional

Z := lim
t→+∞

EZ(t), (76)

which (whenever it exists) leads to the same Cesaro limit limt→+∞( 1
t
∫ t

0 EZ(s)ds) = Z and
is to be minimized in optimal quantum control settings. Here, the quantum expectation
E(·) is taken over the density operator

ρ := v⊗ υ, (77)
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which is the tensor product of the initial quantum state v of the system on the spaceH and
the vacuum state [24] υ on the Fock space F for the external bosonic fields. This expectation
is applied in (76) to a quantum criterion process Z, specified as

Z(t) := f (X(t), L(t)) (78)

using a function f : Rn+m → R. The latter is extended to the noncommutative system
variables and the coupling operators (with L being in a bijective correspondence with the
drift vector 2JL of the output field in (16), as det J 6= 0 in view of (2)) to make Z(t) a self-
adjoint operator for any t > 0. Such an operator-valued extension of f is straightforward in
the case of polynomials and can be carried out through the Weyl quantization [27] for more
general functions. In the coherent quantum linear–quadratic Gaussian (CQLQG) control
and filtering problems [20,35,38], the function f in (78) is a positive semi-definite quadratic
form, in which case the minimization of (76) provides an infinite-horizon mean square
optimality criterion.

Now, if the Hamiltonian and coupling operators of the quantum system are perturbed
according to (50), then application of the transverse Hamiltonian Q from Theorems 2 and 3
leads to

(EZ(t))′ = E(jt(Z′0) + φ(t)), φ(t) := i[Q(t), Z(t)], (79)

where φ is the derivative process for Z. Note that despite the equality X′0 = 0, the operator
Z′0 can be nonzero due to the dependence of Z0 = f (X0, L0) in (78) on L0 which is being
perturbed. Assuming the existence and interchangeability of appropriate limits, (79) leads
to the following perturbation formula for the cost functional Z in (76):

Z ′ := lim
t→+∞

(Ejt(Z′0) + Eφ(t)). (80)

The right-hand side of (80) is a linear functional of the perturbations K0 and M0, which
describes the corresponding (formal) Gateaux derivative of Z in the direction (K0, M0).
Therefore, the quantum system is a stationary point of the performance criterion (76) with
respect to a subspace T of perturbations (K0, M0) in (50) if T is contained by the null space
of the linear functional Z ′ in (80):

T ⊂ kerZ ′. (81)

This inclusion provides a first-order necessary condition of optimality in the quantum
control problem of minimizing (76) over a manifold of the Hamiltonian and coupling
operators with the local tangent space T .

While limt→+∞ Ejt(Z′0) in (80) reduces to averaging over the invariant quantum state
of the unperturbed system (provided certain integrability conditions are satisfied together
with the existence of and weak convergence to the invariant state), the computation of
limt→+∞ Eφ(t) is less straightforward. Due to the product structure (77) of the system–
field state ρ (with the external fields being in the vacuum state υ), the martingale part
([Q, [Z, LT]] − i[Z, MT])dW of the QSDE (68) with σ := Z does not contribute to the
time derivative

(Eφ)
�
= Eψ + Eχ(Z), ψ := i[Q,G(Z)], (82)

where ψ is the derivative process for G(Z) and the superoperator χ from (69) is applied to
the criterion process Z in (78).

The relation (82) is a complicated integro-differential equation (IDE). Nevertheless, this
IDE admits an efficient solution, for example, in the case when the system is an OQHO, and
the function f in (78) is a polynomial. In this case, due to the structure of the GKSL generator
of the OQHO, G(Z) is a polynomial in the system variables of the same degree, leading to a
linear relation (with constant coefficients) between the derivative processes φ and ψ and to
algebraic closedness in the IDE (82). Therefore, for stable OQHOs (that is, with a Hurwitz
matrix A) and a polynomial criterion process Z, the computation of Z ′ and verification of
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the stationarity condition (81) reduce to averaging over the unperturbed invariant state,
which is unique and Gaussian [34]. These calculations are exemplified below.

Example 3

Consider the OQHO from Section 3 described by (19)–(23) with a Hurwitz matrix A.
Suppose the criterion process Z in (78) is a quadratic polynomial of the system variables
X1, . . . , Xn and the system–field coupling operators L1, . . . , Lm:

Z :=
1
2
[
XT LT]Π[X

L

]
=

1
2

XTPX, Π :=
[

Π11 Π12
Π21 Π22

]
, (83)

where Π ∈ S+n+m is a given weighting matrix partitioned into blocks Π11 ∈ S+n , Π22 ∈ S+m
and Π12 = ΠT

21 ∈ Rn×m, and

P := Π11 + Π12N + NTΠ21 + NTΠ22N ∈ S+n (84)

is an auxiliary matrix which involves the coupling matrix N from (20). Here, S+r denotes
the set of real positive semi-definite symmetric matrices of order r. Then, in view of the
relation X′0 = 0, it follows from (83) and (52) that

jt(Z′0) = Re((Π21X + Π22L)TM) = Re(XT(Π12 + NTΠ22)M). (85)

The second equality in (83) allows the quantum average of the corresponding derivative
process φ in (79) to be represented as

Eφ =
1
2
〈P, Υ〉, Υ := iE[Q, Ξ], Ξ := Re(XXT) = XXT − iΘ. (86)

Here, Υ is the expectation of the derivative process i[Q, Ξ] for Ξ and, as such, satisfies the
following IDE, similar to (82):

Υ̇ = iE[Q,G(Ξ)] + Eχ(Ξ), (87)

where the superoperator χ from (69) is applied to Ξ entry-wise as

χ(XjXk) = i[K− Im(LTΩM), XjXk]− 2Re([XjXk, LT]ΩM)

= i[K− Im(XTNTΩM), XjXk] + 4Im((XkΘj• + XjΘk•)NTΩM), (88)

with Θ`• denoting the `th row of the CCR matrix Θ. By substituting the Hamiltonian and
coupling operators of the OQHO from (20) into the GKSL generator G in (9) and (11) and
using the CCRs (19) together with the state-space matrices (23), it follows that

G(Ξ) = AΞ + ΞAT + BBT. (89)

Substitution of (89) into (87) reduces the IDE to a Lyapunov ODE:

Υ̇ = iE[Q, AΞ + ΞAT + BBT] + Eχ(Ξ) = AΥ + ΥAT + Eχ(Ξ). (90)

Because the matrix A is Hurwitz, the unperturbed OQHO has an invariant state which
is Gaussian [34] with zero mean EX = 0 and a complex positive semi-definite Hermitian
covariance matrix E(XXT) = Σ + iΘ of order n, for which the real part Σ ∈ S+n is a unique
solution of the ALE

AΣ + ΣAT + BBT = 0. (91)



Entropy 2023, 25, 1179 18 of 24

Therefore, under appropriate integrability conditions for χ(Ξ), the solution of the Lyapunov
ODE (90) has a limit Υ∞ := limt→+∞ Υ(t), which is a unique solution of the ALE

AΥ∞ + Υ∞ AT + lim
t→+∞

Eχ(Ξ) = 0, (92)

where limt→+∞ Eχ(Ξ) can be computed by averaging χ(Ξ) over the invariant Gaussian
state of the OQHO. Therefore, by assembling (85) and (86) into (80), it follows that

Z ′ = lim
t→+∞

ERe(XT(Π12 + NTΠ22)M) +
1
2
〈P, Υ∞〉, (93)

where the limit reduces to averaging over the invariant Gaussian state and is expressed in
terms of E(XMT) as

ERe(XT(Π12 + NTΠ22)M) = 〈Π12 + NTΠ22, ReE(XMT)〉. (94)

The relations (84), (88) and (92)–(94) allow the Gateaux derivative Z ′ of the quadratic
cost functional (76), specified by (83), to be computed through mixed moments of the
system variables X and the perturbations K and M over the invariant zero-mean Gaussian
quantum state, the covariance matrix of which can be found from (91). In particular, if
K and M are polynomials of the system variables X1, . . . , Xn, then these moments can be
calculated in terms of the covariances by using the Isserlis–Wick theorem [53]. Alternatively,
the perturbations K and M can be trigonometric polynomials, that is, linear combinations
of unitary Weyl operators [27]

Wu := eiuTX = W†
−u, u ∈ Rn, (95)

associated with the system variables, or more generally represented as the Weyl quantiza-
tion integrals

K :=
∫
Rn

Wuα(du), M :=
∫
Rn

Wuβ(du), (96)

similar to those in Equation (32) of [47]. Here, α and β are countably additive measures
of finite variation on the σ-algebra Bn of Borel subsets of Rn, which take values in C and
Cm, respectively, and satisfy the Hermitian property α(S) = α(−S) and β(S) = β(−S)
(where (·) is the complex conjugate) for any S ∈ Bn, ensuring that K and the entries of
M in (96) are self-adjoint operators in view of the second equality in (95). Now, the Weyl
CCRs Wu+v = eiuTΘvWuWv for all u, v ∈ Rn (with their infinitesimal Heisenberg form
given by (19)) imply that ∂uWu = ∂veivT(X+Θu)

∣∣
v=0Wu = i(X + Θu)Wu, whereby

XWu = −(Θu + i∂u)Wu. (97)

Because the quantum expectation commutes with the differential operator on the right-
hand side of (97) and the quasi-characteristic function [54] of the invariant zero-mean
Gaussian state is given by EWu = e−

1
2 ‖u‖

2
Σ , where ‖u‖Σ :=

√
uTΣu is a weighted Euclidean

semi-norm of u specified by Σ, we have

E(XWu) = −(Θu + i∂u)EWu = −(Θu + i∂u)e−
1
2 ‖u‖

2
Σ

= e−
1
2 ‖u‖

2
Σ(iΣ−Θ)u, u ∈ Rn, (98)
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which can also be obtained using quantum Price’s theorem [55]. A combination of the
second equality from (96) with (98) leads to

ReE(XMT) := Re
∫
Rn

E(XWu)β(du)T

=
∫
Rn

e−
1
2 ‖u‖

2
Σ Re((iΣ−Θ)uβ(du)T)

= −
∫
Rn

e−
1
2 ‖u‖

2
Σ(ΣuImβ(du)T + ΘuReβ(du)T). (99)

The computation of the limit in (93) in the Weyl quantization framework can now be
completed by substituting (99) into (94). In this framework, the matrix Eχ(Ξ), which is
needed for finding Υ∞ from the ALE (92) for the last term in (93), is computed by averaging
(88) in a similar fashion.

7. Mean Square Optimal Coherent Quantum Filtering Problem

We will now demonstrate an application of the transverse Hamiltonian variational
approach from Sections 4–6 to a quantum filtering problem for the open quantum system
described in Section 2, referred to as a quantum plant. The plant has the Hamiltonian H,
vector L of system–field coupling operators, input field W, vector X of internal variables,
and output field Y governed by the QSDEs (14) and (16). Although the plant is not
necessarily an OQHO, we assume that the plant variables X1, . . . , Xn are organized as
position–momentum pairs and satisfy the CCRs (19).

Suppose that the quantum plant is cascaded in a measurement-free field-mediated
fashion with another open quantum system, which plays the role of a coherent quantum
observer and is driven by the plant output Y and another quantum Wiener process ω of an
even dimension µ on a different symmetric Fock space F; see Figure 1.

quantum
plant

quantum
observer

?

---W
Y

ω

η

Figure 1. The series connection of a quantum plant with a coherent quantum observer, mediated by
the plant output field Y and affected by the environment through the input quantum Wiener processes
W and ω. The observer design objective is that the drift part of its output η has to approximate the
plant variables of interest in a mean square optimal fashion.

The observer is endowed with its own initial Hilbert space H, and dynamic variables
ξ1(t), . . . , ξν(t) with a CCR matrix Λ ∈ Aν such that [ξ(t), ξ(t)T] = 2iΛ for any t > 0,
similarly to (19), as well as an (m + µ)-dimensional output field η(t):

ξ := (ξk)16k6ν, ω := (ωk)16k6µ, η := (ηk)16k6m+µ. (100)

As the observer is driven by the plant output Y together with the quantum noise ω, over
the course of time the observer output η acquires quantum statistical correlations with the
plant variables and can be used for estimating the latter in a mean square optimal fashion
as specified below. To this end, we denote the observer Hamiltonian by Γ and the vectors
of operators of coupling of the observer with the plant output Y and the quantum Wiener
process ω by

Φ := (Φk)16k6m, Ψ := (Ψk)16k6µ, (101)

respectively. The Hamiltonian Γ and the coupling operators Φ1, . . . , Φm, Ψ1, . . . , Ψµ are
functions of the dynamic variables ξ1, . . . , ξν of the observer and hence (by the commutativ-
ity [X, ξT] = 0) commute with the plant variables and functions thereof, including H and L.
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The plant and observer form a composite quantum stochastic system with a vector X of
dynamic variables satisfying the CCRs

[X ,X T] = 2iΘ, Θ :=
[

Θ 0
0 Λ

]
, X :=

[
X
ξ

]
(102)

and driven by an augmented quantum Wiener processW with the following Ito table:

dWdWT = Ωdt, Ω :=
[

Ω 0
0 f

]
= Im+µ + iJ , J := I(m+µ)/2⊗ J, W :=

[
W
ω

]
. (103)

Here, f is the Ito matrix of the quantum Wiener process ω of the observer, which is defined
similarly to Ω from (1) and (2) as

dωdωT = fdt, f := Iµ + iIµ/2 ⊗ J. (104)

The Ito matrix Ω of the process W in (103) is block-diagonal due to the commutativity
[W, ωT] = 0 and the statistical independence between the quantum Wiener processes
W and ω, which act on the different Fock spaces F and F and are assumed to be in the
appropriate vacuum states. The quantum feedback network formalism [7] allows the
Hamiltonian H of the plant–observer system and its vector L of operators of coupling with
W to be computed as

H = H + Γ + ΦT JL, L =

[
L + Φ

Ψ

]
. (105)

Hence, the internal and output variables ξ1, . . . , ξν and η1, . . . , ηm+µ of the observer in (100)
are governed by the QSDEs

dξ = G(ξ)dt− i[ξ, LT]dW = (i[Γ, ξ] + ∆(ξ))dt− i
[
ξ,
[
ΦT ΨT]]d[Y

ω

]
, (106)

dη = 2JLdt + dW . (107)

Here,
G(ζ) := i[H, ζ] + D(ζ)

is the GKSL generator of the plant–observer system and

D(ζ) = −[ζ, LT]ΩL− 1
2
[LTΩL, ζ]

is the corresponding decoherence superoperator in accordance with (11), (103) and (105). In
(106), use is made of the partial decoherence superoperator ∆, which acts on the observer
variables as

∆(ξ) = −[ξ, ΦT]ΩΦ− [ξ, ΨT]fΨ− 1
2
[ΦTΩΦ + ΨTfΨ, ξ]

in view of (102)–(105). Now, consider a coherent quantum filtering (CQF) problem formu-
lated as the minimization of the mean square discrepancy

Z := lim
t→+∞

EZ(t) −→ min, Z :=
1
2
(SX− TL)T(SX− TL) (108)

between r linear combinations of the plant variables of interest and the entries of the
drift part 2JL of the observer output η in (107), as specified by given weighting matrices
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S ∈ Rr×n and T :=
[
T1 T2

]
with T1 ∈ Rr×m and T2 ∈ Rr×µ. The criterion process Z in

(108) is similar to that in (83):

Z :=
1
2
[
XT LT]Π[X

L

]
, Π :=

[
STS −STT
−TTS TTT

]
, (109)

with X being the only subvector of X from (102) which is present in (109). The minimization
in (108) is over the observer Hamiltonian Γ and the vector Φ of the observer–plant coupling
operators in (101) as functions of the observer variables ξ1, . . . , ξν. This mean square
optimal CQF problem extends [20] in that we do not restrict attention to linear observers
even if the plant is an OQHO and Ψ depends linearly on the observer variables ξ. Note
that the Hamiltonian H of the plant and its coupling L to the input quantum noise W are
fixed, as is the coupling Ψ of the observer to the input quantum noise ω; see Figure 1. If Γ0
and Φ0 are perturbed in the directions

K0 := Γ′0, M0 := Φ′0, (110)

consisting of self-adjoint operators representable as functions of the initial observer vari-
ables ξ1(0), . . . , ξν(0), then the corresponding perturbations of the plant–observer Hamilto-
nian and coupling operators in (105) are

H′0 = K0 + MT
0 JL0, L′0 =

[
M0
0

]
. (111)

By applying Theorem 2 and using (103), (110) and (111), it follows that the corresponding
transverse Hamiltonian Q for the plant–observer system satisfies the QSDE

dQ =
(

K + MT JL− Im
(

LTΩ

[
M
0

]))
dt +

[
MT 0

]
dW

= (K− Im((2L + Φ)TΩM))dt + MTdW, (112)

where use is made of the relation Im(LTΩM) = −MT JL following from (1) and the
commutativity [L, MT] = 0. Then, the Gateaux derivative Z ′ of the cost functional in (108)
is given by (80), where

jt(Z′0) = Re((TL− SX)TT1M)

in view of (109) and (111) and similarly to (85). In accordance with (82), the expectation of
the derivative process φ := i[Q, Z] satisfies the IDE

(Eφ)
�
= iE[Q, G(Z)] + Eχ(Z),

where, in view of (112), the superoperator χ in (69) is given by

χ(Z) = i[K− Im((2L + Φ)TΩM), Z]− 2Re([Z, (L + Φ)T]ΩM).

In particular, if both the plant and the unperturbed observer are OQHOs with Hurwitz
dynamics matrices (while the perturbations in (110) are not necessarily linear-quadratic),
then Z ′ can be found in a form similar to (93) along the lines of Example 3 from Section 6,
which is due to the criterion process Z in (108) and (109) being a quadratic function of the
plant and observer variables in X from (102).

The transverse Hamiltonian method outlined above was used in [41] to show that in
the mean square optimal CQF problem for linear quantum plants those observers which are
locally optimal in the class of linear quantum observers cannot be improved locally in the
sense of the first-order optimality conditions (81) by varying the Hamiltonian and coupling
operators of the observer along linear combinations of the Weyl operators associated with
the observer variables.
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8. Concluding Remarks

For a class of open quantum systems governed by Markovian Hudson–Parthasarathy
QSDEs, we have introduced a transverse Hamiltonian and derivative processes associ-
ated with perturbations of the system Hamiltonian and system–field coupling operators
along with the influence of such perturbations on the system dynamics. This provides a
fully quantum tool for infinitesimal perturbation analysis of system operators and cost
functionals with infinite-horizon formulations that involve averaging over the invariant
quantum state of the system. The proposed variational method has been accompanied by
detailed proofs and can be used for the development of first-order necessary conditions of
optimality in quantum control and filtering problems. We have illustrated these ideas for
OQHOs with quadratic performance criteria and the mean square optimal CQF problem.
The results of the paper are also applicable to perturbation analysis and variational prob-
lems in optimal control and filtering synthesis for more complicated networks of quantum
stochastic systems, such as in [7,56].
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The following abbreviations are used in this paper:

ALE algebraic Lyapunov equation
CCR canonical commutation relation
CQF coherent quantum filtering
CQLQG coherent quantum linear–quadratic Gaussian
GKSL Gorini–Kossakowski–Sudarshan–Lindblad
IDE integro-differential equation
ODE ordinary differential equation
OQHO open quantum harmonic oscillator
PR physical realizability
QSDE quantum stochastic differential equation
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