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Non-Kochen–Specker Contextuality.

Entropy 2023, 25, 1117.

https://doi.org/10.3390/e25081117

Academic Editors: Andrei

Khrennikov and Karl Svozil

Received: 29 June 2023

Revised: 21 July 2023

Accepted: 24 July 2023

Published: 26 July 2023

Corrected: 24 January 2024

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Non-Kochen–Specker Contextuality
Mladen Pavičić 1,2
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Abstract: Quantum contextuality supports quantum computation and communication. One of its
main vehicles is hypergraphs. The most elaborated are the Kochen–Specker ones, but there is also
another class of contextual sets that are not of this kind. Their representation has been mostly operator-
based and limited to special constructs in three- to six-dim spaces, a notable example of which is the
Yu-Oh set. Previously, we showed that hypergraphs underlie all of them, and in this paper, we give
general methods—whose complexity does not scale up with the dimension—for generating such
non-Kochen–Specker hypergraphs in any dimension and give examples in up to 16-dim spaces. Our
automated generation is probabilistic and random, but the statistics of accumulated data enable one
to filter out sets with the required size and structure.

Keywords: quantum contextuality; hypergraph contextuality; MMP hypergraphs; operator
contextuality; qutrits; Yu-Oh contextuality; random generation

1. Introduction

Quantum contextuality, which precludes assignments of predetermined values to
dense sets of states, has found applications in quantum communication [1–3], quantum com-
putation [4,5], quantum nonlocality [6], quantum steering [7], and lattice theory [8,9]. Small
contextual set experiments were carried out with photons [10–21], classical light [22–25],
neutrons [26–28], trapped ions [29], solid state molecular nuclear spins [30], and supercon-
ducting quantum systems [31].

There are three classes of contextual sets elaborated on in the literature which are not
of the more common kind of Kochen–Specker (KS) sets [32–34] and for which we provide
a hypergraph generalization in this paper.

The first class consists of the operator-based state-independent contextual (SIC) sets
put forward by Klyachko et al. [35], Yu and Oh [36], Bengtsson, Blanchfield, and Ca-
bello [37], Xu, Chen, and Su [38], Ramanathan and Horodecki [39], and Cabello, Kleinmann,
and Budroni [40], which are not Kochen–Specker sets.

The second class consists of hypergraphs built by multiples of mutually orthogonal
vectors where at least one of the multiples contains less than n vectors, where n is the
dimension of space in which a hypergraph resides [4,34,41].

The third class consists of the so-called true-implies-false and true-implies-true sets [42,43].
All sets from these three classes as well as their hypergraph generalization that we

elaborate on are contextual, and therefore, we call them non-KS contextual sets.
We provide a general method for arbitrarily generating many non-KS hypergraphs

in spaces of up to 16-dim. In order to achieve these goals, we make use of non-binary
non-KS McKay–Megill–Pavičić hypergraphs (MMPHs) and their language. By means of
our algorithms and programs, we arbitrarily obtain many MMPHs, which can be used for
various applications, e.g., to generate new entropic tests of contextuality or new operator-
based contextual sets.

The paper is organized as follows.
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In Section 2.1, we present the hypergraph language and formalism and define non-
binary MMPHs (NBMMPH) and binary MMPHs (BMMPH). We explain how vertices and
hyperedges in an MMPH and in n-dim space correspond to vectors and their orthogonali-
ties, i.e., m-tuples (2 ≤ m ≤ n) of mutually orthogonal vectors, respectively.

In Section 2.2, we present three methods of generating non-KS MMPHs.
In Section 2.3, we give examples of the aforementioned non-KS sets.
In Sections 2.3 and 2.4, we generate four- to eight-dim critical non-KS NBMMPHs

from master sets, themselves generated from simple vector components.
In Sections 2.5 and 2.6, we obtain nine- to sixteen-dim critical non-KS NBMMPHs via

the dimensional upscaling method, which does not scale up with dimension.
In Section 3, we discuss and review the steps and details of our methods.
In Section 4, we give the technical methods used in the paper.
In Section 5, we summarize the results achieved in the paper.

2. Results

We consider a set of quantum states represented by vectors in n-dim Hilbert space
Hn grouped into m-tuples (m ≤ n) of mutually orthogonal vectors with m < n holding
for at least one m. We describe such a set by means of MMPHs. In it, vectors themselves
are represented by vertices and mutually orthogonal m-tuples of them by hyperedges.
However, an MMPH itself has a definition that is independent of a possible representation
of vertices by means of vectors. For instance, there are MMPHs without coordinatization,
i.e., MMPHs for whose vertices, vectors do not exist. When coordinatization exists, that
does not mean that n − m vertices in considered hyperedges do not or cannot exist, but only
that we do not take the remaining n − m vertices/vectors into account while elaborating
on properties of vertices and hyperedges.

2.1. Formalism

Let us define the MMPH formalism/language [34].

Definition 1. An MMPH is an n-dim
hypergraph k-l with k vertices and l hyperedges in which

1. Every vertex belongs to at least one hyperedge;
2. Every hyperedge contains at least two and at most n vertices;
3. No hyperedge shares only one vertex with another hyperedge;
4. Hyperedges may intersect each other in at most n − 2 vertices
5. Graphically, vertices are represented as dots, and hyperedges are (curved) lines passing

through them.

Definition 2. An n-dim non-binary MMPH (NBMMPH), n ≥ 3, [44] is an MMPH for which
each hyperedge contains m vertices, 2 ≤ m ≤ n, and to which it is impossible to assign 1 s and 0 s
in such a way that

1. No two vertices within any of its edges are both assigned a value of 1;
2. In any of its edges, not all of the vertices are assigned a value of 0.

Definition 3. An NBMMPH in which m = n holds for all hyperedges is a KS MMPH.

For m = n, an NBMMPH reduces to a KS contextuality set, i.e., to a set satisfying the
Kochen–Specker theorem [32,34,45,46].

Definition 4. An NBMMPH in which m < n holds for at least one hyperedge is a non-KS MMPH.

In this paper, we consider only those non-KS MMPHs for which m = n for at least
one hyperedge.
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Definition 5. An n-dim binary MMPH (BMMPH), n ≥ 3, is an MMPH for which each
hyperedge contains m vertices, 2 ≤ m ≤ n, and to which it is possible to assign 1 s and 0 s in such
a way that

1. No two vertices within any of its edges are both assigned a value of 1;
2. In any of its edges, not all of the vertices are assigned a value of 0.

Definition 6. A non-KS NBMMPH to which vertices are added so as to make the number of
vertices equal to n in every hyperedge is called a filled MMPH.

Filled MMPHs are mostly BMMPHs.

Definition 7. A critical NBMMPH is an NBMMPH that is minimal in the sense that removing
any of its hyperedges turns it into a BMMPH.

Definition 8. Vertex multiplicity is the number of hyperedge vertexes "i" belongs to; we denote it
by m(i).

Definition 9. A master is a non-critical MMPH that contains smaller critical and non-critical
sub-MMPHs. A collection of sub-MMPHs of an MMPH master forms its class.

A parity proof ofthe contextuality of a k-l NBMMPH with odd l and where each vertex
shares an even number of edges stems from its inherent contradiction: because each vertex
shares an even number of hyperedges, there should be an even number of hyperedges with
1 s. At the same time, each edge can contain only one 1 by definition, and since there are an
odd number of hyperedges in the MMPH, there should also be an odd number of edges
with 1 s

Definition 10. A coordinatization of a non-KS NBMMPH is a set of vectors assigned to its
vertices that is a subset of n-dim vectors in Hn, n ≥ 3, assigned to vertices of its filled MMPH or
its smallest master (they need not coincide) or any of its masters.

In other words, a “coordinatization” of each hyperedge of a filled MMPH or a smallest
master MMPH is represented by an n-tuple of orthogonal vectors, while a “coordinatization”
of each hyperedge of the original non-KS NBMMPH is represented by a vector m-tuple
(m ≤ n), which is a subset of that n-tuple. This means that the former MMPH inherits
its coordinatization from the coordinatization of its master or its filled set (they may, but
usually do not, coincide) or any its masters. In our present approach, a coordinatization is
automatically assigned to each hypergraph by the very procedure of its generation from
master MMPHs, as we show below.

An MMPH is encoded with the help of printable ASCII characters, with the exception
of “space”, “0”, “+”, “,” and “.”, organized in single strings; its hyperedges are separated
by commas, and each string ends with a period. When all ASCII characters are exhausted,
one reuses them prefixed by “+”, and then again by “++”, and so forth. An MMPH with
k vertices and l edges is denoted as a k-l MMPH. ASCII string representation is used for
computer processing. MMPH strings are handled by means of algorithms embedded
in the programs SHORTD, MMPSTRIP, MMPSUBGRAPH, VECFIND, STATES01, and
others [8,47–51].

2.2. Generation of Non-KS MMPHs

To generate non-KS NBMMPHs, we make use of the following methods.

• M1 consists of dropping vertices contained in single hyperedges (multiplicity m = 1) [34]
of either NBMMPHs or BMMPHs and a possible subsequent stripping of their hyper-
edges. The obtained smaller MMPHs are often non-KS, although never KS.
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• M2 consists of a random addition of hyperedges to MMPHs so as to obtain bigger ones,
which then serve us to generate smaller non-KS NBMMPHs by stripping hyperedges
randomly again;

• M3 consists of the random deletion of vertices in either NBMMPHs or a BMMPHs
until a non-KS NBMMPH is reached.

We combine all three methods to obtain an arbitrary number of non-KS NBMMPHs in
an arbitrary dimension. The methods rely on the property of MMPHs where, by stripping
an MMPH or NBMMPH (critical or not) or BMMPH of its hyperedges, we can arrive
at smaller non-KS NBMMPHs in contrast to a critical KS NBMMPH whose stripping of
hyperedges can never yield another (smaller) NBMMPH.

2.3. Dimensions Three to Five and the Three Classes of Non-KS Contextual Sets from the Literature

In Figure 1, we give examples from each of the three classes of non-KS sets referred to
in the Introduction. Here, we remind the reader that k-l MMPHs refer to hypergraphs with
k vertices and l hyperedges (Definition 1), while the corresponding graphs have more than
l edges. For example, in Figure 1a, the hypergraph hyperedge ALK corresponds to a graph
clique with three edges: AL, LK, and KA.
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Figure 1. (a) Yu-Oh’s three-dim non-KS 13-16 non-KS NBMMPH ( [36] Figure 2); gray vertices that
enlarge 13-16 to 25-16 are necessary for coordinatization and implementation; (b) Howard, Wallman,
Veitech, and Emerson’s four-dim 30-108 non-KS NBMMPH ([4] Figure 2); (c) Cabello, Portillo, Solís,
and Svozil’s five-dim 10-9 non-KS NBMMPH ([42] Figure 5a); the original symbols are presented in
brackets (A,B).

Yu-Oh’s three-dim non-KS NBMMPH, shown in Figure 1a, is presumably the earliest
of the kind. It is operator-based, but the operators are defined via states/vectors/vertices
of 13-16 MMPH, as reviewed in [41]. Since orthogonal vectors in a three-dim space form
triples, full representation requires 25-16, as indicated by the gray vertices in the figure,
which can be obtained from Peres’ 33-40 [41] by stripping hyperedges and the 13-16 from it
by removing m = 1 vertices, i.e., via M1. The 13-16 MMPH is not critical, and it contains
four critical sub-MMPHs, the smallest of which is 10-9 [41].

Howard, Wallman, Veitech, and Emerson’s four-dim 30-108 non-KS NBMMPH, shown
in Figure 1b, which was obtained from the set of stabilizer states was used to prove that
the underlying contextuality is essential for quantum computation. We discuss its filled
232-108 MMPH and its critical 24-71 MMPH in [34].

Cabello, Portillo, Solís, and Svozil’s five-dim 10-9 non-KS NBMMPH, shown in
Figure 1b, is one of the minimal five-dim true-implies-false sets (TIFS) ([42] Figure 5a).
It is not critical, and the only critical part it contains is a 10-7, but it is not a TIFS any
more. The coordinatization of the filled 10-9 (31-9, which includes the coordinatization of
10-9 itself) can be built from the {0,±1, 2} components and is given in Appendix A.

Our methods can generate NBMMPHs that are critical as well as those that are not.
Therefore, although none of the aforementioned examples are critical, we focus on critical
ones, because they offer the simplest implementation and presentation. The rationale for
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adopting such an approach is that only minimal contextual sets, i.e., critical NBMMPHs,
are relevant for experimental implementations, since their supersets just contain additional
orthogonalities that do not change the contextuality property of their smallest critical set.
Hence, while designing MMPHs for particular implementations, we should attempt to find
the ones that are critical and are provided via automated generations of MMPHs.

In [41], we give ample distributions of three-dim non-KS NBMMPHs obtained via M1
and M2. Therefore, below, we give distributions and samples of just four- and five-dim
critical non-KS NBMMPHs presented in Figure 2a,f. Here, we only point out that the
KS “bug,” the 8-7 non-KS NBMMPH shown in ([41] Figure 3a), is the smallest three-dim
non-KS NBMMPH that satisfies our requirement that at least one of the hyperedges must
contain n vertices (n being the dimension of the considered MMPH), none of which has
the multiplicity m = 1. Its string, the string of its filled MMPH, and their coordinatizations
are given in Appendix A, as are the strings and coordinatizations of any other MMPH
considered in the paper.
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Figure 2. (a) Distributions of critical four-dim non-KS NBMMPHs obtained from submaster 20-10,
which was obtained from (Peres’) 24-24 supermaster (generated by vector components {0,±1}) by
M1 (dots in red) and from submaster 58-51, itself obtained from the 60-72 supermaster (generated

by vector components {0,±ϕ, ϕ − 1}, where ϕ is the golden ratio: 1+
√

5
2 ) by M1 (in black); the

abscissa is l (number of hyperedges); and the ordinate is k (number of vertices). The dots represent
(k, l). Consecutive dots (same l) are shown as strips; (b) the smallest non-KS in the distributions:
4-3; (c) BMMPH 8-3—filled with 4-3—which one needs for obtaining the coordinatization and
implementation of 4-3; (d) the 16-9 critical obtained from the 20-10 master; (e) the 16-9 critical
obtained from the 58-51 master; (f) distributions of critical five-dim non-KS NBMMPHs obtained
from submaster 66-50 which was obtained from the 105-136 supermaster (generated by vector
components {0,±1}); (g) the smallest critical; (h) a 16-9 critical for the sake of comparison with
four-dim 16-9s; strings and coordinatizations are given in Appendix A.

To obtain non-KS NBMMPHs via M1, we first generate the supermasters from the
vector components. In the four-dim space, we obtain the 24-24 supermaster from the
{0,±1} components and the 60-72 supermaster from the {0,±ϕ, ϕ − 1} components, where
ϕ = 1+

√
5

2 (the golden ratio). Their strings and coordinatizations are given in Appendix A.
Then, we randomly strip hyperedges from them, e.g., 14 from 24-24 and 21 from the
60-72 supermaster, so as to obtain the 20-10 and 58-51 masters, respectively. From the latter
masters, we remove m = 1 vertices, and from any of them, we generate the classes of
critical MMPHs by stripping them further until we obtain critical MMPHs that form the
20-10 and 58-51 non-KS classes. In the five-dim space, we obtain the 105-136 supermaster
from the {0,±1} components. Its string and coordinatization are given in Appendix A.
Further, we randomly strip 86 hyperedges to obtain a 66-50 master and eventually obtain
its class of critical non-KS NBMMPHs.

We generate n-dim critical non-KS MMPHs under the requirement that at least one of
their hyperedges must contain n vertices, of which none have a multiplicity of 1 (m = 1).
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(All examples from Figure 1 satisfy these conditions.) For instance, the smallest critical
obtained in the four-dim distribution, shown in Figure 2a, is the 4-3 shown in Figure 2b,
whose hyperedge 1234 is of such a kind. Its filled MMPH shown in Figure 2c provides
a coordinatization necessary for the implementation of the 4-3. The 16-9 critical of the
20-10 master shown in Figure 2d contains two m = 1 vertices (9,B), because m = 1 vertices
were stripped only once (from the master) when we started the generation of the 20-10 class.
We can remove one or both of these vertices and still have a critical non-KS MMPH (15-9 or
14-9, respectively) if we want to for some reason. The 16-9 critical shown in Figure 2e has a
parity proof, since in it, each vertex shares exactly two hyperedges, while there is an odd
number of them (9). Strings and coordinatizations are given in Appendix A.

2.4. Dimensions Six to Eight

Cabello, Portillo, Solís, and Svozil also give a number of minimal six-dim TIFS non-
KS NBMMPHs in ([42] Figure 7) along the same line as for their five-dim one shown
in Figure 1c. To our knowledge, there are no explicit examples of non-KS NBMMPH in
dimensions seven and eight in the literature. Therefore, we straightforwardly move to the
generation of six- to eight-dim non-KS NBMMPHs.

An NBMMPH in the six-dim Hilbert space corresponds to a qubit entangled with a
qutrit (H6 = H2 ⊗H3) or a 5

2 -spin system. So far, to obtain KS NBMMPH masters, the
following vector components have been used: {0,±ω}, [44,52,53] (ω is a cube root of 1,
ω = e2πi/3 = (i

√
3 − 1)/2), {0,±ω, ω2} [53,54] and {0,±1} [52]. Since the first set of

components yields a master with only three MMPHs, we make use of the other two to
generate six-dim non-KS NBMMPHs.

The {0, 1, ω, ω2} set generates two unconnected masters: 591-1123 and 81-162 [53].
To obtain non-KS NBMMPHs, we apply M1 to the 81-162 class. Their distribution is shown
in Figure 3a in black. The {0,±1} set generates a 236-1216 master. Its non-KS NBMMPHs
are also obtained via M1 and are shown in Figure 3a in green.
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Figure 3. (a) Distributions of 6-dim critical non-KS NBMMPHs obtained from two different submasters—see
text; (b) the smallest critical non-KS NBMMPH obtained from the former class by M3; it has a
parity proof; (c) an even smaller critical non-KS NBMMPH obtained from it by hand; it has a
parity proof; (d) the smallest critical non-KS NBMMPH obtained from the latter class by M1;
(e) distributions of 7-dim critical non-KS NBMMPHs—see text; (f) 14-8 non-KS NBMMPH, one
of the smallest non-KS NBMMPHs obtained via M3 from the smallest KS NBMMPH 34-14; (g) 31-13
also obtained from the 34-14 (no m = 1 vertices essential for criticality); (h,i) two 8-dim KS MMPHs
with the smallest number of hyperedges (9); (i) serves us in generating the 15-9 non-KS NBMMPH in
(j); (h–j) MMPHs have parity proofs; strings and coordinatizations are given in Appendix A.

In the seven-dim space, masters obtained from simple vector components, such
as {0,±1}, are too big to be used for the exhaustive generation of a complete non-KS
NBMMPH class. Instead, as in the previous six-dim case, we strip a significant portion
of hyperedges from a master obtained from {0,±1} components and make use of the
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remaining MMPHs to obtain a non-KS class, as shown in Figure 3e; {0,±1} yields the
805-9936 master, and stripping of 8500 hyperedges leaves us with NBMMPHs with 436 hy-
peredge NBMMPHs, which generates a 436-hyperedge class. Since this class is still big, we
have to repeat M1 several times to obtain small non-KS critical NBMMPHs. As a result,
hyperedges of all small NBMMPHs may contain some m = 1 vertices essential for criticality,
as shown in Figure 3f (the removal of vertex 6 would terminate the criticality of the MMPH).
In dimensions greater than nine, such vertices do not appear, although even here we can
avoid their generation by applying M3 to KS NBMMPHs, as shown in Figure 3g.

The eight-dim MMPH master is big (2768-1346016), but the stripping technique can
still provide us with non-KS NBMMPHs via M1. However, the MMPHs with m = 1 vertices
are also big, and obtaining small criticals with up to 40 hyperedges would require roughly
one week on a supercomputer with 200 2.5 GHz CPUs working in parallel. We may be able
to work around this problem by exploiting previously generated small KS criticals [52] so
as to use them as masters for non-KS MMPHs while applying M3, as shown in Figure 3h–j
(cf. the six-dim star in Figure 3b). Notice the graphical similarity of the four-dim 18-9 ([51]
Figure 3a) and eight-dim 36-9 (shown in Figure 3h) for each vertex from the 18-9 vs. a
pair of vertices in the 36-9. Since the distribution of eight-dim KS MMPHs in Ref. [52] is
abundant, we can arbitrarily generate many non-KS NBMMPHs in this manner via M3.

2.5. Dimensions Nine to Eleven

The nine-dim NBMMPH master obtained from {0,±1} has 9586 vertices and 12,068,705
hyperedges and that is too big for the direct generation of critical MMPHs (via stripping
and filtering), especially for higher dimensions. However, billions of BMMPHs can be
generated from the master, and as we have already stressed, stripping them of m = 1
often provides us with NBMMPHs. This renders M1 applicable. Thus, after the random
stripping of 12,068,200 hyperedges, we obtained submasters with 505 hyperedges. By
requiring that at least one of the hyperedges contains n vertices and that some of them can
have the multiplicity m = 1, our program STATES01 yields a series of critical NBMMPHs,
the smallest of which is 13-6, as shown in Figure 4a. The hyperedge 4ac7efhK2 contains
nine vertices. (Notice also that the 13-6 NBMMPH remains a critical non-KS NBMMPH
with any, some, or all of a,c,e,f,h,K removed.) The filled 13-16, i.e., 44-6, also shown in
Figure 4a, obtains the coordinatization directly from the supermaster, since the programs
preserve the names of the vertices in the process of stripping and yielding sub-MMPHs.
Obtaining a coordinatization via VECFIND takes too many CPU hours. The latter feature
also makes M2 inapplicable.
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Figure 4. (a) The 44-6 BMMPH and its critical subgraph 13-6 non-KS NBMMPH directly obtained
from the supermaster via M1; (b) the critical nine-dim 19-8 obtained via M3 from the master 47-16;
(c) the critical ten-dim 18-9 non-KS NBMMPH obtained via M3 from the 50-15 master; (d) the
critical eleven-dim 19-8 non-KS NBMMPH obtained via M3 from the 50-14 master. Strings and
coordinatizations are given in Appendix A.

If we wanted to keep our n-vertex requirement in full (“no m = 1 vertices”), in order
to obtain critical non-KS NBMMPHs, we would need to employ M3, so as to apply it on KS
NBMMPHs obtained via dimensional upscaling [55,56], as follows. We removed several
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vertices from the smallest critical 47-16 obtained in [56] until it was not critical any more.
Then, STATES01 yielded the 19-8 critical shown in Figure 4b. (The removal of vertex L
would terminate the criticality of the MMPH as with the seven-dim one shown in Figure 3f,
but that would not affect the full n-vertex requirement.)

A 10-dim or any higher-dimensional masters are too big to be generated from vector
components. Therefore, to obtain the non-KS MMPH in those dimensions, we rely on mini-
mal KS NBMMPHs obtained via dimensional upscaling [56] while applying M3. The pro-
cedure consists of removing vertices and/or hyperedges in such a way that an NBMMPH
stops being critical, which enables us to generate smaller critical non-KS NBMMPHs from
it via STATES01.

In Figure 4c, we show an 18-9 10-dim critical obtained via this approach from the 50-15
KS MMPH master [56].

In Figure 4d, we show a 19-8 11-dim critical obtained via the same approach from the
50-14 KS MMPH master [56].

In the following sections, we stay with this approach while applying M3.

2.6. Dimensions 12 to 16

It has been proven that the minimal complexity (minimal number of hyperedges or
vertices) of the dimensional upscaling of KS MMPHs does not scale up with dimension [55].
In [56], we give a constructive proof that the minimal number of hyperedges of KS MMPHs
repeatedly fluctuates between nine and sixteen, which confirms this result. In the previous
section we provide constructive generations of critical non-KS NBMMPHs in dimensions
nine to eleven and in this section, in Figure 5a–e in dimensions twelve to sixteen, whose
minimal number of hyperedges fluctuates between eight (odd dimensions) and nine (even
dimensions) under the requirement that at least one the hyperedges contains n vertices,
none of which has the multiplicity m = 1. In lower dimensions (3–6), the minimal number
of hyperedges is even smaller.
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Figure 5. (a) Twelve-dim 19-9 critical non-KS NBMMPH directly obtained from the master 52-9 via
M3; (b) 13-dim 19-8 critical non-KS NBMMPH obtained from the master 63-16, where the hyperedges
do not form any loop with an order of three or higher; (c) 14-dim critical obtained from 66-15, where
the maximal loop also has an order of 2; (d) 15-dim 25-8 critical from the 66-14 master; (e) 16-dim
22-9 critical from the 70-9 master, where all criticals are obtained via M3; all criticals and masters are
given in the Appendix A.

3. Discussion

In this paper, we first generated non-KS contextual NBMMPHs (non-binary MMP
hypergraphs) with the help of master sets generated from simple vector components whose
complexity exponentially scales with dimension—for dimensions four to eight—and then
by means of methods whose complexity does not scale with dimension. The need for
developing such methods and obtaining MMPHs in higher dimensions has emerged from
recent elaborations of classes of contextual sets that are not of the KS kind, all of which
have an MMP hypergraph representation. Examples of such elaborations in the literature
and their correspondence with MMPHs are given in Section 2.3. In subsequent sections, we
presented generations of non-KS NBMMPHs in spaces of up to 16-dim.
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In Section 2.1, we presented the formalism and language of MMPH, and in Section 2.2,
we presented the methods of generating them. In Section 2.3, we reviewed the most promi-
nent examples of non-KS sets from the literature in dimensions three to five, represented
them via MMPH formalism, and generated several new non-KS MMPHs in dimensions
four and five with several coordinatizations. In Section 2.3, we then went up to the eight-
dim spaces and showed that the arbitrarily exhaustive generation of MMPHs gets more
and more computationally demanding from three-dim to eight-dim spaces due to the
exponentially increasing size of the MMPH masters obtained from vector components
and the exponential complexity of extracting of NBMMPH classes from them. This is
exacerbated by the ratio of NBMMPHs and BMMPHs, which starts with less than 0.1% in
four-dim spaces and grows exponentially with the dimension. So, in the nine-dim space in
Section 2.5 with a master containing 9586 vertices and 12,068,705 hyperedges, we can strip
any number of hyperedges from the master, but the probability of finding any NBMMPH
among the obtained MMPHs decreases with size (e.g., searching for them in MMPHs with
more than a few thousand hyperedges would take “forever” for any practical purpose).
In spaces with dimensions of 10 and greaterm no method for obtaining MMPH masters
from vector components is available anymore.

Therefore, to ensure arbitrarily exhaustive generation of MMPHs in ever higher di-
mensions, we need a method whose complexity does not grow with the dimensions.
For comparatively small KS MMPHs, such a method—dimensional upscaling—was re-
cently developed in [56] based on previous results in [55]. In this paper, we put forward a
method of generating non-KS NBMMPHs whose complexity also does not scale up with
the dimensions and which makes use of KS MMPHs obtained by the former KS method
(in Sections 2.5 and 2.6). The method applies to the generation of comparatively small
MMPHs that are still suitable for any practical implementation since we can always obtain
bigger MMPHs at the cost of the time a generation would take and since really big MMPHs
cannot be generated at all, and even if they could, they would be unimplementable. The
minimal complexity (minimal number of hyperedges or vertices) of KS MMPHs repeatedly
fluctuates between nine and sixteen, while for non-KS NBMMPHs, it fluctuates between
eight (odd dimensions) and nine (even dimensions) in seven- to sixteen-dim spaces. In
three- to six-dim, it even goes down to three. We provide a list of them in Table 1.

Table 1. The smallest critical non-KS MMPHs obtained via the small vector component method
and by the dimensional upscaling method via M1 and M3. Notice the steady fluctuation in the
number of hyperedges over dimensions which is consistent with our previous result showing that
the minimum complexity of NBMMPHs does not grow with the dimensions. The MMPH strings and
coordinatizations of both the criticals and their masters are given in Appendix A. ϕ is the Golden
ratio, and ω is the cube root of 1.

dim Smallest Critical MMPHs Master Vector Components

3-dim 8-7 (Kochen–Specker’s “bug”) 49-36 (Bub’s KS MMPH) {0,±1,±2, 5}
4-dim 4-3 8-3 {0,±1}
4-dim 16-9 58-51 {0,±ϕ, ϕ − 1}
5-dim 7-5 16-5 {0,±1}
6-dim 11-7 19-7 {0, 1, ω, ω2}
7-dim 14-8 34-14 {0,±1}
8-dim 15-9 2768-1346016 {0,±1}
9-dim 13-6 9586-12068705 {0,±1}
9-dim 19-8 47-16 {0,±1}

10-dim 18-9 50-15 {0,±1}
11-dim 19-8 50-14 {0,±1}
12-dim 19-9 52-9 {0,±1}
13-dim 19-8 63-16 {0,±1}
14-dim 19-9 66-15 {0,±1}
15-dim 25-8 66-14 {0,±1}
16-dim 22-9 70-9 {0,±1}
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4. Methods

The methods used to handle quantum contextual sets rely on algorithms and pro-
grams within the MMP language: VECFIND, STATES01, MMPSTRIP, MMPSHUFFLE,
SUBGRAPH, LOOP, and SHORTD developed in [8,47–51,57,58]. They are freely available
at http://puh.srce.hr/s/Qegixzz2BdjYwFL (accessed on 22 July 2023). MMPHs can be
visualized via hypergraph figures consisting of dots and lines and represented as a string
of ASCII characters. The latter representation enables the processing of billions of MMPHs
simultaneously via supercomputers and clusters. For the latter elaboration, we devel-
oped other dynamical programs specifically to handle and parallelize jobs with arbitrary
numbers of MMP hypergraph vertices and edges.

5. Conclusions

To summarize, based on elaborations of non-KS sets that recently appeared in the
literature and of which we provided several examples in Section 2.3, we developed methods
of generating comparatively small non-KS contextual sets in high-dimensional spaces
whose complexity does not grow with the number of dimensions. We provided examples
in all dimensions up to 16. A more detailed summary of the achieved results is given in
Section 3.
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Abbreviations
The following abbreviations are used in this manuscript:

MMPH McKay–Megill–Pavičić hypergraph (Definition 1)
NBMMPH Non-binary McKay–Megill–Pavičić hypergraph (Definition 2)
BMMPH Binary McKay–Megill–Pavičić hypergraph (Definition 5)
KS Kochen–Specker (Definition 3)
non-KS Non-Kochen–Specker (Definition 4)
M1, M2, M3 Methods 1,2,3 (Section 2.2)

Appendix A. SCII Strings of Non-KS MMPH Classes and Their Masters and
Supermasters

Below, we give strings and coordinatizations of all MMPHs referred to in the main
body of the paper. The first hyperedges in a line of a critical NBMMPH often correspond to
the biggest loops in the figures.

Appendix A.1. Three-dim MMPHs

8-7 (KS “bug”) 123,34,45,567,78,81,26.

13-7 (filled 8-7) 123,394,4A5,567,7B8,8C1,2D6. 1=(0,0,1), 2=(0,1,0), 3=(1,0,0), 4=(0,1,1),
5=(1,1,−1), 6=(1,0,1), 7=(−1,2,1), 8=(2,1,0), 9=(0,1,−1), A=(2,−1,1), B=(1,−2,5), C=(1,−2,0),
D=(1,0,−1)

http://puh.srce.hr/s/Qegixzz2BdjYwFL
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Appendix A.2. Four-dim MMPHs

4-3 12,34,1234.

8-3 (filled 4-3) 1562,3784,1234. 1=(0,0,0,1), 2=(0,0,1,0), 3=(0,1,0,0), 4=(1,0,0,0),
5=(1,1,0,0), 6=(1,−1,0,0), 7=(0,0,1,1), 8=(0,0,1,−1)

16-9 3124,49A8,8567,7BC3,DE,FG,GE62,FD51,FECA.

20-9 (filled 16-9) 1=(1,0,0,−1), 2=(0,1,1,0), 3=(1,1,−1,1), 4=(1,−1,1,1), 5=(1,0,0,1), 6=(0,1,
−1,0), 7=(1,1,1,−1), 8=(−1,1,1,1), 9=(0,0,1,−1), A=(1,1,0,0), B=(0,0,1,1), C=(1,−1,0,0), D=(0,1,0,
0), E=(0,0,0,1), F=(0,0,1,0), G=(1,0,0,0), H=(1,0,1,0), I=(1,0,−1,0), J=(0,1,0,1), K=(0,1,0,−1)

24-24 (Peres’ supermaster) LMNO,HIJK,DEFG,BCFG,9ADE,78EG,56DF,5678,9ABC,
68JK,57HI,ACIK,9BHJ,1234,4DGO,3EFN,258M,167L,19CM,2ABL,3HKO,4IJN,34NO,12LM.
1=(0,0,0,1), 2=(0,0,1,0), 3=(1,1,0,0), 4=(1,−1,0,0), 5=(0,1,0,−1), 6=(1,0,−1,0), 7=(1,0,1,0),
8=(0,1,0,1), 9=(0,1,−1,0), A=(1,0,0,−1), B=(1,0,0,1), C=(0,1,1,0), D=(1,1,1,1), E=(1,−1,−1,1),
F=(1,−1,1,−1), G=(1,1,−1,−1), H=(−1,1,1,1), I=(1,1,−1,1), J=(1,1,1,−1), K=(1,−1,1,1), L=(0,1,
0,0), M=(1,0,0,0), N=(0,0,1,1), O=(0,0,1,−1)

16-9 231,1BC6,654,45GF,FGED,DE32,789A,7BC8,9A.

20-9 (filled 16-9) 2H31,1BC6,6I54,45GF,FGED,DE32,789A,7BC8,9JKA. 1=(0,0,0,ϕ),
2=(ϕ−1,0,−ϕ,0), 3=(ϕ,0,ϕ−1,0), 4=(0,ϕ,0,ϕ), 5=(0,ϕ,0,−ϕ), 6=(0,0,ϕ,0), 7=(0,0,ϕ,ϕ),
8=(0,0,ϕ,−ϕ), 9=(ϕ,ϕ−1,0,0), A=(ϕ−1,−ϕ,0,0), B=(ϕ,ϕ,0,0), C=(ϕ,−ϕ,0,0), D=(0,ϕ−1,0,−ϕ),
E=(0,ϕ,0,ϕ−1), F=(ϕ,0,ϕ,0), G=(ϕ,0,−ϕ,0), H=(0,ϕ,0,0), I=(ϕ,0,0,0), J=(0,0,ϕ,ϕ−1),
K=(0,0,ϕ−1,−ϕ)

60-72 (supermaster) 1234,1256,1278,129A,13BC,13DE,13FG,1HI4,1JK4,1LM4,
23NO,23PQ,23RS,2TU4,2VW4,2XY4,Za34,Za56,Za78,Za9A,Z5bc,Zde6,fg34,fg56,fg78,
fg9A,hi34,hi56,hi78,hi9A,ajk6,a5lm,ano6,apq6,TUBC,TUDE,TUFG,TBbo,TCmd,VWBC,
VWDE,VWFG,XYBC,XYDE,XYFG,HINO,HIPQ,HIRS,HNco,HOme,JKNO,JKPQ,JKRS,LMNO,LMPQ,
LMRS,UBle,UnCc,UrsC,UtCu,jkbc,INld,InOb,IvwO,IxOy,nbco,rsbo,pbcq,vwco,tbuo,
xyco,lmde. 1=(0,0,0,ϕ), 2=(0,0,ϕ,0), 3=(0,ϕ,0,0), 4=(ϕ,0,0,0), 5=(ϕ,ϕ,0,0), 6=(ϕ,−ϕ,0,0),
7=(ϕ,ϕ−1,0,0), 8=(ϕ−1,−ϕ,0,0), 9=(−ϕ,ϕ−1,0,0), A=(ϕ−1,ϕ,0,0), B=(ϕ,0,ϕ,0), C=(ϕ,0,−ϕ,0),
D=(−ϕ,0,ϕ−1,0), E=(ϕ−1,0,ϕ,0), F=(ϕ,0,ϕ−1,0), G=(ϕ−1,0,−ϕ,0), H=(0,ϕ,ϕ,0), I=(0,ϕ,−ϕ,0),
J=(0,ϕ−1,ϕ,0), K=(0,−ϕ,ϕ−1,0), L=(0,ϕ−1,−ϕ,0), M=(0,ϕ,ϕ−1,0), N=(ϕ,0,0,ϕ), O=(ϕ,0,0,−ϕ),
P=(ϕ,0,0,ϕ−1), Q=(ϕ−1,0,0,−ϕ), R=(−ϕ,0,0,ϕ−1), S=(ϕ−1,0,0,ϕ), T=(0,ϕ,0,ϕ), U=(0,ϕ,0,−ϕ),
V=(0,ϕ,0,ϕ−1), W=(0,ϕ−1,0,−ϕ), X=(0,−ϕ,0,ϕ−1), Y=(0,ϕ−1,0,ϕ), Z=(0,0,ϕ,ϕ), a=(0,0,ϕ,−ϕ),
b=(ϕ,−ϕ,−ϕ,ϕ), c=(ϕ,−ϕ,ϕ,−ϕ), d=(ϕ,ϕ,ϕ,−ϕ), e=(ϕ,ϕ,−ϕ,ϕ), f=(0,0,ϕ,ϕ−1), g=(0,0,ϕ−1,−ϕ),
h=(0,0,−ϕ,ϕ−1), i=(0,0,ϕ−1,ϕ), j=(ϕ,ϕ,ϕ−1,ϕ−1), k=(ϕ−1,ϕ−1,−ϕ,−ϕ), l=(−ϕ,ϕ,ϕ,ϕ),
m=(ϕ,−ϕ,ϕ,ϕ), n=(ϕ,ϕ,ϕ,ϕ), o=(ϕ,ϕ,−ϕ,−ϕ), p=(−ϕ,−ϕ,ϕ−1,ϕ−1), q=(ϕ−1,ϕ−1,ϕ,ϕ),
r=(ϕ,ϕ−1,ϕ,ϕ−1), s=(ϕ−1,−ϕ,ϕ−1,−ϕ), t=(−ϕ,ϕ−1,−ϕ,ϕ−1), u=(ϕ−1,ϕ,ϕ−1,ϕ),
v=(ϕ,ϕ−1,ϕ−1,ϕ), w=(ϕ−1,−ϕ,−ϕ,ϕ−1), x=(−ϕ,ϕ−1,ϕ−1,−ϕ), y=(ϕ−1,ϕ,ϕ,ϕ−1)

Appendix A.3. Five-dim MMPHs

7-5 41235,56,674,234,714.

16-5 (7-5 filled) 41235,589A6,6BC74,2DE34,7FG14. 1=(0,0,1,0,0), 2=(1,−1,0,0,0),
3=(1,1,0,0,0), 4=(0,0,0,0,1), 5=(0,0,0,1,0), 6=(0,1,1,0,0), 7=(1,0,0,1,0), 8=(1,0,0,0,−1),
9=(0,1,−1,0,0), A=(1,0,0,0,1), B=(1,−1,1,−1,0), C=(1,1,−1,−1,0), D=(0,0,1,1,0), E=(0,0,1,−1,0),
F=(0,1,0,0,0), G=(1,0,0,−1,0)

16-9 63457,75B9E,EFGD,DC,CA86,12345,89125,AB,FGE.

26-9 (16-9 filled) 63457,75B9E,EFHGD,DIJKC,CAL86,12345,89125,AMNOB,FPQGE.
1=(1,1,1,−1,0), 2=(1,1,−1,1,0), 3=(1,−1,1,1,0), 4=(−1,1,1,1,0), 5=(0,0,0,0,1), 6=(0,0,1,−1,0),
7=(1,1,0,0,0), 8=(0,0,1,1,0), 9=(1,−1,0,0,0), A=(0,1,0,0,1), B=(0,0,1,0,0), C=(1,0,0,0,0), D=(0,1,
1,0,0), E=(0,0,0,1,0), F=(1,0,0,0,1), G=(0,1,−1,0,0), H=(1,0,0,0,−1), I=(0,0,0,1,1), J=(0,1,−1,1,
−1), K=(0,1,−1,−1,1), L=(0,1,0,0,−1), M=(1,1,0,−1,−1), N=(1,−1,0,−1,1), O=(1,0,0,1,0),
P=(1,1,1,0,−1), Q=(−1,1,1,0,1)
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105-136 (supermaster) 12345,12367,12489,12AB5,134CD,13EF5,1GH45,1GH67,1G6IJ,
1GKL7,1H6MN,1HOP7,1EF89,1E8IP,1E9KN,1F8ML,1F9OJ,1ABCD,1ACJP,1ADLN,1QRST,
1QUVW,1XYSZ,1XabW,1BCMK,1BDOI,1cYVd,1caeT,1fRbd,1fUeZ,1OIJP,1MKLN,234gh,23ij5,
2kl45,2kl67,2k6mn,2kop7,2l6qr,2lst7,2ij89,2i8mt,2i9or,2j8qp,2j9sn,2ABgh,2Agtn,2Ahpr,2uvSw,
2uxyW,2z!S",2z#$W, 2Bgoq,2Bhsm,2%!yd,2%#ew,2&v$d,2&xe",2smtn,2oqpr,’(345,’(367,’(489,’
(AB5,’36)*,’3-/7, ’48:;,’4<=9,’A>?5,’@[B5,(36\],(3ˆ_7,(48‘{,(4|}9,(A∼+15,(+2+3B5,3ijCD,3iC_*,
3iD-\,3jC/],3jDˆ),3EFgh,3Eg_),3Eh/\,3+4+5Vw,3+4+6yT,3+7+8V",3+7+9$T,3Fg-],3Fhˆ*,3+A+
8yZ, 3+A+9bw,3+B+5$Z,3+B+6b",3ˆ_)*,3-/\],kl4CD,klEF5,k4C};,k4D<‘,kE+3?5,kF@∼5, l4C=
{,l4D|:, lE[+15,lF+2>5,GH4gh,GHij5,G4g}:,G4h=‘,Gi+3>5,Gj[∼5,+C4+5Rx,+C4+6vU,+C+7X%5,
+C+Azc5, +D4+8R#,+D4+9!U,+D+4X&5,+D+Buc5,H4g<{,H4h|;,Hi@+15, Hj+2?5,+E4+8va,+E4+
9Yx,+E+4zf5, +E+BQ%5,+F4+5!a,+F4+6Y#,+F+7uf5,+F+AQ&5,4|}:;,4<=‘{,+2+3>?5,@[∼+15.
1=(0,0,0,0,1), 2=(0,0,0,1,0), ’=(0,0,0,1,1), (=(0,0,0,1,−1), 3=(0,0,1,0,0), k=(0,0,1,0,1), l=(0,0,1,0,
−1), G=(0,0,1,1,0), +C=(0,0,1,1,1), +D=(0,0,1,1,−1), H=(0,0,1,−1,0), +E=(0,0,1,−1,1), +F=(0,0,
−1,1,1), 4=(0,1,0,0,0), i=(0,1,0,0,1), j=(0,1,0,0,−1), E=(0,1,0,1,0), +4=(0,1,0,1,1), +7=(0,1,0,1,−1),
F=(0,1,0,−1,0), +A=(0,1,0,−1,1), +B=(0,−1,0,1,1), A=(0,1,1,0,0), u=(0,1,1,0,1), z=(0,1,1,0,−1),
Q=(0,1,1,1,0), +2=(0,1,1,1,1), @=(0,1,1,1,−1), X=(0,1,1,−1,0), [=(0,1,1,−1,1), +3=(0,1,1,−1,−1),
B=(0,1,−1,0,0), %=(0,1,−1,0,1), &=(0,−1,1,0,1), c=(0,1,−1,1,0), ∼=(0,1,−1,1,1), >=(0,1,−1,1,−1),
f=(0,−1,1,1,0), ?=(0,1,−1,−1,1), +1=(0,−1,1,1,1), 5=(1,0,0,0,0), g=(1,0,0,0,1), h=(1,0,0,0,−1),
C=(1,0,0,1,0), +8=(1,0,0,1,1), +5=(1,0,0,1,−1), D=(1,0,0,−1,0), +6=(1,0,0,−1,1), +9=(−1,0,0,1,1),
8=(1,0,1,0,0), !=(1,0,1,0,1), v=(1,0,1,0,−1), Y=(1,0,1,1,0), |=(1,0,1,1,1), <=(1,0,1,1,−1), R=(1,0,1,
−1,0), ==(1,0,1,−1,1), }=(1,0,1,−1,−1), 9=(1,0,−1,0,0), x=(1,0,−1,0,1), #=(−1,0,1,0,1), U=(1,0,
−1,1,0), ‘=(1,0,−1,1,1), :=(1,0,−1,1,−1), a=(−1,0,1,1,0), ;=(1,0,−1,−1,1), {=(−1,0,1,1,1),
6=(1,1,0,0,0), $=(1,1,0,0,1), y=(1,1,0,0,−1), b=(1,1,0,1,0), ˆ=(1,1,0,1,1), −=(1,1,0,1,−1), V=(1,1,0,
−1,0), /=(1,1,0,−1,1), _=(1,1,0,−1,−1), e=(1,1,1,0,0), s=(1,1,1,0,1), o=(1,1,1,0,−1), O=(1,1,1,1,
0), M=(−1,1,1,1,0), I=(1,−1,−1,1,0), K=(1,1,1,−1,0), q=(−1,1,1,0,1), m=(1,−1,−1,0,1), S=(1,1,
−1,0,0), p=(1,1,−1,0,1), t=(1,1,−1,0,−1), L=(1,1,−1,1,0), d=(−1,1,1,0,0), J=(1,−1,1,−1,0),
P=(1,1,−1,−1,0), N=(1,−1,1,1,0), n=(1,−1,1,0,−1), 7=(1,−1,0,0,0), w=(1,−1,0,0,1), "=(−1,1,0,0,
1), T=(1,−1,0,1,0), \=(1,−1,0,1,1), )=(1,−1,0,1,−1), Z=(−1,1,0,1,0), *=(1,−1,0,−1,1), ]=(−1,1,0,
1,1), W=(1,−1,1,0,0), r=(1,−1,1,0,1)

10-9 ([42] Figure 5a) 17835,27846,91,97,92,8A,34,6A,5A.

31-9 (10-9 filled) 17835,27846,9BCD1,9EFG7,9HIJ2,8KLMA,3NOP4,6QRSA,5TUVA.
1=(0,0,1,0,−1), 2=(0,0,0,1,−1), 3=(0,0,0,1,0), 4=(0,0,1,0,0), 5=(0,0,1,0,1), 6=(0,0,0,1,1),
7=(0,1,0,0,0), 8=(1,0,0,0,0), 9=(0,0,1,1,1), A=(0,1,1,1,−1), B=(0,0,−1,2,−1), C=(1,2,0,0,0),
D=(2,−1,0,0,0), E=(0,0,−1,−1,2), F=(1,0,1,−1,0), G=(2,0,−1,1,0), H=(0,0,2,−1,−1), I=(1,1,0,0,0),
J=(1,−1,0,0,0), K=(0,0,1,−1,0), L=(0,1,0,0,1), M=(0,−1,1,1,1), N=(0,0,0,0,1), O=(−1,2,0,0,0),
P=(2,1,0,0,0), Q=(0,1,1,−1,1), R=(1,1,−1,0,0), S=(2,−1,1,0,0), T=(0,1,0,−1,0), U=(2,1,−1,1,1),
V=(2,−1,1,−1,−1)

Appendix A.4. Six-dim MMPHs

19-7 7!8gw,woO6i,i;)EB,B<:b7,’!)Jb6,’o:8Eu,;<OJgu.

11-7 w!g,wi6,’!)Jb6,’u,B)i,Jgu,Bb.

21-7 (11-7, 19-7 filled) w!78#g,woOi6%,’!)Jb6,’o:8Eu,;B)i#E,;<OJgu,B<7:b%.
w=(ω,1,1,ω2,1,ω), ’=(ω2,ω,ω,1,1,1), ;=(ω,1,1,ω2,ω,1), !=(ω,1,ω2,1,ω,1), B=(1,ω2,ω,1,ω,1),
<=(ω,1,ω,1,1,ω2), o=(1,ω2,1,1,1,ω2), )=(ω,ω2,1,1,1,ω), 7=(1,ω,ω2,1,1,ω), O=(1,ω,ω,ω2,1,1),
:=(ω2,1,1,1,ω,ω), 8=(1,ω,1,ω2,ω,1), i=(ω2,1,ω2,1,1,1), J=(1,ω,1,1,ω,ω2), #=(1,1,1,1,ω2,ω2),
b=(1,1,1,ω,1,1), 6=(1,1,ω,1,ω2,ω), g=(ω2,ω2,1,1,1,1), E=(1,1,ω,ω2,1,ω), %=(ω,ω,1,1,ω2,1),
u=(1,1,ω2,1,ω2,1)

79-162 (81-162 stripped; %,#)) 123456,12789A,1BCD5E,1B7FGH,1ICJ9K,1I3LGM,1NODAP,
1NQ4HR, 1SOJ6T,1SU8MR,1VQLET,1VUFKP,WXY45Z,WX7abA,Wcde5E,Wc7Ffg,WIdJbh,
WIYifM,WjkeAP,WjQ4gl,WSkJZm,WSnaMl,WoQiEm,WonFhP,pqY89Z,pq3ab6,pcre9K,
pc3Lsg,pBrDbh,pBYisH,pjte6T,pjU8gu,pNtDZm,pNnaHu,pvnLhT,pvUiKm,wxyD5Z,wx7azH,
w!"e56,w!78g,wI"Lzh,wIyiK,w$keHR,w$ODgl,wVkLZ,wV&aKl,woOi6,wo&8hR,’(yDbA,’
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(Y4zH,’!)Jb6,’!Y8*M,’c)LzE,’cyF*K,’-kJHu,’-tDMl,’vkLA/,’v:4Kl,’otF6/,’o:8Eu,;("e9A,;(34g,;x)J9Z,;
x3a*M,;B)iE,;B"F*h,;<teMR,;<OJgu,;vOiA=,;v>4hR,;VtFZ=,;V>aEu,?!reGM,?!CJsg,?qyFGZ,
?qCazE,?2yisA,?2r4zh,?$:eET,?$UFg/,?-&JhT,?-UiM,?N:4Z,?N&aA/,@(deGH,@(CDfg,@X)LGZ,
@XCa*K,@2)if6,@2d8*h,@<:eKP,@<QLg/,@->DhP,@-QiH=,@S:8Z=,@S>a6/,[xdJsH,[xrDfM,
[X"LsA,[Xr4K,[q"Ff6,[qd8E,[<&JKm,[<nLM,[$>DEm,[$nFH=,[j>46,[j&8A=,(S"Uzm,(SynT,
(VdUb,(VY&fT,(oCn9,(o3&Gm,xj)UzP,xjyQ*T,xvdU5/,xv7:fT,xorQ9/,xo3:sP,!N)nP,!N"Q*m,!
vCn5=,!v7>Gm,!VrQb=,!VY>sP,X$)UbR,X$YO*T, X-"U5u,X-7tT,XorOGu,XoCtsR,q<yQbR,
q<YOzP,q-"Q9l,q-3kP,qvdOGl,qvCkfR,2<yn5u,2<7tzm, 2$)n9l,2$3k*m,2Vdtsl,2Vrkfu,c-3&5=,c-
7>9,cN)&fR,cNdO*,cSy>sR,cSrOz=,B<Y&5/,B<7:b,Bj)&Gl,BjCk*,BS":sl,BSrk/,I$Y>9/,I$3:b=,
Ijy>Gu,IjCtz=,IN":fu,INdt/.

81-162 123456,12789A,1BCD5E,1B7FGH,1ICJ9K,1I3LGM,1NODAP,1NQ4HR,1SOJ6T,
1SU8MR,1VQLET,1VUFKP,WXY45Z,WX7abA,Wcde5E,Wc7Ffg,WIdJbh,WIYifM,WjkeAP,WjQ4gl,
WSkJZm,WSnaMl,WoQiEm,WonFhP,pqY89Z,pq3ab6,pcre9K,pc3Lsg,pBrDbh,pBYisH,pjte6T,
pjU8gu,pNtDZm,pNnaHu,pvnLhT,pvUiKm,wxyD5Z,wx7azH,w!"e56,w!78#g,wI"Lzh,
wIyi#K,w$keHR,w$ODgl,wVkLZ%,wV&aKl,woOi6%,wo&8hR,’(yDbA,’(Y4zH,’!)Jb6,’!Y8*M,
’c)LzE,’cyF*K,’-kJHu,’-tDMl,’vkLA/,’v:4Kl,’otF6/,’o:8Eu,;("e9A,;(34#g,;x)
J9Z,;x3a*M,;B)i#E,;B"F*h,;<teMR,;<OJgu,;vOiA=,;v>4hR,;VtFZ=,;V>aEu,?!reGM,
?!CJsg,?qyFGZ,?qCazE,?2yisA,?2r4zh,?$:eET,?$UFg/,?-&JhT,?-UiM%,?N:4Z%,?N&aA/,
@(deGH,@(CDfg,@X)LGZ,@XCa*K,@2)if6,@2d8*h,@<:eKP,@<QLg/,@->DhP, @-QiH=,
@S:8Z=,@S>a6/,[xdJsH,[xrDfM,[X"LsA,[Xr4#K,[q"Ff6,[qd8#E,[<&JKm,[<nLM%,
[$>DEm,[$nFH=,[j>46%,[j&8A=,(S"Uzm,(Syn#T,(VdUb%,(VY&fT,(oCn9%,(o3&Gm,xj)
UzP,xjyQ*T, xvdU5/,xv7:fT,xorQ9/,xo3:sP,!N)n#P,!N"Q*m,!vCn5=,!v7>Gm,!VrQb=,
!VY>sP,X$)UbR,X$YO*T,X-"U5u,X-7t#T,XorOGu,XoCtsR,q<yQbR,q<YOzP,q-"Q9l,
q-3k#P,qvdOGl,qvCkfR,2<yn5u,2<7tzm,2$)n9l,2$3k*m,2Vdtsl,2Vrkfu,c-3&5=,
c-7>9%,cN)&fR,cNdO*%,cSy>sR,cSrOz=,B<Y&5/,B<7:b%,Bj)&Gl,BjCk*%,BS":sl,
BSrk#/,I$Y>9/,I$3:b=,Ijy>Gu,IjCtz=,IN":fu,INdt#/. 1=(ω,1,1,1,1,1), W=(ω,1,1,1,ω2,ω),
p=(ω,1,1,1,ω,ω2), w=(ω,1,1,ω2,1,ω), ’=(ω2,ω,ω,1,1,1), ;=(ω,1,1,ω2,ω,1),
?=(ω,1,1,ω,1,ω2), @=(ω,1,1,ω,ω2,1), [=(1,ω2,ω2,1,1,1), (=(ω,1,ω2,1,1,ω), x=(ω2,ω,1,ω,1,1),
!=(ω,1,ω2,1,ω,1), X=(ω2,ω,1,1,ω,1), q=(ω2,ω,1,1,1,ω), 2=(1,ω2,ω,ω,1,1), c=(ω,1,ω2,ω,1,1),
B=(1,ω2,ω,1,ω,1), I=(1,ω2,ω,1,1,ω), <=(ω,1,ω,1,1,ω2), $=(ω,1,ω,1,ω2,1), -=(1,ω2,1,ω2,1,1),
j=(ω,1,ω,ω2,1,1), N=(1,ω2,1,ω,ω,1), S=(1,ω2,1,ω,1,ω), v=(1,ω2,1,1,ω2,1), V=(1,ω2,1,1,ω,ω),
o=(1,ω2,1,1,1,ω2), )=(ω,ω2,1,1,1,ω), "=(ω2,1,ω,ω,1,1), y=(ω,ω2,1,1,ω,1), d=(ω2,1,ω,1,ω,1),
r=(ω2,1,ω,1,1,ω), C=(1,ω,ω2,ω,1,1), Y=(ω,ω2,1,ω,1,1), 3=(1,ω,ω2,1,ω,1), 7=(1,ω,ω2,1,1,ω),
k=(ω2,1,1,ω,ω,1), t=(ω2,1,1,ω,1,ω), O=(1,ω,ω,ω2,1,1), :=(ω2,1,1,1,ω,ω), >=(ω2,1,1,1,1,ω2),
&=(ω2,1,1,1,ω2,1), Q=(1,ω,ω,1,ω2,1), n=(ω2,1,1,ω2,1,1), U=(1,ω,ω,1,1,ω2), a=(ω,ω2,ω,1,1,1),
8=(1,ω,1,ω2,ω,1), 4=(1,ω,1,ω2,1,ω), F=(1,ω,1,ω,ω2,1), i=(ω2,1,ω2,1,1,1), L=(1,ω,1,ω,1,ω2),
D=(1,ω,1,1,ω2,ω), J=(1,ω,1,1,ω,ω2), *=(1,1,1,1,1,ω), z=(1,1,1,1,ω,1), #=(1,1,1,1,ω2,ω2),
e=(1,ω,1,1,1,1), b=(1,1,1,ω,1,1), 5=(1,1,1,ω,ω,ω2), 9=(1,1,1,ω,ω2,ω), f=(1,1,1,ω2,1,ω2),
G=(1,1,1,ω2,ω,ω), s=(1,1,1,ω2,ω2,1), Z=(1,1,ω,1,1,1), A=(1,1,ω,1,ω,ω2), 6=(1,1,ω,1,ω2,ω),
H=(1,1,ω,ω,1,ω2), g=(ω2,ω2,1,1,1,1), M=(1,1,ω,ω,ω2,1), E=(1,1,ω,ω2,1,ω), K=(1,1,ω,ω2,ω,1),
h=(ω,ω,ω2,1,1,1), ==(ω,ω,1,1,1,ω2), %=(ω,ω,1,1,ω2,1), l=(1,1,ω2,1,1,ω2), R=(1,1,ω2,1,ω,ω),
u=(1,1,ω2,1,ω2,1), /=(1,1,ω2,ω2,1,1), m=(ω,ω,1,ω2,1,1), P=(1,1,ω2,ω,1,ω),T=(1,1,ω2,ω,ω,1)

31-16 237,7HG,GTUVRP,PRNQSM,MIJKL2,235,7235,3NOKLM,WXJRSM,WYZGRV,aOQbcM,
YdHce,XIfbcM,fgUHce,gTUGH,YZdGH.

44-16 (master for 31-16) 123456,72389A,723B5C,7DEFGH,2IJKLM,3NOKLM,PNQRSM,
PTUGRV,WXJRSM,WYZGRV,aOQbcM,aYdHce,XIfbcM,fgUHce,gTUhGH,iYZdGH.
1=(0,0,1,−1,1,0), 7=(0,0,−1,1,1,0), 2=(0,1,0,0,0,1), 3=(0,1,0,0,0,−1), P=(0,1,0,0,1,0),
W=(0,1,0,0,−1,0), a=(0,1,0,1,0,0), X=(0,1,0,1,1,1), D=(0,1,0,1,−1,0), N=(0,1,0,1,−1,1),
I=(0,1,0,1,−1,−1), f=(0,1,0,−1,0,0), O=(0,1,0,−1,1,1), J=(0,1,0,−1,1,−1), Q=(0,−1,0,1,1,1),
E=(0,1,1,0,1,0), g=(0,1,1,1,1,0), i=(0,1,1,1,−1,0), Y=(0,1,1,−1,1,0), T=(0,1,1,−1,−1,0),
Z=(0,1,−1,1,1,0), U=(0,1,−1,1,−1,0), F=(0,−1,1,1,0,0), h=(0,1,−1,−1,1,0), d=(0,−1,1,1,1,0),
G=(1,0,0,0,0,1), H=(1,0,0,0,0,−1), 8=(1,0,0,1,−1,0), B=(1,0,0,−1,1,0), 4=(−1,0,0,1,1,0),
9=(1,0,1,0,1,0), b=(1,0,1,0,1,−1), c=(1,0,1,0,−1,1), 5=(1,0,1,1,0,0), R=(1,0,1,1,0,−1),
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K=(1,0,1,1,1,0), S=(1,0,1,−1,0,1), L=(1,0,1,−1,−1,0), M=(1,0,−1,0,0,0), 6=(1,0,−1,0,1,0),
e=(1,0,−1,0,1,1), C=(−1,0,1,0,1,0), A=(−1,0,1,1,0,0), V=(−1,0,1,1,0,1)

117-116 (stripmaster of the 236-1216 supermaster) 123456,123789,1AB4CD,1AB7EF,
1GHI5F,1GHJC9,1KLI8D,1KLJE6,MN8COP,MNF6QR,STE5OP,ST9DQR,UVWXYZ,UVabcd,
UefgYZ,Uefabh,Uijgcd,UijWXh,UBk4XZ,UBk7ac,U3l4bd,U3l7WY,ULmIXY,ULmJbc,
UHnIad,UHnJWZ,opVgYZ,opVabh,opijgh,opabqR,opYZPr,oistuv,oiwxyz,oj!"#$,oj%&’
(,)*Vgcd,)*VWXh,)*efgh,)*WXqR,)*cdPr,)e-/uv,)e:;yz,)f!"<=,)f%&>?,*e@[#$,
*e\]’(,*fstˆ_,*fwx‘{,pi@[<=,pi\]>?,pj-/ˆ_,pj:;‘{,2|V4XZ,2|V7ac,2|3l47,
2|ac}∼,2|XZ+1+2,2389u{,2356ˆz,2l\"+3+4,2l%[+5+6,A+7V4bd,A+7V7WY, A+7Bk47,
A+7WY}∼,A+7bd+1+2,ABEFu{,ABCDˆz,Ak\"+8+9,Ak%[+A+B,G+CVIXY,G+CVJbc,G+CHnIJ,
G+Cbc+D+E,G+CXY+F+G,GHC9#?,GH5F<(,Gn:t+3+B,Gnw/+8+6,K+HVIad,K+HVJWZ,K+HLmIJ,
K+HWZ+D+E,K+Had+F+G,KLE6#?,KL8D<(,Km:t+5+9,Kmw/+A+4,+7B@&+3+4,+7B!]+5+6,
+7k89y_,+7k56‘v,|3@&+8+9,|3!]+A+B,|lEFy_,|lCD‘v,+HL-x+3+B,+HLs;+8+6,+HmC9’=,
+Hm5F>$,+CH-x+5+9,+CHs;+A+4,+CnE6’=,+Cn8D>$,efab+IO,efYZQ+J,ijWX+IO,ijcdQ+J,
Bkac+K+L, BkXZ+M+N,3lWY+K+L,3lbd+M+N,Lmbc+O+P,LmXY+Q+R,HnWZ+O+P,Hnad+Q+R.
1=(0,1,0,−1,0,0), M=(0,1,0,−1,1,1), S=(0,1,0,−1,1,−1), T=(0,1,0,−1,−1,1), N=(0,−1,0,1,1,1),
U=(0,1,1,0,0,0), o=(0,1,1,0,1,1), )=(0,1,1,0,1,−1), *=(0,1,1,0,−1,1), p=(0,1,1,0,−1,−1),
2=(0,1,1,1,0,1), A=(0,1,1,1,0,−1), G=(0,1,1,1,1,0), K=(0,1,1,1,−1,0), +7=(0,1,1,−1,0,1),
|=(0,1,1,−1,0,−1), +H=(0,1,1,−1,1,0), +C=(0,1,1,−1,−1,0), V=(0,1,−1,0,0,0), e=(0,1,−1,0,1,1),
i=(0,1,−1,0,1,−1), j=(0,1,−1,0,−1,1), f=(0,−1,1,0,1,1), B=(0,1,−1,1,0,1), 3=(0,1,−1,1,0,−1),
L=(0,1,−1,1,1,0), H=(0,1,−1,1,−1,0), l=(0,1,−1,−1,0,1), k=(0,−1,1,1,0,1), n=(0,1,−1,−1,1,0),
m=(0,−1,1,1,1,0), I=(1,0,0,0,0,1), J=(1,0,0,0,0,−1), 4=(1,0,0,0,1,0), 7=(1,0,0,0,−1,0),
g=(1,0,0,1,0,0), W=(1,0,0,1,1,1), a=(1,0,0,1,1,−1), b=(1,0,0,1,−1,1), X=(1,0,0,1,−1,−1),
h=(1,0,0,−1,0,0), c=(1,0,0,−1,1,1), Y=(1,0,0,−1,1,−1), Z=(1,0,0,−1,−1,1), d=(−1,0,0,1,1,1),
E=(1,0,1,0,1,1), 8=(1,0,1,0,1,−1), C=(1,0,1,0,−1,1), 5=(1,0,1,0,−1,−1), −=(1,0,1,1,0,1),
s=(1,0,1,1,0,−1), @=(1,0,1,1,1,0), !=(1,0,1,1,−1,0), :=(1,0,1,−1,0,1), w=(1,0,1,−1,0,−1),
\=(1,0,1,−1,1,0), %=(1,0,1,−1,−1,0), 9=(1,0,−1,0,1,1), F=(1,0,−1,0,1,−1), 6=(1,0,−1,0,−1,1),
D=(−1,0,1,0,1,1), t=(1,0,−1,1,0,1), /=(1,0,−1,1,0,−1), "=(1,0,−1,1,1,0), [=(1,0,−1,1,−1,0),
x=(1,0,−1,−1,0,1), ;=(−1,0,1,1,0,1), &=(1,0,−1,−1,1,0), ]=(−1,0,1,1,1,0), +A=(1,1,0,0,1,1),
+5=(1,1,0,0,1,−1), +8=(1,1,0,0,−1,1), +3=(1,1,0,0,−1,−1), >=(1,1,0,1,0,1), ’=(1,1,0,1,0,−1),
‘=(1,1,0,1,1,0), y=(1,1,0,1,−1,0), <=(1,1,0,−1,0,1), # =(1,1,0,−1,0,−1), ˆ=(1,1,0,−1,1,0),
u=(1,1,0,−1,−1,0), +Q=(1,1,1,0,0,1), +O=(1,1,1,0,0,−1), +M=(1,1,1,0,1,0), +K=(1,1,1,0,−1,0),
Q=(1,1,1,1,0,0), +I=(1,1,1,−1,0,0), O=(−1,1,1,1,0,0), +F=(1,1,−1,0,0,1), +D=(1,1,−1,0,0,−1),
+1=(1,1,−1,0,1,0), }=(1,1,−1,0,−1,0), P=(1,1,−1,1,0,0), +J=(1,−1,−1,1,0,0), q=(1,1,−1,−1,0,0),
+L=(−1,1,1,0,1,0), +N=(1,−1,−1,0,1,0), +6=(1,−1,0,0,1,1), +B=(1,−1,0,0,1,−1), +4=(1,−1,0,0,−1,1),
+9=(−1,1,0,0,1,1), (=(1,−1,0,1,0,1), ?=(1,−1,0,1,0,−1), z=(1,−1,0,1,1,0), {=(1,−1,0,1,−1,0),
$=(1,−1,0,−1,0,1), ==(−1,1,0,1,0,1), v=(1,−1,0,−1,1,0), _=(−1,1,0,1,1,0), +G=(1,−1,1,0,0,1),
+E=(1,−1,1,0,0,−1), +2=(1,−1,1,0,1,0), ∼=(1,−1,1,0,−1,0), r=(1,−1,1,1,0,0), +P=(−1,1,1,0,0,1),
+R=(1,−1,−1,0,0,1), R=(1,−1,1,−1,0,0)

Appendix A.5. Seven-dim MMPHs

14-8 12567,189A5BC,189DE7,189HJ,189HB,2D,2EC,AJ.

31-13 1234,189DEF,189GHIJ,189KHBL,2MNDOIP,2MNEOCL,2MNGKF,QRNSAJP,QT4U,
RTV9,WXMS,WYV8AJP,XY3U.

34-14 (master for 14-8 and 31-13 ) 1234567,189A5BC,189DE7F,189GHIJ,189KHBL,
2MNDOIP,2MNEOCL,2MNGK6F,QRNSAJP,QT4U567,RTV9567,WXMS567,WYV8AJP,XY3U567.
1=(0,0,0,1,0,0,0); 2=(0,0,1,0,0,0,0); 3=(1,−1,0,0,0,0,0); 4=(1,1,0,0,0,0,0); 5=(0,0,0,0,0,0,1);
6=(0,0,0,0,1,1,0); 7=(0,0,0,0,1,−1,0); 8=(0,1,−1,0,0,0,0); 9=(0,1,1,0,0,0,0); A=(0,0,0,0,1,0,0);
B=(1,0,0,0,0,−1,0); C=(1,0,0,0,0,1,0); D=(1,0,0,0,1,1,−1); E=(−1,0,0,0,1,1,1); F=(1,0,0,0,0,0,1);
G=(1,0,0,0,1,−1,−1);H=(1,0,0,0,1,1,1);I=(1,0,0,0,−1,0,0);J=(0,0,0,0,0,1,−1);K=(1,0,0,0,−1,1,−1);
L=(0,0,0,0,1,0,−1); M=(0,1,0,1,0,0,0); N=(0,1,0,−1,0,0,0); O=(1,0,0,0,1,−1,1); P=(0,0,0,0,0,1,1);
Q=(−1,1,1,1,0,0,0); R=(1,1,−1,1,0,0,0); S=(1,0,1,0,0,0,0); T=(1,−1,1,1,0,0,0); U=(0,0,1,−1,0,0,0);
V=(1,0,0,−1,0,0,0); W=(1,−1,−1,1,0,0,0); X=(1,1,−1,−1,0,0,0); Y=(1,1,1,1,0,0,0)
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Appendix A.6. Eight-dim MMPHs

15-9 17426538,8E,E2M,M3N,N4O,O5U,U7Q,Q6H,H1.

36-9 (master for 15-9) 17426538,8ABDF9CE,ELaR2YVM,M3WSDKZN,NCJXR4TO,OV5PSBIU,
UZ9GXa7Q,QTY6PWAH,HIKFGJL1. 1=(0,0,0,0,0,0,0,1), 2=(0,0,0,0,0,0,1,0), 3=(0,0,0,0,0,1,0,0),
4=(0,0,0,0,1,0,0,0), 5=(0,0,1,1,0,0,0,0), 6=(0,0,−1,1,0,0,0,0), 7=(1,1,0,0,0,0,0,0),
8=(−1,1,0,0,0,0,0,0), 9=(0,0,0,0,0,0,1,1), A=(0,0,1,1,1,−1,0,0), B=(1,1,0,0,0,0,−1,1),
C=(1,1,0,0,0,0,1,−1), D=(0,0,−1,0,1,0,0,0), E=(0,0,0,1,0,1,0,0), F=(0,0,1,−1,1,1,0,0),
G=(0,0,0,1,1,0,0,0), H=(0,0,1,1,−1,1,0,0), I=(1,0,0,0,0,0,1,0), J=(0,0,−1,0,0,1,0,0),
K=(−1,0,0,0,0,0,1,0), L=(0,1,0,0,0,0,0,0), M=(0,0,1,0,1,0,0,0), N=(0,0,0,1,0,0,0,0),
O=(−1,1,0,0,0,0,1,1), P=(0,0,0,0,1,1,0,0), Q=(−1,1,0,0,0,0,1,−1), R=(1,0,0,0,0,0,0,1),
S=(0,−1,0,0,0,0,0,1), T=(0,−1,0,0,0,0,1,0), U=(0,0,−1,1,−1,1,0,0), V=(0,0,−1,1,1,−1,0,0),
W=(1,1,0,0,0,0,1,1), X=(0,0,1,0,0,1,0,0), Y=(−1,0,0,0,0,0,0,1), Z=(−1,1,0,0,0,0,−1,1),
a=(0,0,−1,−1,1,1,0,0)

Appendix A.7. Nine-dim MMPHs

13-6 SU,1G42U,1S,472acefhK,G72,4U.

44-6 (13-6 filled) SUCDEFOQ6,1G42U8H95,1SAIMSVXbi,472acefhK,G72LWYZdg,
4UBJ3NPRT. 1=(0,0,0,0,0,0,0,1,0); 2=(0,0,0,0,0,0,1,0,0); 3=(0,0,0,0,1,1,0,0,0); 4=(0,0,0,1,0,0,0,0,1);
5=(0,0,0,1,0,0,0,0,−1); 6=(0,0,0,1,0,0,−1,1,0); 7=(0,0,1,0,0,0,0,1,0); 8=(0,0,1,0,0,1,0,0,0);
9=(0,0,1,0,0,−1,0,0,0); A=(0,0,1,0,−1,0,1,0,0); B=(0,0,1,0,−1,1,1,0,0); C=(0,0,−1,−1,1,1,0,1,1);
D=(0,0,1,−1,−1,−1,0,1,1); H=(0,1,0,0,1,0,0,0,0); E=(0,1,0,0,1,−1,1,1,−1);
F=(0,1,0,0,1,−1,−1,−1,1); G=(0,1,0,0,−1,0,0,0,0); I=(0,1,0,1,1,1,1,0,1); J=(0,1,0,−1,0,0,0,−1,1);
K=(1,−1,1,1,−1,1,0,−1,−1); L=(0,1,0,−1,1,1,0,0,0); M=(0,1,0,−1,1,−1,1,0,−1);
N=(0,1,−1,0,0,0,1,1,0); O=(0,1,1,1,0,1,1,0,1); P=(0,1,1,1,1,−1,1,−1,−1);
Q=(0,1,1,−1,0,1,−1,0,−1); R=(0,1,−1,0,0,0,1,1,0); S=(0,−1,1,0,1,0,0,0,0); U=(1,0,0,0,0,0,0,0,0);
V=(1,0,0,0,0,−1,0,0,1); W=(1,0,0,1,0,1,0,0,1); X=(1,0,0,−1,0,1,0,0,0); Y=(1,0,0,−1,0,−1,0,0,1);
Z=(1,0,1,0,0,0,0,−1,−1); a=(1,1,0,0,−1,−1,0,0,0); b=(1,1,1,1,0,0,−1,0,−1);
c=(1,1,1,−1,1,1,0,−1,1); d=(−1,1,1,1,1,−1,0,−1,1); e=(1,−1,−1,−1,−1,1,0,1,1);
f=(1,1,−1,1,1,1,0,1,−1); g=(1,1,−1,1,1,−1,0,1,−1); h=(1,−1,0,0,1,−1,0,0,0);
i=(1,−1,−1,1,0,0,1,0,−1).

19-8 1234567,129ABCDE,13FGH5IJE,GB6E,AJE,97E,LH4DE,FIE.

47-16 (master for 19-8) 123456789,12ABCDEF,13HIJ5KL,1AMCLNOPQ,1BRSETUVQ,1H4567VWX,
1ICDEFYOX,1ZJ4FTUW9,1ZCDEFYP8,23abRSET,cdIeMD6f,cgaZMCLN,dghA4567,ijhBRk7f,
ilbZJ4FT,jlHeSkKN. 1=(1,0,0,0,0,0,0,0,0), 2=(0,1,0,0,0,0,0,0,0), 3=(0,0,1,0,0,0,0,0,0),
c=(1,1,1,1,0,0,0,0,0), d=(1,−1,1,−1,0,0,0,0,0), g=(1,−1,−1,1,0,0,0,0,0), i=(1,−1,−1,−1,0,0,0,0,0),
j=(1,−1,1,1,0,0,0,0,0), l=(1,1,1,−1,0,0,0,0,0), h=(1,1,0,0,0,0,0,0,0), A=(0,0,1,1,0,0,0,0,0),
B=(0,0,1,−1,0,0,0,0,0), H=(0,1,0,1,0,0,0,0,0), I=(0,1,0,−1,0,0,0,0,0), e=(1,0,−1,0,0,0,0,0,0),
a=(1,0,0,−1,0,0,0,0,0), b=(1,0,0,1,0,0,0,0,0), Z=(0,1,−1,0,0,0,0,0,0), J=(0,0,0,0,1,0,0,0,0),
4=(0,0,0,0,0,1,0,0,0), 5=(0,0,0,0,0,0,1,0,0), M=(0,0,0,0,1,1,1,1,0), C=(0,0,0,0,1,−1,1,−1,0),
D=(0,0,0,0,1,−1,−1,1,0), R=(0,0,0,0,1,−1,−1,−1,0), S=(0,0,0,0,1,−1,1,1,0), k=(0,0,0,0,1,1,1,−1,0),
E=(0,0,0,0,1,1,0,0,0), F=(0,0,0,0,0,0,1,1,0), T=(0,0,0,0,0,0,1,−1,0), K=(0,0,0,0,0,1,0,1,0),
L=(0,0,0,0,0,1,0,−1,0), N=(0,0,0,0,1,0,−1,0,0), 6=(0,0,0,0,1,0,0,−1,0), 7=(0,0,0,0,1,0,0,1,0),
f=(0,0,0,0,0,1,−1,0,0), Y=(0,1,1,1,0,0,0,0,1), O=(0,1,−1,1,0,0,0,0,−1), P=(0,1,1,−1,0,0,0,0,−1),
U=(0,1,1,1,0,0,0,0,−1), V=(0,1,−1,−1,0,0,0,0,−1), W=(0,1,1,−1,0,0,0,0,1), Q=(0,1,0,0,0,0,0,0,1),
X=(0,0,1,0,0,0,0,0,−1), 8=(0,0,0,1,0,0,0,0,−1), :9=(0,0,0,1,0,0,0,0,1)

Appendix A.8. Ten-dim MMPHs

18-9 1BC5DEFGH9,1BCKL9A,T5DEU,TPR,TbL9A,CbKP,bKG,bKFR,bKUHA.

50-15 (master for 18-9) 12BCUVfgik,1DEJXYceoq,1DELMVWajk,1DEMNRSblm,1DEOPRTajk,
1DEOQYZajk,2GHLNXZajk,2GHPQUWblm,45EFUVcdmn,46GIJSTajk,46GIUVceoq,56ABUVdeij,
78ACUVfhpq,79HIUVabop,89DFUVghln. 1=(1,0,0,0,0,0,0,0,0,0), 2=(0,1,0,0,0,0,0,0,0,0),
3=(0,0,1,0,0,0,0,0,0,0), 4=(1,1,1,1,0,0,0,0,0,0), 5=(1,−1,1,−1,0,0,0,0,0,0), 6=(1,−1,−1,1,0,0,0,0,0,0),
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7=(1,−1,−1,−1,0,0,0,0,0,0), 8=(1,−1,1,1,0,0,0,0,0,0), 9=(1,1,1,−1,0,0,0,0,0,0),
A=(1,1,0,0,0,0,0,0,0,0), B=(0,0,1,1,0,0,0,0,0,0), C=(0,0,1,−1,0,0,0,0,0,0), D=(0,1,0,1,0,0,0,0,0,0),
E=(0,1,0,−1,0,0,0,0,0,0), F=(1,0,−1,0,0,0,0,0,0,0), G=(1,0,0,−1,0,0,0,0,0,0), H=(1,0,0,1,0,0,0,0,0,0),
I=(0,1,−1,0,0,0,0,0,0,0), J=(0,0,0,0,1,0,0,0,0,0), K=(0,0,0,0,0,1,0,0,0,0), L=(0,0,1,0,1,1,1,0,0,0),
M=(0,0,1,0,−1,1,−1,0,0,0), N=(0,0,1,0,−1,−1,1,0,0,0), O=(0,0,1,0,−1,−1,−1,0,0,0),
P=(0,0,1,0,−1,1,1,0,0,0), Q=(0,0,1,0,1,1,−1,0,0,0), R=(0,0,1,0,1,0,0,0,0,0), S=(0,0,0,0,0,1,1,0,0,0),
T=(0,0,0,0,0,1,−1,0,0,0), U=(0,0,0,0,1,0,1,0,0,0), V=(0,0,0,0,1,0,−1,0,0,0), W=(0,0,1,0,0,−1,0,0,0,0),
X=(0,0,1,0,0,0,−1,0,0,0), Y=(0,0,1,0,0,0,1,0,0,0), Z=(0,0,0,0,1,−1,0,0,0,0), a=(0,0,0,0,0,0,0,1,0,0),
b=(0,0,0,0,0,0,0,0,1,0), c=(0,0,0,0,0,1,0,1,1,1), d=(0,0,0,0,0,1,0,−1,1,−1), e=(0,0,0,0,0,1,0,−1,−1,1),
f=(0,0,0,0,0,1,0,−1,−1,−1), g=(0,0,0,0,0,1,0,−1,1,1), h=(0,0,0,0,0,1,0,1,1,−1),
i=(0,0,0,0,0,1,0,1,0,0), j=(0,0,0,0,0,0,0,0,1,1), k=(0,0,0,0,0,0,0,0,1,−1), l=(0,0,0,0,0,0,0,1,0,1),
m=(0,0,0,0,0,0,0,1,0,−1), n=(0,0,0,0,0,1,0,0,−1,0), o=(0,0,0,0,0,1,0,0,0,−1), p=(0,0,0,0,0,1,0,0,0,1),
q=(0,0,0,0,0,0,0,1,−1,0)

Appendix A.9. Eleven-dim MMPHs

19-8 123456789AB,1234567CDF,1GHKLMDA,27KL9,567MC,567B,H8F,G8F.

50-14 (master for 19-8) 123456789AB,1234567CDEF,1GHIJKLMDAN,1GHIJKLOPQR,
27STUVKL8FW,27STUVKL9QX,347YZabMDAN,567cdefMCXR,567cdefgOEW,567cdefgPBN,
cdhijkJV8FW,eYlmnIUk9QX,fZoHTjmn8FW,abGShilo8FW. 1=(0,0,1,1,1,1,0,0,0,0,0), 2=(0,0,1,
−1,1,−1,0,0,0,0,0), 3=(0,0,0,1,0,−1,0,0,0,0,0), 4=(0,0,1,0,−1,0,0,0,0,0,0), 5=(0,1,0,0,0,0,0,0,0,0,0),
6=(1,0,0,0,0,0,0,0,0,0,0), 7=(0,0,0,0,0,0,1,0,0,0,0), 8=(0,0,0,1,0,0,0,0,0,0,0), 9=(0,0,1,0,0,0,0,0,0,0,0),
A=(0,0,0,0,0,1,0,0,0,0,0), B=(0,0,0,0,1,0,0,0,0,0,0), C=(1,−1,1,0,1,0,0,0,0,0,0), D=(1,1,0,1,0,1,0,0,0,0,0),
E=(1,1,0,−1,0,−1,0,0,0,0,0), F=(−1,1,1,0,1,0,0,0,0,0,0), G=(0,1,−1,1,0,0,1,0,0,0,0), H=(1,0,1,1,0,0,
0,−1,0,0,0), I=(1,0,0,0,1,1,0,1,0,0,0), J=(0,1,0,0,−1,1,−1,0,0,0,0), K=(0,0,1,0,−1,0,1,1,0,0,0),
L=(0,0,0,1,0,−1,−1,1,0,0,0), M=(1,0,1,0,0,−1,1,0,0,0,0), N=(0,−1,1,0,0,1,0,1,0,0,0), O=(−1,1,0,0,0,
0,1,1,0,0,0), P=(1,0,−1,−1,0,0,0,1,0,0,0), Q=(0,1,1,−1,0,0,−1,0,0,0,0), R=(1,0,0,1,−1,0,−1,0,0,0,0),
S=(0,1,0,1,1,0,0,1,0,0,0), T=(1,1,0,0,0,0,1,−1,0,0,0), U=(0,1,0,0,1,−1,−1,0,0,0,0), V=(1,0,0,0,−1,
−1,0,1,0,0,0), W=(1,1,0,−1,0,1,0,0,0,0,0), X=(1,−1,−1,0,1,0,0,0,0,0,0), Y=(0,0,0,0,0,0,0,0,1,0,0),
Z=(0,0,0,0,0,0,0,0,0,1,0), a=(0,0,0,0,0,0,0,1,1,1,1), b=(0,0,0,0,0,0,0,1,−1,1,−1), c=(0,0,0,0,0,0,0,1,
−1,−1,1), d=(0,0,0,0,0,0,0,1,−1,−1,−1), e=(0,0,0,0,0,0,0,1,−1,1,1), f=(0,0,0,0,0,0,0,1,1,1,−1),
g=(0,0,0,0,0,0,0,1,1,0,0), h=(0,0,0,0,0,0,0,0,0,1,1), i=(0,0,0,0,0,0,0,0,0,1,−1), j=(0,0,0,0,0,0,0,0,1,
0,1), k=(0,0,0,0,0,0,0,0,1,0,−1), l=(0,0,0,0,0,0,0,1,0,−1,0), m=(0,0,0,0,0,0,0,1,0,0,−1), n=(0,0,0,
0,0,0,0,1,0,0,1), o=(0,0,0,0,0,0,0,0,1,−1,0)

Appendix A.10. Twelve-dim MMPHs

19-9 123456789ABC,17DJBL,28PQA,PJ,3478ST,5678Q,SC,T9,DL

52-9 (master for 19-9) 123456789ABC,17DEFGHIJBKL,28MNOPHIQAKR,3478STUVWXYR,
5678ZabcdWQe,ZafghiGPjJke,bSlmnFOijdoC,cTpENhmn9qYo,UVDMfglpkXqL. 1=(0,0,1,1,1,
1,0,0,0,0,0,0), 2=(0,0,1,−1,1,−1,0,0,0,0,0,0), 3=(0,0,0,1,0,−1,0,0,0,0,0,0), 4=(0,0,1,0,−1,0,0,0,0,0,
0,0), 5=(0,1,0,0,0,0,0,0,0,0,0,0), 6=(1,0,0,0,0,0,0,0,0,0,0,0), 7=(0,0,0,0,0,0,0,1,0,0,0,0), 8=(0,0,0,0,0,
0,1,0,0,0,0,0), Z=(0,0,0,1,0,0,0,0,0,0,0,0), a=(0,0,1,0,0,0,0,0,0,0,0,0), b=(0,0,0,0,0,1,0,0,0,0,0,0),
c=(0,0,0,0,1,0,0,0,0,0,0,0), S=(1,−1,1,0,1,0,0,0,0,0,0,0), T=(1,1,0,1,0,1,0,0,0,0,0,0), U=(1,1,0,−1,0,
−1,0,0,0,0,0,0), V=(−1,1,1,0,1,0,0,0,0,0,0,0), D=(0,1,−1,1,0,0,1,0,0,0,0,0), M=(1,0,1,1,0,0,0,−1,0,0,
0,0), f=(1,0,0,0,1,1,0,1,0,0,0,0), g=(0,1,0,0,−1,1,−1,0,0,0,0,0), l=(0,0,1,0,−1,0,1,1,0,0,0,0), p=(0,
0,0,1,0,−1,−1,1,0,0,0,0), E=(1,0,1,0,0,−1,1,0,0,0,0,0), N=(0,−1,1,0,0,1,0,1,0,0,0,0), h=(−1,1,0,0,0,
0,1,1,0,0,0,0), m=(1,0,−1,−1,0,0,0,1,0,0,0,0), n=(0,1,1,−1,0,0,−1,0,0,0,0,0), F=(1,0,0,1,−1,0,−1,0,
0,0,0,0), O=(0,1,0,1,1,0,0,1,0,0,0,0), i=(1,1,0,0,0,0,1,−1,0,0,0,0), G=(0,1,0,0,1,−1,−1,0,0,0,0,0),
P=(1,0,0,0,−1,−1,0,1,0,0,0,0), H=(1,1,0,−1,0,1,0,0,0,0,0,0), I=(1,−1,−1,0,1,0,0,0,0,0,0,0), j=(0,0,
0,0,0,0,0,0,1,0,0,0), d=(0,0,0,0,0,0,0,0,0,1,0,0), J=(0,0,0,0,0,0,0,0,0,1,1,0), k=(0,0,0,0,0,0,0,0,0,1,
−1,0), W=(0,0,0,0,0,0,0,0,1,0,1,0), Q=(0,0,0,0,0,0,0,0,1,0,−1,0), 9=(0,0,0,0,0,0,0,0,1,−1,0,0), e=(0,
0,0,0,0,0,0,0,0,0,0,1), A=(0,0,0,0,0,0,0,0,1,1,1,1), B=(0,0,0,0,0,0,0,0,1,1,−1,−1), K=(0,0,0,0,0,0,0,0,
1,−1,1,−1), X=(0,0,0,0,0,0,0,0,1,−1,−1,−1), q=(0,0,0,0,0,0,0,0,1,1,1,−1), Y=(0,0,0,0,0,0,0,0,1,1,
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−1,1), L=(0,0,0,0,0,0,0,0,1,0,0,1), o=(0,0,0,0,0,0,0,0,0,0,1,1), C=(0,0,0,0,0,0,0,0,0,0,1,−1), R=(0,0,0,
0,0,0,0,0,0,1,0,−1)

Appendix A.11. Thirteen-dim MMPHs

19-8 123456789ABCD,123456789EFG,12345678ILM,289EBM,34789C,56789LG,5678ABM,
9FD.

63-16 (master for 19-8) 123456789ABCD,123456789EFGH,12345678IJKLM,17NOPQRSTUVWM,
28XYZaRS9EbBM,3478cdef9bghH,3478cdef9WhiC,3478cdefIjVkM, 5678lmno9LpGq, 5678lm-
noATrBM,lmstuvQa9WpFD,lmstuvQaEKwxM,ncyz!PZv9AkLM,od"OYuz!9kgiq,od"OYuz!bUj
xM,efNXsty"rJwWM. 1=(0,0,1,1,1,1,0,0,0,0,0,0,0), 2=(0,0,1,−1,1,−1,0,0,0,0,0,0,0), 3=(0,0,0,1,
0,−1,0,0,0,0,0,0,0), 4=(0,0,1,0,−1,0,0,0,0,0,0,0,0), 5=(0,1,0,0,0,0,0,0,0,0,0,0,0), 6=(1,0,0,0,0,0,0,0,
0,0,0,0,0), 7=(0,0,0,0,0,0,0,1,0,0,0,0,0), 8=(0,0,0,0,0,0,1,0,0,0,0,0,0), l=(0,0,0,1,0,0,0,0,0,0,0,0,0),
m=(0,0,1,0,0,0,0,0,0,0,0,0,0), n=(0,0,0,0,0,1,0,0,0,0,0,0,0), o=(0,0,0,0,1,0,0,0,0,0,0,0,0), c=(1,−1,1,
0,1,0,0,0,0,0,0,0,0), d=(1,1,0,1,0,1,0,0,0,0,0,0,0), e=(1,1,0,−1,0,−1,0,0,0,0,0,0,0), f=(−1,1,1,0,
1,0,0,0,0,0,0,0,0), N=(0,1,−1,1,0,0,1,0,0,0,0,0,0), X=(1,0,1,1,0,0,0,−1,0,0,0,0,0), s=(1,0,0,0,1,1,0,1,
0,0,0,0,0), t=(0,1,0,0,−1,1,−1,0,0,0,0,0,0), y=(0,0,1,0,−1,0,1,1,0,0,0,0,0), "=(0,0,0,1,0,−1,−1,1,0,
0,0,0,0), O=(1,0,1,0,0,−1,1,0,0,0,0,0,0), Y=(0,−1,1,0,0,1,0,1,0,0,0,0,0), u=(−1,1,0,0,0,0,1,1,0,0,0,0,
0), z=(1,0,−1,−1,0,0,0,1,0,0,0,0,0), !=(0,1,1,−1,0,0,−1,0,0,0,0,0,0), P=(1,0,0,1,−1,0,−1,0,0,0,0,0,
0), Z=(0,1,0,1,1,0,0,1,0,0,0,0,0), v=(1,1,0,0,0,0,1,−1,0,0,0,0,0), Q=(0,1,0,0,1,−1,−1,0,0,0,0,0,0),
a=(1,0,0,0,−1,−1,0,1,0,0,0,0,0), R=(1,1,0,−1,0,1,0,0,0,0,0,0,0), S=(1,−1,−1,0,1,0,0,0,0,0,0,0,0),
9=(0,0,0,0,0,0,0,0,1,0,0,0,0), A=(0,0,0,0,0,0,0,0,0,1,0,0,0), E=(0,0,0,0,0,0,0,0,0,1,1,0,0), b=(0,0,0,0,0,
0,0,0,0,1,−1,0,0), T=(0,0,0,0,0,0,0,0,1,0,1,0,0), r=(0,0,0,0,0,0,0,0,1,0,−1,0,0), I=(0,0,0,0,0,0,0,0,1,
−1,0,0,0), B=(0,0,0,0,0,0,0,0,0,0,0,1,0), J=(0,0,0,0,0,0,0,0,1,1,1,1,0), K=(0,0,0,0,0,0,0,0,1,1,−1,−1,
0), w=(0,0,0,0,0,0,0,0,1,−1,1,−1,0), U=(0,0,0,0,0,0,0,0,1,−1,−1,−1,0), j=(0,0,0,0,0,0,0,0,1,1,1,−1,
0), V=(0,0,0,0,0,0,0,0,1,1,−1,1,0), x=(0,0,0,0,0,0,0,0,1,0,0,1,0), k=(0,0,0,0,0,0,0,0,0,0,1,1,0), L=(0,0,
0,0,0,0,0,0,0,0,1,−1,0), W=(0,0,0,0,0,0,0,0,0,1,0,−1,0), M=(0,0,0,0,0,0,0,0,0,0,0,0,1), p=(0,0,0,0,0,
0,0,0,0,1,1,1,1), F=(0,0,0,0,0,0,0,0,0,1,−1,1,−1), G=(0,0,0,0,0,0,0,0,0,1,−1,−1,1), g=(0,0,0,0,0,0,0,
0,0,1,1,−1,1), h=(0,0,0,0,0,0,0,0,0,1,1,1,−1), i=(0,0,0,0,0,0,0,0,0,1,−1,1,1), H=(0,0,0,0,0,0,0,0,0,0,
0,1,1), C=(0,0,0,0,0,0,0,0,0,0,1,0,1), D=(0,0,0,0,0,0,0,0,0,0,1,0,−1),q=(0,0,0,0,0,0,0,0,0,1,0,0,−1)

Appendix A.12. Fourteen-dim MMPHs

19-9 123456789ABCDE,12345679ABFGD,1OPF,27a,347E,3479ABP,567CG,9a,O89AB.

66-15 (master for 19-9) 123456789ABCDE,12345679ABFGDH,1IJKLMNOPFQRST,27UVWXMN
YZTabc,347defghijkElm,347defg9ABPHnm,347defgFijkGDH,567opqrOBPFsZt,567opqr9
ABaunl,567opqrijbkCGu,opvwxyLX9iQYab,qdz!"KWyAt#Sab,re$JVx!"s%abck,fgIUvwz$
Oh89AB,fgIUvwz$#R%jab. 1=(0,0,1,1,1,1,0,0,0,0,0,0,0,0), 2=(0,0,1,−1,1,−1,0,0,0,0,0,0,0,0),
3=(0,0,0,1,0,−1,0,0,0,0,0,0,0,0), 4=(0,0,1,0,−1,0,0,0,0,0,0,0,0,0), 5=(0,1,0,0,0,0,0,0,0,0,0,0,0,0),
6=(1,0,0,0,0,0,0,0,0,0,0,0,0,0), 7=(0,0,0,0,0,0,1,0,0,0,0,0,0,0), o=(0,0,0,1,0,0,0,0,0,0,0,0,0,0), p=(0,0,
1,0,0,0,0,0,0,0,0,0,0,0), q=(0,0,0,0,0,1,0,0,0,0,0,0,0,0), r=(0,0,0,0,1,0,0,0,0,0,0,0,0,0), d=(1,−1,1,0,
1,0,0,0,0,0,0,0,0,0), e=(1,1,0,1,0,1,0,0,0,0,0,0,0,0), f=(1,1,0,−1,0,−1,0,0,0,0,0,0,0,0), g=(−1,1,1,0,
1,0,0,0,0,0,0,0,0,0), I=(0,1,−1,1,0,0,1,0,0,0,0,0,0,0), U=(1,0,1,1,0,0,0,−1,0,0,0,0,0,0), v=(1,0,0,0,1,
1,0,1,0,0,0,0,0,0), w=(0,1,0,0,−1,1,−1,0,0,0,0,0,0,0), z=(0,0,1,0,−1,0,1,1,0,0,0,0,0,0), $=(0,0,0,1,0,
−1,−1,1,0,0,0,0,0,0), J=(1,0,1,0,0,−1,1,0,0,0,0,0,0,0), V=(0,−1,1,0,0,1,0,1,0,0,0,0,0,0), x=(−1,1,0,
0,0,0,1,1,0,0,0,0,0,0), !=(1,0,−1,−1,0,0,0,1,0,0,0,0,0,0), "=(0,1,1,−1,0,0,−1,0,0,0,0,0,0,0), K=(1,0,
0,1,−1,0,−1,0,0,0,0,0,0,0), W=(0,1,0,1,1,0,0,1,0,0,0,0,0,0), y=(1,1,0,0,0,0,1,−1,0,0,0,0,0,0), L=(0,1,
0,0,1,−1,−1,0,0,0,0,0,0,0), X=(1,0,0,0,−1,−1,0,1,0,0,0,0,0,0), M=(1,1,0,−1,0,1,0,0,0,0,0,0,0,0),
N=(1,−1,−1,0,1,0,0,0,0,0,0,0,0,0), O=(0,0,0,0,0,0,0,0,0,0,1,0,0,0), h=(0,0,0,0,0,0,0,0,1,−1,0,0,0,0),
8=(0,0,0,0,0,0,0,0,1,1,0,0,0,0), 9=(0,0,0,0,0,0,0,0,0,0,0,0,0,1), A=(0,0,0,0,0,0,0,0,0,0,0,1,1,0), B=(0,0,
0,0,0,0,0,0,0,0,0,1,−1,0), P=(0,0,0,0,0,0,0,1,0,−1,0,0,0,0), F=(0,0,0,0,0,0,0,1,0,1,0,0,0,0), i=(0,0,0,
0,0,0,0,0,0,0,0,1,0,0), Q=(0,0,0,0,0,0,0,0,1,0,0,0,−1,0), Y=(0,0,0,0,0,0,0,0,1,0,0,0,1,0), s=(0,0,0,0,0,
0,0,0,1,0,0,1,1,−1), Z=(0,0,0,0,0,0,0,0,1,0,0,−1,−1,−1), t=(0,0,0,0,0,0,0,0,1,0,0,0,0,1), #=(0,0,0,0,
0,0,0,0,1,0,0,1,−1,−1), R=(0,0,0,0,0,0,0,0,1,0,0,1,1,1), %=(0,0,0,0,0,0,0,0,1,0,0,−1,0,0), j=(0,0,0,0,
0,0,0,0,0,0,0,0,1,−1), S=(0,0,0,0,0,0,0,0,1,0,0,−1,1,−1), T=(0,0,0,0,0,0,0,0,0,0,0,1,0,−1), a=(0,0,0,
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0,0,0,0,0,0,1,1,0,0,0), b=(0,0,0,0,0,0,0,0,0,1,−1,0,0,0), c=(0,0,0,0,0,0,0,0,1,0,0,1,−1,1), k=(0,0,0,0,
0,0,0,0,0,0,0,0,1,1), C=(0,0,0,0,0,0,0,1,−1,1,1,0,0,0), G=(0,0,0,0,0,0,0,1,−1,−1,−1,0,0,0), u=(0,0,0,
0,0,0,0,1,1,0,0,0,0,0), D=(0,0,0,0,0,0,0,1,1,−1,1,0,0,0), E=(0,0,0,0,0,0,0,1,0,0,−1,0,0,0), H=(0,0,0,0,
0,0,0,0,1,0,−1,0,0,0), n=(0,0,0,0,0,0,0,1,−1,1,−1,0,0,0), l=(0,0,0,0,0,0,0,1,−1,−1,1,0,0,0), m=(0,0,
0,0,0,0,0,1,1,1,1,0,0,0)

Appendix A.13. Fifteen-dim MMPHs

25-8 123456789ABCDEF,1234567GHIJKLD,1RS89ABCDEF,27TRSX9GH,347CL,
347BK,347AIJ,T8X9.

66-14 (master for 25-8) 123456789ABCDEF,1234567GHIJKLDM,1NOPQRS89ABCDEF,
27TUVWRSX9YGHZa,347bcdeZfghiCjL,347bcdeaklBmKhi,347bcdenoApIJgl,567qrstuYpm
jMEF, 567qrstvw9Yfkno,qrxyz!QW8uvwX9Y,qrxyz!QWX9YGHZa,sb"#$PV!8uvwX9Y,tc%OUz
#$8uvwX9Y,deNTxy"%8uvwX9Y. 1=(0,0,1,1,1,1.0,0,0,0,0,0,0,0,0), 2=(0,0,1,−1,1,−1.0,0,0,0,0,0,0,
0,0), 3=(0,0,0,1,0,−1.0,0,0,0,0,0,0,0,0), 4=(0,0,1,0,−1,0.0,0,0,0,0,0,0,0,0), 5=(0,1,0,0,0,0.0,0,0,0,0,
0,0,0,0), 6=(1,0,0,0,0,0.0,0,0,0,0,0,0,0,0), 7=(0,0,0,0,0,0.1,0,0,0,0,0,0,0,0), q=(0,0,0,1,0,0.0,0,0,0,0,0,
0,0,0), r=(0,0,1,0,0,0.0,0,0,0,0,0,0,0,0), s=(0,0,0,0,0,1.0,0,0,0,0,0,0,0,0), t=(0,0,0,0,1,0.0,0,0,0,0,0,
0,0,0), b=(1,−1,1,0,1,0.0,0,0,0,0,0,0,0,0), c=(1,1,0,1,0,1.0,0,0,0,0,0,0,0,0), d=(1,1,0,−1,0,−1,0,0,0,
0,0,0,0,0,0), e=(−1,1,1,0,1,0.0,0,0,0,0,0,0,0,0), N=(0,1,−1,1,0,0.1,0,0,0,0,0,0,0,0), T=(1,0,1,1,0,0,0,
−1,0,0,0,0,0,0,0), x=(1,0,0,0,1,1.0,1,0,0,0,0,0,0,0), y=(0,1,0,0,−1,1.−1,0,0,0,0,0,0,0,0), "=(0,0,1,0,
−1,0.1,1,0,0,0,0,0,0,0), %=(0,0,0,1,0,−1.−1,1,0,0,0,0,0,0,0), O=(1,0,1,0,0,−1.1,0,0,0,0,0,0,0,0),
U=(0,−1,1,0,0,1.0,1,0,0,0,0,0,0,0), z=(−1,1,0,0,0,0.1,1,0,0,0,0,0,0,0), #=(1,0,−1,−1,0,0.0,1,0,0,0,
0,0,0,0), $=(0,1,1,−1,0,0.−1,0,0,0,0,0,0,0,0), P=(1,0,0,1,−1,0.−1,0,0,0,0,0,0,0,0), V=(0,1,0,1,1,0.0,
1,0,0,0,0,0,0,0), !=(1,1,0,0,0,0.1,−1,0,0,0,0,0,0,0), Q=(0,1,0,0,1,−1.−1,0,0,0,0,0,0,0,0), W=(1,0,0,0,
−1,−1.0,1,0,0,0,0,0,0,0), R=(1,1,0,−1,0,1.0,0,0,0,0,0,0,0,0), S=(1,−1,−1,0,1,0.0,0,0,0,0,0,0,0,0),
8=(0,0,0,0,0,0.0,0,0,1,1,1,1,0,0), u=(0,0,0,0,0,0.0,0,0,1,−1,1,−1,0,0), v=(0,0,0,0,0,0.0,0,0,0,1,0,−1,
0,0), w=(0,0,0,0,0,0.0,0,0,1,0,−1,0,0,0), X=(0,0,0,0,0,0.0,0,1,0,0,0,0,0,0), 9=(0,0,0,0,0,0.0,0,0,0,0,0,
0,0,1), Y=(0,0,0,0,0,0.0,0,0,0,0,0,0,1,0), G=(0,0,0,0,0,0.0,0,0,0,1,0,0,0,0), H=(0,0,0,0,0,0.0,0,0,1,0,0,
0,0,0), Z=(0,0,0,0,0,0.0,0,0,0,0,0,1,0,0), a=(0,0,0,0,0,0.0,0,0,0,0,1,0,0,0), f=(0,0,0,0,0,0.0,1,−1,1,0,
1,0,0,0), k=(0,0,0,0,0,0.0,1,1,0,1,0,1,0,0), n=(0,0,0,0,0,0.0,1,1,0,−1,0,−1,0,0), o=(0,0,0,0,0,0.0,1,
−1,−1,0,−1,0,0,0), A=(0,0,0,0,0,0.0,0,1,−1,1,0,0,1,0), p=(0,0,0,0,0,0.0,1,0,1,1,0,0,0,−1), I=(0,0,0,
0,0,0.0,1,0,0,0,1,1,0,1), J=(0,0,0,0,0,0.0,0,1,0,0,−1,1,−1,0), g=(0,0,0,0,0,0.0,0,0,1,0,−1,0,1,1),
l=(0,0,0,0,0,0.0,0,0,0,1,0,−1,−1,1), B=(0,0,0,0,0,0.0,1,0,1,0,0,−1,1,0), m=(0,0,0,0,0,0.0,0,1,−1,0,0,
−1,0,−1), K=(0,0,0,0,0,0.0,1,−1,0,0,0,0,−1,−1), h=(0,0,0,0,0,0.0,1,0,−1,−1,0,0,0,1), i=(0,0,0,0,0,
0.0,0,1,1,−1,0,0,−1,0), C=(0,0,0,0,0,0.0,1,0,0,1,−1,0,−1,0), j=(0,0,0,0,0,0.0,0,1,0,1,1,0,0,1), L=(0,
0,0,0,0,0.0,1,1,0,0,0,0,1,−1), D=(0,0,0,0,0,0.0,0,1,0,0,1,−1,−1,0), M=(0,0,0,0,0,0.0,1,0,0,0,−1,−1,
0,1), E=(0,0,0,0,0,0.0,1,1,0,−1,0,1,0,0), F=(0,0,0,0,0,0.0,1,−1,−1,0,1,0,0,0)

Appendix A.14. Sixteen-dim MMPHs

22-9 123456789ABCDEFG,17HID,28UdG,3478efE,5678,Bd,e9,fICF,HUA.

70-9 (master for 22-9) 123456789ABCDEFG,17HIJKLMNOPQRDST,28UVWXLMYZabScdG,
3478efghijPbkElm,5678nopqrZsQtukT,novwxyKXzasBu!dm,pe"#$JWy9iY%tR&’,qf(IVx#
$zOjC)lF&,ghHUvw"(ArN%)c!’. 1=(0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0), 2=(0,0,1,−1,1,−1,0,0,0,0,
0,0,0,0,0,0), 3=(0,0,0,1,0,−1,0,0,0,0,0,0,0,0,0,0), 4=(0,0,1,0,−1,0,0,0,0,0,0,0,0,0,0,0), 5=(0,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0), 6=(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), 7=(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0), 8=(0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0), n=(0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0), o=(0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0),
p=(0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0), q=(0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0), e=(1,−1,1,0,1,0,0,0,0,0,0,0,0,
0,0,0), f=(1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0), g=(1,1,0,−1,0,−1,0,0,0,0,0,0,0,0,0,0), h=(−1,1,1,0,1,0,
0,0,0,0,0,0,0,0,0,0), H=(0,1,−1,1,0,0,1,0,0,0,0,0,0,0,0,0), U=(1,0,1,1,0,0,0,−1,0,0,0,0,0,0,0,0), v=(1,
0,0,0,1,1,0,1,0,0,0,0,0,0,0,0), w=(0,1,0,0,−1,1,−1,0,0,0,0,0,0,0,0,0), "=(0,0,1,0,−1,0,1,1,0,0,0,0,0,0,
0,0), (=(0,0,0,1,0,−1,−1,1,0,0,0,0,0,0,0,0), I=(1,0,1,0,0,−1,1,0,0,0,0,0,0,0,0,0), V=(0,−1,1,0,0,1,0,
1,0,0,0,0,0,0,0,0), x=(−1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0), #=(1,0,−1,−1,0,0,0,1,0,0,0,0,0,0,0,0), $=(0,
1,1,−1,0,0,−1,0,0,0,0,0,0,0,0,0), J=(1,0,0,1,−1,0,−1,0,0,0,0,0,0,0,0,0), W=(0,1,0,1,1,0,0,1,0,0,0,0,
0,0,0,0), y=(1,1,0,0,0,0,1,−1,0,0,0,0,0,0,0,0), K=(0,1,0,0,1,−1,−1,0,0,0,0,0,0,0,0,0), X=(1,0,0,0,−1,
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−1,0,1,0,0,0,0,0,0,0,0), L=(1,1,0,−1,0,1,0,0,0,0,0,0,0,0,0,0), M=(1,−1,−1,0,1,0,0,0,0,0,0,0,0,0,0,0),
9=(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0), A=(0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0), i=(0,0,0,0,0,0,0,0,0,1,1,0,0,0,
0,0), Y=(0,0,0,0,0,0,0,0,0,1,−1,0,0,0,0,0), r=(0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0), N=(0,0,0,0,0,0,0,0,1,0,
−1,0,0,0,0,0), z=(0,0,0,0,0,0,0,0,1,−1,0,0,0,0,0,0), %=(0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0), O=(0,0,0,0,0,
0,0,0,1,1,1,1,0,0,0,0), j=(0,0,0,0,0,0,0,0,1,1,−1,−1,0,0,0,0), P=(0,0,0,0,0,0,0,0,1,−1,1,−1,0,0,0,0),
Z=(0,0,0,0,0,0,0,0,1,−1,−1,−1,0,0,0,0), a=(0,0,0,0,0,0,0,0,1,1,1,−1,0,0,0,0), s=(0,0,0,0,0,0,0,0,
1,1,−1,1,0,0,0,0), b=(0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0), B=(0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0), C=(0,0,0,0,
0,0,0,0,0,0,1,−1,0,0,0,0), Q=(0,0,0,0,0,0,0,0,0,1,0,−1,0,0,0,0), t=(0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0),
R=(0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0), u=(0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0), k=(0,0,0,0,0,0,0,0,0,0,0,0,0,1,
−1,0), D=(0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0), S=(0,0,0,0,0,0,0,0,0,0,0,0,1,0,−1,0), )=(0,0,0,0,0,0,0,
0,0,0,0,0,1,−1,0,0), T=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1), c=(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1), !=(0,0,0,
0,0,0,0,0,0,0,0,0,1,1,−1,−1), d=(0,0,0,0,0,0,0,0,0,0,0,0,1,−1,1,−1), E=(0,0,0,0,0,0,0,0,0,0,0,0,1,
−1,−1,−1), l=(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,−1), F=(0,0,0,0,0,0,0,0,0,0,0,0,1,1,−1,1), m=(0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,1), &=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1), ’=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,−1), G=(0,
0,0,0,0,0,0,0,0,0,0,0,0,1,0,−1)
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50. Pavičić, M.; Megill, N.D.; Aravind, P.K.; Waegell, M. New Class of 4-Dim Kochen-Specker Sets. J. Math. Phys. 2011, 52, 022104.

[CrossRef]
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58. Megill, N.D.; Pavičić, M. New Classes of Kochen-Specker Contextual Sets (Invited Talk). In Proceedings of the 40th MIPRO

Convention, Opatija, Croatia, 22–26 May 2017; pp. 195–200.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevA.89.042101
http://dx.doi.org/10.1103/PhysRevA.95.050101

	Introduction
	Results
	Formalism
	Generation of Non-KS MMPHs
	Dimensions Three to Five and the Three Classes of Non-KS Contextual Sets from the Literature
	Dimensions Six to Eight
	Dimensions Nine to Eleven
	Dimensions 12 to 16

	Discussion
	Methods
	Conclusions
	 SCII Strings of Non-KS MMPH Classes and Their Masters and Supermasters
	 Three-dim MMPHs
	 Four-dim MMPHs
	 Five-dim MMPHs
	 Six-dim MMPHs
	 Seven-dim MMPHs
	 Eight-dim MMPHs
	 Nine-dim MMPHs
	 Ten-dim MMPHs
	 Eleven-dim MMPHs
	 Twelve-dim MMPHs
	 Thirteen-dim MMPHs
	 Fourteen-dim MMPHs
	 Fifteen-dim MMPHs
	 Sixteen-dim MMPHs

	References

