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Abstract: The present note is devoted to the detailed investigation of a concrete model satisfying the
block-monotone statistics introduced in a previous paper (joint, with collaborators) of the author. The
model under consideration indeed describes the free gas of massless particles in a one-dimensional
environment. This investigation can have consequences in two fundamental respects. The first
one concerns the applicability of the (block-)monotone statistics to concrete physical models, yet
completely unknown. Since the formula for the degeneracy of the energy-levels of the one-particle
Hamiltonian of a free particle is very involved, the second aspect might be related to the, highly
nontrivial, investigation of the expected thermodynamics of the free gas of particles obeying the block-
monotone statistics in arbitrary spatial dimensions. A final section contains a comparison between the
various (block, strict, and weak) monotone schemes with the Boltzmann statistics, which describes
the gas of classical particles. It is seen that the block-monotone statistics, which takes into account the
degeneracy of the energy-levels, seems the unique one having realistic physical applications.

Keywords: quantum statistical mechanics; thermodynamics; quantum probability

1. Introduction

Motivated by the fundamental investigation concerning the statistics of elementary
particles in terms of suitable commutation relations between basic operators (e.g., [1]) like
annihilators and creators, or equivalently field operators, the exploration of many other
commutation relations has undergone an impetuous growth. Having in mind potential
applications in physics, such a vast investigation has been started mainly due to the
connection with quantum probability. Since the literature on such a topic is extremely
extended, we mention only a short sample (e.g., [2–4]), which is very far from being
complete. In this direction, we also cite the seminal paper [5], which proposes an interesting
interplay between classical measure theory and noncommutative geometry with the aim of
providing a fruitful treatment of interacting quantum fields. Finally, the reader is referred
to the monograph [6] for an introduction to Voiculescu free probability, the latter being a
relevant branch of quantum probability.

We recall that the description of Bose and Fermi particles in terms of commutation
relations of operators acting on the corresponding Fock spaces encodes the statistics that the
particles under consideration obey. Therefore, such a description in terms of commutation
relations is also the main ingredient for the investigation of the thermodynamic properties
of the infinitely extended gas of such primordial families of elementary particles. Just
to mention some examples, with such a picture it is possible to provide a satisfactory
description of the Bose–Einstein condensate responsible for the condensation in the ground
state of integer spin particles like massive particles and photons (see [7] for the meaning of
the condensation effect for such very special particles), and quasi-particles like phonons,
and rotons entering in the description of superfluidity, see e.g., [8,9].

Concerning the half-integer spin particles like electrons, we mention the description
of the Pauli exclusion principle, encoded in the corresponding Fermi commutation relations
and relevant for the study of the statistical properties of metals and semiconductors. On the
other hand, we point out that the thermodynamics of exotic particles obeying the statistics
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described by such exotic commutation relations (see [4] for such a family) has not yet been
intensively investigated due to several reasons.

Recently, the attempt to systematically investigate the thermodynamic properties of
such exotic particles has been carried out in the series of papers [10–14]. The first study was
that concerning the q-particles or quons, q ∈ [−1, 1]. They correspond to a mere interpolation
between the Fermi case corresponding to q = −1 and the Bose one corresponding to q = 1,
passing from q = 0, corresponding to the Boltzmann statistics (i.e., classical particles).

Notice that, in quantum mechanics, the indistinguishability of particles plays a crucial
role. Since the statistics that the quons obey is completely unknown, the q-deformed Fock
space cannot be used at all to compute the thermodynamic properties of such particles. This
is the same for the Boltzmann case (see e.g., [15]). Since the statistics of classical particles
is perfectly known, it is possible to correct the various statistical weights corresponding
to the n-level occurring in the grand-partition function with the Gibbs correction 1/n!.
Since n! is nothing but the number of permutations on n objects, such corrections take into
account the indistinguishability of particles, see e.g., [16]. Nevertheless, the calculation of
the grand-partition function for quons, which encodes all thermodynamic properties of an
infinitely extended medium, has still been carried out in [11] without taking into account
the possible statistics of such particles which are perhaps completely unknown.

Other relevant commutation relations are the Boolean and monotone ones. The Boolean
scheme (e.g., [17]) describes the absorption/emission of a single photon by a medium,
see [18]. Therefore, the Boolean Fock space is the simplest among the nontrivial ones, and
thus the arising thermodynamic description presents no troubles.

By mainly looking at quantum probability, the monotone scheme was introduced in [19,20].
It is still unknown whether such a scheme can have potential applications to physics.
Since the ergodic behaviour of any (classical or quantum) stochastic process is relevant
for the investigation of its main properties (e.g., [21]), we refer the reader to [22] for a
systematic investigation of the ergodic properties of such non conventional quantum
stochastic processes.

The monotone scheme is based on a pre-assigned order on the basis of the (separable)
one-particle Hilbert space H, and two possibilities were investigated in some detail. These
are called the strictly monotone (simply called “monotone” in most of the related literature
and in the present paper) and the weakly monotone schemes. On the other hand, many (but not
all significant) meaningful physical models are described by a one-particle Hamiltonian H
with compact resolvent, acting on a, typically separable, Hilbert space H. Therefore, there
is a completely natural order on the necessarily discrete spectrum σ(H) of the Hamiltonian
H and, in addition, the set of normalised eigenvectors of H provides an orthonormal basis
of H. Unfortunately, the energy-levels can have a degeneracy, and thus no total pre-order is
inherited on the basis of H made of eigenvectors of H. To overcome this problem in view of
possible physical applications, in [13] a new scheme was introduced, called block-monotone,
which takes into account the natural partial order on the basis of H made of eigenvectors
of H, established by considering the possible degeneracy of the energy-levels.

Since it is almost impossible to provide an explicit calculation of the block-monotone
grand-partition function for most reasonable models, in the previously mentioned paper [13],
we analysed a simple model, perhaps without degeneracy (and thus for which monotone
and block-monotone schemes coincide). For such a model, we see that the correction
factor 1/n!, connected to indistinguishability, automatically appears in the computation
of the statistical weights corresponding to the various n-levels. This suggests that the
indistinguishability of the involved particles is automatically encoded in the monotone
scheme. However, we point out that the role of the degeneracy was left out when managing
that simple model.

The present paper was devoted to the study of the role of the degeneracy by analysing a
simple real model for which it is nontrivial, and thus the monotone and the block-monotone
differ from each other. We still checked that the Gibbs factor n! naturally appears for this
more complicated situation, as well as the decimation with respect to the Boltzmann model.
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As in the previous model of [13], we explicitly estimated such a decimation in the case of a
low density/high energy regime.

This paper ends with the comparison concerning the asymptotics in the high tempera-
ture regime (i.e., β ≈ 0) of the statistical weights of Boltzmann, block-monotone, monotone
and weak monotone particles. Concerning the leading terms, we see that all monotone
schemes provide the same result, perhaps perfectly coinciding with the leading terms of
the Boltzmann statistics. Therefore, one might conclude that all monotone schemes have
reasonable physical applications. However, by looking at the successive terms in such an
asymptotic expansion, one recognises that only the monotone scheme presents a natural
decimation with respect to the Boltzmann case. Therefore, one can argue that only the
block-monotone scheme might be suitable for potential physical applications.

2. Preliminaries

One-particle Hamiltonian. We deal with systems whose one-particle Hamiltonian H is
a self-adjoint positive (i.e., σ(H) ⊂ [0,+∞)) operator with compact resolvent, acting on
a separable Hilbert space H, which is nothing but the one-particle space. Therefore, the
spectrum σ(H) is made of isolated points ε ∈ σ(H), with finite (possible non uniform)
multiplicity g(ε), accumulating at +∞ if H is infinite dimensional.

Denoting by Pε the self-adjoint eigenprojector onto the eigenspace corresponding
to the eigenvalue ε ∈ σ(H), we have for the resolution of the identity associated to H,
I ≡ IH = ∑ε∈σ(H) Pε, and

H = ∑
ε∈σ(H)

εPε, with g(ε) = dim
(
Ran(Pε)

)
< ∞ .

Let kB ≈ 1.3806488× 10−23 JK−1 be the Boltzmann constant and β := 1
kBT the “inverse

temperature”. We assume that e−βH is a trace class for each β > 0 and define the partition
function ζ := Tr(e−βH).

For many models describing the gas of massive and massless particles or quasi-
particles confined in a finite volume in the d-dimensional space (for example, if d = 1, 2, the
“volume” is indeed a length or a surface, respectively), we can compute the corresponding
finite-volume partition and grand-partition functions.

For the purpose of the present note, we deal with the massless case. It is also customary
to deal with the one-particle Hamiltonian obtained by imposing the periodic boundary
conditions, which is given by

H :=
vh
L
|k| . (1)

Here, L is the one-dimensional volume (i.e., the length of the manifold L
2πT, T being the

unit circle), equipped with periodic boundary conditions, v is the speed of the light in
case of photons or the velocity of the sound in the medium in case of phonons. Therefore,
k := z d

dz = 1
ı

d
dϑ (z = eıϑ, ϑ ∈ [0, 2π)) is the momentum operator, whose spectrum is Z. We

note that the degeneracy of the energy-levels of H is 2, but the non-degenerate ground state
corresponding to k = 0.

For the partition function ζ ≡ ζ(β), an easy computation yields

ζ(β) = ∑
k∈Z

e−β vh
L |k| = 2

+∞

∑
k=0

e−β vh
L k − 1 =

eβ vh
L + 1

eβ vh
L − 1

= cotanh
( βvh

2L
)

.

Consequently, for the grand-canonical partition function Z(o) ≡ Zo(β, z) of infinitely many
of such particles obeying the Boltzmann statistics, we get

Z(o)(β, z) = ezζ(β) =
+∞

∑
n=0

zn

n!

(
eβ vh

L + 1

eβ vh
L − 1

)n

. (2)
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The grand-partition function. Here, we define the grand-partition function in a relatively
general framework relative to a gas comprising non-interacting particles obeying rather
general statistics, and thus potentially suitable for physical applications. The knowledge
of such grand-partition functions plays a crucial role in the so-called equilibrium statistical
mechanics. The standard method for such an analysis is the so-called second quantisation, see,
e.g., [1,16].

Indeed, for the one-particle Hilbert space H, we define the so-called full Fock space
F0(H) ≡ F, given by

F :=
+∞⊕
n=0

H⊗ · · · ⊗H︸ ︷︷ ︸
n-times

,

with the convention that H⊗ · · · ⊗H︸ ︷︷ ︸
0-times

:= C ≡ CΩ, where Ω is the so-called vacuum vector.

The number operator, denoted by N with a slight abuse of notation, which “counts”
the number of particles in the various levels of the Fock space, has a clear meaning (see
e.g., [1]). It is easily defined on generators as

N
(
ej1 ⊗ · · · ⊗ ejn

)
:= n(ej1 ⊗ · · · ⊗ ejn

)
,

and extends by linearity to the whole own domain as a self-adjoint operator.
For a linear operator A with domain D ⊂ H, we define

dΓo(A)dD⊗···⊗D:=A⊗ I ⊗ · · · ⊗ I + I ⊗ A⊗ · · · ⊗ I

+ · · ·+I ⊗ · · · ⊗ A⊗ I + I ⊗ · · · ⊗ I ⊗ A ,

and extend it to its own domain in the whole Fock space by linearity. For A self-adjoint,
the closure dΓ(A) of dΓo(A) will be still self-adjoint, see, e.g., [1]. The simplest example
is the 2nd quantised dΓ(IH) of the identity IH of B(H), which is nothing but the number
operator N defined above. Notice that dΓ(A) is unbounded in all situations (but A = 0),
even when A is bounded.

Let P be a self-adjoint projection acting on F. For a Hamiltonian H as above, the
parameters β > 0 (the inverse temperature) and µ ∈ R (the chemical potential) such that
Pe−βdΓ(H−µI)P ≡ Pe−β(dΓ(H)−µN)P is trace class, the grand-partition function is defined as

ZP ≡ ZH,P(β, µ) := Tr
(

Pe−βdΓ(H−µI)P
)

. (3)

It is customary to express any grand-partition function Z in terms of the activity (or
fugacity) z := eβµ. In all meaningful cases, Z admits the Mc Laurin expansion in the
activity as

Z(β, z) =
+∞

∑
n=0

an(β)zn ,

where a0(β) is always 1 and obviously, for n > 1, an(β) depends on the models under
consideration.

Notice that (e.g., [16]) the average number of particles is given by N = z ∂
∂z ln Z.

Therefore,

pn(β, z) :=
1

Z(β, z)
an(β)zn

is nothing but the probability of finding n particles in thermodynamical equilibrium at
fixed activity z and inverse temperature β ≡ 1

kBT . For this reason, the coefficients an(β) are
called statistical weights.

The most relevant cases describing the thermodynamics of Bose and Fermi gases are
those when P is the self-adjoint projections onto the completely symmetric and antisym-
metric subspaces (with respect to the natural action of the permutations on F), respectively.
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With respect to P = IF corresponding to the grand-partition function of Boltzmann (or
classical) particles, it was shown that this is not the case (e.g., [15]). However, we can still
compute such a grand-partition function by correcting the statistical weight corresponding
to n-particles with the factor 1/n!. In this situation, corresponding to the case of the free
gas of classical particles, we have

ZBoltzmann =
+∞

∑
n=0

(
zTre−βH)n

n!
= ezζ

where, as before, z = eβµ is the activity and ζ = Tre−βH is the partition function relative to
the Hamiltonian H.

Such a picture also takes into account the simplest Boolean situation, where Fboole =
CΩ

⊕
H, and thus Fboole = PbooleF, with

Pboole = ICΩ ⊕ IH ⊕ 0H⊗H ⊕ 0H⊗H⊗H ⊕ · · · .

As explained in [13], it was shown that there is some evidence that such a picture
could provide the grand-partition function of the (block-)monotone case. The present paper
is devoted to confirming this evidence.

Monotone Fock space. For the reader’s convenience, we report some basic facts regarding
monotone Fock spaces, see [2,19,20] for more details. To simplify, we considered the
separable situation H ∼ `2(N) with the natural order on an orthonormal basis {en | n ∈ N}
(or any ordered basis of a separable Hilbert space). The monotone Fock space is then built
as follows. The n-particle space is indeed spanned by the vectors eα ≡ ej1 ⊗ ej2 ⊗ · · · ⊗ ejn ,
whenever α = {j1, j2, . . . , jn} ⊂ N, j1 < j2 < · · · < jn is any ordered string made of n
elements. If we relax the last condition by merely assuming that j1 ≤ j2 ≤ · · · ≤ jn, we
will obtain the so-called weakly monotone Fock space, see, e.g., [2]. It is also customary to
denote the monotone scheme as the strict monotone one to distinguish this from the weak
monotone one.

Note that Fm and Fwm are the range of the self-adjoint projections Pm and Pwm acting
on the full Fock space F:

Fm = PmF and Fwm = PwmF ,

where Pm and Pwm project onto the subspaces spanned by the orthonormal elements
described above.

Block-Monotone Particles. Here, we report the generalisation of the monotone scheme for
the statistics of the particles previously introduced in [13] which, on the one hand, seems
to be more suitable for potential physical applications and, on the other hand, is always
different from the weak monotone and (strict) monotone schemes whenever the degeneracy
of the energy-levels of the model under consideration is nontrivial.

For this purpose, we consider an index-set I, necessarily finite or countable, which is
a finite or countable disjoint union of finite sets. This description comes from the natural
order inherited on the basis

{eε | ε ∈ σ(H)} =
⊔

ε∈σ(H)

{
eε,j | j = 1, . . . , g(ε)

}
of H made of orthonormal eigenvectors of the Hamiltonian H.

Indeed, I :=
⊔+∞

j=0 Ij, where |Ij| < +∞, j = 0, 1, . . . . The set I is naturally partially
ordered, because if k j, lj are in the same subset Ij, there is no pre-assigned order between
them. Conversely, if k1 ∈ Ij1 and k2 ∈ Ij2 , then k1 ≺ k2 ⇐⇒ j1 < j2. The block-monotone
n-particle subspace is then generated by all sequences of the elementary (orthonormal)
tensors ek1 ⊗ · · · ekn with the condition k1 < k2 < · · · < kn relative to the partial order
defined above.
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This picture is suggested by potential physical applications. In fact, a positive Hamil-
tonian H with compact resolvent acting on a separable Hilbert space H induces a natural
order, as shown above, on the natural basis of H made of the eigenvectors of H. Such a
scheme is defined as block-monotone. The corresponding block-monotone Fock space Fbm is
easily constructed as follows.

Indeed, let {ej | j ∈ I} be an orthonormal basis of H equipped with the previously
described partial order. In our framework, such a partial order is induced by a positive
Hamiltonian with compact resolvent as previously described. We also note that Fbm is
a subspace of Fm, which is proper if and only if the degeneracy of the energy-levels is
nontrivial. In other words, the block-monotone scheme coincides with the monotone one if
and only if the energy-levels are nondegenerate (or, equivalently, the Ij are singletons).

Obviously, both subspaces Fbm and Fm are subspaces of the full Fock one F ≡ F0,
which are always proper whenever dim(H) > 1.

The corresponding annihilator and creator operators acting on the block-monotone
Fock space can also be easily constructed. Since we do not use such operators here, we
leave the details to the interested reader.

3. The Grand-Partition Function of the Free Gas of Monotone Particles

In order to compute the block-monotone grand-partition function Z(bm)(z, β), we
reason as in [13]. This is certainly more complicated than the degeneracy-free models.

Indeed, taking into account that the degeneracy of the levels g(εk), εk = vh
L |k|, and

k ∈ Z, is obviously

g(εk) =

{
1 if k = 0 ,
2 otherwise ,

we obtain

Tr
(

Pbme−βdΓ(H)PbmdH⊗ · · · ⊗H︸ ︷︷ ︸
n-times

)
= 2n

+∞

∑
k1=1

e−β vh
L k1

+∞

∑
k2=k1+1

e−β vh
L k2

· · · · · ·
+∞

∑
kn=kn−1+1

e−β vh
L kn + 2n−1

+∞

∑
k1=1

e−β vh
L k1

+∞

∑
k2=k1+1

e−β vh
L k2

· · · · · ·
+∞

∑
kn−1=kn−2+1

e−β vh
L kn−1 = 2n−1(eβ vh

L n + 1
) n

∏
k=1

1

eβ vh
L k − 1

.

Consequently, for z ≥ 0 and β > 0, we have

Z(bm)(z, β) = 1 +
+∞

∑
n=1

(2z)n eβ vh
L n + 1

2

n

∏
k=1

1

eβ vh
L k − 1

. (4)

Proposition 1. For the grand-partition function Z(bm)(z, β) in (4), we have

0 ≤ Z(bm)(z, β) ≤ Z(o)(2z, β) , (5)

where Z(o) is the Boltzmann grand-partition function given in (2), and thus Z(bm) converges for
all z ≥ 0 and β > 0.

Proof. We first note (cf. [13]) that, for β > 0,

n

∏
k=1

1

eβ vh
L k − 1

<
1

n!
(
eβ vh

L − 1
)n .
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On the other hand, a coarse approximation yields

eβ vh
L n + 1

2
< (eβ vh

L + 1)n .

Collecting these together, we get (5).

In the next section, we discuss a finer inequality than that in (5).
By coming back to the applicability of various monotone statistics to realistic physical

models, the previous analysis yields that the block-monotone prescription could certainly
be suitable. We also note that, for the statistical weights we easily have

a(wm)
n ≥ a(m)

n ≥ a(bm)
n ,

independently on the degeneracy of the involved energy-levels.

4. Comparison with the Boltzmann Particles

The key-point with which to compare the thermodynamic properties of monotone and
Boltzmann particles is to provide an inequality finer than that in (5). In order to do that,
we follow the lines in [13], Section 3. At this stage, we provide only a qualitative analysis
(perhaps confirmed with the aid of software symbolic calculi), leaving the insights to the
interested scientist.

More precisely, the first part of the analysis follows the same lines of the analogous
part in [13], Proposition 2, the latter corresponding to (9). The final part of the present
section concerning (11) (to be compared with the analogous Equation (17) in [13]) provides
only a qualitative estimate of the decimation phenomenon arising in monotone statistics.

We start with the analogy of [13], Proposition 3.1 and, with

Z(bm) =
+∞

∑
n=0

a(bm)
n , Z(o) =

+∞

∑
n=0

a(o)n ,

x := eβ vh
L , we argue that

a(o)n − a(bm)
n =

1
n!

(
x− 1
x + 1

)n(
∆n(1) + ∆′n(1)(x− 1) +

∆′′n(ξn)

2
(x− 1)2

)
. (6)

In the situation under consideration,

∆n(x) := 1− n!2n−1(1 + xn)

(1 + x)(1 + x + x2) · · ·
(

∑n−1
k=0 xk

) , n = 1, 2, . . . , (7)

and ξn is some number (depending obviously on n) in (1, x). As in [13], ∆n(1) = 0 and
we have the evidence that ∆′′n(ξn) < 0 whenever x > 1. Quite surprisingly, also in this
situation, ∆′n(1) = n(n−1)

4 . With y := x+1
x+1 , we reason as in the previously mentioned

paper, obtaining

Z(o) − Z(bm) ≤ (x− 1)
4

+∞

∑
n=0

n(n− 1)
yn

n!
=

(x− 1)
4

y2 d2Z0

dy2

=
z2(x + 1)2

4(x− 1)
ey =

z2(x + 1)2

4(x− 1)
Z0 .

(8)

Collecting altogether, with

f (β, z) :=
1

eβ vh
L − 1

(
z
(
eβ vh

L + 1
)

2

)2

,
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we get the more refined inequalities

(1− f (β, z))Z(o)(z, β) ≤ Z(bm)(β, z) ≤ Z(o)(z, β) . (9)

We note that (9) allows us to show

lim
(β,z)→(0,0)
(β,z)∈R

Z(bm)(β, z)
Z(o)(β, z)

= 1 , (10)

where R is a suitable “sectorial” region in the (z, β)-1st quadrant having (0, 0) as a cluster
point, and thus describing the low density/high temperature regime.

In such a situation of low density/high temperature regime, (9) yields, at least in a
rough but realistic approximation,

Z(bm)(β, z) ≈ (1− f (β, z))Z(o)(β, z) , (11)

where the minus sign, holding for (β, z) ∈ R, explains the decimation with respect to
the classical case arising from the monotone statistics. We note that such a decimation is
analogous to the Pauli exclusion principle for Fermi particles.

As explained in [13], such a monotone exclusion principle is manifestly relevant in the
high-density regime corresponding to β ↑ +∞. Conversely, according to one of the early
principles of thermodynamics asserting that all free gases of particles must have the same
behaviour in the low density/high temperature regime independently of the statistics they
obey (e.g., (10)), the monotone exclusion principle tends to be negligible in the low-density
regime as expected. In the low-density regime, 1− f (β, z) provides a qualitative estimate
of the correction corresponding to the monotone case with respect to the analogous ones
relative to the Boltzmann one.

We note that, by (11), it is possible to determine the qualitative correction (with respect
to the Boltzmann case) to all natural thermodynamic potentials. Indeed, for the average
number of particles N with (β, z)→ (0, 0) in the region R,

N(bm)(β, z) =z
∂ ln Z(bm)(β, z)

∂z
≈ z

∂ ln(1− f (β, z))
∂z

+ N(o)(β, z)

=N(o)(β, z)−
2
(
eβ vh

L + 1
)2z2

4
(
eβ vh

L − 1
)
−
(
eβ vh

L + 1
)2z2

.

5. Comparison between Various Monotone Statistics

Concerning the various monotone statistics, it seems a delicate question to decide
which of these is (more) suitable for concrete physical applications.

Following one of the main principles of thermodynamics, which asserts that all in-
volved particles must be considered indistinguishable, this issue can be tested in the high
temperature regime, that is, when β ≈ 0. Similarly to the previous paper [13], it is then
natural to compare the asymptotics of the various statistical weights,{

a(#)n | n ∈ N, # standing for Boltzmann, monotone,

block-monotone, weak monotone
}

.
(12)

To simplify, we consider the Hamiltonian such that σ(H) = {n + 1 | n ∈ N}, with uniform
degeneracy g(εn) = 2 for all n.

First of all, concerning the leading term of the expansion of the a(#)n , it is not hard to
show that

a(#)n =
2n

n!βn

(
1 + o(1)

)
for β ≈ 0 ,
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for all models in (12). Therefore, all such models obeying the various monotone statistics
seem to be suitable for potential physical applications. We can then deduce that, in order to
appreciate the difference between the various models, we should consider the high energy
expansion of all statistical weights a(#)n . We point out that such a process of expansion
seems to be a quite natural one in investigating and solving long-standing problems of
quantum physics, see [23]. The reader is also referred to [12] for a situation more close to
the topics of the present paper.

For the convenience of the reader, we report the computations relative to the statistical
weights a(#)2 . The results of such computations are listed below.
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=
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)
.

(13)

Summarising,

a(bm)
2 (β)

<∼ a(o)2 (β)
<∼ a(m)

2 (β)
<∼ a(wm)

2 (β) for β ≈ 0 .

We note that the unique model exhibiting a decimation at the level of the 2-particle subspace,
with respect to the Boltzmann one, is indeed the block-monotone one as expected. Therefore,
the latter seems to be uniquely adapted for reasonable physical applications.

6. Conclusions

The (anti)commutation relations were the milestone for managing models arising
from elementary particle physics, and thus contain particles that obey Fermi and Bose
statistics. Such commutation relations indeed encode the statistics of the elementary
particles split into fermions and bosons corresponding to q = ±1. Models that interpolate
the commutation relations for fermions and bosons (mainly for −1 < q < 1) were also
intensively investigated.

Recently, the study of models arising from many exotic commutation relations (cf. [4])
has undergone an impetuous growth, and hundreds of papers have been devoted to this
argument. All these papers fall under the topic of so-called quantum probability, even
if the possible physical applications were cited among the main motivations for such an
investigation. To the best knowledge of the author, no physical applications have been
described for such exotic models, except for the so-called Boolean one, which directly arises
from the description of the phenomenon of the interaction between radiation and matter
(cf. [18]).

Concerning the q-particles, the first concrete obstruction to their applicability to physics
was pointed out in [15]. Indeed, it was shown that the grand-partition function correspond-
ing to the Boltzmann case q = 0, describing classical particles and computed by using the
full Fock space, differs to that expected. This is certainly due to the indistinguishability of
particles not encoded in the construction of the full Fock space.
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Second, the grand-partition function for all −1 < q < 1, computed by using the
q-Fock space (which is a deformation of the full Fock space corresponding to q = 0), is
independent of q. This paradox was solved in [11].

Concerning such q-particles, they appear as a mere interpolation between fermions
(q = −1) and bosons (q = 1), where q = 0 corresponds to the classical particles. Therefore,
excluding the cases ±1 and 0, the physical application of models describing quons seems,
at the moment at least, to be wishful thinking.

The monotone statistics was invented and investigated in the quantum probability
setting, after mentioning potential physical applications. Any model or, more precisely, the
corresponding Fock space encoding the statistics that the model under consideration obeys,
must satisfy some basic prescriptions. The most important one is that it must encode the
indistinguishability of (necessarily quantum) particles. To the best knowledge of the author,
no concrete application of the monotone model to physics is known. In addition, there has
been no discussion about the suitability of such a model for concrete physical applications.

The first discussion on this relevant question started in [13], in which it was shown that
the indistinguishability of particles appears to be automatically encoded, at least after the
investigation of a simple model. The above mentioned paper also contains some realistic
physical applications of the monotone statistics (Section 6), to which the interested reader
is referred.

In the present note, we have continued the investigation of the monotone statistics for
more complicated models. We explained which of the various monotone schemes may be
suitable for realistic physical applications. The block-monotone scheme was previously
introduced in [13] for this purpose. As mentioned above, some of the potential physical
applications were also outlined.

Since the main object in the thermodynamics of the equilibrium, the grand-partition
function, is not explicitly computable for all realistic models obeying monotone statistics,
the question described above does not have an easy solution. On the other hand, the block-
monotone model, which seems to be the right candidate for such physical applications,
presents the additional difficulty (not considered in the previous paper [13]) of the non-
trivial degeneracy—possibly non homogeneous—of the energy-levels of the one-particle
Hamiltonian of the system under consideration.

In the present paper, after studying a realistic model with non homogeneous degener-
acy, among other things, we have shown that the block-monotone statistics indeed seems to
be the right model for this purpose. We showed that, at level of the statistical weights, only
this scheme presents the expected decimation effect with respect to the classical model, see
Section 5.

After these preliminary but fundamental considerations, the next step will be the
systematic investigation of the gas of monotone massive and massless particles, necessarily
in the block-monotone version and in arbitrary spatial dimensions. However, we point
out that it will certainly be a very difficult task in the massive case, due to the explicit
computability of the various statistical weights (i.e., some special functions, which cannot
be analytically expressed, would enter into such computations). Another difficulty will be
the very complicated behaviour of the degeneracy for dimensions ≥ 2 in both massive and
massless cases, see, e.g., [13], Section 6.
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