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Abstract: We study the time evolution of mutual information between mass distributions in spatially
separated but casually connected regions in an expanding universe. The evolution of mutual information
is primarily determined by the configuration entropy rate, which depends on the dynamics of the
expansion and growth of density perturbations. The joint entropy between distributions from the
two regions plays a negligible role in such evolution. Mutual information decreases with time in a
matter-dominated universe, whereas it stays constant in a Λ-dominated universe. The ΛCDM model
and some other models of dark energy predict a minimum in mutual information beyond which dark
energy dominates the dynamics of the universe. Mutual information may have deeper connections to
the dark energy and accelerated expansion of the universe.
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1. Introduction

Entropy plays a key role in understanding a wide range of phenomena in science.
It plays an important role in deciding the evolution of the universe. The universe is
regarded as a dynamical system in cosmology. The dynamics of the expansion of the
universe is described by Friedmann equations, which are based on Einstein’s equation
of general relativity and the cosmological principle. The cosmological principle assumes
that the universe is statistically homogeneous and isotropic on sufficiently large scales.
The validity of this assumption is crucial to our understanding of modern cosmology. A
large number of studies have been carried out to verify the cosmological principle. Studies
based on various cosmological observations have found that the universe is statistically
homogeneous and isotropic on scales somewhere beyond 70–150 Mpc [1–13]. The universe
is highly inhomogeneous and anisotropic on smaller scales due to the presence of a clear
hierarchy of structures, starting from planets, stars, and galaxies to groups, clusters, and
superclusters. All these structures in the present universe are believed to have emerged from
the growth of primordial density fluctuations seeded in the early universe. The observed
CMBR temperature fluctuations of ∆T

T ∼ 10−5 at redshift z ∼ 1100 suggest that the universe
was highly homogeneous and isotropic in the past. These tiny fluctuations are amplified by
gravitational instability, producing structures over a wide range of length scales.

Our universe is known to be expanding. Recent observations have suggested that
the universe is currently undergoing accelerated expansion [14,15]. Understanding the
present accelerated expansion of the universe is a major unsolved problem in cosmology.
The dynamics of this expansion affect the growth of inhomogeneities in the universe. Con-
versely, the inhomogeneities may also play an important role in the observed acceleration
through their effect on the large-scale dynamics of the universe [16–20]. Reference [21]
suggested that the observed acceleration of the universe is consistent with the second
law of thermodynamics, and the entropy of the universe in the ΛCDM model tends
toward a finite maximum. Interestingly, alternative models, such as non-singular bounc-
ing universes, modified gravity theories, and phantom fields, do not lead to a state of
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maximum entropy [22–24]. The continuous dissipation of information entropy of matter
distribution due to gravitational instability may also drive the accelerated expansion of
the universe [25,26]. These studies suggest that the large-scale inhomogeneity and the
maximum entropy production principle (MEPP) [27,28] may have important roles in the
observed acceleration of the universe.

Numerous works in the literature have pointed to the existence of very large-scale
structures in the universe. The ‘Sloan Great Wall’ in the nearby universe extends to scales
greater than 400 Mpc [29]. Reference [30] found a large quasar group that extends to 500 h−1

Mpc at z ∼ 1.3. More recently, Reference [31] reported the discovery of an enormously
large giant arc at z ∼ 0.8 that spans ∼1 Gpc. Reference [32] found correlated orientations of
the axes of large quasar groups on Gpc scales. A supervoid of a diameter of ∼600 h−1 Mpc
detected by [33] indicates the possible existence of very large underdense regions in the
universe. Other studies have reported the evidence of bulk flow from the analysis of Type
Ia supernovae [34] and the existence of anomalously large dipoles in the distribution of
quasars [35]. These findings indicate the presence large-scale inhomogeneity and anisotropy
that are in apparent contradiction with the cosmological principle. However, there can
always be homogeneity and isotropy on some larger scales. Thus, it is difficult to falsify
the cosmological principle solely based on these observations. Further, the statistical
significance of these structures are questionable [11,36,37]. In any case, these observations
are interesting in their own right and require further scrutiny to arrive at a conclusion.

A wide variety of statistical tools are used to characterize the inhomogeneities in the
universe. The n-point hierarchy of the correlation functions and their Fourier transforms—
the polyspectra [38]—are widely used to study inhomogeneous matter distribution in
cosmology. Minkowski functionals can measure the morphology of large-scale structures
in the universe [39]. Kullback–Leibler relative information entropy can distinguish the
local inhomogeneous mass density field from its spatial average [40,41]. Reference [42]
showed that a non-negligible dynamical entanglement may arise due to mutual information
between spatially separated but causally connected regions. Reference [43] used Tsallis
relative entropy to calculate mutual information between spatially separated but causally
connected regions of the universe. Reference [44] studied the Renyi mutual information
between distant spatial regions in the vacuum state of a free scalar field. Reference [45]
showed that mutual information between two spatial regions may become enhanced due
to inflation. The mutual information of disjoint regions in higher dimension is discussed
in [46].

In the present work, we want to calculate Shannon mutual information between
disjoint but causally connected regions in an expanding universe. The spatial distributions
of matter in any two distant regions may have finite mutual information due to the presence
of large-scale structures and long-range correlations. We do not consider an inhomogeneous
universe for our current analysis. We consider a homogeneous and isotropic universe and
study the time evolution of mutual information between any two distant regions. It would
be interesting to investigate the role of different constituents of the universe in the time
evolution of mutual information between distant regions.

The plan of our work is as follows. We describe the time evolution of the mutual
information in an expanding universe in Section 2, describe the results in Section 3 and
present our conclusions in Section 4.

2. Mutual Information and Its Time Evolution

The configuration entropy associated with matter distribution over a significantly
large volume, V, of the universe is defined as [25]

S(t) = −
∫

ρ(~r, t) log ρ(~r, t) dV (1)

The volume, V, is subdivided into a number of subvolumes, dV, and the density,
ρ(~r, t), is measured within each of them. Here, r describes the comoving coordinate
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associated with the center of the subvolumes, and ρ(~r, t) refers to the matter density in
the subvolumes. The density, ρ(~r, t), is directly related to the probability of finding a mass
element within a subvolume.

Let us consider two large identical volumes, V, separated by a large distance. We label
these two volumes as A and B (Figure 1). The two regions, A and B, are causally connected.
The configuration entropy of the two regions, A and B, can be written as

SA(t) = −
∫

ρA(~r, t) log ρA(~r, t) dVA (2)

and
SB(t) = −

∫
ρB(~r, t) log ρB(~r, t) dVB (3)

We consider A and B to be significantly large volumes so that the universe can be
treated as statistically homogeneous and isotropic on those scales. We are only interested
in scales where one can safely use linear perturbation theory to describe the evolution of
configuration entropy in these regions.

Figure 1. This figure shows two large identical volumes, A and B, divided into an equal number of
subvolumes. Here, ρA and ρB refer to the density within any two subvolumes at a given instant, t,
and rAB is the radial separation between the two subvolumes under consideration. We consider A
and B to be causally connected.

One can define the mutual information between the mass distributions within the two
regions, A and B, as

IAB(t) =
∫ ∫

ρAB(~r1, t ; ~r2, t) log
ρAB(~r1, t ; ~r2, t)

ρA(~r1, t) ρB(~r2, t)
dVA dVB (4)

where ρAB(~r1, t ; ~r2, t) is the joint density distributions in the two volumes. This provides the
joint probability of finding a mass element within each of the two subvolumes. One can
simplify Equation (4) to write the mutual information between the two regions as

IAB(t) = SA(t) + SB(t)− SAB(t) (5)

where the joint entropy SAB(t) can be expressed as

SAB(t) = −
∫ ∫

ρAB(~r1, t ; ~r2, t) log ρAB(~r1, t ; ~r2, t) dVA dVB

= −
∫ ∫

ρ̄A(t) ρ̄B(t) [1 + ξ(~rAB, t)] log
[
ρ̄A(t) ρ̄B(t) (1 + ξ(~rAB, t))

]
dVA dVB

(6)
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where ξ(~rAB, t) is the two-point correlation function, and ρ̄A(t) and ρ̄B(t) are the mean
densities in the two regions, A and B. The separation vector between the center of the
two subvolumes is~rAB = ~r2 − ~r1. The two-point correlation function, ξ(~rAB, t), provides
the excess probability of finding two mass elements separated by~rAB. Mutual information,
IAB(t), quantifies the reduction in uncertainty in mass distribution within one volume, given
that we have complete knowledge of the mass distribution in the other. In other words, it
quantifies the expected gain in information about mass distribution in one volume when
the other volume is observed.

We assume that the matter distribution in the universe is homogeneous and isotropic
on a scale of V

1
3 . This allows us to write ρ̄A(t) ≈ ρ̄B(t) = ρ̄(t), SA(t) ≈ SB(t) = S(t),

ξ(~rAB, t) = ξ(|~r2 −~r1|, t) = ξ(rAB, t), and dSA(t)
dt ≈ dSB(t)

dt = dS(t)
dt .

The mean density, ρ̄(t), and the two-point correlation function, ξ(rAB, t), would evolve
differently in different cosmological models. The mutual information between the two
regions and its time evolution would, thus, depend on the cosmological model.

3. Results
3.1. Mutual Information in a Matter-Dominated Universe

We would like to calculate the mutual information between the mass distributions in the
two regions, A and B, in a matter-dominated universe (Ωm = 1). The average density in a
matter-dominated universe is ρ̄(t) = 1

6 π G t2 , and the growing mode of density perturbations is

D(t) ∝ t
2
3 . In a linear regime, the time evolution of the two-point correlation function can be

described as ξ(rAB, t) = D2(t) ξ(rAB). Here, the proportionality constant is absorbed in ξ(rAB).
Reference [25] showed that the configuration entropy rate in a matter-dominated

universe is always negative, i.e., dS(t)
dt < 0. Let us write dS(t)

dt = − f (t).
The time evolution of mutual information between the regions, A and B, can be written

from Equation (5) as

dIAB(t)
dt

= −2
dS(t)

dt
+

d
dt

∫ ∫ [
ρ̄2(t)

(
1 + D2(t) ξ(rAB)

)]
log
[
ρ̄2(t)

(
1 + D2(t) ξ(rAB)

)]
dVA dVB (7)

Simplifying Equation (7), we obtain,

dIAB(t)
dt

= −2 f (t) + I1 + I2 + I3 + I4 + I5 (8)

where

I1 =
2

9 π2 G2 log(6πG)
∫ ∫ (

t−5 +
2
3

t−
11
3 ξ(rAB)

)
dVA dVB (9)

I2 = − 1
9π2G2

∫ ∫
t−5(1− 4 log t) dVA dVB (10)

I3 = − 1
9π2G2

∫ ∫
ξ(rAB) t−

11
3

(
1− 8

3
log t

)
dVA dVB (11)

I4 = − 1
9π2G2

∫ ∫ (
t−5 +

2
3

t−
11
3 ξ(rAB)

)
log
(

1 + t
4
3 ξ(rAB)

)
dVA dVB (12)

and

I5 =
1

27π2G2

∫ ∫ (
t−4 + t−

8
3 ξ(rAB)

) t
1
3 ξ(rAB)

1 + t
4
3 ξ(rAB)

dVA dVB (13)

The integrals in the expressions of I1, I2, I3, I4, and I5 can not be simplified further due
to the lack of symmetry. However, one can easily analyze the time dependence of these
expressions. Observations show that the galaxy two-point correlation function has a nearly
universal dependence on pair separation, r, as ξ(r) ∼ r−1.8. The terms involving ξ(rAB)
in these expressions will have a smaller magnitude. Equations (9)–(13) have strong time
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dependence. I2 and I3 become positive for larger values of time. Only I4 remains negative
at all time. The sum I = (I1 + I2 + I3 + I4 + I5) is positive but decays toward zero with
increasing time. The term f (t) in Equation (8) has a much weaker time dependence as
compared to I [25]. This leads to dIAB(t)

dt < 0, which implies that the mutual information
between two independent regions decreases with time in a matter-dominated universe.

It may be noted that Equation (8) depends on the size of the regions, A and B, and
the separation between them. The integrals in Equation (8) would be carried out over
different volumes when there is a change in the size of the two regions. The separations
between the different pairs of subvolumes would change with the distance between the
two regions. The integrals in Equation (8) will have different values since the two-point
correlation function changes with the separation. If the two regions are separated by a
very large distance compared to the dimensions of the two regions then the integrals in
Equation (8) would lose their physical relevance.

3.2. Mutual Information in a Λ-Dominated Universe

Here, we would like to calculate dIAB(t)
dt in a Λ-dominated universe. We have ρ̄(t) =

ρ̄ = constant, and the growing mode of density perturbations is D(t) = k = constant in
an ΩΛ = 1 universe. The time evolution of mutual information in such a universe can be
expressed as

dIAB(t)
dt

= −2
dS(t)

dt
+

d
dt

∫ ∫ [
ρ̄2
(

1 + k2 ξ(rAB)
)]

log
[
ρ̄2
(

1 + k2 ξ(rAB)
)]

dVA dVB (14)

Reference [25] showed that dS
dt = 0 in a Λ-dominated universe. Thus, we have

dIAB(t)
dt = 0. Clearly, IAB = constant in a Λ-dominated universe. There would be constant

mutual information between the regions, A and B, at all times, in such a universe.

3.3. Mutual Information in the ΛCDM Model, the Dynamical Dark Energy Models, and the
Holographic Dark Energy Models

It is clear that the joint entropy between the two regions, A and B, plays a negli-
gible role in the time evolution of mutual information. The configuration entropy rate,
dS
dt , determines the time evolution of mutual information between the two regions. The
configuration entropy rates have been calculated for the ΛCDM model, different dynamical
dark energy models, and holographic dark energy models in the literature [47–50]. The
configuration entropy rate decreases to reach a minimum and then increases with time
in all these models. However, the location and amplitude of the minimum depend on
the models. The location of the minimum precisely indicates the epoch of dark energy
domination predicted by the relevant model. The average density will fall faster in such
models as compared to a matter-dominated universe. Therefore, the joint entropy term
would contribute negligibly to the evolution of mutual information in all these models. The
time evolution of mutual information in a given model will be, thus, entirely determined
by the behavior of the configuration entropy rate in that model. The mutual information
between A and B in all these models would initially decrease with time and eventually hit
a minimum. The mutual information would increase after this minimum once the dark
energy starts to dominate the dynamics of the universe.

4. Conclusions

We analyzed the time evolution of mutual information between disjoint regions of the
universe in different cosmological models. Mutual information here quantifies a reduction
in uncertainty in the knowledge of matter distribution in one region, given that we have
complete knowledge of it in the other region. In other words, mutual information provides
some knowledge about matter distribution in one region provided we have the complete
knowledge of matter distribution in the another region. Zero mutual information indicates
that mass distribution in the two regions are statistically independent. We did not separately
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calculate mutual information between the two disjoint regions but obtained an expression
for its time evolution from the definition. It may be noted that mutual information is
positive or zero by definition. It can not assume negative values. However, the rate of
change in mutual information can be negative, positive, or zero.

The time evolution of mutual information between disjoint regions of the universe
is primarily determined by the dynamics of the expansion and growth rate of density
perturbations. We found that mutual information decreases continuously in a purely
matter-dominated universe, whereas it stays constant in a purely Λ-dominated universe.
Thus, disjoint regions become statistically independent in a matter-dominated universe,
whereas they remain entangled forever in a Λ-dominated universe. Mutual information
decreases to reach a minimum and then increases with time in the ΛCDM model, dynamical
dark energy models, and holographic dark energy models. Clearly, the time evolution
of mutual information is governed by the changes in the configuration entropy of matter
distribution in the universe. The change in joint entropy between mass distributions in the
two regions does not contribute significantly to this evolution.

The two regions A and B are causally connected. However, they may be separated
by a large distance. In reality, one cannot measure mass distributions in the two volumes
simultaneously. One can infer some information about the mass distribution in one volume
while observing the other. This information corresponds to the same cosmic time. It is
worthwhile to mention here that mutual information between the two causally connected
regions may also introduce a non-negligible dynamical entanglement [42]. The effect of
such dynamical entanglement is not considered in the present work. Further, one can
also consider the contributions from higher-order correlations. A non-zero three-point
correlation function would modify the joint probabilities in Equation (4). We plan to
address these issues in future works. It would be also interesting to study the evolution
of mutual information in inhomogeneous cosmological models. The presence of long-
range correlations in mass distributions can significantly modify mutual information and
its evolution.

The continuous dissipation of configuration entropy during a matter-dominated era
demands enormous entropy production that can counterbalance this loss and maximize
entropy [25]. The accelerated expansion of the universe provides an avenue for maximum
entropy production in accordance with the second law of thermodynamics. It is interesting
to note that the evolution of mutual information is strongly sensitive to the cosmological
constant or dark energy. This implies that mutual information may have deeper connections
to dark energy and the accelerated expansion of the universe.
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