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Abstract: We calculate differential Shannon entropies derived from time-dependent coordinate-
space and momentum-space probability densities. This is performed for a prototype system of a
coupled electron–nuclear motion. Two situations are considered, where one is a Born–Oppenheimer
adiabatic dynamics, and the other is a diabatic motion involving strong non-adiabatic transitions.
The information about coordinate- and momentum-space dynamics derived from the total and
single-particle entropies is discussed and interpreted with the help of analytical models. From the
entropies, we derive mutual information, which is a measure for the electron–nuclear correlation.
In the adiabatic case, it is found that such correlations are manifested differently in coordinate- and
momentum space. For the diabatic dynamics, we show that it is possible to decompose the entropies
into state-specific contributions.

Keywords: differential Shannon entropy; correlation; electron–nuclear dynamics

1. Introduction

Given the coordinate-space wave function ψ(x, t) of a quantum system, the differential
Shannon entropy is obtained from the probability density ρ(x, t) = |ψ(x, t)|2 as [1,2]

Sx(t) = −
∫

dx ρ(x, t) ln [ρ(x, t)], (1)

where x and t stand for the coordinates and time, respectively. This function is a measure
for the information available on the system, and the larger its value, the less information is
provided. Likewise, one may start with the momentum (π) space wave functions ψ(π, t)
being the Fourier transform of ψ(x, t), yielding the density ρ(π, t) = |ψ(π, t)|2, and define
the entropy

Sπ(t) = −
∫

dπ ρ(π, t) ln [ρ(π, t)]. (2)

Following the information-theoretical line of thought, Sx(t) and Sπ(t) provide us
with knowledge about what happens in coordinate- and momentum-space, respectively.
If one encounters a less localized coordinate-space probability density, the position of
a particle is less precisely known so that the entropy Sx(t) takes on a larger value. If
we consider, for example, a Gaussian-like density, due to the Fourier relation, a broad
coordinate-space distribution is associated with a more localized momentum-space density
and, accordingly, Sπ(t) is smaller. This general behavior is connected to the coordinate-
momentum uncertainty relation. In more detail, one finds that the sum Sx(t) + Sπ(t) is a
measure for the coordinate-momentum uncertainty [2–5].
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Concerning chemical dynamics, differential Shannon entropies have been discussed,
see Refs. [6–10]. They are also important in the connection with reactivity [11], aromatic-
ity [12] and stereochemistry [10]. Other applications include the thermalization of isolated
quantum systems caused by disorder [13,14], and in the static case, differential Shannon en-
tropies were applied to study wavefunction behavior in various potentials [15–17], avoided
crossings [18–20] and correlation effects [21,22].

Regard now, more specifically, a molecule composed of electrons and nuclei. We then
may calculate the differential Shannon entropies Sx(t) and Sπ(t) from the total probability
densities; additionally, using the electron (el) and nuclear (nuc) densities, the particle
entropies Sel

x (t), Sel
π(t) and Snuc

x (t), Snuc
π (t) are accessible. It is the purpose of this paper to

illustrate coordinate-space and momentum-space entropies for a coupled electron–nuclear
dynamics. There, one may distinguish two opposite situations. The first one is that
of a Born–Oppenheimer (BO) adiabatic motion [23,24], where the nuclear dynamics is
restricted to a single electronic state, and couplings to other states are negligible. This
is often realized if the motion takes place in the electronic ground state. The opposite
limit is reached if strong non-adiabatic couplings are present [25]. Then, nuclear densities
are transferred with large efficiency between different electronic states, as is usually the
case when an avoided crossing between potential curves [26,27] or a conical intersection
between potential surfaces [28–30] is passed. Differential entropies evolving from the weak
and strong coupling cases are considered in this paper. Additionally, the electron–nuclear
correlation, which can be characterized by the “mutual information” derived from the
entropy functions [21,31], is discussed. In doing so, the interpretations evolving from
coordinate-space and momentum-space are investigated, thereby extending our former
work [32]. This is performed using analytical approaches and also giving numerical
examples. The latter are restricted to a coupled one-dimensional motion of an electron and
a nucleus [33,34]. We use parameterizations of the electronic–nuclear interaction potential,
which cover the two coupling cases outlined above. The paper is organized as follows. In
Section 2, we describe the model used in the numerical calculations, and we also provide
the basic equations to arrive at the various entropies. The analytical and numerical results
are collected in Section 3, and a summary is given in Section 4.

2. Theory and Model
2.1. Model for the Coupled Electronic–Nuclear Motion

A useful model for the one-dimensional electron–nuclear motion was established in
the work of Shin and Metiu [33,34]. It has been used to describe basic properties of such
dynamics [35–37], and was extended to include more than one electron [36] and also a
planar motion to describe dynamics taking place at a conical intersection [38–40]. The
interaction potential is taken as (in atomic units)

V(r, R) =
1

|R1 − R| +
1

|R2 − R| −
er f [|R1 − r|/R f ]

|R1 − r|

− er f [|R− r|/Rc]

|R− r| −
er f [|R2 − r|/R f ]

|R2 − r| + ∆, (3)

where r and R denote the coordinate of the electron and nucleus, respectively. They interact
via screened Coulomb potentials involving error functions. Additionally, there are two
protons at fixed positions R1 = − 5 Å and R2 = + 5 Å so that further terms are present
in the potential energy surface. The strength of the screening is determined by the two
parameters R f and Rc, where in our examples, R f is fixed at a value of 1.5 Å, and Rc takes
the value of Rc = 1 Å and Rc = 5 Å for the cases of weak and strong non-adiabatic coupling,
respectively. Finally, ∆ is an energy shift which is chosen such that the potential V(r, R)
has its minimum at zero energy in the range of our spatial grid.
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The time-dependent Schrödinger equation reads

ih̄
∂

∂t
Ψ(r, R, t) = Ĥ Ψ(r, R, t), (4)

with the Hamiltonian

Ĥ =
p̂ 2

2me
+

P̂ 2

2M
+ V(r, R). (5)

Here, the momentum operators for the electron and the nucleus are p̂ and P̂, respec-
tively, M denotes the proton mass, and me is the mass of the electron.

The time propagation is performed with the split-operator method [41] on a grid in
the spatial ranges of − 12 Å ≤ R ≤ + 12 Å and − 6 Å ≤ r ≤ + 6 Å, using 512 grid points in
each direction and a time step of ∆t = 0.0024 fs.

Different initial conditions are employed in solving the time-dependent Schrödinger
equation. The initial functions are of the form

Ψ(r, R, 0) = N0 e−β0(R−R0)
2

ϕn(r; R). (6)

Here, N0 is a normalization constant, and the appearing Gaussian is characterized
by its center R0 and the width parameter β0, which is set to a value of 7.14 Å−2 through-
out, and the center of the Gaussian R0 takes on different values. Solving the electronic
Schrödinger equation

[ p̂ 2

2me
+ V(r, R)

]
φn(r; R) = Vn(R) φn(r; R), (7)

using imaginary time propagation [42] yields the electronic wave functions ϕn(r; R) and the
adiabatic potentials Vn(R) corresponding to the electronic state with quantum number (n).

A variation of the screening parameter entering into the interaction potential leads
to different adiabatic potentials. The ground state potential obtained for a value of Rc = 1
Å is shown in the left upper panel of Figure 1. The energy gap to the potential V1(R) is
about 4 eV (not shown) so that here, the electronic ground state is separated from the
excited electronic states, and we encounter a case where the BO approximation is valid
(Section 3.1). The electronic eigenfunctions ϕ0(r; R) and ϕ1(r; R) are also contained in the
figure (left middle and left lower panel). The ground state function shifts almost linearly
with increasing values of the nuclear coordinate, thereby approximately keeping a Gaussian-
like shape of constant width. This is not true for ϕ1(r; R), which varies considerably in
its width.

The situation of a strong coupling is illustrated in the right-hand column of Figure 1,
and it is obtained in setting Rc = 5 Å. The potentials of the two lowest states show a very
small energy gap of [V1(0) − V0(0)] <0.01 eV at the avoided crossing. The respective
electronic eigenfunctions, displayed in the lower right two panels of the figure, do not
change their form in varying R at negative distances. Reaching the avoided crossing at
R = 0, a sudden jump of the probability density occurs, and then, at positive values of R,
the shape again remains invariant upon a change in geometry. This is characteristic for the
diabatic dynamics, see Section 3.2.
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Figure 1. Upper panels: Adiabatic potential curves Vn(R) obtained for two choices of the screening
parameter Rc. The left- and right-hand columns are associated with the cases of a BO motion
(Rc = 1 Å) and a diabatic motion (Rc = 5 Å), respectively. The two lower rows show the electronic
eigenfunctions ϕ0(r; R) and ϕ1(r; R) as indicated.

2.2. Differential Entropies for Electronic–Nuclear Motion

In order to calculate entropies, according to Equations (1) and (2), probability densities
are needed. From the time-dependent wave function, the coordinate probability density is
calculated as

ρ(r, R, t) = |Ψ(r, R, t)|2. (8)

Single-particle densities are obtained by integration. This leads to the electronic
density

ρel(r, t) =
∫

dR ρ(r, R, t), (9)

and for the nucleus, one has

ρnuc(R, t) =
∫

dr ρ(r, R, t). (10)

A two-dimensional Fourier transform of Ψ(r, R, t) yields the momentum-space wave
function Ψ(p, P, t) and the density

ρ(p, P, t) = |Ψ(p, P, t)|2, (11)

with p and P being the electronic and nuclear momenta, respectively. We then have
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ρel(p, t) =
∫

dP ρ(p, P, t), (12)

ρnuc(P, t) =
∫

dp ρ(p, P, t). (13)

Using the coordinate- and momentum-space densities, the total differential Shannon
entropies can be calculated as follows:

Sx(t) = −
∫

dr
∫

dR ρ(r, R, t) ln
[
ρ(r, R, t)

]
, (14)

Sπ(t) = −
∫

dp
∫

dP ρ(p, P, t) ln
[
ρ(p, P, t)

]
. (15)

For the single particles, one obtains the following entropies:

Sel
r (t) = −

∫
dr ρel(r, t) ln

[
ρel(r, t)

]
, (16)

Sel
p (t) = −

∫
dp ρel(p, t) ln

[
ρel(p, t)

]
, (17)

Snuc
R (t) = −

∫
dR ρnuc(R, t) ln

[
ρnuc(R, t)

]
, (18)

Snuc
P (t) = −

∫
dP ρnuc(P, t) ln

[
ρnuc(P, t)

]
. (19)

Another quantity is the “mutual information” (MI). This function contains information
on the correlation between different particles [21,31]. In the present situation of a coupled
electron–nuclear motion, we derive from the densities the coordinate-space and momentum-
space MI:

Ix(t) = Sel
r (t) + Snuc

R (t)− Sx(t), (20)

Iπ(t) = Sel
p (t) + Snuc

P (t)− Sπ(t). (21)

We also regard two additional measures for correlation. The first one is the “covari-
ance” [43], which is defined in terms of expectation values of the coordinates r and R or the
momenta p and P as

covx(t) = 〈rR〉t − 〈r〉t 〈R〉t , (22)

covπ(t) = 〈pP〉t − 〈p〉t 〈P〉t . (23)

Using the variances for the variables y = r, R, p, P

σ2
y (t) = 〈y2〉t − 〈y〉

2
t , (24)

one defines the “correlations” as

corrx(t) =
covx(t)

σR(t)σr(t)
, (25)

corrπ(t) =
covπ(t)

σP(t)σp(t)
. (26)

3. Results
3.1. Weak Coupling: Born–Oppenheimer Dynamics

Setting the screening parameter to a value of Rc = 1 Å and imposing the initial
condition given in Equation (6) with R0 = −3.5 Å and with the electronic wave function
ϕ0(r; R) yields the dynamics which exclusively takes place in the electronic ground state.
This means that the population P̃0(t) = |〈ϕ0|Ψ(t)〉|2 remains equal to one at all times
regarded (where the numerical deviations are in the order of 0.2%).

In a former paper, we used a Gaussian ansatz for the BO wave function to analyze the
numerically determined entropies and correlation measures [32]. This function reads
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Ψ(r, R, t) = Nt e−
βt
2 (R−Rt)

2
e−

γ
2 (r−R)2

, (27)

where the normalization factor is

Nt =

[√
γβt

π

] 1
2

. (28)

The time dependence of the wave function is contained in the center of the nuclear
Gaussian at R = Rt and also its width, which is determined by the parameter βt. Phase
factors are thus not included in the ansatz. On the other hand, the electronic wave function
is assumed to have a constant width (i.e., γ = const.), and its center shifts linearly with the
nuclear coordinate R. These assumptions are approximately fulfilled for ϕ0(r; R), as it can
be taken from Figure 1, middle left panel. The ansatz of Equation (27) allows to calculate
the various quantities derived from the coordinate-space densities. The details of these
calculations can be found in Ref. [44]. Here, we additionally need the respective equations
evolving from a momentum-space analysis. The latter is presented in Appendix A. The
results for the entropies, variances and correlation measurements are as follows:

Sx(t) = ln

[
π√
γβt

]
+ 1, (29)

Sπ(t) = ln
[√

γβtπ
]
+ 1, (30)

Sel
r (t) = ln

[√
(βt + γ)π

βtγ

]
+

1
2

, (31)

Sel
p (t) = ln

[√
πγ
]
+

1
2

, (32)

Snuc
R (t) = ln

[√
π

βt

]
+

1
2

, (33)

Snuc
P (t) = ln

[√
π(βt + γ)

]
+

1
2

, (34)

Ix(t) =
1
2

ln
[

1 +
γ

βt

]
, (35)

Iπ(t) =
1
2

ln
[
1 +

γ

βt

]
, (36)

σ2
r (t) =

1
2

γ + βt

γβt
, (37)

σ2
p(t) =

γ

2
, (38)

σ2
R(t) =

1
2βt

, (39)

σ2
P(t) =

1
2
(βt + γ), (40)

covx(t) =
1

2βt
, (41)

covπ(t) = −1
2

γ, (42)

corrx(t) =
1√

1 + βt/γ
, (43)

corrπ(t) = − 1√
1 + βt/γ

. (44)
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In this section, the latter equations are used—as far as possible—for the interpretation
of the numerical results.

The nuclear dynamics is illustrated in Figure 2, left upper panel. It is seen that the
probability density performs a vibrational motion, but at the end of the displayed time
interval, dispersion causes the density to be distributed over the entire classically allowed
region. The corresponding momentum density is shown below the coordinate density. It
reveals a complex structure which includes, as is also seen in the coordinate-space density,
interference fringes. The latter arise when ρnuc(R, t) reverses its direction of motion so that
ρnuc(P, t) changes from a positive to a negative momentum distribution. It is obvious that
the ansatz for the nuclear momentum density given in Equation (A15) cannot accurately
describe the numerical result shown in the figure. This, in particular, applies to the seen
fringes and also to the rapid change from positive to negative momenta. Nevertheless, the
derived analytical entropies still prove to be valuable because they are quantities derived
from an integration over all momenta.
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Figure 2. Nuclear density dynamics in the presence of weak (BO dynamics, left-hand column) and
strong non-adiabatic coupling (diabatic dynamics, right-hand column). The upper panels show
the nuclear densities in coordinate space and the lower panels in momentum space. While in the
weakly coupled case the densities disperse quickly, the strongly coupled case shows quasi-harmonic-
dynamics.

The coordinate space nuclear entropy is displayed in the upper left panel of Figure 3. It
was checked upon numerically (not shown) that exactly the same curve is obtained if the BO
wave function is employed in the calculation. This function is the product of ϕ0(r; R) and a
component ψBO

0 (R, t), which is obtained in solving the nuclear time-dependent Schrödinger
equation involving the adiabatic potential V0(R). We found that the BO approximation
is excellent for all entropies presented in the figure. The approximate curve for Snuc

R (t)
(Equation (33)) is determined for a value of γ = 0.733 Å, which is calculated in taking an
average of the variance σ2

r (R) of the electronic eigenfunction in the interval |R| ≤ 5 Å. The
time-dependent parameter βt is obtained from the numerically calculated variance σR(t)
using Equation (39). The analytical expression initially tracks the numerical obtained entropy
excellently. Deviations occur when the classical turning point of the wave packet motion
is approached for the first time. At this time, the Gaussian approximation to the nuclear
density is no longer accurate, see Figure 2. Nevertheless, the analytical curve predicts the time
dependence of the nuclear entropy rather well. The minima in the entropy occur at times
when the wave packet is focused (large value of βt) as can be understood from Equation (33).
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This is the case at the classical turning points of the motion, and it is in accord with the
notion that a more localized coordinate space probability density is associated with a larger
information on a particle’s position and, in turn, with a smaller entropy. Note that a focusing
also takes place around 5 fs, which is due to a squeezing [45] of the wave packet.
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Figure 3. BO dynamics. The left-hand panels show the coordinate-space entropies for the nuclear
(upper panel) and electronic (middle panel) degrees of freedom. Also displayed is the entropy of the
coupled system (lower panel). The right-hand column contains the same functions derived from the
momentum-space densities. In each case, the numerically determined functions are compared to the
analytically ones. The dashed lines mark the times when the wave packet reaches the classical turning
points of its motion.

The momentum-space nuclear entropy is shown in the right upper panel of Figure 3. To
arrive at the approximate entropy, we again use the value of γ = 0.733 Å, and the parameter
βt is then calculated from the numerically determined variance using Equation (40). The
deviations between the numerical and analytical entropies are larger than those found in
coordinate space, for the reasons discussed above. Nevertheless, the positions of the extrema
are well predicted. From Equation (34), it can be inferred that a minimum is found at times
when βt assumes a minimum, which correlates with a more localized momentum-space
density. Thus, at times when a maximum is found in the coordinate-space entropy, the
momentum-space entropy assumes a minimum and vice versa. This illustrates the Fourier
relation between the two nuclear densities.

The comparison of Equations (31) and (33) shows that the nuclear and electronic coor-
dinate entropies exhibit minima and maxima at the same times. This indeed is seen if these
curves are compared (upper and middle left panel of Figure 3). The agreement between
the numerically and analytically determined electronic entropies is astonishingly good. Not
unsurprisingly, we find that at the turning points where the electron–nuclear wave packet
reverses its motion, we know more precisely where the electron is located as is the case for the
nucleus. This is also reflected in the total spatial entropy (lower left panel of the figure). The



Entropy 2023, 25, 970 9 of 23

approximate function Sx(t) is, at all times, larger than the numerical one, which is a property
of the normal probability distribution [1].

The electronic momentum-space entropy is contained in the middle right panel of
Figure 3. Whereas the analytical solution predicts a time-independent entropy, the numerical
results show that there are smaller time variations, where, as for the coordinate-space entropies,
the minima and maxima correlate with those found for the nuclear degree of freedom. The
time dependence of the total momentum entropy is determined by that of the nuclear entropy
because the latter has a more pronounced time dependence as Sel

x (t). Note, however, that it is
not the sum of the two particle entropies; see the discussion below.

The results presented so far show that the time dependence of the entropies is determined
by the nuclear component of the wave function. This, of course, does not come as a surprise
because in the present case, the BO approximation is valid, and thus the electronic part of
the wave functions does not include time as a parameter. The predictions derived from our
Gaussian ansatz for the wave function, namely that the minima in the entropies correlate with
a more localized nuclear coordinate-space density, are confirmed by the numerical calculation.
Concerning the information available, it is seen that the coordinate-space and momentum-
space entropies reflect the Fourier relation between the two spaces. In particular, if we know
more about the localization of one or the other particle, less is known about its momentum
and vice versa.

Let us, in what follows, discuss the three measures of particle entanglement, namely
the covariance, correlation and mutual information as defined in Section 2.2. The covariance
functions covx(t) are shown in the upper left panel of Figure 4, and it is seen that the ana-
lytically derived curve again provides a very good approximation of the numerically exact
one. Thus, using Equation (41) for interpretation, a localized nuclear density, corresponding
to a large value of βt, goes in hand with a low degree of particle correlation. The reason is
that in this case, the R-dependence of the electronic wave function entering into the BO wave
function is of minor importance so that the wave function is approximately separable. This
shows that at times when the classical turning points (which are indicated as dashed vertical
lines in Figure 4) are reached, the covariance takes on minimal values. The same applies to
the correlation (middle left panel of Figure 4) and also to the MI (lower left panel). All three
functions exhibit a comparable time dependence so that we conclude that they measure the
correlation in a very similar way.

A different picture evolves from the momentum-space functions displayed in the right-
hand column of Figure 4. The nuclear momentum covariance and correlation behave rather
similarly as a function of time. They exhibit an overall decrease, which is modulated with the
vibrational period, and for longer times, they level to a value of about zero. Both numerically
determined functions are negative initially, and they switch sign for later times, whereas the
analytical predictions stay negative throughout. This deviation is a non-BO effect, which was
checked upon in performing a BO propagation.

It is seen that at times when the turning points are reached, the momentum correlation
approaches zero, which agrees with the behavior in configuration space. Whereas no time
dependence appears in the analytical covariance expression, the change of the nuclear variance
causes the correlation corrπ(t) to vary, similar to the numerical curve.

The momentum-space MI, displayed in the lower right panel of Figure 4, exhibits an
unusual behavior. The overall rise of the function is modulated by the vibrational period of
the quantum motion. The analytically determined MI does only give reasonable results at
very early times. It is interesting to observe that around the times when corrx(t) and covx(t)
predict a low degree of particle correlation, the MI does not, i.e., the MI is phase shifted
with respect to the other two functions. We also note that the fast oscillations seen in the MI
are neither of numerical origin nor are they due to non-BO effects as seen, for example, in
time-dependent electron momentum expectation values [46].
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Figure 4. BO-dynamics. The left-hand column shows the coordinate-space covariance, correlation and
mutual information, as indicated. The respective curves obtained from the momentum-space densities
are depicted in the right-hand column. In each case, numerically and analytically derived results are
compared. The times when the turning points are reached are marked by the vertical lines.

To gain more insight into the behavior of Iπ(t), we show in Figure 5a snapshots of the
momentum-space density at times when maxima and minima in the MI occur. It is seen that
initially, when Iπ(t) is small, the density is a nodeless Gaussian-like distribution. At a time
of t = 38 fs, there appears a clear nodal structure, and the MI takes on a maximum. Then, at
54 fs, the density in the region of its largest amplitude has lost the nodal pattern (although,
at larger nuclear momenta there is a region where the density shows nodes, but the overall
amplitude is small). Nodes appear another time at the location of the next maximum (82 fs).
A similar trend is seen at later times. The conclusion is that an increase in the MI goes in
hand with the appearance of nodal patterns in the momentum-space density found in the
direction of the nuclear momentum, and that with an increasing number of nodes, the MI
grows. To observe this behavior, it is important that the nodes are not oriented parallel to the
axes because otherwise they do not give a contribution to wave packet entanglement. This is
the case for the coordinate-space density. The latter is depicted, for selected times, in Figure 5b.
Starting with a Gaussian-like function at time zero, the density moves along the line r = R.
There also appears a nodal structure but here, all nodal lines are oriented perpendicular to
the nuclear coordinate axis. This does not change as a function of time as is illustrated for the
times t = 69 fs and 113 fs, where the coordinate-space MI assumes maxima. At later times
(250 fs and 300 fs), the densities are quite similar, which leads to a constant value of Ix(t). A
clearer nodal pattern is seen in the momentum-space density, which, for these times, fluctuates
as a function of time (Figure 5a), giving rise to fluctuations in Iπ(t).
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Figure 5. BO-dynamics. (a) Shown are momentum-space densities ρ(p, P, t) for different times as
indicated. Abscissa and ordinate correspond to the nuclear and electronic momentum, respectively. Also
shown is the MI Iπ(t). The vertical red lines mark times when the MI exhibits extrema, and the black
lines indicate the times when the classical turning points are reached. (b) Same as (a), but in coordinate
space. The densities ρ(r, R, t) (abscissa R, ordinate r) are depicted for selected times.

To support the connection between the nodal structure of the momentum-space density
and the resulting MI, we developed an analytical model using the simple ansatz for the
normalized density as

ρa,b(p, P) =
2 e−P2−p2

cos2( a√
1+b2 (P + bp))

π(1+ e−a2)
. (45)

Here, the parameter a determines the frequency of the cosine and thus the number of
nodes. In the limit a → 0, a standard non-correlated Gaussian is recovered. The second
parameter b ∈ [0, 1] determines the alignment of the nodes. The factor

√
1+ b2 ensures that b

does not distort the density and thus influences the effective frequency/number of nodes.
Using MATHEMATICA, we calculate the MI as a function of the frequency (i.e., number

of nodes) and for several values of b. The extensive analysis of these calculations is out of the
scope of this paper, and it will be given elsewhere [44]. Here, we summarize the main results.
Regarding the MI as a function of the number of nodes, we find that it grows monotonically
and approaches a constant with increasing number of nodes. Furthermore, the MI vanishes
for b = 0 and arbitrary a, and curves reach the same upper bound faster with increasing
b > 0. The rough model explains qualitatively what is seen in the numerical results. Using
the ansatz Equation (45), the covariance and correlation can be calculated analytically. These
functions vanish for b→ 0 and a→ 0 as expected, but they also vanish for a→ ∞, whereas
the MI approaches a finite non-zero limit. This finding is also in accord with what is seen in
Figure 4. Here we encounter a behavior of the MI which is different from the covariance and
correlation, which hints at the fact that non-linear correlations are present in the wave packet
moving in momentum space.

3.2. Strong Coupling: Diabatic Dynamics

In this section, we treat the case of a strong non-adiabatic coupling, which is achieved
in setting the screening parameter to Rc = 5 Å. The adiabatic potentials and the electronic
eigenfunctions are illustrated in Figure 1. The nuclear wave function starts at R0 = −1.5 Å.
For an analytical approach, we take advantage of the fact that the dynamics (see right-hand
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column of Figure 2) can be well described as a diabatic motion [47], where the wave function
is of the form

Ψ(r, R, t) = ψd(R, t) ϕ0(r, Rd). (46)

Within this approximation, the nuclear component moves in the diabatic potential
obtained in connecting the negative branch of V0(R) with the positive branch of V1(R), and
the electronic wave function is the diabatic function calculated at a fixed value R = Rd.

The analytical treatment starts from the ansatz for the wave function as

Ψ(r, R, t) =

√√
γβt

π
e−

βt
2 (R−Rt)

2
e−

γ
2 (r−Rd)

2
. (47)

Thus, here, the total wave function is separable, which simplifies the calculations if
compared to the BO case treated in Section 3.1. As shown in Appendix B, the following
entropies evolve from the diabatic ansatz of the wave function:

Sx(t) = ln
[ π√

βtγ

]
+ 1, (48)

Sπ(t) = ln
[√

γβtπ
]
+ 1, (49)

Sel
r (t) = ln

[√π

γ

]
+

1
2

, (50)

Snuc
R (t) = ln

[√ π

βt

]
+

1
2

, (51)

Sel
p (t) = ln

[√
πγ
]
+

1
2

, (52)

Snuc
P (t) = ln

[√
πβt

]
+

1
2

. (53)

Here, we determine γ from the electronic width at t = 0 which yields a value of
γ = 0.436 Å−2. Note that because of the separability of the diabatic wave function, the
correlation, covariance and mutual information vanish in coordinate- and momentum space.

A comparison of the equations for the coordinate and momentum total entropies in the
diabatic and adiabatic case (Equations (29) and (48), Equations (30) and (49)) shows that they
are identical. In both situations, the nuclear dynamics takes place in a single potential. For a
diabatic motion, the electron remains stationary, whereas the nucleus vibrates, being more
or less localized as time goes along. In the BO case, both particles localize simultaneously.

The entropies evolving from the diabatic dynamics are presented in Figure 6. The
nuclear coordinate entropy oscillates with a single frequency associated with the vibrational
wave packet motion, and the analytically obtained curve tracks the numerical one per-
fectly. The oscillations show an increasing amplitude, which, according to Equation (51)),
correlates with a decrease in the width parameter βt. The obtained curve is much more
regular if compared to the BO case (Figure 3). This is due to the excellent accuracy of the
diabatic approximation. Here, the nuclear motion takes place in an almost harmonic poten-
tial (which is not the case in the adiabatic situation, where the potential shows a double
minimum structure). This harmonic-like motion is clearly seen in the density dynamics
displayed in the right-hand column of Figure 2. The momentum space nuclear entropy
Snuc

P (t) exhibits the same quasi-periodic time structure but is phase shifted with respect to
Snuc

R (t), as is expected from Equation (53). In both spaces, the electronic entropy is nearly
constant as is predicted within the analytical ansatz (Equations (50) and (52)). The minor
numerically found deviations from a constant behavior are due to the approximate nature
of the diabatic ansatz and also the variation of the electronic variance as a function of the
nuclear coordinate sR.
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Figure 6. Same as Figure 3 but for the strong coupling case.

Whereas for the purely diabatic dynamics, all functions which measure correlations are
identical to zero, the numerically calculated curves are non-zero but are small in magnitude,
and thus we do not show them here.

Until now, we adopted a diabatic picture to describe the strong coupling case. It is
interesting to relate the results to the adiabatic approach, where the expansion of the total
wave function reads

Ψ(r, R, t) =
∞

∑
n=0

ψn(R, t) ϕn(r; R). (54)

The total probability density then is

ρ(r, R, t) = |Ψ(r, R, t)|2 =
∞

∑
n,m=0

ρnm(r, R, t), (55)

with the matrix elements

ρnm(r, R, t) = ψ∗n(R, t)ψm(R) φn(r; R) φm(r; R). (56)

In our example, we start in the first excited electronic state, and the dynamics then
leads to an almost 100% population transfer to the ground state at a time of ttr ≈ 18.8 fs.
Later on, the population exchange between the two states occurs periodically. In order to
illustrate the contributions of the different states to the entropies, we decompose the latter
into components. Therefore, we first calculate adiabatic nuclear densities by integration as

ρnuc
nm (R, t) =

∫
dr ρnm(r, R, t) = |ψn(R, t)|2 δnm. (57)
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Thus, the off-diagonal elements vanish. This, in general, does not apply to the elec-
tronic case where we have

ρel
nm(r, t) =

∫
dR ρnm(r, R, t). (58)

In the present numerical example, we find that the off-diagonal elements are negligible.
The diagonal terms are positive semi-definite and may be interpreted as densities which
are not normalized, and they are related to the populations in the electronic states as

P̃n(t) = |〈ϕn|Ψ(t)〉|2 =
∫

dr
∫

dR ρnn(r, R, t). (59)

Using the diagonal elements of the densities, we define state-specific entropies as fol-
lows:

Sx,n(t) = −
∫

dR
∫

dr ρnn(r, R, t) ln[ρnn(r, R, t)], (60)

Sel
r,n(t) = −

∫
dr ρel

nn(r, t) ln[ρnn(r, t)], (61)

Snuc
R,n(t) = −

∫
dR ρnuc

nn (R, t) ln[ρnn(R, t)]. (62)

The decomposition of the entropies into different components may as well be per-
formed in momentum space. Taking the Fourier transform of the wave function yields

Ψ(p, P, t) = ∑
n

Ψn(p, P, t), (63)

with the definition

Ψn(r, P, t) =
1

2π

∫
dR e−iPRψn(R, t)

∫
dr e−ipr ϕn(r; R). (64)

The decomposition of the momentum-space densities is calculated as

ρ(p, P, t) = ∑
n,m

ρnm(p, P, t), (65)

with

ρnm(p, P, t) = Ψ∗n(p, P, t)ψm(p, P, t). (66)

From the latter matrix elements, we derive the electronic and nuclear matrix elements

ρel
nm(p, t) =

∫
dP ρnm(p, P, t), (67)

ρnuc
nm (P, t) =

∫
dp ρnm(p, P, t). (68)

The state-specific entropies are defined incorporating the diagonal elements of the
densities and read

Sπ,n(t) = −
∫

dP
∫

dp ρnn(p, P, t) ln[ρnn(p, P, t)], (69)

Sel
p,n(t) = −

∫
dp ρel

nn(p, t) ln[ρel
nn(p, t)], (70)

Snuc
P,n (t) = −

∫
dP ρnuc

nn (P, t) ln[ρnuc
nn (P, t)]. (71)

In the left-hand column of Figure 7, we show the results of the decomposition of the
coordinate-space entropies. The nuclear functions SR,n(t) for the quantum numbers n = 0, 1
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are displayed in the upper left-hand panel of the figure. Also included is the sum of these
two components and the numerically determined nuclear entropy SR(t). The components
follow the population dynamics and also reflect the focusing and broadening of the wave
packet components in the two states. The term SR,1(t) contributes to the entropy until
the non-adiabatic transition takes place. Then, this function decreases, which goes in
hand with an increase in SR,0(t) until the latter function becomes equal to the nuclear
entropy. This behavior takes place several times in the shown interval, and, besides minor
deviations, at all times, the sum of the two components equals the numerically determined
nuclear entropy. To understand this, we write the latter within the approximation of two
contributing states:

Snuc
R (t) = −

∫
dR |ψ0(R, t)|2 ln

[
|ψ0(R, t)|2 + |ψ1(R, t)|2

]
−

∫
dR |ψ1(R, t)|2 ln

[
|ψ0(R, t)|2 + |ψ1(R, t)|2

]
. (72)
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Figure 7. Decomposition of the entropies in the strong coupling case: Nuclear (upper pan-
els), electronic (middle panels) and total entropies (lower panels). The coordinate-space
entropies (Snuc

R (t), Sel
r (t), Sx(t)) and the contributions of the two adiabatic electronic states

(Snuc
R,n (t), Sel

r,n(t), Sx,n(t), n = 0, 1) are shown, and also the sum (Σ) of the state-specific entropies
and the numerically exact curve. The right-hand column contains the respective quantities derived
from the momentum-space density. The vertical dashed lines indicate the times when the classical
turning points are reached.

From our numerical calculation, we find that the two nuclear wave functions ψ0(R, t)
and ψ1(R, t) at no time have a significant spatial overlap, even around the transition times.
Thus, we may set ψ1(R, t) equal to zero in the first integral appearing in Equation (72) and
neglect ψ0(R, t) in the second integral. This yields

Snuc
R (t) ≈ − ∑

n=0,1

∫
dR |ψn(R, t)|2 ln

[
|ψn(R, t)|2

]
= ∑

n=0,1
Snuc

R,n(t). (73)
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The electronic state-specific entropies (middle left panel of Figure 7) behave like the
populations in the two electronic states (the curves for P̃n(t) are not included because their
time variation is almost identical to the functions SR,n(t)). This does not apply in the time
intervals where the transitions take place. There, the sum of the electronic components
Sel

r,n(t) does not add up to the electronic coordinate entropy. Because the off-diagonal
elements of the matrix ρnm(r, t) are negligible, we have

Sel
r (t) = −

∫
dr

[
1

∑
n=0

ρel
nn(r, t)

]
ln

[
1

∑
n=0

ρel
nn(r, t)

]
. (74)

Numerically, we find that at a transition time ttr, the elements ρel
00(r, t) and ρel

11(r, t) are
approximately equal. It then follows that

Sel
r (ttr) ≈ −

∫
dr
[
2ρel

00(r, ttr)
]

ln
[
2ρel

00(r, ttr)
]

= −ln[2]
∫

dr
[
2ρel

00(r, ttr)
]
− 2

∫
drρel

00(r, ttr) ln
[
ρel

00(r, ttr)
]

= − ln[2] + S0,r(ttr) + S1,r(ttr), (75)

where we used that at the transition time, the population takes a value of P̃0(ttr) = 0.5.
Thus, at this time, the numerical electronic entropy and the sum of the components differ
by a value of − ln[2]. This is in accord with what is seen in Figure 7. In contrast, the total
entropy is excellently represented by the sum of the state functions, which can be traced
back to the fact that the nuclear components of the two involved states do not overlap and
thus, as a result of integrating out the nuclear degree of freedom, the same applies to the
diagonal elements ρnn.

In the right-hand column of Figure 7, we document the decomposition of the momentum-
space entropies. Again, the nuclear state-selective entropies follow the population dynamics,
but here the sum of the single components exhibits larger deviations from the total entropy
around the transition times. This is because the mathematical structure of the momentum-
space matrix elements (Equation (66)) is more complex than in coordinate space. Pronounced
deviations are also found in the electronic momentum entropies, where large maxima are seen
in the state-specific entropies, whereas the total electronic entropy remains nearly constant.
The disagreement of the curves, related to the non-adiabatic transitions, is also apparent
in the total momentum entropy, see lower right panel of the figure. This is because the
diagonal elements ρnn overlap already in (p− P)-space, and thus, the off-diagonal elements
cannot be ignored.

4. Summary

We study differential entropies evolving from a coupled electron–nuclear quantum
dynamics. Using the total density and single-particle densities, we calculate the respective
time-dependent entropies in coordinate- and momentum space. In doing so, two situations
are regarded. In the first one, the dynamics takes place in a single adiabatic electronic state
so that the Born–Oppenheimer approximation applies. The second case is characterized by
a strong non-adiabatic coupling, which leads to a complete population transfer between
two adiabatic states. Under these conditions, one encounters a diabatic motion.

The two described dynamical situations are realized within a model for a one-dimensional
motion of a single electron and nucleus, which allows to integrate the time-dependent
Schrödinger equation numerically. In both cases, it is also possible to find an analytical
description which explains most of the features found in the numerical calculation.

For the BO dynamics, where the electron adiabatically follows the nucleus, the time-
dependence of the coordinate-space entropies is determined by the position and width
of the nuclear density. In our example, the latter performs a vibrational motion, and at
the classical turning points of this dynamics, the density is focused. Then, we have more
information about the positions of the two particles, which is reflected in the particle
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and total entropies, which all pass through minima. At the same instants of time, the
momentum-space entropies exhibit maxima which are related to the Fourier properties of
the coordinate- and momentum-space wave functions.

We compare three different measures for the particle entanglement, i.e., the covariance,
the correlation and the mutual information. If these functions are determined from the
coordinate space densities, they show a similar time dependence. In particular, when
the wave packet reaches the classical turning point, they exhibit minima. This means
that at these times, when the coordinate space wave function becomes more localized,
the electron–nuclear correlation is small. The reason is that then the dependence of the
electronic wave function on the nuclear geometry is less pronounced. A different picture
evolves from the momentum-space densities. There, the MI behaves differently than the
covariance and correlation. Because the latter monitor a linear particle entanglement, this
hints at nonlinear effects. It is found that the behavior of the MI is related to the nodal
structure of the momentum-space density. Maxima occur at times when the latter density
exhibits a clear node behavior with lines oriented non-parallel to the nuclear momentum
axis. An analytical model shows that with an increasing number of nodes, the MI grows
until a threshold is approached.

In the situation where strong non-adiabatic couplings are present, the dynamics is
most efficiently described within a diabatic picture, which means that there is no correlation
between the particles present. This is clear from the form of the wave function and is seen in
our numerical example. The numerical results can be well reproduced using the analytical
model starting from a diabatic wave function. The nuclear wave packet motion proceeds in
an almost harmonic potential, which results in a regular variation of the nuclear entropy.
On the other hand, the electronic entropy is nearly constant. This holds in both coordinate-
and momentum space. A decomposition of the coordinate space in terms of the adiabatic
expansion of the total wave function leads to state-specific entropies. For the nuclear case,
these functions add up to the total entropy. This, however, is not the case in momentum
space. There, the decomposition yields non-negligible off-diagonal contributions, which
cannot be ignored.
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Appendix A. Entropies in Momentum Space

To evaluate the momentum-space densities, we first take the Fourier transform of the
spatial wave function Equation (27):

Ψ(p, P) =
Nt

2π

∫
dR

∫
dr e−iPR−ipre−

βt
2 (R−Rt)

2− γ
2 (r−R)2

. (A1)
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The Fourier integral over the electronic coordinate is a Gaussian integration. Using
the coordinate r′ = r− R, one finds

e−ipR
∫

dr′ e−ipr′ e−
γ
2 r′2 = =

√
2π
γ e−ipR− p2

2γ . (A2)

With this result, and performing another Gaussian integral, the wave function is
evaluated as

Ψ(p, P) =
Nt

2π

√
2π

γ
e−

βt
2 R2

t−
p2
2γ

∫
dR e−

βt
2 R2+[βtRt−i(p+P)]R

=
Nt

2π

√
2π

γ

√
2π

βt
e−

βt
2 R2

t−
p2
2γ e

[βt Rt−i(p+P)]2
2β

=
1√

π(βtγ)1/4 e−
βt
2 R2

t−
p2
2γ +

[βt Rt−i(p+P)]2
2βt . (A3)

In calculating the momentum-space density, the exponential containing the mean
position Rt drops out and one finds

ρ(p, P, t) = Mt e−
1
βt
(p+P)2− p2

γ , (A4)

with the normalization constant

Mt =
1

π
√

βtγ
. (A5)

To evaluate the entropy, we take advantage of the fact that the polynomial appearing
in the exponent is quadratic. Thus, the function

f (p, P) = − 1
βt
(p + P)2 − p2

γ
, (A6)

using the real valued parameter λ may be written as

f (p′, P′) = λ f (p, P), p′ =
√

λ p, P′ =
√

λ P, (A7)

with the scaled coordinates p′ and P′. We then have the property

Mt

∫
dp
∫

dP eλ f (p,P) =
1
λ

Mt

∫
dp′

∫
dP′ e f (p′ ,P′) =

1
λ

, (A8)

and it follows that

Mt

∫
dp
∫

dP e f (p,P) f (p, P) = lim
λ→1

d
dλ

[
Mt

∫
dp
∫

dP eλ f (p,P)
]

= lim
λ→1

d
dλ

[ 1
λ

]
= −1. (A9)

We note that this result can be generalized to quadratic functions f (y1, y2, . . . , yd)
depending on d variables yj. Below, we need the derived property for the case of a single
variable y so that

Mt

∫
dy e f (y) f (y) = lim

λ→1

d
dλ

[
Mt

∫
dy eλ f (y)

]
= lim

λ→1

d
dλ

[ 1√
λ

]
= −1

2
. (A10)
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The entropy now can be calculated as

Sπ(t) = − ln[Mt]−Mt

∫
dp
∫

dP e f (p,P) f (p, P) = ln
[√

γβtπ
]
+ 1. (A11)

For the sum of the momentum and position entropy, one finds

Sπ(t) + Sx(t) = ln
[√

γβtπ
]
+ 1 + ln

[ π√
γβt

]
+ 1

= 2
(

ln[π] + 1
)

. (A12)

This result is well known, and it reflects the relation of the differential Shannon en-
tropies to the coordinate–momentum uncertainty relation. Next, we calculate the electronic
entropy from the electronic density. The latter is obtained from a Gaussian integral as

ρel(p, t) =
1

π
√

βtγ

∫
dP e−

1
βt
(p+P)2− p2

γ =
1√
πγ

e−
p2
γ (A13)

As was discussed above for the total entropy, the quadratic expression for the exponent
appearing in the electronic momentum density allows to evaluate the entropy introducing
the scaled coordinate p′ =

√
λ p so that the volume element transforms as dp′ = dp/

√
λ.

Using Equation (A10), this then leads to

Sel
p (t) = ln

[√
πγ
]
+

1
2

. (A14)

In the nuclear case, the density is

ρnuc(P, t) =
1

π
√

βtγ

∫
dp e−

1
βt
(p+P)2− p2

γ

=
1

π
√

βtγ
e−

P2
βt

∫
dp e−

γ+βt
βγ p2− 2P

βt
p

=
1

π
√

βtγ

√
πγβt

γ + βt
e−

P2
βt e

βtγ
γ+βt

P2

β2
t

=
1√

π(βt + γ)
e−

P2
γ+βt . (A15)

With the help of Equation (A10), the nuclear entropy is of the form

Snuc
P (t) = ln

[√
π(βt + γ)

]
+

1
2

. (A16)

Having calculated the total and single-particle entropies, the mutual information can
be determined as

Iπ(t) = ln
[√

πγ
]
+ ln

[√
π(βt + γ)

]
− ln

[√
γβtπ

]
, (A17)

which can be re-written as

Iπ(t) =
1
2

ln
[
1 +

γ

βt

]
. (A18)

To determine the covariance in momentum space, we need the expectation values of
p, P and the product pP. Regarding the momentum-space density given in Equation (A4),
it follows due to symmetry that

〈P〉t = 〈p〉t = 0. (A19)
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This can be traced back to the ansatz of the wave function (Equation (27)), which
does not incorporate a mean momentum different from zero. The expectation value of the
momentum product is

〈pP〉t =
1

π
√

βtγ

∫
dP
∫

dp P p e−
1
βt
(P+p)2− p2

γ . (A20)

Introducing the new variable P′ = P + p, the latter integral transforms as

〈pP〉t =
1

π
√

βtγ

∫
dP′

∫
dp (P′p− p2) e−

1
βt

P′2− p2
γ

= − 1√
πγ

∫
dp p2 e−

p2
γ = −1

2
γ, (A21)

where we employed symmetry in the integration over P′, and we used the analytical result
for an Gaussian integral as

∫
dy y2 e−y2

=
√

π/2. We then arrive at the result

covπ(t) = −
1
2

γ. (A22)

Finally, to calculate the correlation, we need the variances in the two momentum
variables. From Equation (A21) we realize that

〈p2〉t =
γ

2
. (A23)

In calculating the variance for the variable P, again the transformation P′ = P + p is
used and properties of integrals over Gaussians are employed. One finds

〈P2〉 =
1

π
√

βtγ

∫
dP

∫
dp P2 e−

1
βt
(P+p)2− p2

γ

=
1

π
√

βtγ

∫
dP′

∫
dp (P′ − p)2 e−

1
βt

P′2− p2
γ

=
1

π
√

βtγ

∫
dP

∫
dp (P2 + p2) e−

1
βt

P2− p2
γ

=
1√
πβt

∫
dP P2 e−

1
βt

P2
+

1√
πγ

∫
dp p2 e−

p2
γ

=
1
2
(βt + γ), (A24)

so that

σ2
P =

1
2
(βt + γ). (A25)

Having calculated the variances, one arrives at an expression for the correlation,
which reads

corrπ(t) = −
1√

1 + βt/γ
. (A26)
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Appendix B. Entropies for Strong Coupling

Here, the entropies for the strong coupling case are determined analytically using the
ansatz of Equation (47) for the wave function. Using the nuclear density

ρnuc(R, t) =
√

π

βt
e−βt(R−Rt)

2
, (A27)

the associated entropy is, using the result of Equation (A10),

Snuc
x (t) = ln

[√ π

βt

]
+

1
2

. (A28)

With the electronic density

ρel(r, t) =
√

γ

π
e−γ(r−R0)

2
(A29)

an equivalent calculation as performed in the nuclear case yields the electronic entropy

Sel
x (t) = ln

[√π

γ

]
+

1
2

. (A30)

The same result is obtained in the BO case for β→ ∞, which means that the nuclear
wave function is strongly localized so that the R-dependence of the electronic wave function
can be neglected and one recovers the diabatic case.

For the present situation of a separable wave function, the total entropy is just the sum
of the single-particle entropies, and it reads

Sx(t) = ln
[ π√

βtγ

]
+ 1. (A31)

Because of the Fourier properties of Gaussians, the nuclear momentum density has
the same functional form as the coordinate density upon the replacements R → P and
βt → 1/βt. This leads to the entropy

Snuc
P (t) = ln

[√
πβt

]
+

1
2

. (A32)

Using the replacement r → p, γ→ 1/γ yields

Sel
p (t) = ln

[√
πγ
]
+

1
2

, (A33)

and the total entropy is additive:

Sπ(t) = ln
[√

γβtπ
]
+ 1. (A34)
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