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Abstract: The convergence rate for free-distribution functional data analyses is challenging. It
requires some advanced pure mathematics functional analysis tools. This paper aims to bring
several contributions to the existing functional data analysis literature. First, we prove in this
work that Kolmogorov entropy is a fundamental tool in characterizing the convergence rate of
the local linear estimation. Precisely, we use this tool to derive the uniform convergence rate of
the local linear estimation of the conditional cumulative distribution function and the local linear
estimation conditional quantile function. Second, a central limit theorem for the proposed estimators
is established. These results are proved under general assumptions, allowing for the incomplete
functional time series case to be covered. Specifically, we model the correlation using the ergodic
assumption and assume that the response variable is collected with missing at random. Finally, we
conduct Monte Carlo simulations to assess the finite sample performance of the proposed estimators.

Keywords: functional data; missing data; small ball probability; local linear modeling; Kolmogorov
entropy; almost complete (a.co.) convergence
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1. Introduction

Statistical problems associated with the study of functional random variables, that is,
variables with values in an infinite-dimensional space, have garnered increasing attention
in the statistical literature over the past few decades. The abundance of data measured on
increasingly fine temporal/spatial grids, as is the case in meteorology, medicine, satellite
imagery, and numerous other research fields, has inspired the development of this research
theme. Thus, the statistical modeling of these data as random functions resulted in a
number of difficult theoretical and numerical research concerns; we may refer to [1–6] for
parametric and nonparametric models. For the latest contributions in FDA and its related
topics, one can refer to [7–14].

Quantile regression has emerged as a significant statistical technique for data analysis
since Koenker and Bassett’s [15] seminal work. But, concerns about quantile crossing
and model misspecification [16–18] have led to the development of the nonparametric
estimation of conditional quantile functions [19,20]. This estimate originates from [21], who
proved the convergence using the probability of the empirical conditional law function;
refer to [22,23]. This technique is an alternative to mean regression, and it possesses many
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desirable properties, such as being more efficient than mean regression when the data
follow a heavy-tailed distribution, and it is frequently used to characterize the entire
conditional distribution of the response. Conditional percentile estimation has been studied
extensively by several researchers [24–26]. However, most of them used the kernel method
approach. For instance, Ferraty et al. [4] have studied the uniform convergence of such an
estimation in the analogously distributed and independent case. However, in the same
case, Samanta [27] acquired the almost complete (a.co.) convergence of the conditional
percentile estimation.

Studies of local linear estimation conditional quantile function (LLECQF) are still
limited. For example, Messaci et al. [28] have studied the local linear estimation (LLE)
of the conditional quantile function (CQF) by reversing the estimator shown in [29]. Al-
Awadhi et al. [30] have proved the a.co. convergence and the asymptotic law of the CQF by
considering an estimator based on the L1 approach. Despite its importance in functional
data analysis, the LLE has various merits over the kernel technique. Generally, this method
can reduce the bias properties of the kernel approach [31,32]. Furthermore, the LLE has
been lately introduced in the FDA by [33]. The latter concentrates on the LLE of the curve
regression while the insert variable is a Hilbert class. Barrientos-Marin et al. [34] have
proposed the LLE of the nonparametric regression operator and studied their asymptotic
properties. In particular, this operator can be applied to functional covariable.

In this article, we are interested in studying the local linear estimation of the condi-
tional cumulative distribution function (LLECCDF) and LLECQF under the assumption
of ergodicity. We are interested in the uniform a.co. convergence of the constructed se-
quences using the Kolmogorov entropy function. In addition to Kolmogorov entropy, other
information measures such as Kullback–Leibler divergence have been considered for a
convergence rate study of estimators in multivariate time series modelling; refer to [35,36].

From a practical point of view, the ergodic framework is an essential condition in
statistical physics, number theory, Markov chains, and other fields. The concept of er-
godicity is fundamental in the research of stochastic processes. Note also that one of the
arguments invoked by [37] motivating the introduction of the concept of ergodicity is that,
for certain classes of processes, it can be much easier to prove ergodic properties rather
than the mixing condition. Hence, the ergodicity hypothesis seems to be the most naturally
adapted and provides a better framework to study data series such as those generated by
noisy chaos.

In their discussion, [38] provided an example of processes that are ergodic but not
mixing, which may be summarized as follows: let {(Ti, λi) : i ∈ Z} be a strictly stationary
process such that Ti | Ti−1 is a Poisson process with a parameter λi, where Ti is the
σ-field generated by (Ti, λi, Ti−1, λi−1, . . .). Assume that λi = f (λi−1, Ti−1), where f :
[0, ∞)×N→ (0, ∞) is a given function. This process does not mix in general (see Remark 3
of [39]). It is known that any sequence (εi)i∈Z of i.i.d. random variables is ergodic. Hence,
it is immediately clear that (Yi)i∈Z with Yi = ϑ((. . . , εi−1, εi), (εi+1, εi+2, . . .)), for some
Borel-measurable function ϑ(·), is also ergodic; see Proposition 2.10 on page 54 in [40].
Under the condition of ergodicity, [41] have studied the conditional quantile for ergodic
data by considering an iterative model. However, under the same conditions, the authors
in [42] have considered the nonparametric estimation of quantile for censored data.

All these studies were concerned with the complete-data situation. This work inves-
tigates the question of when data are missing at random (MAR); for instance, see [43].
In contemporary statistics, missing data are pervasive, posing a significant obstacle for
various applications. The concept of missing data in statistics occurs when a data value of
the variable is not stored in the observation. For example, missingness may occur when
our data are compiled from sources that have measured various variables; for instance, in
the healthcare industry, the data routinely collected on patients may vary between clinics
and hospitals. Among numerous other reasons are sensor failure, data censorship, privacy
concerns, pharmaceutical tracing tests, and reliability tests. It can occur in any experimental
setting where contamination of the treatment or subject mortality is possible. This topic
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has been extensively examined in numerous statistical problems; see [43,44] for a thorough
overview. In the present work, we only observe Y in cases where some indicator B equals
one and the indicator B is conditionally independent of Y given X. This assumption is
useful when information in the form of covariate data is available to explain the missing-
ness; refer to [45–47]. The first studies on MAR are presented by [48]. They established an
approximation of the regression operator and studied their asymptotic consistency when
the curve regressor is observed and the interest response is missing at random. However,
in the ergodic data case, Ling et al. [49] have studied the asymptotic distribution of the
estimator, which is proposed in [48]; also, refer to [50,51].

The main objective of this paper is to evaluate the convergence velocity of some
functional estimators through the Kolmogorov entropy function. More precisely, we focus
on the local linear smoothing of the distribution function and its inverse, the quantile
function. The constructed estimators’ asymptotic properties are evaluated when the data
are correlated as functional ergodic time series data and the response variable is observed
under the MAR structure. The efficiency of these estimators is uniformly specified using
the entropy metric, allowing us to assess the impact of the functional path of the data. In
particular, the Kolmogorov entropy gives a trade-off between the data’s sparsity and the
approximation’s efficiency. Moreover, the Kolmogorov entropy explores the functional
space’s topological structure and its spectral property. Thus, stating the uniform consistency
concerning the Kolmogorov entropy is more beneficial than the classical pointwise case.
Although the uniform convergence of LLECCDF and LLECQF in the functional ergodic time
series (FETS) structure is purely mathematically challenging, the obtained results are also
pivotal for many applied issues, such as the smoothing parameter choice, bootstrapping,
and the single index modeling. The second challenging issue of this contribution concerns
the MAR feature of the response variable. Our results can be used to determine an estimator
of the unconditional distribution of the scalar response, even if it is not completely observed.
All these challenging issues will be discussed using specific examples in Section 6. In
addition to the uniform consistency, we prove the asymptotic normality of the LLECCDF,
which is important to provide a confidence interval comparable with the predictive interval
deduced from LLECQF. Once again, this prediction using the predictive subset is also
primordial in the context of incomplete functional time series data. Finally, we point out that,
to our best knowledge, this problem of uniform consistency of local linear approximation
under MAR and FETS structures was open up to the present, giving the main motivation
to our paper.

The rest of the paper is organized as follows. In Section 2, we state the formal setup
and define the estimators. More precisely, Section 2.1 is devoted to the LLECCDF estimator,
while Section 2.2 introduces the LLECQF estimator. The convergence rate of the two
approximation sequences is established in Section 3. In Section 4, we derive the limiting
distribution of the proposed estimators. In Section 5, we conduct Monte Carlo simulations
to assess the finite sample performance of the proposed estimators. Section 6 is devoted
to highlighting the principal features of our contribution. In Section 7, we give some
concluding remarks. All the proofs are gathered in the last section.

2. Model and Estimators
2.1. LLECCDF: Numerical Approximation of CCDF-Model

Let {(Xi, Yi) : 1 ≤ i ≤ n} be a sequence of stationary ergodic functional random vari-
ables identically distributed as (X, Y), where X takes values in a some semi-metric abstract
space F with a semi-metric d(·, ·) and Y takes values in R. For reader convenience, we
introduce some details defining the ergodic property of processes and its link with the
mixing one. Let {Xn, n ∈ Z} be a stationary sequence. Consider the backward field
An = σ(Xk : k ≤ n) and the forward field Bm = σ(Xk : k ≥ m). The sequence is strongly
mixing if

sup
A∈A0,B∈Bn

|P(A ∩ B)− P(A)P(B)| → 0, as n→ ∞.
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The sequence is ergodic if, for any two measurable sets A, B,

lim
n→∞

1
n

Σn−1
k=0

∣∣∣P(A ∩ τ−kB
)
− P(A)P(B)

∣∣∣ = 0,

where τ is the time evolution or shift transformation taking Xk into Xk+1. We shall also
use the same symbol τ to denote the induced set transformation, which takes, for example,
sets B ∈ Bm into sets τB ∈ Bm+1; for instance, see [52]. The naming of strong mixing
in the above definition is more stringent than what is ordinarily referred to (when us-
ing the vocabulary of measure preserving dynamical systems) as strong mixing, namely
to that limn→∞ P(A ∩ τ−nB) = P(A)P(B) for any two measurable sets A, B; see, for
instance [52,53] and more recent references [54–60]. Hence, strong mixing implies ergodic-
ity, whereas the inverse is not always true (see, e.g., Remark 2.6 in page 50 in connection
with Proposition 2.8 in page 51 in [40]). For every x ∈ F , the function of conditional law
CFD(y|x) of Y when X = x is defined by

CFD(y|x) = P(Y ≤ y|X = x).

The LLECCDF is obtained by assuming for every z in the vicinity of x

CDF(y|z) = β1 + β2α(z, x) + o(α(z, x)) with α(z, z) = 0, (1)

where α(·, ·) is a bilinear locating function such that

(i) For all x′ ∈ CF , C′|δ(x, x′)| ≤ |α(x′, x)| ≤ C|δ(x, x′)|;
(ii) For all z1, z2 ∈ CF , |α(z1, x)− α(z2, x)| ≤ C

′ |δ(z1, z2)|,

where δ(·, ·) is a bilinear function such that |δ(·, ·)| = d(·, ·). In the rest of the paper,
we suppose that the CDF is of the C1-class with respect to y and its derivative is the
conditional density function denoted by cd f (·). However, in the case of a missing re-
sponse, one has an incomplete sample of size n from (X, Y, B), which is usually denoted
by {(Xi, Yi, Bi) : 1 ≤ i ≤ n}, where Bi = 1 if Yi is observed, and Bi = 0 otherwise. The
Bernoulli random variable B is supposed to be such that

P(x) = P(B = 1|X = x) = P(B = 1|X = x, Y = y)

is a continuous function. Under this smoothing consideration, we define the LLECCDF of
CDFF(· | ·) by finding the minimizers (β̂1, β̂2) of

min
(β1,β2)∈R2

Σn
i=1

(
J
(

y−Yi
λJ

)
− β1 − β2α(Xi, x)

)2
Ker

(
δ(x, Xi)

λK

)
Bi, (2)

where λK := λK,n and λJ := λJ,n are bandwidth parameters and J (·) and Ker(·) are,
respectively, distribution and kernel functions. The explicit solution to this minimization is

β̂1 = ĈDF(y|x) =
Σn

j=1Γj(x)Kerj(x)BjJj(y)

Σn
j=1Γj(x)BjKerj(x)

,

with

Γj(x) = Σn
i=1α2

i (x)Keri(x)Bi − (Σn
i=1αi(x)Keri(x)Bi)αj,

Kerj(x) = Ker
(

δ(x, Xj)

λK

)
and

Jj(y) = J
(y−Yj

λJ

)
, αj(x) = α(Xj, x).

Furthermore, we can write
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ĈDF(y | x) =
ĈDF

x
N(y)

ĈDFD(x)
,

where
ĈDF

x
N(y) :=

1
nIE(Γ1(x)Ker1(x))

Σn
j=1Γj(x)Kerj(x)Jj(y)Bj,

and
ĈDFD(x) :=

1
nIE(Γ1(x)Ker1(x))

Σn
j=1Γj(x)Kerj(x)Bj.

The first main contribution of this work is a precise convergence rate of the approx-
imation ĈDF(· | ·) uniformly over a non-necessary compact subset CF of F . We use the
notation

Ba(x, h) =
{

x′ ∈ F : d
(
x′, x

)
≤ h

}
.

Definition 1. Let CF be a subset of a semi-metric space F , and let ε > 0 be given. A finite set of
points x1, x2, . . . , xN in F is called an ε-net for CF if

CF ⊂
N⋃

k=1

Ba(xk, ε).

The quantity ψCF (ε) = log(Nε(CF )), where Nε(CF ) =: dn is the minimal number of open balls
in F of radius ε which is necessary to cover CF , is called Kolmogorov’s ε-entropy of the set CF .

This concept was introduced by Kolmogorov in the mid-1950s (refer to [61]). It
serves as a measure of the complexity of a set, indicating that high entropy implies that
a significant amount of information is required to accurately describe an element within
a given tolerance, ε. Consequently, the selection of the topological structure (specifically,
the choice of semi-metric) plays a crucial role when examining asymptotic results that
are uniform over a subset, CF of F . In particular, we subsequently observe that a well-
chosen semi-metric can enhance the concentration of the probability measure for the
functional variable, X, while minimizing the ε-entropy of the subset, CF . Ferraty and
Vieu [6] emphasized the phenomenon of concentration of the probability measure for the
functional variable by calculating small ball probabilities in different standard scenarios;
refer to [62]. For readers interested in these concepts (entropy and small ball probabilities)
and/or the utilization of Kolmogorov’s ε-entropy in dimensionality reduction problems,
we recommend referring to [63] or/and [64], respectively.

Let (un) for n ∈ N, be a sequence of real r.v.s. We say that (un) converges almost-
completely (a.co.) toward zero if, and only if, for all ε > 0,

Σ∞
n=1P(|un| > ε) < ∞.

Moreover, we say that the rate of the almost-complete convergence of (un) toward
zero is of order vn (with vn → 0), and we write un = Oa.co.(vn) if, and only if, there exists
ε > 0 such that

Σ∞
n=1P(|un| > εvn) < ∞.

This kind of convergence implies both the almost-sure convergence and the conver-
gence in probability.

2.2. LLECQF: Numerical Approximation of CQF-Model

The second approximation concerns the CQF-Model of order p, for p ∈ (0, 1), denoted
as CQFp(x):

CDF(CQFp(x)|x) = p.
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The natural estimator is obtained by inverting the LLECCDF. However, unlike the
local constant estimator, the LLECCDF is not monotone and invertible. To overcome this
issue, we use the robust definition of the CQFp(x):

CQFp(x) = arg min
t

IE
[
Lp(Y− t) |X = x

]
, (3)

where the scoring function Lp(y) = |y|(p − 11[y<0]), with 11S as the indicator of S. Once
again, the LLECQF is obtained via a smoothing approximation of the model locally in the
neighborhood of the location x. Therefore, we suppose that CQFp(x) is such that

CQFp(z) = β1 + β2α(z, x) + o(α(z, x)). (4)

Therefore, β1 and β2 are estimated as

arg min
(β1,β2)∈IR2

Σn
j=1Lp(Yj − β1 − β2α(Xj, x))Kerj(x)Bj. (5)

So, the LLECQF of CQFp(x) is denoted by

ĈQFp(x) = β̃1,

where
(β̃1, β̃2) = arg min

(β1,β2)∈IR2
Σn

j=1Lp(Yj − β1 − β2α(Xj, x))Kerj(x)Bj.

Once again, our main focus is to establish the convergence rate using the Kolmogorov
entropy and the uniform-Lipschitzian condition: For all (y1, y2) ∈ N 2

y and x1, x2 ∈ CF ,
we have ∣∣∣CDF(j)(y1|x1)− CDF(j)(y1|x2)

∣∣∣ ≤ C2

(
|δ(x2, x1)|k2 + |y2 − y1|k1

)
, (6)

for j = 0, 1 and C2, k1, k2 > 0.

3. Uniform Convergence Rate

Let Fi and Gi (i = 1, . . . , n) be the σ-algebras generated by ((Y1, X1), . . . , (Yi, Xi)) and
((Y1, X1), . . . , (Yi, Xi), Xi+1), respectively. Let Ny denote a fixed neighborhood of a point y
in IR. Define

ψx(λ1, λ2) = IP(λ2 ≤ δ(X, x) ≤ λ1).

The function ψx(·, ·) plays a similar role to small ball probability as in [34]. Finally, let
C and C

′
be some generic constants that are strictly positive. To obtain the convergence

rate in this functional ergodic MAR scheme, we consider the following assumptions:

(H1) The first-order derivative of ψ(·) exists and is bounded in CF . The function ψ(·) is
such that

0 < C′ψ(ς) ≤ inf
x∈CF

IP(X ∈ Ba(x, ς)) ≤ sup
x∈CF

IP(X ∈ Ba(x, ς)) ≤ Cψ(ς).

(H2) There exists a non-random function ψi(·) satisfying

(i) 0 < Cψi(ς) < IP(Xi ∈ Ba(x, ς)|Fi−1) ≤ C
′
ψi(ς),

(ii)
1

nψ(ς)
Σn

i=1ψi(ς) −→ 1, a.co.,

(iii) There exists a non-random function Ψ(·) satisfying

∀t ∈ [−1, 1], lim
λK→0

ψ(tλK)

ψ(λK)
= Ψ(t).

(H3) The distribution function J (·) and the kernel Ker(·) fulfill the following:



Entropy 2023, 25, 1108 7 of 33

(i) Ker(·) is a Lipschitz on its support [−1, 1] satisfying

D =

 Ker(1)−
∫ 1
−1Ker′(t)Ψ(t)dt Ker(1)−

∫ 1
−1(tKer(t))′Ψ(t)dt

Ker(1)−
∫ 1
−1(tKer(t))′Ψ(t)dt Ker(1)−

∫ 1
−1(t

2Ker(t))′Ψ(t)dt

 ,

is a positive definite matrix.
(ii) The function J (·) has a derivative satisfying∫

|t|k1J (1)(t)dt < ∞.

(iii) We almost surely have IE[Jj(y)|Gj−1] = IE[Jj(y)|Xj].

(H4) The real sequence dn associated with rn = O
(

ln n
n

)
satisfies

(ln n)2

nψ(λK)
< ln dn <

nψ(λK)

ln n
and Σ∞

n=1d1−$
n < ∞ for some $ > 1.

(H5) The bandwidth λK is linked to α(·) and ψ(·) by

(i)

∀n > n0 − 1
ψ(λK)

∫ 1

−1
ψ(zλK, λK)

d
dz

(
z2(Ker(z)

)
dz > C;

(ii) lim
n→∞

λK = 0, and lim
n→∞

λH = 0, and lim
n→∞

ln n
nψ(λK)

= 0;

(iii)

λK

∫
Ba(x,λK)

α(u, x)dP(u) = O
(∫
Ba(x,λK)

α2(u, x)dP(u)
)

,

where P is the law of X.

We first recall that our assumptions are not restrictive and may be considered as
standard in the functional local linear analysis context. They are similar to those used in
the local linear estimation of the quantile regression in [30]. In particular, Assumption (H1)
concerns the usual concentration property of the functional variable. It is well documented
that this property allows us to explore the functionality nature of the data. Assumption
(H3)(iii) is a Markov-type condition and characterizes the conditional moments. It is
satisfied when considering, for instance, the model

11(Y≤y) = mψ(Xi) + εi,

where (εi) is a square-integrable process independent of (Xi). Finally, Assumptions (H3)(i)-
(ii), (H4), and (H5) are technical conditions, similar to those used by [30].

The following theorem gives the uniform, almost complete convergence of ĈDF(y | x)
with the rate.

Theorem 1. Under Conditions (H1)–(H5), we have

sup
x∈CF

∣∣∣ĈDF(y | x)− CDF(y | x)
∣∣∣ = O

(
λk1

K + λk2
J

)
+ Oa.co.

((
ln dn

nψ(λK)

) 1
2
)

. (7)

The proof of Theorem 1 is postponed until the last section. The following theorem
gives the uniform, almost complete convergence of ĈQFα(x) with the rate.
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Theorem 2. Under Conditions (H1)–(H5) and if cd f (CQFα(x)|x) > 0, we have

sup
x∈CF

∣∣∣ĈQFα(x)− CQFα(x)
∣∣∣ = O

(
λ

min(k2,k2)
K

)
+ Oa.co.

((
ln dn

nψ(λK)

) 1
2
)

. (8)

The proof of Theorem 2 is postponed until the last section.

4. Asymptotic Normality

The second asymptotic result concerns the asymptotic law of the sequence ĈDF(y | x).
To do that, we enhance Assumption (H5) by assuming that the kernel Ker(·) satisfies (H4)
and has a first derivative Ker

′
(·) such that

Ker2(1)−
∫ 1

−1
(Ker2(u))

′
Ψ(u)du > 0.

Let us now state the following theorem, which gives the central limit theorem of the

estimator ĈDF(y | x). Below, we write Z D
= N (µ, σ2) whenever the random variable Z

follows a normal law with expectation µ and variance σ2; D→ denotes the convergence in
distribution.

Theorem 3. Under the assumptions of Theorem 1 and if the smoothing parameters λK satisfy
lim

n→∞
nλ2k1

K ψ(λK) = 0, then

√
nψ(λK)

(
ĈDF(y | x)− CDF(y | x)

)
D−→ N(0, VJK(y | x)),

where

Mi = Keri(1)−
∫ 1

−1
(Keri(u))

′
Ψ(u)du,

for i = 1, 2 and

VJK(y | x) =
M2

M2
1

P(x)CDF(y | x)(1− CDF(y | x)).

The proof of Theorem 3 is postponed until the last section.
Clearly, this asymptotic result has many applications in practice. In particular, it can be

used to build a confidence interval for the true value of CDF(y | x). The latter is obtained
by estimating the asymptotic variance VJK(y | x) using a plug-in approach. Indeed, M1
and M2 are estimated via

M̂1 =
1

nψ(λK)
Σn

i=1Keri(x), M̂2 =
1

nψ(λK)
Σn

i=1Ker2
i (x),

and

P̂(x) =
Σn

i=1BiKeri(x)
Σn

i=1Keri(x)
.

Therefore, the natural estimator of the asymptotic variance VJK(y | x) is

V̂JK(y | x) =
M̂2

M̂2
1

P̂(x)ĈDF(y | x)(1− ĈDF(y | x)).

Under this consideration, the (1− ζ) confidence interval for CDF(y | x) is

ĈDF(y | x)± t1−ζ/2 ×
(

V̂JK(y | x)
nψ(λK)

)1/2

,
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where t1−ζ/2 denotes the 1− ζ/2 quantile of the standard normal distribution. We note
that the function ψ(·) does not appear in the calculation of the confidence interval since it
will be simplified.

5. Numerical Results

In this computational study, we illustrate the three fundamental axes of our topic
that are the functional structure, the asymptotic normality, and the local linear smoothing.
In the first illustration, we examine the functional structure’s impact on the constructed
estimators’ convergence rate. To cover the general features of our study, the ergodicity, and
the MAR features, we generate an artificial functional time series using the Hilberthian
autoregressive processes. Of course, this kind of process’s linearity allows us to incorporate
our theoretical assumption concerning the ergodicity structure. To do this, we employ
the routine-code fts.rar from the R package freedom.fda. The latter has a nice feature that
is based on the dynamic functional principal component analysis (DFPCA); for instance,
see [65]. In this empirical study, we use DFPCA to generate the ergodic function using
specific basis functions. Specifically, we have used the Fourier basis functions (FBF) to
obtain the functional (Xi). Formally,

Xi = Υ(Xi−1) + εi,

where Υ is an operator with kernel ψ(·, ·) and εi is the white noise. The kernel operator is
expressed by

Υ(X(·)) =
∫ 1

0
ψ(t, s)X(s)ds.

In the cited routine code Υ is constructed from FBF {uj : j = 1, . . . , d} by taking
(ψij)ij = (〈Ψ(ui), uj〉) as the corresponding matrix. The function op.norms controls the de-
gree of dependency in these functional observations for practical purposes. The functional
observed regressors are plotted in Figure 1.

Specifically, such a sample was obtained by taking arbitrary, values allowing it to
cover various degrees of ergodicity. Secondly, the variable of interest is generated using the
regression equation

Y = exp
{
−
∫ 1

0

1
1 + X2(t)

dt
}
+ ε,

where ε is drown from N(0, 0.5). With this consideration, the conditional law of Y given X
is a normal distribution with a mean equal

exp
{
−
∫ 1

0

1
1 + X2(t)

dt
}

.

The missing feature is controlled using the conditional probability of observation:

P(X = x) = expit
(

2γ

π

∫ 2π

0
x2(t)dt

)
,

where
expit(u) = eu/(1 + eu).

Under this consideration, the scalar γ controls the missing rate. Once again, we
simulate with several values of γ to evaluate this characteristic’s influences in the estimators.
The sequences LLECCDF and LLECQF are computed using the (−1, 1)-quadratic kernel
and the locally cross-validation on the number of neighborhoods using the mean square
error (MSE)

MSE =
1
n

Σn
i=1

(
Yi − ĈQF0.5

−i
(Xi)

)2
,
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with ĈQF0.5
−i

referring to the estimation leave-one-out-curve of the conditional median.
Clearly, the Kolmogorov entropy is an important factor of the topological structure. The
latter is controlled through the locating functions α and δ. For the sake of shortness, we
simulate α = δ equal to the L2-distance using three between the qth derivatives of the
curves based on the basis function, as well as the PCA-semi metric associated with the
eigenfunctions of the empirical version covariance operator. Exactly, we compute this
metric using the m first one. The MSE was evaluated over various values of q and m.

0.0 0.2 0.4 0.6 0.8 1.0

−
1
0

−
5

0
5

1
0

time

v
a
lu

e
s

Figure 1. A sample of 100 curves.

In Tables 1 and 2, we summarize the MSE of both estimators for various values of
mentioned parameters, the level of dependency (op.norms), the missing rate γ, and the
metric parameter q or m.

It is clear that the behavior of the estimator is strongly impacted by different parameters
of the estimators, including the dependency-level, the missing rate, and the topological
structure. Without surprise, the topological structure has an important role. In a sense, the
variability of the MSE as a function of the metric type is more important than the other
parameters. All in all, the effectiveness of the estimator is also affected by the quantities
(op.norms), γ, and q or m. In conclusion, we can say that the computational study confirms
the theoretical statement that the convergence rate is strongly affected by the topological
structure of the functional regressor.
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Table 1. MSE error for LLECCDF.

The Metric Type op.norms γ q or m MSE

Fourier Basis Functions
0.98 5 2 0.196

0 0.193
0.5 2 0.184

0 0.187
0.05 2 0.156

0 0.155
0.48 5 2 0.172

0 0.174
0.5 2 0.168

0 0.161
0.05 2 0.149

0 0.151

B-spline Basis Functions
0.48 5 2 0.266

0 0.264
0.5 2 0.257

0 0.259
0.05 2 0.251

0 0.248
0.08 5 2 0.243

0 0.242
0.5 2 0.239

0 0.237
0.05 2 0.227

0 0.230

PCA-metric
0.98 5 3 0.408

1 0.407
0.5 3 0.398

1 0.394
0.05 3 0.387

1 0.376
0.08 5 3 0.143

1 0.292
0.5 3 0.295

1 0.283
0.05 3 0.284

1 0.279

The second illustration concerns the quality of the asymptotic normality result in
Theorem 3. Specifically we aim to examine the behavior of the asymptotic distribution with
respect to the degree of correlation, as well as the missing rate. For this purpose, we repeat
the previous sampling processes independently m times, and for each time, we calculate
the quantity:√√√√ nψ(λK)M̂2

1

M̂2P̂(x)CDF(y | x)(1− CDF(y | x))

(
ĈDF(y | x)− CDF(y | x)

)
. (9)

Recall that the true conditional law of Y given X is known justifying the use of the
true conditional cumulative distribution function of CDF(y | x). Observe also that the
estimation of the function ψ(λK) is not necessary. It will be simplified using the definition
of M̂1 and M̂2 (see their definitions in Section 4).
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Table 2. MSE error for LLECQF.

The Metric Type op.norms γ q or m MSE

Fourier Basis Functions
0.98 5 2 0.091

0 0.093
0.5 2 0.081

0 0.085
0.05 2 0.056

0 0.054
0.08 5 2 0.051

0 0.04
0.5 2 0.033

0 0.039
0.05 2 0.031

0 0.023

B-spline Basis Functions
0.98 5 2 0.128

0 0.123
0.5 2 0.121

0 0.122
0.05 2 0.117

0 0.114
0.48 5 2 0.109

0 0.107
0.5 2 0.099

0 0.095
0.05 2 0.085

0 0.074

PCA-metric
0.48 5 3 0.104

1 0.108
0.5 3 0.102

1 0.101
0.05 3 0.099

1 0.097
0.08 5 3 0.086

1 0.092
0.5 3 0.081

1 0.078
0.05 3 0.064

1 0.061

Now, the m-sample of the quantity (9) is calculated using the ideas of the first illus-
tration concerning the construction of ĈDF(y | x). Moreover, the estimators M̂1, M̂2, and

P̂(x) are obtained in the same manner. Specifically, we use the same bandwidth, the same
kernel, and the metric associated the FBF with q = 0. Of course, the m-sample of (9) is
drawn for a fixed location curve x = Xi0 and fixed point y = Yi0 . The index i0 is randomly
chosen independently from the sampling process. Furthermore, the behavior of the asymp-
totic distribution of the quantity (9) is examined by estimating the density of the obtained
m-sample and we compare it to the density of the standard normal distribution. In order to
evaluate the effect of the dependency degree and the missing rate on the accuracy of the
asymptotic normality, we perform our sampling process using various values of op.norms
and γ. Exactly, we keep the same value as that of the first illustration. Finally, we plot
in Figures 2–5 the estimated density, obtained via the routine code density with m = 120,
against the density of N(0, 1). The continuous line represents the estimated density, and
the dashed line represents the true density.



Entropy 2023, 25, 1108 13 of 33

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

y

de
ns

ity

Figure 2. Case (op.norms, γ) = (0.98, 5).
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Figure 3. Case (op.norms, γ) = (0.98, 0.5).
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Figure 4. Case (op.norms, γ) = (0.48, 5).
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Figure 5. Case (op.norms, γ) = (0.48, 0.5).

Once again, this empirical analysis confirms the theoretical development. In a sense,
the estimation approach is strongly impacted by the degree of dependency, as well as the
missing rate. Typically, even if the curve of the estimated density is relatively close to
the normal density, the accuracy of the asymptotic normality is significantly varied with
respect to the values of op.norms and γ. It appears that the effect of the missing rate is more
important than the degree of dependency. This conclusion is justified by the fact that the
missing rate impacts both the bias and the variance terms, whereas the dependency feature
impacts only the variance part. To confirm this statement, we report in Table 3 the bias
quantities of the different values of (op.norms) and γ. The bias term is

Bias =
1
m

Σm
j=1ĈDF

j
(Yi0 | Xi0)− CDF(Yi0 | Xi0),

where ĈDF
j
(Yi0 | Xi0) is the LLECCDF obtained with the jth sample. The result of Table 3

shows that the effect of the data correlation is too small compared with the variability with
respect to the missing rate.

Table 3. Bias error for LLECQF.

op.norms γ Bias

0.98 5 0.121
0.5 0.093

0.48 5 0.109
0.5 0.091

The third illustration concerns the used estimation method that is the local linear
approach. More precisely, we compare it with the classical kernel method. We concentrate
on this part in the second model, which is the quantile regression. It is well known that this
kind of model has a many scopes of application. One of the important application areas is
the prediction problem. At this stage, the quantile regression can be used as single-point
predictor when p = 0.5 or as a predictive interval [CQFp/2, CQF1−p/2]. The latter ensures
the existence of the response variable Y in [CQFp/2(x), CQF1−p/2(x)] with a probability

equal to 1− p. In order to show the easy implantation of the estimator ĈQFα(·) and to
highlight its advantages over the classical kernel method studied by [4], we compare the
efficiency of both estimation methods on the construction of the [CQFp/2(x), CQF1−p/2(x)]
interval. Undoubtedly, the performance of any predictive interval is measured using two
factors that are the coverage probability and the length of the interval. However, for
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the sake of brevity, we focus in this third illustration only on the coverage probability
factor that measures the belonging percentage to the approximated predictive interval.
For this aim, we employ the same sampling process as the second illustration, and for
each sampling time j, we split the observations into learning and testing sample. We
determine [ ¯CQFp/2(x0), ¯CQF1−p/2(x0)] for all point x0 in the testing sample, and ¯CQF
means either the local linear or kernel estimator of the quantile CQF. For the computation
aspect, we use the routine code funopare.quantile.lcv for the kernel method, whereas
that for the local linear method is obtained by minimizing (3) on a regular grid of 100
points, from (0.9 ∗min(Yi), 1.1 ∗max(Yi)). To the end, let us point out that we have used
the same selection strategies as the previous illustrations, namely, the same bandwidth,
the same kernel, and the same FBF metric. In order to give a comprehensive comparison,
we examine the efficiency of the predictive interval processing for various values of p.
Exactly, we examine 30 values of pi in (0, 1). Such values are compared with the coverage
probabilities of both estimators in the four previous situations covering the strong and
weak dependencies, as well as the two levels of missing rates. The results are presented
in Figures 6–9 for which we plot the different values of qi = 1− pi versus the coverage
probability CPi.
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Figure 6. Case (op.norms, γ) = (0.98, 5).
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Figure 7. Case (op.norms, γ) = (0.98, 0.5).
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Figure 8. Case (op.norms, γ) = (0.48, 5).
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Figure 9. Case (op.norms, γ) = (0.48, 0.5).

Once again, the estimation quality is strongly affected by the two principal features
that are the dependency and the missing phenomena. However, it seems that the local
linear algorithm is more robust and more preferment in the sense that its behavior is more
stable than the kernel method. To confirm this statement, we summarise in Table 4, the
absolute coverage probability error defined by

ACPE =
1
30

Σ30
i=1|CPi − qi|,

where CPi represents the coverage probability of the predictive interval associated with the
threshold αi.
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Table 4. Coverage probability error.

Method op.norms γ ACPE

Local linear estimator 0.98 5 0.051
0.5 0.042

0.48 5 0.044
0.5 0.037

Kernel method 0.98 5 0.19
0.5 0.098

0.48 5 0.13
0.5 0.067

6. Discussion and Comments

• Gap between the pointwise and uniform convergence in FDA: We specify the convergence
rate over some known functional structures to highlight the gap between the pointwise
and uniform convergence in functional statistics. The first one concerns the resealed
version (Wc(t) = W(t/c))t≥0 of Gaussian process W(t)t≥0. If we assume that the
spectral measure µ of W such that, for some a > 0,∫

ea|λ|µ(duλ) < ∞,

then the Kolmogorov’s ε-entropy of CF , the unit ball in reproducing kernel Hilbert
spaces of the process Wc(·) as a subset of (C([0, 1]), ‖ · ‖∞), is of the order

1
c

log2
(

1
ε

)
;

for instance, see [66], implying an uniform convergence rate over CF asymptotically
equal to

O
(

λk1
K + λk2

J

)
+ Oa.co.

( ln2 n
nψ(λK)

) 1
2
.

Secondly, if we put CF as the closed unit ball of Cameron–Martin spaces associated
with the covariance operator of the standard stationary Ornstein–Uhlenbeck process
defined by

Cov(s, t) = exp(−a|s− t|), a > 0,

the Kolmogorov’s ε-entropy of this subset with respect to the norm of the Sobolev
space W1,2([0, 1]) is of order (√

(2a)
(

1
πε

))
;

for instance, refer to [66], and the convergence rate is

O
(

λk1
K + λk2

J

)
+ Oa.co.

((
ln n

nψ(λK)

) 1
2
)

.

Thirdly, it is shown in [67] that any closed ball in a Sobolev space W1,1([0, T]) endowed
with the norm L1([0, T]) has a Kolmogorov’s ε-entropy of the order

1
ε

log
1
ε

,
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implying a uniform convergence rate asymptotically equal to

O
(

λk1
K + λk2

J

)
+ Oa.co.

( ln2 n
nψ(λK)

) 1
2
.

So, it is clear that the uniform convergence rate differs among functional subsets.
However, in the nonfunctional case, where all norms are equivalent, the ε-entropy
for any compact subset in IR is of the order log

(
1
ε

)
, allowing us to keep the usual

convergence rate in the finite-dimensional case, that is

O
(

λk1
K + λk2

J

)
+ Oa.co.

((
ln n
nλK

) 1
2
)

,

which also coincides with the pointwise convergence rate. In conclusion, unlike the
finite-dimensional case, there is a real gap between the pointwise and the uniform
convergence in FDA. Thus, treating uniform consistency in the FDA is a challenging
question; refer to [9,68–70].

• The effect of the basis function on the Kolmogorov’s entropy:
Similarly to the previous paragraph, Kolmogorov’s entropy is also affected by the
spectral decomposition of the functional variable over specific basis functions. Of
course, this relationship is justified by the fact that both tools have similar interpre-
tations. In a sense, the Kolmogorov’s entropy of a given subset CF is the number
of binary bits of information required to describe any x ∈ CF with error ε, while
the spectral decomposition of x ∈ CF given a basis functions ( fi) can be viewed as
the reconstruction of x ∈ CF . Furthermore, the minimal cardinal of elements of the
basis ( fi), sufficient to reconstruct any x ∈ CF with error ε, is so-called the sampling
ε-entropy of CF ; for instance, see [71]. Theorem 4.1 in this cited work provides, under
some general conditions, that the class of bounded piecewise Ck smooth functions as
a subspace of L2 has a Kolmogorov’s ε-entropy of the order(

1
ε

)1/k
.

In contrast, Kolmogorov’s ε-entropy of the class of periodic real analytic functions on
[−π, π], as a subspace of C0([−π, π]) is

log2
(

1
ε

)
.

As a consequence of this statement (see Corollary 4.2 in [71]), the sampling ε-entropy
of the class spanned by the B-splines basis function is greater than the sampling ε-
entropy of the class of periodic real analytic functions that is spanned for the Fourier
basis function. In conclusion, in practice, the estimator’s accuracy is also affected by
the choice of basis functions and the cardinal of the basis used in the metric.

• Estimation of the unconditional distribution of the MAR response: One of the fundamen-
tal applications of conditional modeling in the MAR structure is the possibility of
reconstructing the feature of the MAR variable. In our context, we use the fact that

FY(y) = P(Y ≤ y) = IE[CDF(y|X)].

Thus, the natural estimator of the cumulative distribution function is

F̂Y(y) =
1
n

Σn
i=1ĈDF−i(y | Xi),
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where ĈDF−i(y | Xi) is the estimator ĈDF(· | ·) without the observation (Xi, Yi, Bi).
An alternative estimator of F̂Y(y) can be obtained by replacing only the missing
observation with the conditional expectation. Specifically, the second estimator is
expressed by

F̃Y(y) =
1
n

Σn
i=1

(
Bi11[Yi<y] + (1− Bi)ĈDF−i(y | Xi)

)
.

We return to [48] for more ideas to construct other estimators. At this stage, the
uniform consistency obtained in this paper is an important preliminary tool to derive
the root n-consistency of this kind of estimator; we refer to [48] for the regression case.

7. Concluding Remarks

The convergence rate for a free-distribution functional data analysis is challenging.
It requires some advanced tools for functional analysis in pure mathematics. This paper
gives several contributions to the existing literature on functional data analysis. First, this
paper demonstrated that the Kolmogorov entropy is an essential tool for describing the
convergence rate of local linear estimation (LLE). To determine the uniform convergence
rate of the LLE of the conditional cumulative distribution function (LLECCDF) and the
LLE conditional quantile function (LLECQF), we have used this device. Second, a central
limit theorem is established for the proposed estimators. These results are demonstrated
under general assumptions that permit coverage of the case of incomplete functional time
series. Specifically, we model the dependence using the ergodic assumption and assume
that the response variable is missing at random (MAR). Finally, we have evaluated the
finite sample performance of the proposed estimators using Monte Carlo simulations.
In addition to the previous issues, the present paper opens some important paths for
the future. It will be natural to consider in a future investigation of the functional kNN
local linear approach quantile regression estimators to obtain an alternative estimator
that benefits from the advantages of both methods, the local linear method, and the kNN
approach. Extending nonparametric functional concepts to local stationary processes is a
relatively underdeveloped field. It would be intriguing to extend our work to the case of
the functional local stationary process, which requires nontrivial mathematics; however,
doing so would be far beyond the scope of this paper.

8. Proofs

This section contains the proof of our results. The notation introduced previously will
be employed in the following. All of the proofs rely on applying the exponential inequality
of the martingale difference. The proofs are quite lengthy; we limit ourselves to the main
arguments.

8.1. Proof of the Main Theorems

Proof of Theorem 1. For (7), we write

¯CDFx
N(y) :=

1
nIE(Γ1(x)Ker1(x))

Σn
j=1IE(Γj(x)Kerj(x)Jj(x)Bj|Fj−1),

¯CDFD(x) :=
1

nIE(Γ1(x)Ker1(x))
Σn

j=1IE(Γj(x)Kerj(x)Bj|Fj−1).

Then, the statement (7) is based on the following decomposition:

ĈDF(y | x)− CDF(y | x)

= Bn(y | x) +
1

ĈDFD(x)

[
(Bn(y | x) + CDF(y | x))An(y | x) + Rn(y | x)

]
, (10)
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where

Bn(y | x) =
¯CDFx

N(y)
¯CDFD(x)

− CDF(y | x),

An(y | x) = ¯CDFD(x)− ĈDFD(x),

and
Rn(y | x) = ĈDF

x
N(y)− ¯CDFx

N(y).

So, all that remains is to demonstrate Lemmas 1–3:

Lemma 1. Under Conditions (H1)–(H5), we have, as n→ ∞,

sup
x∈CF

|Bn(y | x)| = O
(

λb1
K + λb2

J

)
.

Lemma 2. Under Conditions (H1)–(H5), we have, as n→ ∞,

sup
x∈CF

|Rn(y | x)| = Oa.co.

(√
ln dn

nψ(λK)

)
.

Lemma 3. Under Conditions (H1)–(H5), we have, as n→ ∞,

sup
x∈CF

|An(y | x)| = Oa.co.

(√
ln dn

nψ(λK)

)
,

and

Σ∞
n=1P

(
inf

x∈CF
ĈDFD(x) <

1
2

)
< ∞.

Proof of Theorem 2. For (8), we define for vector ~δ =

(
c
d

)
, we put

Φ(~δ) = α− 11Yj ≤ (c + β1) + (λ−1
K d + β2)αj

,

and we employ Lemma 3 in [30] for

Vn(~δ, x) =
1

nψ(λK)
Σn

j=1Φ(~δ)

(
1

λ−1
K αj

)
Kerj(x)Bj,

An(x) = Vn(~δ0, x) with ~δ0 =

(
0
0

)
and δn =

(
β̃1 − β1

λK(β̃2 − β2)

)
.

Thus, (8) is a consequence of Lemmas 4 and 5.

Lemma 4. Under Conditions (H1)–(H5), we have, as n→ ∞,

sup
x∈CF

‖An(x)‖ = O
(

λ
min(k2,k2)
K

)
+ Oa.co.

((
ln dn

n ψ(λK)

)1/2
)

.

Lemma 5. Under Conditions (H1)–(H5), we have, as n→ ∞,

sup
x∈CF

sup
‖~δ‖≤M

‖Vn(~δ, x) + λ0D~δ− An(x)‖

= O
(

λ
min(k2,k2)
K

)
+ Oa.co.

((
ln dn

n ψ(λK)

)1/2
)

,
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where
λ0 = cd f (CQFp(x)|x)P(x).

Proof of Theorem 3. Using the decomposition

ĈDF(y | x)− CDF(y | x) =
Cn(y | x) + Qn(y | x)

ĈDFD(x)
+ Bn(y | x), (11)

with
Qn(y | x) = Rn(y | x) + CDF(y | x)An(y | x),

and
Cn(y | x) = Bn(y | x)An(y | x).

Then, the asymptotic normality can be demonstrated via the following Lemmas.

Lemma 6. Under the assumptions of Theorem 3, we have, as n→ ∞,√
nψ(λK)

VJK(y | x)
Qn(y | x) D−→ N(0, 1). (12)

8.2. Proof of the Technical Lemmas

Proof of Lemma 1. Writing

sup
x∈CF

|Bn(y | x)| =
sup
x∈CF

|B̃n(y | x)|

inf
x∈CF

| ¯CDFD(x)|
,

where
B̃n(y | x) = ¯CDFx

N(y)− CDF(y | x) ¯CDFD(x).

The latter is

B̃n(y | x) =
1

nIE(Γ1(x)Ker1(x))
Σn

j=1
{

IE(Γj(x)Kerj(x)JjBj|Fj−1)

−CDF(y | x)IE(Γj(x)Kerj(x)Bj|Fj−1)
}

≤ 1
nIE(Γ1(x)Ker1(x))
Σn

j=1
{

P(x)IE(Γj(x)Kerj(x)|IE[Jj(y)|Xj]− CDF(y | x)||Fj−1)
}

. (13)

The integration by part gives

IBa(x,λK)
(Xj)|IE[Jj|Xj]− CDF(y | x)| ≤ C

(
λk1

K + λk2
J

)
. (14)

Hence, we obtain

sup
x∈CF

|B̃n(y | x)| = O
(

λk1
K + λk2

J

)
sup
x∈CF

¯CDFD(x).

This completes the proof.

Proof of Lemma 2. Firstly, observe that, for all x ∈ CF ,

|Γj(x)| ≤ nCλ2
K + nCλK|αj(x)|. (15)
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Next, we let k(x) = arg min
k∈{1,2,...,dn}

|δ|(x, xk). We have

sup
x∈CF

|Rn(y | x)| ≤ sup
x∈CF

| ĈDF
xk(x)
N (y)− ¯CDFxk(x)

N (y) |︸ ︷︷ ︸
Q1

+ sup
x∈CF

| ĈDF
x
N(y)− ĈDF

xk(x)
N (y) |︸ ︷︷ ︸

Q2

+ sup
x∈CF

| ¯CDFxk(x)
N (y)− ¯CDFx

N(y) |︸ ︷︷ ︸
Q3

.

We start by treating Q2. By using the boundeness on Ker(·) and J (·), we write

Q2 ≤ sup
x∈CF

1
n

Σn
j=1 | Jj(y) ||

1
IE(Γ1(x)Ker1(x))

Γj(x)Kerj(x)BjIBa(x,λK)
(Xj)

− 1
IE(Γ1(xk(x))Ker1(xk(x)))

Γj(xk(x))BjKerj(xk(x))IBa(xk(x),λK)
(Xj) |

≤
(

C
n2λ2

Kψ(λK)
sup
x∈CF

Σn
j=1 | Γj(x)BjIBa(x,λK)

(Xj) | ×

| Kerj(x)−Kerj(xk(x))IBa(xk(x),λK)
(Xj) |

)
+

(
C

n2λ2
Kψ(λK)

sup
x∈CF

Σn
j=1Kerj(xk(x))BjIBa(xk(x),λK)

(Xj)×

| Γj(x)IBa(x,λK)
(Xj)− Γj(xk(x)) |

)
:= F1 + F2.

By using the fact that the Ker(·) satisfies the Lipschitz condition, we obtain via (15)∣∣∣Γj(x) | IBa(x,λK)
(Xj) | Kerj(x)−Kerj(xk(x))IBa(xk(x),λK)

(Xj)
∣∣∣

≤ nCλ2
K(

rn

λK
IBa(x,λK)∩Ba(xk(x),λK)

(Xj)

+IBa(x,λK)∩Ba(xk(x),λK)
(Xj)),

from which we infer that

F1 ≤ Crn

nλKψ(λK)
sup
x∈CF

Σn
j=1IBa(x,λK)∩Ba(xk(x),λK)

(Xj)Bj

+
C

nψ(λK)
sup
x∈CF

Σn
j=1IBa(x,λK)∩Ba(xk(x),λK)

(Xj)Bj.

Concerning F2 we put, for l = 0, 1 and k = 1, 2,

Tk,l = IBa(xk(x),λK)∩Ba(x,λK)
(Xj)

×
∣∣∣(Σn

i=1αk
i (x)Keri(x)Bi

)
αl

j(x)−
(

Σn
i=1αk

i (xk(x))Keri(xk(x))Bi

)
αl

j(xk(x))
∣∣∣.

Therefore, we obtain
Tk,l ≤ Tk,l

1 + Tk,l
2 ,
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where

Tk,l
1 = IBa(xk(x),λK)∩Ba(x,λK)

(Xj)
(

Σn
i=1 | αk

i (x) | Keri(x)Bi× | αl
j(x)− αl

j(xk(x)) |
)

,

and

Tk,l
2 = IBa(xk(x),λK)∩Ba(x,λK)

(Xj)(| αl
j(xk(x)) | Bi

×
∣∣∣Σn

i=1(α
k
i (x)Keri(x)− αk

i (xk(x))Keri(xk(x)))
∣∣∣,

Making use of the condition (H4), for l = 1, we have

IBa(xk(x),λK)∩Ba(x,λK)
(Xj) | αj(x)− αj(xk(x)) |≤ CrnIBa(xk(x),λK)∩Ba(x,λK)

(Xj).

So, for k = 2, l = 0,

Tk,l
1 = 0, (16)

and for k = 1, l = 1,

Tk,l
1 ≤ nCrnλKIBa(xk(x),λK)∩Ba(x,λK)

(Xj).

Now, for Tk,l
2 , we have

Tk,l
2 ≤ IBa(xk(x),λK)∩Ba(x,λK)

(Xj)

×
(

Σn
i=1 | αl

j(xk(x)) | Keri(x)Bi× | αk
i (x)− αk

i (xk(x)) |
)

+IBa(xk(x),λK)∩Ba(x,λK)
(Xj)

×
(

Σn
i=1 | αl

j(xk(x)) || αk
i (xk(x)) | Bi× | Keri(x)−Keri(xk(x)) |

)
.

We have

IBa(xk(x),λK)∩Ba(x,λK)
(Xj) | α2

i (x)− α2
i (xk(x)) |≤ CrnλKIBa(xk(x),λK)∩Ba(x,λK)

(Xj).

This implies that, for k = 1, 2,

IBa(xk(x),λK)∩Ba(x,λK)
(Xj) | αk

i (x)− αk
i (xk(x)) |≤ Crnλk−1

K IBa(xk(x),λK)∩Ba(x,λK)
(Xj).

Thus, for (l, k) = (0, 2), we have

Tk,l
2 ≤ nCrnλKIBa(xk(x),λK)∩Ba(x,λK)

(Xj), (17)

and for l = k = 1

Tk,l
2 ≤ nCrnλKIBa(xk(x),λK)∩Ba(x,λK)

(Xj). (18)

Combining (16) and (17), we find that

IBa(xk(x),λK)∩Ba(x,λK)
(Xj)

∣∣∣(Σn
i=1α2

i (x)Keri(x)Bi − α2
i (xk(x))Keri(xk(x))Bi

)∣∣∣
≤ nCrnλKIBa(xk(x),λK)∩Ba(x,λK)

(Xj),

and

IBa(xk(x),λK)∩Ba(x,λK)
(Xj)

×
∣∣∣((Σn

i=1αi(x)Keri(x)Bi)αj(x)− (Σn
i=1αi(xk(x))Keri(xk(x))Bi)αj(xk(x))

)∣∣∣
≤ nCrnλKIBa(xk(x),λK)∩Ba(x,λK)

(Xj).
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Thus, we obtain

F2 ≤ Crn

nλKψ(λK)
sup
x∈CF

Σn
j=1IBa(x,λK)∩Ba(xk(x),λK)

(Xj)Bj

+
C

nψ(λK)
sup
x∈CF

Σn
j=1IBa(x,λK)∩Ba(xk(x),λK)

(Xj)Bj.

Consequently, we infer that

Q2 ≤ C sup
x∈CF

(Q2.1 + Q2.2 + Q2.3),

where

Q2.1 =
C

nψ(λK)
Σn

j=1IBa(xk(x),λK)∩Ba(x,λK)
(Xj)Bj,

Q2.2 =
Crn

nλKψ(λK)
Σn

j=1IBa(x,λK)∩Ba(xk(x),λK)
(Xj)Bj,

Q2.3 =
C

nψ(λK)
Σn

j=1IBa(x,λK)∩Ba(xk(x),λK)
(Xj)Bj.

Now, we apply an exponential inequality for the difference martingale random vari-
ables of Zj that are defined by

Zj =



1
ψ(λK)

[IBa(xk(x),λK)∩Ba(x,λK)
(Xj)]Bj for Q1.1,

rn

λKψ(λK)
[IBa(x,λK)∩Ba(xk(x),λK)

(Xj)]Bj for Q1.2,

1
ψK

[IBa(x,λK)∩Ba(xk(x),λK)
(Xj)]Bj for Q1.3.

Keep in mind that

Zj = O
(

1
ψ(λK)

)
,

IE[Zj|Fj−1] = O
(

rn

ψ(λK)

)
IE[Z2

j ||Fj−1] = O
(

rn

ψ(λK)2

)
.

Therefore, we infer

Q2.1 = O

(
rn

ψ(λK)

)
+ Oa.co.

(√
rn ln n

nψ(λK)2

)
,

and

Q2.2 = Oa.co.

(√
ln dn

nψ(λK)

)
.

We deduce

Q2 = Oa.co.

(√
ln dn

nψ(λK)

)
,
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and ∀ ε > 0, we obtain

IP

(
Q1 > ε

√
lndn

nψ(λK)

)

= IP
(

max
k∈1,...,dn

| ĈDF
xk(x)
N (y)− ¯CDFxk(x)

N (y) |> ε

)
≤ dn max

k∈1,...,dn
IP

(
ĈDF

xk(x)
N (y)− ¯CDFxk(x)

N (y) |> ε

√
ln dn

nψ(λK)

)
.

Let
ĈDF

xk(x)
N (y)− ¯CDFxk(x)

N (y) =
1

nIE(Γ1(x)Ker1(x))
Σn

j=1Sj,

where

Sj = Γj(xk(x))Kerj(xk(x))Jj(y)Bj − IE(Γj(xk(x))Kerj(xk(x))Jj(y)Bj|Fj−1).

We readily obtain
IE(S2

j |Fj−1) ≤ 2C
′
n2λ4

Kψj(λK).

Now, for all ε > 0, we infer that

IP

(
| ĈDF

xk(x)
N (y)− ¯CDFxk(x)

N (y) |> ε

√
ln dn

nψ(λK)

)

≤ IP

(
| 1
nIE(Γ1Ker1)

Σn
j=1Sj| > ε

√
ln dn

nψ(λK)

)
≤ 2 exp−C0ε2 ln dn .

Choosing ε for which C0ε2 = ς, we then infer

dn max
k∈1,...,dn

IP

(
| ĈDF

xk(x)
N (y)− ¯CDFxk(x)

N (y) |> ε

√
ln dn

nψ(λK)

)
≤ C

′
d1−ς

n .

Since Σ∞
n=1d1−ς

n < ∞, we obtain that

Q1 = Oa.co.

(√
ln dn

nψ(λK)

)
.

For Q3, we have

Q3 ≤ IE

(
sup
x∈CF

|ĈDF
xk(x)
N (y)− ¯CDFxk(x)

N (y)| | Fj−1

)
.

We follow the proof for Q1 to obtain

Q3 = Oa.co.

(√
ln dn

nψ(λK)

)
,

which achieves the demonstration of Lemma 2.
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Proof of Lemma 3. Obviously, the first statement is deduced by taking Jj = 1 in Lemma 2,
while for the second result, we use

inf
x∈CF

| ĈDFD(x) |≤
inf

x∈CF
P(x)

2
,

meaning that there exists x ∈ CF such that

P(x)− ĈDFD(x) ≥
inf

x∈CF
P(x)

2

=⇒ sup
x∈CF

| P(x)− ĈDFD(x) |≥
inf

x∈CF
P(x)

2
.

So, we have

IP
(

inf
x∈CF

| ĈDFD(x) ≤ 1
2

)

≤ IP

 sup
x∈CF

| P(x)− ĈDFD(x) |≥
inf

x∈CF
P(x)

2

.

≤ IP

 sup
x∈CF

| IE(ĈDFD(x)− ĈDFD(x) |≥
inf

x∈CF
P(x)

2

.

Consequently,

Σ∞
i=1IP

 inf
x∈CF

| ĈDFD(x) |≤
inf

x∈CF
P(x)

2

 < ∞.

Hence, the proof is complete.

Proof of Lemma 4. Notice that

sup
x∈CF

‖An(x)‖ ≤ sup
x∈CF

‖An(x)− Ān(x)‖+ sup
x∈CF

‖Ān(x)‖,

where

Ān(x) :=
1

nψ(λK)
Σn

j=1IE
(

Φ(~δ0)

(
1

λ−1
K αj

)
Kerj(x)Bj|Fj−1

)
.

So, all that remains is to prove that

sup
x∈CF

‖An(x)− Ān(x)‖ = Oa.co.

((
ln dn

n ψ(λK)

)1/2
)

(19)

and

sup
x∈CF

‖Ān(x)‖ = O
(

λ
min(k2,k2)
K

)
. (20)

The proof of (19) follows the same lines as the Lemma 2, while (20) is based on the
same idea as in Lemma 2 using the fact that

IBa(x,λK)
(X1)

∣∣CDF(CQFp(x)|x)− CDF(β1 + β2α1|X1)
∣∣ ≤ C

(
λ

min(k1,k2)
K

)
.

This completes the proof of Lemma 4.
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Proof of Lemma 5. We prove that

sup
x∈CF

sup
‖δ‖≤M

‖Vn(~δ, x)− An(x)− (V̄n(~δ, x)− Ān(x))‖ = Oa.co.

(√
log n

nψ(λK)

)
, (21)

and

sup
x∈CF

sup
‖δ‖≤M

‖(V̄n(~δ, x)− Ān(x)) + cd f (CQFp(x)|x)Dδ‖ = O
(

λ
min(k1,k2)
K

)
, (22)

where

V̄n(~δ, x) :=
1

nψ(λK)
Σn

j=1IE

(
Φ(~δ)

(
1

λ−1
K αj

)
Kerj(x)Bj|Fj−1

)
.

In order to show (21), we keep the definition of k(x) as in Lemma 2, we use the
compactness of the ball B(0, M) in IR2, and we write

B(0, M) ⊂
dn⋃

j=1

B(δj, ln), δj =

(
cj
dj

)
and ln = d−1

n = 1/
√

n.

Then, we take j(δ) = arg minj |δ− δj| . Similarly to Lemma 2 we write

sup
x∈CF

sup
‖δ‖≤M

‖Vn(~δ, x)− An(x)− (V̄n(~δ, x)− Ān(x))‖

≤ sup
x∈CF

sup
‖δ‖≤M

∥∥∥Vn(~δ, x)− An(x)− (Vn(~δ, xk(x))− An(xk(x)))
∥∥∥︸ ︷︷ ︸

T1

+ sup
x∈CF

sup
‖δ‖≤M

∥∥∥Vn(~δ, xk(x))−Vn(~δj(δ), xk(x))
∥∥∥︸ ︷︷ ︸

T2

+ sup
x∈CF

sup
‖δ‖≤M

∥∥∥Vn(~δj(δ), xk(x))− An(xk(x))− (V̄n(~δj(δ), xk(x))− Ān(xk(x)))
∥∥∥︸ ︷︷ ︸

T3

+ sup
x∈CF

sup
‖δ‖≤M

∥∥∥V̄n(~δj(δ), xk(x))− V̄n(~δ, xk(x))
∥∥∥︸ ︷︷ ︸

T4

+ sup
x∈CF

sup
‖δ‖≤M

∥∥∥V̄n(~δ, xk(x))− Ān(xk(x))− (V̄n(~δ, x)− Ān(x))
∥∥∥︸ ︷︷ ︸

T5

.

We treat T1 and T2 as Q2 in Lemma 2. Meanwhile, T4 and T5 are evaluated as in Q3.
Finally, we use the idea of Q1 to evaluate T3. The statement (22) is a consequence of

λ−a
K IE[α−a

i Kerb
i ] = ψ(λK)

(
Kerb(1)−

∫ 1

−1
(uaKerb(u))′Ψ(u)du

)
+ o(ψ(λK)).

Hence, the proof is complete.

Proof of Lemma 6. For a fixed x, we put all j = 1, . . . , n, (Γ1(x),Ker1(x)) = (Γ1,Ker1).
Next, let us denote

ηn,j =

√
nψ(λK)

nIE(Γ1Ker1)
(Jj − CDF(y | x))ΓjKerjBj,
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and we define ξn,j = ηn,j − IE(ηn,j|Fj−1). It is clear that√
nψ(λK)Qn(y | x) = Σn

j=1ξn,j. (23)

Therefore, to demonstrate Lemma 6, we have to prove the following:

Σn
j=1IE(ξ2

n,j|Fj−1)
P−→ VJK(y | x), (24)

and
∀ε > 0 nIE(ξ2

n,jI[|ξ2
n,j |>ε]) = o(1). (25)

For (24), we have

IE(ξ2
n,j|Fj−1) = IE(η2

n,j|Fj−1)− (IE(ηn,j|Fj−1))
2.

Thus, it suffices to show that

lim
n→∞

Σn
j=1(IE(ηn,j|Fj−1))

2 = 0 in probability, (26)

and
lim

n→∞
Σn

j=1IE(η2
n,j|Fj−1) = VJK(y | x) in probability. (27)

For (26), we use Lemma 5 of [72] to conclude

|IE(ηn,j|Fj−1)| =

√
nψ(λK)

nIE(Γ1Ker1
|IE(Bj(Jj − CDF(y | x))ΓjKerj|Fj−1)|

≤ C
√

nψ(λK)(λ
b1
K + λb2

J )
1

nψ(λK)
(P(x) + o(1)).

Thus, we have

Σn
j=1(IE(ηn,j|Fj−1))

2 = Oa.co.(nψ(λK)(λ
b1
K + λb2

J )2).

For Equation (27), we have

Σn
j=1IE(η2

n,j|Fj−1)

=
ψ(λK)

n(IE(Γ1Ker1))2 Σn
j=1IE(Γ2

jKer2
j Bj(Jj − CDF(y | x))2|Fj−1)

=
ψ(λK)

n(IE(Γ1Ker1))2 Σn
j=1IE(Γ2

jKer2
j BjIE[(Jj − CDF(y | x))2|Xj]|Fj−1).

Since

IE[(Jj − CDF(y | x))2|Xj] = Var[Jj|Xj] + [IE(Jj|Xj)− CDF(y | x)]2,

we have

Var[Jj|Xj] = IE(J 2
j |Xj)− (IE(Jj|Xj))

2. (28)

We highlight that

IE[Jj|Xj] =
∫

IR
J (1)(t)[CDF(y− λJt|x)− CDF(y | x)]dt + CDF(y | x)

= CDF(y | x), (29)
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and

IE[J 2
j |Xj] =

∫
IR
J 2
(

y− z
λJ

)
cd f (z|x)dz

=
∫

IR
2J(t)J (1)(t)[CDF(y− λJt|x)− CDF(y | x)]dt

+
∫

IR
2J (1)(t)J (t)CDF(y | x)dt.

Using the fact ∫
IR
J (1)(t)J (t)CDF(y | x)dt = CDF(y | x),

we readily obtain, as n→ ∞,

IE[J 2
j |Xj] −→ CDF(y | x). (30)

Combining (29) with (30), we arrive at

Var[Jj|Xj] = CDF(y | x)(1− CDF(y | x)). (31)

Concerning βn2 , we obtain from (29) that, as n→ ∞,

βn2 −→ 0.

Thereafter, we obtain

Σn
j=1IE(η2

n,j|Fj−1) =
ψ(λK)

n(IE(Γ1Ker1))2 Σn
j=1IE(Γ2

j K2
j Bjβn1 |Fj−1)

=
ψ(λK)

n(IE(Γ1Ker1))2 Σn
j=1IE(Γ2

j K2
j IE(Bj|Xj)βn1 |Fj−1)

=
ψ(λK)

n(IE(Γ1Ker1))2 Σn
j=1IE((P(x) + o(1))Γ2

j K2
j βn1 |Fj−1).

The use of Equation (31) allow us to obtain, as n→ ∞,

Σn
j=1IE(η2

n,j|Fj−1) −→
M2

M2
1

P(x)(1− CDF(y | x))CDF(y | x)

= VJK(y | x);

this last part completes the proof of our first claim. Concerning (25), we have

nIE(ξ2
n,j) ≤ 4nIE(η2

n,jI[|ηn,j |> ε
2 ]
).

By Markov–Hölder’s inequalities, we obtain ε > 0:

IE
(

η2
n,jI[|ηn,j |> ε

2 ]

)
≤

IE(|ηn,j|)2a

(ε/2)2a/b .

Putting a = 1 + δ′
2 for δ′ > 0 and by recalling that the function

G2+δ′ = IE(|Jj − CDF(y | x)|2+δ′ |Xj)
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is continuous, we have

4nIE(η2
n,jI[|ηn,j |> ε

2 ]
) ≤ C

(
ψ(λK)

n

) 2+δ′
2 n

(IE(Γ1Ker1))2+δ′

×IE([|(Jj − CDF(y | x))|ΓjKerjBj]
2+δ′)

≤ C
(

ψ(λK)

n

) 2+δ′
2 n

(IE(Γ1Ker1))2+δ′

×IE(P(x)|ΓjKerj|2+δ′ [IE(|Jj − CDF(y | x))|2+δ′ |Xj])

≤ C(P(x) + o(1))
(

ψ(λK)

n

) 2+δ′
2 n

(IE(Γ1Ker1))2+δ′

×IE(|ΓjKerj|2+δ′)G2+δ′

= O
(
(nψ(λK))

−δ′
2

)
−→ 0, as n→ ∞.

Hence, the proof is complete.
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