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Abstract: The selection of offshore wind farm site (OWFS) has important strategic significance for
vigorously developing offshore new energy and is deemed as a complicated uncertain multicriteria
decision-making (MCDM) process. To further promote offshore wind power energy planning and
provide decision support, this paper proposes a hybrid picture fuzzy (PF) combined compromise
solution (CoCoSo) technique for prioritization of OWFSs. To begin with, a fresh PF similarity
measure is proffered to estimate the importance of experts. Next, the novel operational rules for
PF numbers based upon the generalized Dombi norms are defined, and four novel generalized
Dombi operators are propounded. Afterward, the PF preference selection index (PSI) method and PF
stepwise weights assessment ratio analysis (SWARA) model are propounded to identify the objective
and subjective weight of criteria, separately. In addition, the enhanced CoCoSo method is proffered
via the similarity measure and new operators for ranking OWFSs with PF information. Lastly, the
applicability and feasibility of the propounded PF-PSI-SWARA-CoCoSo method are adopted to
ascertain the optimal OWFS. The comparison and sensibility investigations are also carried out to
validate the robustness and superiority of our methodology. Results manifest that the developed
methodology can offer powerful decision support for departments and managers to evaluate and
choose the satisfying OWFSs.

Keywords: offshore wind farm site; PF set; CoCoSo; PSI; SWARA; information fusion

1. Introduction

With the continuous deterioration of the global natural environment, chemical energy
sources such as oil and coal are becoming increasingly scarce. Exploring renewable and new
energy sources has become a focus of attention for countries around the world. As a clean
and pollution-free renewable energy source, wind energy is increasingly receiving attention
from countries around the world due to its environmentally friendly power generation
and huge wind energy reserves. Due to the significant constraints of the power grid,
wind resources, and other conditions, the development of offshore wind is approaching
saturation. Therefore, offshore wind farms have become an important way to develop clean
energy. Offshore wind power generation not only has low operating costs but also has
more abundant wind energy resources and a wider geographical area, with considerable
development prospects. As an important part of planning for constructing offshore wind
farms, the selection of OWFSs involves many factors, such as marine resources, wind
power operation, and ship navigation safety [1]. Therefore, how to consider multiple
factors, achieve the maximum energy efficiency development of wind farms, and ensure the
orderly development of maritime transportation is the key to the site selection of offshore
wind farms. Due to the conflicting and inconsistent factors involved in the selection of
OWFSs, the process is treated as an MCDM problem in an uncertain environment. In
recent years, many scholars have proposed different decision models to provide feasible
and effective decision support models for choosing the optimal OWFS [2–5]. For instance,
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Gao et al. [6] propounded an MCDGM framework based upon several novel intuitionistic
linguistic operators and combined weightdetermination model to rank the considered
OWFSs. Wu et al. [7] suggested a new model which combines the weighted operator
with stochastic dominance degree within the interval number for ranking the OWFSs.
Deveci et al. [8] explored the importance of criteria by LBWA approach by employing
the MABAC approach within an interval-valued fuzzy rough setting. Deveci et al. [9]
constructed an innovative MCDM model for OWFSs selection using type-2 neutrosophic
number. Yu et al. [10] reported an integrated MCDM framework to choose a suitable OWFS
based on the proximity indexed value approach using the interval 2-tuple linguistic set and
synthetic weight model. In order to think over the psychological behavioral in the course of
the decision, Zhao et al. [11] developed a new study for selecting the worthwhile OWFS via
the CRITIC method, cumulative prospect theory, and TOPSIS to an ideal solution methods
within a spherical fuzzy setting. From the mentioned studies for the selection of OWFSs,
we can find that no study merges the combination weight model and CoCoSo method to
determine the optimal OWFS(s) within an indeterminacy setting.

The complicated and insufficient cognition of decision problems and the ambiguity
of expert behavior cognitive abilities make it difficult to express expert preferences with
precise numerical values when providing evaluation opinions based on criteria for estab-
lished goals. Therefore, how to more accurately offer assessment of the opinion of experts
is the key to solving uncertain decision evaluation problems in complex environments.
In this regard, fuzzy set (FS) theory was pioneered and extensively utilized to solve the
fuzziness of human decision, leading to the in-depth development and application of
fuzzy decision [12]. Afterwards, in order to more effectively characterize the uncertain
preferences of experts, FS theory was validly extended and obtained uncertain information
representation models that can deal with different practical situations, such as intuitionistic
FS [13], interval valued intuitionistic FS [14], Pythagorean FS [15], q-rung orthopair FS [16],
and spherical FS [17]. The above extensions have been successfully employed in various
fields, such as uncertain decision analysis, practical application problem modeling, and
so forth [18–26]. However, the above extended models based on FS theory only depict
the uncertain preferences of experts from the perspectives of membership and nonmem-
bership and cannot effectively depict inconsistent and incomplete information generated
in practical problems. In view of this situation, the PF set is originated and regarded
as a reasonable and effective tool to more accurately depict the uncertain preferences of
experts by considering the grade of membership, nonmembership, and neutral attitude of
experts [27]. Afterwards, research on PF set has shown solicitude for attention and has been
widely used in the domain of decision theory and method modeling due to its advantages
in depicting uncertainty and vague information from multiple perspectives [28–33]. In ad-
dition, Luo and Zhang [34] introduced an innovative similarity measure for PF sets and
proved its superiority and efficiency by the application of pattern recognition. To aggregate
PF information for diverse situations effectively, a multitude of aggregation operators are
propounded based on different norms and functions. Rong et al. [35] defined a series of
prioritized operators based on Archimedean copulas within the PF context to construct an
MCDM method. Senapati [36] presented some novel PF Aczel–Alsina operators to build
an MCDM approach. Furthermore, to consider the interaction and correlation among the
fused data, the PF interactional partitioned Heronian mean operators were developed by
Lin et al. [37]. As an important part of MCDM, several novel decision methodologies are
extended to the PF setting, such as the REGIME method [38], WASPAS technique [39], CO-
PRAS method [40], CoCoSo approach [41] and so forth. Further, Akram et al. [42] proposed
an extended MARCOS technique by a novel information representation model named
2-tuple linguistic q-rung picture fuzzy set. Tian et al. [43] propounded a novel extension of
MULTIMOORA method via prospect theory and prioritized operators to select the optimal
medical institution. To solve the problems with a large number of experts, Peng et al. [44]
brought forward a large-scale group decision method by utilizing the trust-relationship-
based social network. Zhao et al. [45] propounded an innovative FMEA approach utilizing
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the flexible knowledge acquisition with PF information. However, there is no study that
introduces the generalized Dombi operator [46] to the PF setting for decision analysis.

The recent literature has shown that a large number of classic decision models have
been extended to determine the sorting of schemes under PF environments for resolving
practical problems. Each of the mentioned PF methods possesses its own advantages
and disadvantages in the process of unfolding complicated decision analysis. The Co-
CoSo method is a fresh approach to attain the priority ranking of solutions by means
of weighted sum, weighted product models, and three fusion strategies from different
perspectives [47]. Its main advantages are that it is based on the combination perspective
and the compromise perspective to determine the ranking of schemes, and it possesses the
strengths of evading the compensation problem and realizing the internal balance of the
ultimate utility, as well as relatively low computational complexity. Owing to these merits
of the CoCoSo technique in decision fields, it has been generalized to diverse uncertain
circumstances for enriching the development of the CoCoSo methodology [48–51]. Further,
Deveci et al. [52] propounded an innovative CoCoSo method via power Heronian operator
to consider the correlation interactive of autonomous vehicles criteria with fuzzy informa-
tion. Chen et al. [53] presented an occupational health and safety risk assessment model
based upon an expanded CoCoSo method within Fermatean fuzzy linguistic circumstance.
Lai et al. [54] proposed a novel extension of the CoCoSo method by using the hesitant Fer-
matean FS and used the approach to evaluate the blockchain platform. Bouraima et al. [55]
introduced a novel decision framework by merging SWARA and CoCoSo models within
interval rough numbers for the evaluation of railway system alternatives. From all the men-
tioned extended versions of the CoCoSo method, it has been found that CoCoSo model fails
to have been employed based on the generalized Dombi operator under PF circumstance.

With the aid of the aforementioned discussion, this study aims to propose some novel
generalized Dombi operators under the PF setting and then build an MCGDM methodology
via the enhanced CoCoSo technique that uses the defined operators. As a consequence,
the motivations are outlined below:

♠ The existing works have provided different MCDM methodologies to select a suitable
OWFS, but there is no research that offers a comprehensive decision framework to
handle indeterminacy and vagueness of assessment from the PF perspective.

♠ The extant PF decision approaches have introduced some criteria weight computa-
tional models, but few work presents the synthetic weight determination method to
obtain weight information from the two angles of subjectivity and objectivity.

♠ The generalized Dombi operation is not only a generalized form of the extant oper-
ators but also possess stronger flexibility via two parameters during the course of
information fusion. However, it fails to be extended to the PF circumstance.

♠ The classical CoCoSo technique acquires the weighted sum and weighted product
measures by the basic weighted average operator, which is short on flexibility and
robustness. Hence, it is imperative to strengthen the original CoCoSo model by some
novel operators.

By means of the aforementioned motivations, the target of the current article is to
construct an integrated framework via uniting the CoCoSo model, generalized Dombi
operator, and synthetic weight determination model under the PF circumstance. In the
method, a novel model is formulated via the improved PF-PSI and PF-SWARA methods to
estimate the weight of criteria and an enhanced CoCoSo method using the novel generalized
Dombi operators is advanced to rank the considered OWFSs. Driven by the mentioned
targets, the main novelties of this article are summarized as follows:

¶ We bring forward an enhanced CoCoSo method by novel integration operator and
similarity measure to acquire optimal OWFS under the PF context.

¶ In the designed framework, the PF-PSI method and PF-SWARA approach are, re-
spectively, developed to ascertain the objective and subjective weight of criteria for
evaluating the OWFSs, which strengthens the accurateness of the criteria weight.
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¶ Inspired by the merits of generalized Dombi norms, the PF generalized Dombi
operational rules are defined, and some novel PF generalized Dombi operators
like PFGDWA, PFGDWA, PFGDGWA, and PFGDOWG are propounded to fuse
PF information.

¶ A novel PF similarity measure is formulated to evaluate the weight of experts by using
a similarity-based approach.

¶ The feasibility and effectiveness of the developed PF-PSI-SWARA-CoCoSo decision
framework is demonstrated through a case study on OWFSs selection and a contrastive
analysis with other methods.

¶ Sensitivity and contrastive discussions are carried out to analyze the robustness and
advantages of the proffered MCGDM approach.

The rest of the sections of this paper are as follows. Section 2 succinctly retrospects
some fundamental concepts of PF sets. Section 3 propounds a novel PF similarity measure
and gives its related proof. Section 4 defines the generalized Dombi operations and
some novel PF generalized Dombi operators. A hybrid PF-MCGDM method called the
PF-PSI-SWARA-CoCoSo methodology is constructed in Section 5. In Section 6, the PF-PSI-
SWARA-CoCoSo approach is adopted to ascertain the optimal OWFS and further show its
feasibility, and a contrastive analysis is also implemented to discuss the strengths of the
developed methodology. Section 7 gives several conclusions and future directions.

2. Preliminary Notions

Several necessary preliminaries of this paper, including the basic notions of PF set and
generalized Dombi operations, are retrospected in this part.

2.1. PF Set

Definition 1 ([27]). A PF set Ã over the universe of discourse X is expressed as

Ã = {〈χ, µ̃Ã(χ), η̃Ã(χ), ξ̃ Ã(χ)〉|χ ∈ X} (1)

in which µ̃Ã(χ) signifies the positive membership function with µ̃Ã : X → [0, 1], χ ∈ X →
µ̃Ã(χ) ∈ [0, 1], η̃Ã(χ) signifies the neutral membership function with η̃Ã : X → [0, 1], χ ∈ X →
η̃Ã(χ) ∈ [0, 1], and ξ Ã(χ) signifies the negative membership function with ξ Ã: X → [0, 1], χ ∈
X → ξ̃ Ã(x) ∈ [0, 1]. The above membership functions comply with the condition
0 ≤ µ̃Ã(χ) + η̃Ã(χ) + ξ̃ Ã(χ) ≤ 1 for all χ ∈ X . Meanwhile, the refusal degree of the PF set Ã
can be expounded as π̃Ã(χ) = 1− µ̃Ã(χ)− η̃Ã(χ)− ξ̃ Ã(χ) for all χ ∈ X . Also, 0 ≤ π̃Ã(χ) ≤ 1
for all χ ∈ X. For simplicity of calculation, α̃ =

(
µ̃α̃, η̃α̃, ξ̃α̃

)
indicates a PF number.

Definition 2 ([29]). Let α̃ =
(
µ̃α̃, η̃α̃, ξ̃α̃

)
, α̃1 =

(
µ̃α̃1 , η̃α̃1 , ξ̃α̃1

)
, and α̃2 =

(
µ̃α̃2 , η̃α̃2 , ξ̃α̃2

)
be three

PF numbers. Then, the operational rules of PF numbers are defined as follows:

(1) α̃1 ∪ α̃2 =
(
max(µ̃α̃1 , µ̃α̃2), min(η̃α̃1 , η̃α̃2), min

(
ξ̃α̃1 , ξ̃α̃2

))
; (2)

(2) α̃1 ∩ α̃2 =
(
min(µ̃α̃1 , µ̃α̃2), max(η̃α̃1 , η̃α̃2), max

(
ξ̃α̃1 , ξ̃α̃2

))
; (3)

(3) α̃1 ⊕ α̃2 =
(
µ̃α̃1 + µ̃α̃2 − µ̃α̃1 µ̃α̃2 , η̃α̃1 η̃α̃2 , ξ̃α̃1 ξ̃α̃2

)
; (4)

(4) α̃1 ⊗ α̃2 =
(
µ̃α̃1 µ̃α̃2 , η̃α̃1 + η̃α̃2 − η̃α̃1 η̃α̃2 , ξ̃α̃1 + ξ̃α̃2 − ξ̃α̃1 ξ̃α̃2

)
; (5)

(5) λα̃ =
(

1− (1− µ̃α̃)
λ, (η̃α̃)

λ,
(
ξ̃α̃

)λ
)

, λ > 0; (6)

(6) α̃λ =
(
(µ̃α̃)

λ, 1− (1− η̃α̃)
λ, 1−

(
1− ξ̃α̃

)λ
)

, λ > 0. (7)

In order to attain the order relation of two PF numbers, the score function SF(α̃) and
accuracy function AF(α̃) of a PF number α̃ =

(
µ̃α̃, η̃α̃, ξ̃α̃

)
are defined as SF(α̃) = µ̃α̃ − ξ̃α̃

and AF(α̃) = µ̃α̃ + η̃α̃ + ξ̃α̃, respectively [29]. However, the mentioned score and accuracy
function fail to finish the comparison of two PF numbers in some situations. Accordingly,
a novel score function is originated to conquer the defect, which is defined as
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Definition 3 ([35]). Given a PF number α̃ =
(
µ̃α̃, η̃α̃, ξ̃α̃

)
, the score of α̃ is defined as follows:

S̃F(α̃) =
eµ̃α̃−η̃α̃−ξ̃α̃

2− µ̃α̃ − η̃α̃ − ξ̃α̃
, S̃F(α̃) ∈ [e−1, e]. (8)

Definition 4 ([35]). Given two PF numbers α̃1 =
(
µ̃α̃1 , η̃α̃1 , ξ̃α̃1

)
and α̃2 =

(
µ̃α̃2 , η̃α̃2 , ξ̃α̃2

)
, the

comparison rules are described as follows:

• If S̃F(α̃1) < S̃F(α̃2), then α̃1 ≺ α̃2;
• If S̃F(α̃1) = S̃F(α̃2), then:

– If AF(α̃1) > AF(α̃2), then α̃1 � α̃2;
– If AF(α̃1) = AF(α̃2), then α̃1 ∼ α̃2.

Definition 5 ([28]). Let Ã,B̃ and C̃ be three PF sets. Then, a PF similarity measure SM is a
mapping that meets the following properties:

(P1) 0 ≤ SM
(

Ã, B̃
)
≤ 1;

(P2) SM
(

Ã, B̃
)
= SM

(
B̃, Ã

)
;

(P3) SM
(

Ã, B̃
)
= 1⇔ Ã = B̃;

(P4) If Ã ⊆ B̃ ⊆ Ã, then SM
(

Ã, C̃
)
≤ SM

(
Ã, B̃

)
and SM

(
Ã, C̃

)
≤ SM

(
B̃, C̃

)
.

2.2. Generalized Dombi Operations

Definition 6 ([46]). The generalized Dombi operators originated by Dombi are defined as below:

GDs
t (x1, x2) =

1 +

(
1
t

(
2

∏
j=1

Ψs
t
(
xj
)
− 1

)) 1
s
−1

, (9)

GDs
t(x1, x2) =

1 +

(
1
t

(
2

∏
j=1

Φs
t
(
xj
)
− 1

))− 1
s
−1

, (10)

where Ψs
t
(

xj
)
= 1 + t

(
1−xj

xj

)s
, Φs

t
(

xj
)
= 1 + t

( xj
1−xj

)s
, (xj ∈ (0, 1), j = 1, 2), and t > 0.

The generalized Dombi operations possess elegant properties, including generalization
and flexibility, which can reduce to other existing operations and highlight the flexible
control capability via the parameters.

3. A Novel Similarity Measure

The similarity measure is an important branch of information measure in FS theory,
which can effectively distinguish the similarity between two objectives. Numerous research
achievements on FS are propounded to pattern recognition, cluster analysis, and decision
analysis [28,34] Furthermore, as an efficiency extension of fuzzy sets, several PF similarity
measures are developed for enriching the information measure theory and utilized in
practical problems. In this part, a novel PF similarity measure is put forward as the basic
for the establishment of decision methodology.

Definition 7. Let Ã and B̃ be two PF sets. Then, a novel PF similarity measure SM
(

Ã, B̃
)

is
presented as

SM
(

Ã, B̃
)
=

∑n
q=1
[
min

{
µ̃Ã
(

xq
)
, µ̃B̃

(
xq
)}

+ min
{(

1− η̃Ã
(

xq
))

,
(
1− η̃B̃

(
xq
))}

+ min
{(

1− ξ̃ Ã
(

xq
))

,
(
1− ξ̃ B̃

(
xq
))}]

∑n
q=1
[
max

{
µ̃Ã
(

xq
)
, µ̃B̃

(
xq
)}

+ max
{(

1− η̃Ã
(

xq
))

,
(
1− η̃B̃

(
xq
))}

+ max
{(

1− ξ̃ Ã
(

xq
))

,
(
1− ξ̃ B̃

(
xq
))}] . (11)

Theorem 1. The mapping SM
(

Ã, B̃
)

is a PF similarity measure.

Proof. The proof of Theorem 1 is displayed in Appendix A.
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4. Some Novel PF Generalized Dombi Operators

In this section, we first define the generalized Dombi operations for PF numbers.
Then, we propound several novel PF generalized Dombi weighted averaging and geomet-
ric operators, as well as the corresponding elegant properties and special instances also
being investigated.

4.1. Generalized Dombi Operations for PF Numbers

Herein, the PF generalized Dombi operational laws are presented, and their funda-
mental properties are also discussed.

Definition 8. Let α̃ =
(
µ̃α̃, η̃α̃, ξ̃α̃

)
, α̃q =

(
µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1, 2) be three PF numbers. Then,

the PF generalized Dombi operational laws on them are defined as follows:

(1) α̃1⊕̃α̃2 =


1 +

(
1
t

(
2

∏
q=1

Φs
t

(
µ̃α̃q

)
− 1

))− 1
s
−1

,

1 +

(
1
t

(
2

∏
q=1

Ψs
t

(
η̃α̃q

)
− 1

)) 1
s
−1

,

1 +

(
1
t

(
2

∏
q=1

Ψs
t

(
ξ̃α̃q

)
− 1

)) 1
s
−1; (12)

(2) α̃1⊗̃α̃2 =


1 +

(
1
t

(
2

∏
q=1

Ψs
t

(
µ̃α̃q

)
− 1

)) 1
s
−1

,

1 +

(
1
t

(
2

∏
q=1

Φs
t

(
η̃α̃q

)
− 1

))− 1
s
−1

,

1 +

(
1
t

(
2

∏
q=1

Φs
t

(
ξ̃α̃q

)
− 1

))− 1
s
−1; (13)

(3) λα̃ =

(1 +
(

1
t

(
(Φs

t (µ̃α̃))
λ − 1

))− 1
s
)−1

,

(
1 +

(
1
t

(
(Ψs

t (η̃α̃))
λ − 1

)) 1
s
)−1

,

(
1 +

(
1
t

((
Ψs

t
(
ξ̃α̃

))λ − 1
)) 1

s
)−1, λ > 0; (14)

(4) α̃λ =

(1 +
(

1
t

(
(Ψs

t (µ̃α̃))
λ − 1

)) 1
s
)−1

,

(
1 +

(
1
t

(
(Φs

t (η̃α̃))
λ − 1

))− 1
s
)−1

,

(
1 +

(
1
t

((
Φs

t
(
ξ̃α̃

))λ − 1
))− 1

s
)−1, λ > 0. (15)

Theorem 2. Suppose that α̃q =
(

µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1, 2) is two PF numbers and λ, λ1, λ2 > 0.

Then, one has

(1) α̃1⊕̃α̃2 = α̃2⊕̃α̃1;

(2) α̃1⊗̃α̃2 = α̃2⊗̃α̃1;

(3) λ ·
(
α̃1⊕̃α̃2

)
= (λ · α̃1)⊕̃(λα̃2);

(4) (λ1 · α̃1)⊕̃(λ2 · α̃1) = (λ1 + λ2) · α̃1;

(5)
(
α̃1⊗̃α̃2

)λ
=
(

α̃λ
1

)
⊗̃
(

α̃λ
2

)
;

(6)
(

α̃λ1
1

)
⊗̃
(

α̃λ2
1

)
= α̃

(λ1+λ2)
1 .

Proof. It can be proved easily by the Definition 8.

4.2. Some PF Generalized Dombi Weighted Averaging Operators

This subsection propounds the PF generalized Dombi weighted averaging (PFGDWA)
operator, the PF generalized Dombi ordered weighted averaging (PFGDOWA) operator,
and their elegant properties.

Definition 9. Suppose that α̃q =
(

µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1(1)n) is a family of PF numbers and

δ = (δ1, δ2, · · · , δn)
T is the weight vector of α̃q, with δq > 0 and

n
∑

q=1
δq = 1. Then, the PFGDWA

operator is a mapping from Ωn to Ω, expressed as

PFGDWA(α̃1, α̃2, · · · , α̃n) =
n
⊕̃

q=1

(
δqα̃q

)
. (16)

In light of the Definition 9, the following theorems are developed.



Entropy 2023, 25, 1081 7 of 28

Theorem 3. The fused value PFGDWA(α̃1, α̃2, · · · , α̃n) is still a PF number, portrayed as

PFGDWA(α̃1, α̃2, · · · , α̃n) =
n
⊕̃

q=1

(
δq α̃q

)

1 +

(
1
t

(
n

∏
q=1

(
Φs

t

(
µ̃α̃q

))δq
− 1

))− 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(
Ψs

t

(
η̃α̃q

))δq
− 1

)) 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(
Ψs

t

(
ξ̃α̃q

))δq
− 1

)) 1
s
−1. (17)

Proof. The proof of Theorem 3 is displayed in Appendix B.

In what follows, we discuss several special cases of the PFGDWA operator.

Case 1. If s = 1 and t = 1, then the PFGDWA operator is degenerated into the PF weighted
averaging (PFWA) operator.

PFWA(α̃1, α̃2, · · · , α̃n) =

(
1−

n

∏
q=1

(
1− µ̃α̃q

)δq
,

n

∏
q=1

(
η̃α̃q

)δq
,

n

∏
q=1

(
ξ̃α̃q

)δq

)

Case 2. If s = 1 and t = 2, then the PFGDWA operator is degenerated into the PF Einstein
weighted averaging (PFWA) operator.

PFEWA(α̃1, α̃2, · · · , α̃n) =


n
∏

q=1

(
1 + µ̃α̃q

)δq
−

n
∏

q=1

(
1− µ̃α̃q

)δq

n
∏

q=1

(
1 + µ̃α̃q

)δq
+

n
∏

q=1

(
1− µ̃α̃q

)δq
,

2
n
∏

q=1

(
η̃α̃q

)δq

n
∏

q=1

(
2− η̃α̃q

)δq
+

n
∏

q=1

(
η̃α̃q

)δq
,

2
n
∏

q=1

(
ξ̃α̃q

)δq

n
∏

q=1

(
2− ξ̃α̃q

)δq
+

n
∏

q=1

(
ξ̃α̃q

)δq
,


Case 3. If s = 1, then the PFGDWA operator is degenerated into the PF Hamacher weighted
averaging (PFHWA) operator.

PFHWA(α̃1, α̃2, · · · , α̃n) =
n
∏

q=1

(
1 + (t− 1)µ̃α̃q

)δq
−

n
∏

q=1

(
1− µ̃α̃q

)δq

n
∏

q=1

(
1 + (t− 1)µ̃α̃q

)δq
+ (t− 1)

n
∏

q=1

(
1− µ̃α̃q

)δq
,

t
n
∏

q=1

(
η̃α̃q

)δq

n
∏

q=1

(
1 + (t− 1)

(
1− η̃α̃q

))δq
+ (t− 1)

n
∏

q=1

(
η̃α̃q

)δq
,

t
n
∏

q=1

(
ξ̃α̃q

)δq

n
∏

q=1

(
1 + (t− 1)

(
1− ξ̃α̃q

))δq
+ (t− 1)

n
∏

q=1

(
ξ̃α̃q

)δq
,



Property 1. Suppose that α̃q =
(

µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1(1)n) is a set of PF numbers. If all PF

numbers are equal, namely, α̃q = α̃, ∀q, then one has

PFGDWA(α̃1, α̃2, · · · , α̃n) = α̃.

Proof. The proof of Property 1 is displayed in Appendix C.

Property 2. Suppose that α̃q =
(

µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1(1)n) and ˜̃αq =

(
˜̃µ ˜̃αq

, ˜̃η ˜̃αq
, ˜̃ξ ˜̃αq

)
are two PF

numbers such that µ̃α̃q ≥ ˜̃η ˜̃αq
, η̃α̃q ≤ ˜̃η ˜̃αq

, ξ̃α̃q ≤ ˜̃ξ ˜̃αq
. Then

PFGDWA(α̃1, α̃2, · · · , α̃n) ≥ PFGDWA( ˜̃α1, ˜̃α2, · · · , ˜̃αn).

Proof. The proof of Property 2 is displayed in Appendix D.

Property 3. Ponder a set of PF numbers α̃q =
(

µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1(1)n) and let α̃− = min

q
α̃q

and α̃+ = max
q

α̃q. Then,

α̃− ≤ PFGDWA(α̃1, α̃2, · · · , α̃n) ≤ α̃+.

Proof. The proof of Property 3 is displayed in Appendix E.
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Definition 10. Given a collection of PF numbers α̃q =
(

µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1(1)n), δ =

(δ1, δ2, · · · , δn)
T is the weight vector of α̃q(q = 1(1)n), providing that δq > 0 and

n
∑

q=1
δq = 1.

Then, the PFGDOWA operator is a mapping from Ωn to Ω, expressed as

PFGDOWA(α̃1, α̃2, · · · , α̃n) =
n
⊕̃

q=1

(
δqα̃ς(q)

)
. (18)

where (ς(1), ς(2), · · · , ς(n)) signifies the permutation of (1, 2, · · · , n) with δς(i−1) ≥ δς(i), ∀i =
2, 3, · · · , n.

Theorem 4. The fused value by utilizing the PFGDOWA operator is still a PF number, expressed as

PFGDOWA(α̃1, α̃2, · · · , α̃n) =
n
⊕̃

q=1

(
δq α̃ς(q)

)

1 +

(
1
t

(
n

∏
q=1

(
Φs

t

(
µ̃α̃ς(q)

))δq
− 1

))− 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(
Ψs

t

(
η̃α̃ς(q)

))δq
− 1

)) 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(
Ψs

t

(
ξ̃α̃ς(q)

))δq
− 1

)) 1
s
−1. (19)

Proof. Analogous to Theorem 3.

Remark 1. (a) The PFGDOWA operator will yield to the PFOWA operator when s = 1 and t = 1;
(b) The PFGDOWA operator will reduce to the PFEOWA operator when s = 1 and t = 2; (c) The
PFGDOWA operator will degenerate into the PFHOWA operator when s = 1.

In view of the aforementioned theorems, the following properties can be attained.

Property 4. Suppose that α̃q =
(

µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1(1)n) and ˜̃αq =

(
˜̃µ ˜̃αq

, ˜̃η ˜̃αq
, ˜̃ξ ˜̃αq

)
are two PF

numbers. Then, the following properties hold:

1. If all PF numbers are equal, namely, α̃q = α̃, ∀q, then one has PFGDOWA(α̃1, α̃2, · · · , α̃n) =
α̃.

2. If α̃− = min
q

α̃q and α̃+ = max
q

α̃q, then α̃− ≤ PFGDOWA(α̃1, α̃2, · · · , α̃n) ≤ α̃+.

3. If α̃q ≤ ˜̃αq, ∀q, then PFGDOWA(α̃1, α̃2, · · · , α̃n) ≤ PFGDOWA( ˜̃α1, ˜̃α2, · · · , ˜̃αn).

4.3. Some PF Generalized Dombi Weighted Geometric Operators

In light of the PF generalized Dombi operations defined in Definition 8, we propound
the PF generalized Dombi weighted geometric operators and their elegant properties.

Definition 11. Suppose that α̃q =
(

µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1(1)n) is a family of PF numbers and

δ = (δ1, δ2, · · · , δn)
T is the weight vector of α̃q(q = 1(1)n), providing that δq > 0 and

n
∑

q=1
δq = 1.

Then, the PFGDWG operator is a mapping from Ωn to Ω, expressed as

PFGDWG(α̃1, α̃2, · · · , α̃n) =
n
⊗̃

q=1

(
α̃q
)δq . (20)

Theorem 5. The fused value via utilizing PFGDWG operator is still a PF number, portrayed as

PFGDWG(α̃1, α̃2, · · · , α̃n) =
n
⊕̃

q=1

(
α̃q
)δq


1 +

(
1
t

(
n

∏
q=1

(
Ψs

t

(
µ̃α̃q

))δq
− 1

)) 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(
Φs

t

(
η̃α̃q

))δq
− 1

))− 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(
Φs

t

(
ξ̃α̃q

))δq
− 1

))− 1
s
−1. (21)
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Proof. Analogous to Theorem 3.

Remark 2. (a) The PFGDWG operator will yield to the PFWG operator when s = 1 and t = 1;
(b) The PFGDWG operator will reduce to the PFEWG operator when s = 1 and t = 2; (c) The
PFGDWG operator will degenerate into the PFHWG operator when s = 1.

Definition 12. Given a collection of PF numbers α̃q =
(

µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1(1)n), δ =

(δ1, δ2, · · · , δn)
T is the weight vector of α̃q, providing that δq > 0 and

n
∑

q=1
δq = 1. Then, the

pPFGDOWG operator is a mapping from Ωn to Ω, expressed as

PFGDOWG(α̃1, α̃2, · · · , α̃n) =
n
⊗̃

q=1

(
α̃ς(q)

)δq
. (22)

where (ς(1), ς(2), · · · , ς(n)) signifies the permutation of (1, 2, · · · , n) with δς(i−1) ≥ δς(i), ∀i =
2, 3, · · · , n.

Theorem 6. The fused value by utilizing PFGDOWG operator is still a PF number, expressed as

PFGDOWG(α̃1, α̃2, · · · , α̃n) =
n
⊕̃

q=1

(
α̃ς(q)

)δq


1 +

(
1
t

(
n

∏
q=1

(
Ψs

t

(
µ̃α̃ς(q)

))δq
− 1

)) 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(
Φs

t

(
η̃α̃ς(q)

))δq
− 1

))− 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(
Φs

t

(
ξ̃α̃ς(q)

))δq
− 1

))− 1
s
−1. (23)

Remark 3. (a) The PFGDOWG operator will yield to the PFOWG operator when s = 1 and
t = 1; (b) The PFGDOWG operator will reduce to the PFEOWG operator when s = 1 and t = 2;
(c) The PFGDOWG operator will degenerate into the PFHOWG operator when s = 1.

In view of the aforementioned theorems, the following properties can be acquired.

Property 5. Ponder a set of PF numbers α̃q =
(

µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1(1)n). If all α̃q = α̃, ∀q, then

PFGDWG(α̃1, α̃2, · · · , α̃n) = α̃ and PFGDOWG(α̃1, α̃2, · · · , α̃n) = α̃ hold.

Property 6. Ponder a set of PF numbers α̃q =
(

µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1(1)n) and let α̃− = min

q
α̃q

and α̃+ = max
q

α̃q. Then, α̃− ≤ PFGDWG(α̃1, α̃2, · · · , α̃n) ≤ α̃+ and

α̃− ≤ PFGDOWG(α̃1, α̃2, · · · , α̃n) ≤ α̃+ hold.

Property 7. Let α̃q =
(

µ̃α̃q , η̃α̃q , ξ̃α̃q

)
(q = 1(1)n) and ˜̃αq =

(
˜̃µ ˜̃αq

, ˜̃η ˜̃αq
, ˜̃ξ ˜̃αq

)
be two PF numbers,

and α̃q ≤ ˜̃αq. Then, PFGDWG(α̃1, α̃2, · · · , α̃n) ≤ PFGDWG( ˜̃α1, ˜̃α2, · · · , ˜̃αn) and
PFGDOWG(α̃1, α̃2, · · · , α̃n) ≤ PFGDOWG( ˜̃α1, ˜̃α2, · · · , ˜̃αn) hold.

5. Hybrid PF-PSI-SWARA-CoCoSo Approach

The CoCoSo method is regarded as an efficient approach to acquire the prioritization
of the alternatives of uncertain MCDM issues with diverse criteria. The core of the CoCoSo
method is to obtain the comprised value of alternatives based on the integration of three
aggregation strategies. The objective of this part is to propound a hybrid framework based
upon the integration of PSI, SWARA, and the CoCoSo method, called PF-PSI-SWARA-
CoCoSo (Figure 1). The detailed decision processes of the designed decision framework are
illustrated as follows:
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Figure 1. Propounded hybrid PF-PSI-SWARA-CoCoSo approach for selecting OWFSs.

Step 1: Establish the linguistic assessment matrix.
In the procedure of constructing the MCGDM methodology within the PF environment,

we consider a group of schemes denoted as Y = {Y1, Y2, · · · , Ym} and criteria indicated
as C = {C1, C2, · · · , Cn}. An assessment committee consists of several experts denoted
as E = {E1, E2, · · · , Er} and provides their assessment opinion for every alternative Yp
with respect to diverse criteria through the linguistic assessment terms. It is supposed that
Θ̃(g) =

(
h̃(g)

pq

)
m×n

=
(

µ̃
(g)
pq , η̃

(g)
pq , ξ̃

(g)
pq

)
m×n

, p = 1(1)m, q = 1(1)n is a linguistic assessment

matrix provided by experts, in which h̃(g)
pq signifies the assessment standpoint of a schemes

Yp over each criteria Cq for gth expert.
Step 2: Deduce the weight of the experts.
In the process of MCGDM, the importance of an expert is vital for fusing the PF

assessments of experts and improving the consistency. Based on the thought that the
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individual evaluation opinions should be similar to group evaluation to the greatest extent,
we utilized the proposed PFGDWA operator and distance measure to improve the similarity-
based method for determining the weight of experts. The concrete steps are demonstrated
as follows.

Step 2-1: Attain the averaging assessment matrix.
Based on the principle that determines the expert weights using the similarity-based

method, the expert should possess a greater weight when the similarity degree between
expert assessment and group assessment is bigger. Herein, the averaging assessment matrix
can be viewed as the group assessment to identify the weight of experts. The averaging as-
sessment matrix Θ̃N =

(
h̃N

pq

)
m×n

can be ascertained by employing the PFGDWA operator,

wherein

h̃N
pq = PFGDWA

(
h̃(1)pq , h̃(2)pq , · · · , h̃(r)pq

)

=


1 +

(
1
t

(
r

∏
g=1

(
Φs

t

(
µ̃
(g)
pq

)) 1
r − 1

))− 1
s
−1

,

1 +

(
1
t

(
r

∏
g=1

(
Ψs

t

(
η̃
(g)
pq

)) 1
r − 1

)) 1
s
−1

,

1 +

(
1
t

(
r

∏
g=1

(
Ψs

t

(
ξ̃
(g)
pq

)) 1
r − 1

)) 1
s
−1. (24)

Step 2-2: Compute the similarity degree between the averaging assessment matrix
and expert matrices.

The similarity degree SM
(

h̃(g)
pq , h̃N

pq

)
between the average assessment matrix Θ̃N =(

h̃N
pq

)
m×n

and experts’ assessment matrices Θ̃(g) =
(

h̃(g)
pq

)
m×n

is calculated by

SM
(

h̃(g)
pq , h̃N

pq

)
=

m
∑

p=1

n
∑

q=1

[
min

{
µ̃
(g)
pq , µ̃N

pq

}
+ min

{(
1− η̃

(g)
pq

)
,
(

1− η̃
(N)
pq

)}
+ min

{(
1− ξ̃

(g)
pq

)
,
(

1− ξ̃
(N)
pq

)}]
m
∑

p=1

n
∑

q=1

[
max

{
µ̃
(g)
pq , µ̃N

pq

}
+ max

{(
1− η̃

(g)
pq

)
,
(

1− η̃
(N)
pq

)}
+ max

{(
1− ξ̃

(g)
pq

)
,
(

1− ξ̃
(N)
pq

)}] . (25)

where SM
(

h̃(g)
pq , h̃N

pq

)
is the propounded PF similarity measure.

Step 2-3: Estimate the weight of experts.
The weight of experts can be figured out by the following formulation:

νg =
SM

(
h̃(g)

pq , h̃N
pq

)
r
∑

g=1
SM

(
h̃(g)

pq , h̃N
pq

) , (26)

where νg is the weight of the gth expert, meeting νg > 0 and
r
∑

g=1
νg = 1.

Step 3: Fuse the PF assessment matrices of experts.
In order to form the PF group assessment matrix Θ̃ =

(
h̃pq
)

m×n =
(
µ̃pq, η̃pq, ξ̃pq

)
m×n,

the experts’ assessment matrices should be amalgamated to a single matrix by utilizing the
PFGDWA (or PFGDWG) operator, wherein

h̃pq =
(
µ̃pq, η̃pq, ξ̃pq

)
= PFGDWA

(
h̃(1)pq , h̃(2)pq , · · · , h̃(r)pq

)

=


1 +

(
1
t

(
r

∏
g=1

(
Φs

t

(
µ̃
(g)
pq

))νg
− 1

))− 1
s
−1

,

1 +

(
1
t

(
r

∏
g=1

(
Ψs

t

(
η̃
(g)
pq

))νg
− 1

)) 1
s
−1

,

1 +

(
1
t

(
r

∏
g=1

(
Ψs

t

(
ξ̃
(g)
pq

))νg
− 1

)) 1
s
−1. (27)

or

h̃pq =
(
µ̃pq, η̃pq, ξ̃pq

)
= PFGDWG

(
h̃(1)pq , h̃(2)pq , · · · , h̃(r)pq

)

=


1 +

(
1
t

(
r

∏
g=1

(
Ψs

t

(
µ̃
(g)
pq

))νg
− 1

)) 1
s
−1

,

1 +

(
1
t

(
r

∏
g=1

(
Φs

t

(
η̃
(g)
pq

))νg
− 1

))− 1
s
−1

,

1 +

(
1
t

(
r

∏
g=1

(
Φs

t

(
ξ̃
(g)
pq

))νg
− 1

))− 1
s
−1. (28)

Step 4: Derive the weight of assessment criteria by an integrated weight determination model.
Model-1: Objective weights identification via PF-PSI method.
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The PSI method is an efficient and easy-to-operate approach to identify the importance
of criteria in decision analysis [56]. The biggest merit of the PSI model is that the inherent
conflict between criteria caused by experts for a decision can be conquered effectively. Thus,
the classical PSI method is improved to ascertain the criteria weight under PF scenarios.
The concrete procedure of the PF-PSI method is depicted as follows.

Step 4-1: Determine the average performance value of all schemes.
Based on the proposed PFGDWA operator, the average performance value Nq of all

schemes Yp for every criteria Cq is calculated by

Nq = PFGDWA
(
h̃1q, h̃2q, · · · , h̃mq

)
=


1 +

(
1
t

(
r

∏
g=1

(
Φs

t

(
µ̃
(g)
pq

)) 1
m − 1

))− 1
s
−1

,

1 +

(
1
t

(
r

∏
g=1

(
Ψs

t

(
η̃
(g)
pq

)) 1
m − 1

)) 1
s
−1

,

1 +

(
1
t

(
r

∏
g=1

(
Ψs

t

(
ξ̃
(g)
pq

)) 1
m − 1

)) 1
s
−1. (29)

Step 4-2: Acquire the variation value of all schemes.
The variation value $q of all alternatives Yp for every criteria Cq can be identified by

the following formulation:

$q =
m

∑
p=1

(
S̃F
(
h̃pq
)
− S̃F

(
Nq
))

, q = 1(1)n. (30)

Step 4-3: Obtain the objective weight of criteria.
Based on the ideal of PSI method, the larger the variation value of $q, the larger the

weight of criteria Cq should be. Hence, the objective weight δs
q of criteria Cq can be figured

out by the following formulation:

δo
q =

$q
n
∑

q=1
$q

, q = 1(1)n, (31)

where δo
q is the weight of qth criteria, meeting δq > 0 and

n
∑

q=1
δq = 1.

Model-2: Subjective weights identification via PF-SWARA model.
The SWARA method is a robust and advantageous method to identify the criteria

weight with the help of the subjective preference of experts for criteria [57]. The merit of the
SWARA method is to estimate the opinions of experts on the criteria significance appraisal
in the process of determining the weight. This study propounds the PF-SWARA method
for computing the criteria weight and gives the concrete steps as follows.

Step 4-4: The experts provide their subjective important degree of criteria by linguistic
variables and then obtain the aggregation preference of criteria. Further, the crisp values of
the aggregation preference for every criteria are computed by the score function.

Step 4-5: The criteria are sorted based on the experts’ preference from the most
significant to least significant.

Step 4-6: Estimate the comparative coefficient βq by the following formulation:

βq =

{
1, q = 1

εq + 1, q > 1
, (32)

where εq signifies the significant grade of the qth criteria.
Step 4-7: Compute the weight. The recalculated weight tq is defined by

tq =

{
1, q = 1

tq−1
βq

, q > 1
, (33)
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Step 4-8: Evaluate the normalized criteria weights as

δs
q =

tq
n
∑

q=1
tq

. (34)

Model-3: To acquire the integrated weights utilizing PF-PSI-SWARA.
In this article, a synthetic method through synthesizing the PF-PSI model and PF-

SWARA method to identify the final integrated weight of criteria is proposed, which can
be computed by the following formulation:

δq =

√(
δs

q

)(
δo

q

)
n
∑

q=1

√(
δs

q

)(
δo

q

) , (35)

Step 5: Establish the normalized group assessment matrix.
The normalized group assessment matrix Θ =

(
hpq
)

m×n =
(
µpq, ηpq, ξpq

)
can be

ascertained by

hpq =

{ (
µ̃pq, η̃pq, ξ̃pq

)
, for j ∈ Cb,(

ξ̃pq, η̃pq, µ̃pq
)
, for j ∈ Cn.

, (36)

where Cb and Cn denote the benefit and cost criteria, respectively.
Step 6: Build up the extended PF group decision matrix.

h̆ =

Y1 Y2 · · · Yn
NIS
C1
...

Cm
PIS


hNIS

1 hNIS
2 · · · hNIS

n
h11 h12 · · · h1n

...
...

...
hm1 hm2 · · · hmn
hPIS

1 hPIS
2 · · · hPIS

n


, (37)

where NIS and PIS denote the negative and positive ideal solutions, respectively, namely,

hNIS
q =

(
min

1≤p≤m
{µpq}, min

1≤p≤m
{ηpq}, max

1≤p≤m
{ξpq}

)
, hPIS

q =

(
max

1≤p≤m
{µpq}, max

1≤p≤m
{ηpq}, min

1≤p≤m
{ξpq}

)
.

Step 7: Compute the appraisal score of all schemes over each criteria.
By the PFGWA operator and PFGWG operators, the appraisal score of all schemes

under every criteria can be determined based on the extended PF group decision matrix.


ℵ(1)NIS = PFGWA
(
hNIS

1 , hNIS
2 , · · · , hNIS

n
)

=


1 +

(
1
t

(
n
∏

q=1

(
Φs

t

(
µ̃NIS

q

))δq
− 1

))− 1
s

−1

,

1 +

(
1
t

(
n
∏

q=1

(
Ψs

t

(
η̃NIS

q

))δq
− 1

)) 1
s

−1

,

1 +

(
1
t

(
n
∏

q=1

(
Ψs

t

(
ξ̃NIS

q

))δq
− 1

)) 1
s

−1.

ℵ(1)p = PFGWA
(
hp1, hp2, · · · , hpn

)
=


1 +

(
1
t

(
n
∏

q=1

(
Φs

t
(
µ̃pq
))νg − 1

))− 1
s

−1

,

1 +

(
1
t

(
n
∏

q=1

(
Ψs

t
(
η̃pq
))νg − 1

)) 1
s

−1

,

1 +

(
1
t

(
n
∏

q=1

(
Ψs

t
(
ξ̃pq
))νg − 1

)) 1
s

−1.

ℵ(1)PIS = PFGWA
(
hPIS

1 , hPIS
2 , · · · , hPIS

n
)

=


1 +

(
1
t

(
n
∏

q=1

(
Φs

t

(
µ̃PIS

q

))δq
− 1

))− 1
s

−1

,

1 +

(
1
t

(
n
∏

q=1

(
Ψs

t

(
η̃PIS

q

))δq
− 1

)) 1
s

−1

,

1 +

(
1
t

(
n
∏

q=1

(
Ψs

t

(
ξ̃PIS

q

))δq
− 1

)) 1
s

−1.

(38)

and
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ℵ(2)NIS = PFGWG
(
hNIS

1 , hNIS
2 , · · · , hNIS

n
)

=


1 +

(
1
t

(
r

∏
g=1

(
Ψs

t

(
µ̃
(g)
pq

))νg
− 1

)) 1
s

−1

,

1 +

(
1
t

(
r

∏
g=1

(
Φs

t

(
η̃
(g)
pq

))νg
− 1

))− 1
s

−1

,

1 +

(
1
t

(
r

∏
g=1

(
Φs

t

(
ξ̃
(g)
pq

))νg
− 1

))− 1
s

−1.

ℵ(2)p = PFGWG
(
hp1, hp2, · · · , hpn

)
=


1 +

(
1
t

(
r

∏
g=1

(
Ψs

t

(
µ̃
(g)
pq

))νg
− 1

)) 1
s

−1

,

1 +

(
1
t

(
r

∏
g=1

(
Φs

t

(
η̃
(g)
pq

))νg
− 1

))− 1
s

−1

,

1 +

(
1
t

(
r

∏
g=1

(
Φs

t

(
ξ̃
(g)
pq

))νg
− 1

))− 1
s

−1.

ℵ(2)PIS = PFGWG
(
hPIS

1 , hPIS
2 , · · · , hPIS

n
)

=


1 +

(
1
t

(
r

∏
g=1

(
Ψs

t

(
µ̃
(g)
pq

))νg
− 1

)) 1
s

−1

,

1 +

(
1
t

(
r

∏
g=1

(
Φs

t

(
η̃
(g)
pq

))νg
− 1

))− 1
s

−1

,

1 +

(
1
t

(
r

∏
g=1

(
Φs

t

(
ξ̃
(g)
pq

))νg
− 1

))− 1
s

−1.

(39)

Step 8: Compute the closeness grade.
The closeness grades and are calculated by the PF similarity measure, displayed as

ϑ
(1)
p =

SM
(
ℵ(1)p ,ℵ(1)NIS

)
SM

(
ℵ(1)p ,ℵ(1)NIS

)
+ SM

(
ℵ(1)p ,ℵ(1)PIS

) , (40)

ϑ
(2)
p =

SM
(
ℵ(2)p ,ℵ(2)NIS

)
SM

(
ℵ(2)p ,ℵ(2)NIS

)
+ SM

(
ℵ(2)p ,ℵ(2)PIS

) . (41)

Step 9: Acquire the relative importance for every schemes.
The following three integration strategies are utilized to compute the relative impor-

tance for every alternative, which signify the following:

K(1)
p =

ϑ
(1)
p + ϑ

(2)
p

m
∑

p=1

(
ϑ
(1)
p + ϑ

(2)
p

) , (42)

K(2)
p =

ϑ
(1)
p

min
1≤p≤m

{
ϑ
(1)
p

} +
ϑ
(2)
p

min
1≤p≤m

{
ϑ
(2)
p

} , (43)

K(3)
p =

τϑ
(1)
p + (1− τ)ϑ

(2)
p

τ max
1≤p≤m

{
ϑ
(1)
p

}
+ (1− τ) max

1≤p≤m

{
ϑ
(2)
p

} , (44)

where K(1)
p denotes the arithmetic mean of sum of ϑ

(1)
p and ϑ

(1)
p closeness grade, K(2)

p

reflects a sum of the relative closeness grade of ϑ
(1)
p and ϑ

(2)
p , and K(3)

p reveals a balance

compromise closeness grade of ϑ
(1)
p and ϑ

(2)
p . It is noted that the parameter τ(0 ≤ τ ≤ 1) in

K(3)
p is a decision strategy coefficient and usually τ = 0.5.

Step 10: Compute the synthetic utility value Kp(p = 1(1)m) for each alternative and
the rank of all schemes.

Based on the three integration values of every alternative, the synthetic utility value of
each schemes can be determined by

Kp =
(
K(1)

p · K
(2)
p · K

(3)
p

) 1
3
+

1
3

(
K(1)

p +K(2)
p +K(3)

p

)
. (45)

Then, the order of schemes can be determined based on the principle that the optimal
alternative possesses the larger value of Kp(p = 1(1)m).

Step 11: End.
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6. Case Study

This section develops a numerical case that selects the optimal offshore wind farm site
to further demonstrate our proposed PF-PSI-SWARA-CoCoSo approach and validate the
effectiveness and feasibility of the propounded methodology.

6.1. Description of the Case

In order to cope with the energy crisis situation caused by the gradual depletion of
traditional energy and the resulting environmental pollution issues, offshore wind power
generation, as a momentous branch of renewable energy, has become a new trend in the
development of clean energy. Recently, Chinese power enterprises have planned and
selected a suitable OWFS near China’s coastline to vigorously develop clean energy. The
planning department of the Chinese power enterprises invited four experts and scholars
from the fields of sustainable development, new energy research, and wind power gener-
ation to form a decision-making group and determine the optimal offshore wind power
generation location based on their evaluation preferences. Firstly, the experts initially
selected five alternative sites to be represented as Y = {Y1, Y2, · · · , Y5} through consulta-
tion with the relevant department experts. Then, through literature research and analysis
from the resources, ten evaluation criteria, denoted as C = {C1, C2, · · · , C10}, were deter-
mined from the perspectives of environment, technology, economy, and society, and their
concrete explanations are shown in Table 1. Afterwards, due to the need to consider the
uncertain perception of preference information provided by experts in the evaluation, this
paper applies the proposed PF-PSI-SWARA-CoCoSo approach to address the problem of
OWFS selection.

Table 1. Criteria for the offshore wind farm site selection.

Dimension Criteria Characteristic Type Reference

Wind speed (C1) Quantitative Positive [2,3,5–8,10]
Resource Wind density (C2) Quantitative Positive [2,3,5–8,10]

Wind hours (C3) Quantitative Positive [3–8,10]

Economic Investment (C4) Quantitative Negative [3–7,10,11]
Payback period (C5) Quantitative Negative [3–6,8,10,11]

Environment Low carbon emissions (C6) Qualitative Positive [3,4,6,8,10,11]
Noise impact (C7) Qualitative Negative [3,4,8,10]

Traffic condition (C8) Qualitative Positive [7,8,10,11]
Technical & Social Policy support (C9) Qualitative Positive [8,10,11]

Public acceptnce (C10) Qualitative Positive [10,11]

6.2. Process for Selecting the Optimal OWFS

The hybrid PF-PSI-SWARA-CoCoSo approach is employed to cope with the aforemen-
tioned case described in Section 6.1, and the detailed computational processes are shown in
the following context.

Steps 1–3: To begin with, by means of the linguistic assessment terms for PF numbers
displayed in Table 2, the invited four experts and scholars serve their linguistic judgments
for the considered OWFSs over the criteria; these assessment for all alternative sites are
collected in Table 3, and then the linguistic assessments are transformed into the PF numbers.
Afterward, the similarity-based approach is adopted to derive the importance of the experts.
By the aid of the PF expert assessment matrices, the averaging assessment matrix is obtained
by Equation (24), and then the similarity grade between the averaging assessment matrix
and expert matrices are computed by Equation (25). Further, the weight of experts are
figured by Equation (26), the results are shown as ν1 = 0.2518, ν2 = 0.2480, ν3 = 0.2484,
and ν4 = 0.2519. Lastly, the fused assessment matrix is attained by using the PFGDWA
operator displayed in Equation (27), the outcome is exhibited in Table 4.
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Step 4: This step uses two models, including the PF-PSI method and PF-SWARA
approach, to determine the objective and subjective weights of criteria, respectively.

Model-1: By means of the Equations (29)–(31), the objective weight of criteria by the PF-
PSI method can be computed as δo

q = {0.0352, 0.0267, 0.0269, 0.2924, 0.2582, 0.0321, 0.2588, 0.0204,
0.0183, 0.0310}.

Model-2: To calculate the subjective weight of criteria, the experts first provide their
subjective importance judgment of criteria and then obtain the corresponding aggregated
score value. Afterward, based on the Equations (32)–(34), the subjective weight of criteria
by PF-SWARA method can be calculated. The mentioned computational outcomes are
displayed in Tables 5 and 6.

Model-3: By means of the Equation (35), the integrated weight can be identified as
δq = {0.0688, 0.0526, 0.0501, 0.2259, 0.2258, 0.0504, .1908, 0.0460, 0.0401, 0.0495}.

Table 2. Linguistic assessment terms for the offshore wind farm site selection.

Linguistic Assessment Terms PF Numbers

Very good (VG) (0.90, 0.05, 0.05)
Good (G) (0.75, 0.05, 0.10
Moderately good (MG) (0.60, 0.05, 0.30)
Fair (F) (0.50, 0.10, 0.40)
Moderately bad (MB) (0.30, 0.05, 0.60)
Bad (B) (0.20, 0.05, 0.70)
Very bad (VB) (0.10, 0.05, 0.80)

Table 3. Individual linguistic matrices given by experts.

Criteria Y1 Y2 Y3 Y4 Y5

C1 (G, F, MG, MG) (VG, VG, VG, G) (G, G, G, G) (MG, F, F, F) (F, G, F, MG)
C2 (F, F, F, G) (G, G, G, VG) (VG, G, F, G) (G, MG, G, F) (MG, G, F, G)
C3 (G, G, G, G) (VG, F, VG, VG) (G, G, F, MG) (F, F, G, F) (MG, MG, MG, G)
C4 (B, F, MB, F) (MB, F, VB, VB) (F, B, B ,F) (B, VB, B, B) (VB, B, F, F)
C5 (B, MB, F, B) (B, F, VB, B) (F, B, B, F) (B, B, F, F) (VB, F, MB, MB)
C6 (F, F, F ,F) (VG, VG, VG, G) (G, G, G, G) (G, G, MG, MG) (VG, F, MG, F)
C7 (F, F, B ,F) (B, B, VB, B) (VB, VB, F, F) (F, B, F, MB) (B, F, B, F)
C8 (G, F, F, G) (G, VG, G, G) (VG, F, VG, F) (G, G, G, VG) (F, G, MG, MG)
C9 (F, MG, G, G) (VG, VG, VG, VG) (G, G, VG, F) (VG, F, G, G) (G, G, F, F)
C10 (F, G, G, F) (G, VG, G, VG) (F, G, MG, MG) (G, MG, MG, F) (G, F, MG, G)

Table 4. The fused assessment matrix obtained by PFGDWA operator.

Criteria Y1 Y2 Y3 Y4 Y5

C1 (0.8935, 0.0120, 0.0615) (0.9726, 0.0100, 0.0121) (0.9397, 0.0100, 0.0209) (0.8520, 0.0174, 0.1030) (0.8831, 0.0145, 0.0686)
C2 (0.8727, 0.0174, 0.0755) (0.9536, 0.0100, 0.0174) (0.9400, 0.0120, 0.0269) (0.9087, 0.0121, 0.0448) (0.9088, 0.0120, 0.0448)
C3 (0.9397, 0.0100, 0.0209) (0.9644, 0.0120, 0.0187) (0.9088, 0.0120, 0.0448) (0.8722, 0.0175, 0.0760) (0.9027, 0.0100, 0.0554)
C4 (0.7481, 0.0145, 0.1770) (0.5831, 0.0120, 0.2783) (0.7231, 0.0145, 0.1929 ) (0.5151, 0.0100, 0.3392) (0.6794, 0.0145, 0.2156 )
C5 (0.6769, 0.0120, 0.2277) (0.5996, 0.0120, 0.2734) (0.7231, 0.0145, 0.1929) (0.7222, 0.0145, 0.1935) (0.6617, 0.0120, 0.2321)
C6 (0.8386, 0.0209, 0.1137) (0.9726, 0.0100, 0.0121) (0.9290, 0.0100, 0.0292) (0.9168, 0.0100, 0.0403) (0.9090, 0.0145, 0.0572)
C7 (0.7864, 0.0175, 0.1490) (0.5150, 0.0100, 0.3392) (0.6341, 0.0145, 0.2390) (0.7485, 0.0145, 0.1768) (0.7220, 0.0145, 0.1936)
C8 (0.9004, 0.0145, 0.0495) (0.9534, 0.0100, 0.0175) (0.9397, 0.0145, 0.0348) (0.9536, 0.0100, 0.0174) (0.8931, 0.0121, 0.0619)
C9 (0.9087, 0.0121, 0.0448) (0.9791, 0.0100, 0.0100) (0.9395, 0.0121, 0.0271) (0.9400, 0.0120, 0.0269) (0.9000, 0.0145, 0.0498)
C10 (0.8996, 0.0145, 0.0501) (0.9643, 0.0100, 0.0145) (0.8931, 0.0121, 0.0619) (0.8834, 0.0145, 0.0682) (0.9090, 0.0120, 0.0446)

Table 5. Importance evaluation for each criteria by experts.

Criteria E1 E2 E3 E4 Fused PF Numbers Score Values

C1 G G VG F (0.7636, 0.0595, 0.1189) 1.6968
C2 G G F MG (0.6656, 0.0595, 0.1861) 1.3979
C3 G MG F MG (0.6239, 0.0595, 0.2449) 1.2844
C4 G G VG VG (0.8419, 0.0500, 0.0707) 1.9827
C5 VG VG G VG (0.8743, 0.0500, 0.0595) 2.1141
C6 MG MG F F (0.5528, 0.0707, 0.3464) 1.1118
C7 VG MG G G (0.7764, 0.0500, 0.1107) 1.7414
C8 MG G G F (0.6656, 0.0595, 0.1861) 1.3979
C9 MG F G F (0.6024, 0.0707, 0.2632) 1.2296
C10 F MG MG F (0.5528, 0.0707, 0.3464) 1.1118



Entropy 2023, 25, 1081 17 of 28

Table 6. Calculation results of subjective weight by PF-SWARA method.

Criteria Crisp Grade Comparison
Importance Coefficient Recalculated

Weight
Subjective

Weight

C5 2.1141 - 1.0000 1.0000 0.1654
C4 1.9827 0.1314 1.1314 0.8838 0.1462
C7 1.7414 0.2413 1.2413 0.7120 0.1178
C1 1.6968 0.0446 1.0446 0.6816 0.1128
C8 1.3979 0.2989 1.2989 0.5248 0.0868
C2 1.3979 0.0000 1.0000 0.5248 0.0868
C3 1.2844 0.1135 1.1135 0.4713 0.0780
C9 1.2296 0.0549 1.0549 0.4468 0.0739
C6 1.1118 0.1177 1.1177 0.3997 0.0661
C10 1.1118 0.0000 1.0000 0.3997 0.0661

Step 5: The normalized group group assessment matrix Θ =
(
hpq
)

m×n can be attained
via Equation (36) and is displayed in Table 7.

Table 7. The normalized group assessment matrix Θ =
(
hpq
)

m×n.

Criteria Y1 Y2 Y3 Y4 Y5

C1 (0.8935, 0.0120, 0.0615) (0.9726, 0.0100, 0.0121) (0.9397, 0.0100, 0.0209) (0.8520, 0.0174, 0.1030) (0.8831, 0.0145, 0.0686)
C2 (0.8727, 0.0174, 0.0755) (0.9536, 0.0100, 0.0174) (0.9400, 0.0120, 0.0269) (0.9087, 0.0121, 0.0448) (0.9088, 0.0120, 0.0448)
C3 (0.9397, 0.0100, 0.0209) (0.9644, 0.0120, 0.0187) (0.9088, 0.0120, 0.0448) (0.8722, 0.0175, 0.0760) (0.9027, 0.0100, 0.0554)
C4 (0.1770, 0.0145, 0.7481) (0.2783, 0.0120, 0.5831) (0.1929, 0.0145, 0.7231) (0.3392, 0.0100, 0.5151) (0.2156, 0.0145, 0.6794)
C5 (0.2277, 0.0120, 0.6769) (0.2734, 0.0120, 0.5996) (0.1929, 0.0145, 0.7231) (0.1935, 0.0145, 0.7222) (0.2321, 0.0120, 0.6617)
C6 (0.8386, 0.0209, 0.1137) (0.9726, 0.0100, 0.0121) (0.9290, 0.0100, 0.0292) (0.9168, 0.0100, 0.0403) (0.9090, 0.0145, 0.0572)
C7 (0.1490, 0.0175, 0.7864) (0.3392, 0.0100, 0.5150) (0.2390, 0.0145, 0.6341) (0.1768, 0.0145, 0.7485) (0.1936, 0.0145, 0.7220)
C8 (0.9004, 0.0145, 0.0495) (0.9534, 0.0100, 0.0175) (0.9397, 0.0145, 0.0348) (0.9536, 0.0100, 0.0174) (0.8931, 0.0121, 0.0619)
C9 (0.9087, 0.0121, 0.0448) (0.9791, 0.0100, 0.0100) (0.9395, 0.0121, 0.0271) (0.9400, 0.0120, 0.0269) (0.9000, 0.0145, 0.0498)
C10 (0.8996, 0.0145, 0.0501) (0.9643, 0.0100, 0.0145) (0.8931, 0.0121, 0.0619) (0.8834, 0.0145, 0.0682) (0.9090, 0.0120, 0.0446)

Step 6: The extended group assessment matrix can be determined by means of
Equation (37) and is displayed in Table 8.

Table 8. The extended group assessment matrix.

Criteria NIS Y1 Y2 Y3 Y4 Y5 PIS

C1
(0.8520, 0.0100,

0.1030)
(0.8935, 0.0120,

0.0615)
(0.9726, 0.0100,

0.0121)
(0.9397, 0.0100,

0.0209)
(0.8520, 0.0174,

0.1030)
(0.8831, 0.0145,

0.0686)
(0.9726, 0.0174,

0.0121)
C2

(0.8727, 0.0100,
0.0755)

(0.8727, 0.0174,
0.0755)

(0.9536, 0.0100,
0.0174)

(0.9400, 0.0120,
0.0269)

(0.9087, 0.0121,
0.0448)

(0.9088, 0.0120,
0.0448)

(0.9536, 0.0174,
0.0174)

C3
(0.8722, 0.0100,

0.0760)
(0.9397, 0.0100,

0.0209)
(0.9644, 0.0120,

0.0187)
(0.9088, 0.0120,

0.0448)
(0.8722, 0.0175,

0.0760)
(0.9027, 0.0100,

0.0554)
(0.9644, 0.0175,

0.0187)
C4

(0.1770, 0.0100,
0.7481)

(0.1770, 0.0145,
0.7481)

(0.2783, 0.0120,
0.5831)

(0.1929, 0.0145,
0.7231)

(0.3392, 0.0100,
0.5151)

(0.2156, 0.0145,
0.6794)

(0.3392, 0.0145,
0.5151)

C5
(0.1929, 0.0120,

0.7231)
(0.2277, 0.0120,

0.6769)
(0.2734, 0.0120,

0.5996)
(0.1929, 0.0145,

0.7231)
(0.1935, 0.0145,

0.7222)
(0.2321, 0.0120,

0.6617)
(0.2734, 0.0145

0.5996)
C6

(0.8386, 0.0100,
0.1137)

(0.8386, 0.0209,
0.1137)

(0.9726, 0.0100,
0.0121)

(0.9290, 0.0100,
0.0292)

(0.9168, 0.0100,
0.0403)

(0.9090, 0.0145,
0.0572)

(0.9726, 0.0209,
0.0121)

C7
(0.1490, 0.0100,

0.7864)
(0.1490, 0.0175,

0.7864)
(0.3392, 0.0100,

0.5150)
(0.2390, 0.0145,

0.6341)
(0.1768, 0.0145,

0.7485)
(0.1936, 0.0145,

0.7220)
(0.3392, 0.0175,

0.5150)
C8

(0.8931, 0.0100,
0.0619)

(0.9004, 0.0145,
0.0495)

(0.9534, 0.0100,
0.0175)

(0.9397, 0.0145,
0.0348)

(0.9536, 0.0100,
0.0174)

(0.8931, 0.0121,
0.0619)

(0.9536, 0.0145,
0.0174)

C9
(0.9000, 0.0100,

0.0498)
(0.9087, 0.0121,

0.0448)
(0.9791, 0.0100,

0.0100)
(0.9395, 0.0121,

0.0271)
(0.9400, 0.0120,

0.0269)
(0.9000, 0.0145,

0.0498)
(0.9791, 0.0145,

0.0100)
C10

(0.8834, 0.0100,
0.0682)

(0.8996, 0.0145,
0.0501)

(0.9643, 0.0100,
0.0145)

(0.8931, 0.0121,
0.0619)

(0.8834, 0.0145,
0.0682)

(0.9090, 0.0120,
0.0446)

(0.9643, 0.0145,
0.0145)

Step 7: The appraisal scores of all schemes under each criteria are computed with the
aid of Equations (38) and (39), and the results are listed as follows:

ℵ(1)NIS = (0.9903, 0.00008, 0.0060);ℵ(1)1 = (0.9915, 0.00010, 0.0050);ℵ(1)2 = (0.9963, 0.00008, 0.0019);

ℵ(1)3 = (0.9933, 0.00010, 0.0036);ℵ(1)4 = (0.9932, 0.00009, 0.0038);ℵ(1)5 = (0.9926, 0.00010, 0.0042);

ℵ(1)PIS = (0.9965, 0.00011, 0.0018);ℵ(2)NIS = (0.0052, 0.5971, 0.9916);ℵ(2)1 = (0.0059, 0.6699, 0.9899);

ℵ(2)2 = (0.0134, 0.6093, 0.9736);ℵ(2)3 = (0.0075, 0.6561, 0.9862);ℵ(2)4 = (0.0074, 0.6478, 0.9870);

ℵ(2)5 = (0.0068, 0.6539, 0.9882);ℵ(2)PIS = (0.0143, 0.6927, 0.9720).
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Step 8–10: From the outcomes of the appraisal scores of the schemes, two closeness
grades can be determined by Equations (40) and (41). Then, the relative importance for each
alternative can be computed via Equations (42)–(44). Further, the synthetic utility value of
schemes are figured out with the aid of Equation (45). The computational outcomes of the
above-mentioned steps are summarized in Table 9. From it, we can obtain that the optimal
offshore wind farm site is Y2.

Table 9. The computational outcomes obtained by CoCoSo method.

ϑ
(1)
p ϑ

(2)
p K(1)

p K(2)
p K(3)

p Kp Ranking

Y1 0.5005 0.4858 0.1956 1.9788 0.9548 1.7607 5
Y2 0.4992 0.5326 0.2046 2.0701 0.9987 1.8419 1
Y3 0.5000 0.4977 0.1979 2.0016 0.9657 1.7809 4
Y4 0.5000 0.5098 0.2003 2.0260 0.9775 1.8027 2
Y5 0.5002 0.5043 0.1992 2.0154 0.9724 1.7932 3

6.3. Sensibility Analysis

In practice, experts will make reasonable selections of the parameters and criteria
weight coefficients in the propounded PF-PSI-SWARA-CoCoSo method to more reasonably
reflect their preferences and attitudes in the process of decision analysis. Therefore, this
section conducts dynamic testing for the parameters and weight types involved in the
proposed method and analyzes the effect of parameter changes and different types of
criteria weight on the ranking of OWFSs. In the following, we execute the sensitivity
analysis from two angles, including the parameters analysis in the PFGDWA operator and
the CoCoSo method, as well as the change in different types of criteria weight.

Case 4. We discuss the impact of the parameters s and t in the PFGDWA and PFGDWG operators
on the final result. In this case, we set parameter τ = 0.5 and combined weight to analyze the affect
of parameters s and t = 3 on the ranking; the associated outcomes are unfolded in Table 10. With the
aid of the results, we can find that it can obtain sorting results when using different combinations
of parameters s and t. However, when s = 1, t ≥ 2 and s = 2, t > 2, the prioritization of the
alternative sites is Y2 � Y4 � Y5 � Y3 � Y1, which implies that the propounded PF-PSI-SWARA-
CoCoSo method is relatively stable. In the practical application process, experts need to consider
their preferences and select multiple different parameter combinations to determine a more stable
ranking result based on the corresponding results.

Table 10. The impact of σ for the ultimate decision results.

s t
Ranking Values

Sorting
K1 K2 K3 K4 K5

t = 1 1.9615 1.6959 1.8573 1.8803 1.9178 Y1 � Y5 � Y4 � Y3 � Y2
t = 2 1.7244 1.8837 1.7594 1.7917 1.7718 Y2 � Y4 � Y5 � Y3 � Y1

s = 1 t = 3 1.6973 1.9244 1.7390 1.7943 1.7577 Y2 � Y4 � Y5 � Y3 � Y1
t = 4 1.6953 1.9299 1.7362 1.7984 1.7569 Y2 � Y4 � Y5 � Y3 � Y1
t = 5 1.6951 1.9314 1.7354 1.8002 1.7568 Y2 � Y4 � Y5 � Y3 � Y1
t = 6 1.6951 1.9319 1.7351 1.8011 1.7568 Y2 � Y4 � Y5 � Y3 � Y1

t = 1 1.9615 1.6959 1.8573 1.8803 1.9178 Y1 � Y5 � Y4 � Y3 � Y2
t = 2 1.8734 1.7509 1.8414 1.8591 1.8697 Y1 � Y5 � Y4 � Y3 � Y2

s = 2 t = 3 1.7607 1.8419 1.7809 1.8027 1.7932 Y2 � Y4 � Y5 � Y3 � Y1
t = 4 1.7244 1.8837 1.7594 1.7917 1.7718 Y2 � Y4 � Y5 � Y3 � Y1
t = 5 1.7100 1.9030 1.7497 1.7902 1.7640 Y2 � Y4 � Y5 � Y3 � Y1
t = 6 1.7035 1.9129 1.7448 1.7909 1.7607 Y2 � Y4 � Y5 � Y3 � Y1

Case 5. We discuss the affect of the parameter τ on the final result. In this case, we set parameter
s = 2 and t = 3 and combined weight to analyze the affect of parameter τ on the ranking; the related
outcomes are shown in Table 11 and Figure 2. From the obtained outcomes, we can find that the
evaluation values of Y1, Y3, Y4, and Y5 gradually increase with the increase in parameter τ, whereas
the evaluation values of Y2 gradually decrease. However, it is obvious that the best OWFS is always
the second site (Y2), and the worst option is the first site (Y1), when the τ is taken from 0.1 to 1,
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which implies that the presented PF-PSI-SWARA-CoCoSo method is stable with respect to the
parameter τ.

Table 11. The impact of τ for the ultimate decision results.

τ
Ranking Values

Sorting
K1 K2 K3 K4 K5

0.1 1.7407 1.8425 1.7662 1.7931 1.7812 Y2 � Y4 � Y5 � Y3 � Y1
0.2 1.7456 1.8423 1.7698 1.7955 1.7842 Y2 � Y4 � Y5 � Y3 � Y1
0.3 1.7506 1.8422 1.7735 1.7979 1.7871 Y2 � Y4 � Y5 � Y3 � Y1
0.4 1.7556 1.8420 1.7772 1.8003 1.7901 Y2 � Y4 � Y5 � Y3 � Y1
0.5 1.7607 1.8419 1.7809 1.8027 1.7932 Y2 � Y4 � Y5 � Y3 � Y1
0.6 1.7659 1.8417 1.7847 1.8051 1.7963 Y2 � Y4 � Y5 � Y3 � Y1
0.7 1.7711 1.8416 1.7885 1.8076 1.7994 Y2 � Y4 � Y5 � Y3 � Y1
0.8 1.7763 1.8414 1.7924 1.8101 1.8025 Y2 � Y4 � Y5 � Y3 � Y1
0.9 1.7816 1.8413 1.7963 1.8127 1.8057 Y2 � Y4 � Y5 � Y3 � Y1
1.0 1.7870 1.8411 1.8003 1.8152 1.8089 Y2 � Y4 � Y5 � Y3 � Y1

Case 6. We discuss the impact of different types of weights on the final result. The criteria weight
is an essential part in the process of decision analysis. Thus, we simulate different types of criteria
weights, obtain corresponding ranking results, and then compare the impact of these changes on
the decision results. In this case, we set the parameter s = 2 , t = 3, and τ = 0.5 and utilize four
types of weight in the proposed method to acquire the corresponding assessment values and ranking,
respectively, which are exhibited in Table 12 and Figure 3. From the outcomes, we can find that the
rankings obtained by subjective and averaging weights are different from the rankings acquired by
the objective and combined weights, which indicates that the presented method is sensitive for the
criteria weight coefficient.

Figure 2. Decision results attained by diverse parameter τ.

Table 12. The impact of different weight types on the ultimate decision results.

Weight Type
Ranking Values

Sorting
K1 K2 K3 K4 K5

Objective weight 1.7511 1.8674 1.7666 1.8123 1.7859 Y2 � Y4 � Y5 � Y3 � Y1
Subjective weight 1.7938 1.7896 1.8046 1.8122 1.8218 Y5 � Y4 � Y3 � Y1 � Y2
Combined wight 1.7607 1.8419 1.7809 1.8027 1.7932 Y2 � Y4 � Y5 � Y3 � Y1
Averaging wight 1.8367 1.7537 1.8396 1.8522 1.8692 Y5 � Y4 � Y3 � Y1 � Y2
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Figure 3. Decision results of diverse types of weight for OWFSs.

6.4. Comparison Analysis

This subsection compares the developed PF-PSI-SWARA-CoCoSo methodology with
the extant decision approaches under the PF scenario to further validate the practicability
and superiority of our approach. The existing methods include the PFWA-operator-based
approach [29], PF-WASPAS method [39], PF-COPRAS [40] approach, and PF-CoSoSo
method [41]. In the following, we adopt the mentioned approaches to deal with the case
that selects the best OWFS from the alternative option, where the data utilized in the
comparison process are the same as this study. The final assessment index of OWFSs by
using the mentioned approaches and the corresponding ranking are expounded in Table 13
and Figure 4.

From the comparison outcomes in Table 13 and Figure 4, we can find that although
the partial ranks of the site acquired by the extant PF approaches are inconsistent with
the presented method, the best option and the worst option obtained by the compared PF
methods are the same as those attained utilizing the propounded PF-PSI-SWARA-CoCoSo
technique. The results imply that the developed method is effective and feasible for tackling
the problem of selecting the OWFS within an uncertain circumstance. In order to further
expound the differences and merits of the developed PF-PSI-SWARA-CoCoSo method,
a particular comparison between the prior method with our technique is implemented in
the following text.

Comparison with the PF-WASPAS method [39]. It is built by extending the classical
WASPAS method and an assumed criteria weight under the PF environment to cope with
the MCDM problem. Although it provides a straightforward way to obtain the rank of
schemes, it fails to think over the criteria weight identification and the effect of multiple
fusion strategies for the final assessment value. In the proposed PF-PSI-SWARA-CoCoSo
technique, the mentioned deficiencies are addressed by different models and an efficient
algorithm is provided for experts to unfold decision analysis, which implies that the
proposed approach is more universal and feasible than the PF-WASPAS method to tackle
real-word decision problems.

Comparison with the PF-COPRAS method [40]. It extends the classical COPRAS method
to the PF set for building the MCGDM method, but it ignores the determination of expert
weight and subjective criteria weight, which may cause information loss in the stage
of information fusion. By comparison, the presented PF-PSI-SWARA-CoCoSo offers an
integrated decision framework to handle the problem of OWFSs selection, which not
only provides the expert and criteria weight determination model but also constructs an
enhanced CoCoSo method by the generalized Dombi operators. The proposed approach
improves on different perspectives and provides a new group decision framework for
tackling decision problems with PF information.
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Comparison with the PF-CoSoSo method [41]. It is proposed by the combination weight
method and CoSoSo method using a novel score function. The PF-CoSoSo method is
only employed to settle the MCDM problem, while neglecting the assessment opinions
of multiple experts. Furthermore, the PF-CoSoSo method determines the weighted sum
and weighted product measures based on the score values of PF evaluations, which may
result in missing information in the original PF evaluation. However, the proposed PF-PSI-
SWARA-CoCoSo method utilizes the generalized Dombi operators and similarity measure
to improve the original weighted sum and weighted product measures, which retains
the fuzziness of the initial PF information and makes the final outcomes more reasonable
and workable.

Figure 4. Ranking results of the diverse PF method for OWFSs.

Table 13. Decision results by utilizing different PF decision methodologies.

Approaches
Ranking Values

Sorting
K1 K2 K3 K4 K5

PFWA-operator-based method in [29] 0.3078 0.6008 0.4202 0.3701 0.3341 Y2 � Y3 � Y4 � Y5 � Y1
PF-WASPAS method in [39] 0.1470 0.3681 0.2102 0.2217 0.1993 Y2 � Y4 � Y3 � Y5 � Y1
PF-COPRAS method in [40] 0.0136 1.0000 0.4294 0.1195 0.0597 Y2 � Y3 � Y4 � Y5 � Y1
PF-CoSoSo method in [41] 1.7449 1.8935 1.7887 1.7970 1.7766 Y2 � Y4 � Y5 � Y3 � Y1

Propounded method 1.7607 1.8419 1.7809 1.8027 1.7932 Y2 � Y4 � Y5 � Y3 � Y1

Based on the comparison discussion, some characteristic comparisons of the mentioned
approach in different decision stages are summarized in Table 14. Further, the strengths of
the propounded PF-PSI-SWARA-CoCoSo approach are listed as follows:

(1) The experts weight in the PF-PSI-SWARA-CoCoSo approach is worked out by the
similarity-based method, which further ensures the reliability of group assessment opinion.

(2) The proposed method presented the PF-PSI-SWARA method for ascertaining the
final criteria weight from the perspective of subjective and objective. In contrast, the
PFWA-operator-based method and the PF-WASPAS method suppose that the weight
is known. The PF-COPRAS method only considers the objective weight using the
CRITIC method. The PF-CoSoSo method ascertains the combined weight by the
entropy weight method, and the subjective weight is estimated by experts arbitrarily.
Accordingly, the developed PF-PSI-SWARA method for identifying the criteria weight
further enhances the reasonability of final ranking outcomes.

(3) The proposed enhanced PF-CoSoSo method using the PF generalized Dombi operator
and similarity measure determines the prioritization of schemes by means of three
integration strategies, which strengthens the rationality and dependability of the
ultimate ranking.
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Table 14. Characteristic comparison between the propounded and other PF methods.

Methods Calculation of
Experts Weight

Flexibility of the
Fusion Procedure Criteria Weight Ranking

Algorithm
Consider Multiple
Fusion Strategies MCGDM

PFWA-based method in [29] NO NO Assume Fusion NO NO
PF-WASPAS method in [39] NO NO Assume WASPAS NO NO
PF-COPRAS method in [40] Assume NO CRITIC COPRAS NO YES
PF-CoSoSo method in [41] NO NO CRITIC CoSoSo YES NO

Propounded method Computing YES PSI-SWARA Enhanced
CoSoSo YES YES

7. Conclusions

The problem of selecting a suitable OWFS is regarded as a typical MCDM problem
and has become an essential foundation for the development of clean energy for offshore
wind power. Therefore, this study propounds a hybrid PF-PSI-SWARA-CoCoSo decision
framework for the selection of OWFS. Concretely, we first propose a new similarity measure
for PF sets. Next, the novel operations on PF numbers based upon the generalized Dombi
norms are defined. Further, a series of novel aggregation operators like the PFGDWA,
PFGDWG, PFGDOWA, and PFGDOWG operators is propounded. Furthermore, a hybrid
PF-PSI-SWARA-CoCoSo method is constructed based on the developed similarity measure
and PF generalized Dombi operators, wherein the criteria weight is ascertained by the
presented PF-PSI-SWARA method and the prioritization of schemes is obtained by an
enhanced CoCoSo method. A case that aims to choose the best OWFS is implemented
to exhibit the feasibility and applicability of the developed decision framework. We also
conduct the experiment analysis by including parameter analysis and a comparison study
to validate the stability, effectiveness, and tremendous superiority of the advanced hybrid
approach. The results show that the presented methodology possess more merits than
the extant decision methods under PF context to cope with uncertain decision problems.
The determination methods of expert weight and criteria weight are presented by novel
theories, which further enhances reasonability and scientificity. The enhanced CoCoSo
method under the PF setting also strengths the flexibility of decision. The developed
method provides a useful tool for stakeholders in the offshore wind industry to make
informed decisions and promote sustainable development.

Nevertheless, several shortcomings also exist in the method when expounding the
ranking outcomes. First, the criteria in this study need to be further explored tp build a more
comprehensive and systematic assessment index system. Then, the decision committee in
practical problems may consist of a large group of experts from various fields. In addition,
the interactive impact among criteria also needs to be take into account in the process of
actual decision analysis.

Future research will focus on the following four aspects: (1) to establishing a com-
prehensive evaluation index system for the selection of OWFSs from the perspective of
sustainable development and low carbon emissions; (2) to take into account the establish-
ment and application of a large-scale group decision framework in an intelligent linguistic
environment [58,59]; (3) to propose new integrated operators based on the proposed op-
erations that consider the interactive impact of the criteria; and, lastly, (4) some new
decision models such as double-normalization-based multiple aggregation [60], gained lost
dominance score [61], mixed aggregation by comprehensive normalization technique [62],
and weighted sum product [63] can be extended to PF environments to enrich their appli-
cations in decision methods.
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Abbreviations
The following abbreviations are used in this manuscript:

Full Name Abbreviation
Offshore Wind Farm Site OWFS
Multicriteria Decision Making MCDM
Picture Fuzzy PF
Combined Compromise Solution CoCoSo
Preference Selection Index PSI
Stepwise Weights Assessment Ratio Analysis SWARA
Multicriteria Group Decision Making MCGDM
Level-Based Weight Assessment LBWA
Multiattributive Border Approximation area Comparison MABAC
CRiterion Importance Through Intercriteria Correlation CRITIC
Technique for Order Preference by Similarity to an Ideal Solution TOPSIS
Fuzzy Set FS
Weighted Aggregated Sum Product Assessment WASPAS
COmplex PRoportional ASsessment COPRAS
Measurement Alternatives and Ranking according to Compromise Solution MARCOS
Multiobjective Optimization Based on the Ratio Analysis with the Full Multiplicative Form MULTIMOORA
Failure Modes and Effects Analysis FMEA
Picture Fuzzy Generalized Dombi Weighted Averaging PFGDWA
Picture Fuzzy Generalized Dombi Ordered Weighted Averaging PFGDOWA
Picture Fuzzy Generalized Dombi Weighted Geometric PFGDWG
Picture Fuzzy Generalized Dombi Ordered Weighted Geometric PFGDOWG
Picture Fuzzy Weighted Averaging PFWA
Picture Fuzzy Einstein Weighted Averaging PFEWA
Picture Fuzzy Hamacher Weighted Averaging PFHWA

Notions
Mathematical Symbols Explain
Ã PF set,
X the universe of discourse,
µ̃Ã(χ) positive membership function,
η̃Ã(χ) neutral membership function,
ξ Ã(χ) negative membership function,
π̃Ã(χ) refusal degree of the PF set Ã,
α̃ =

(
µ̃α̃, η̃α̃, ξ̃α̃

)
PF number,

SF(α̃) score function,
AF(α̃) accuracy function,
S̃F(α̃) score function,
SM

(
Ã, B̃

)
similarity degree between PF set Ã and B̃,

δq the weight of α̃q,
Ω set of PF number,
Y = {Y1, Y2, · · · , Ym} set of scheme,
C = {C1, C2, · · · , Cn} set of criteria,
E = {E1, E2, · · · , Er} set of expert,
Θ̃(g) assessment matrix of gth expert,
νg the weight of gth expert,
Θ̃ =

(
h̃pq
)

m×n PF group assessment matrix,
Nq average performance value of all schemes for every criteria,
$q variation value,
δo

q objective weight of criteria,
δs

q subjective weight of criteria,
hNIS

q negative ideal solutions,
hPIS

q positive ideal solutions,

ℵ(1)NIS appraisal score of negative ideal solutions by PFGWA operator,
ℵ(1)p appraisal score of pth scheme by PFGWA operator,
ℵ(1)PIS appraisal score of positive ideal solutions by PFGWA operator,
ϑ
(1)
p , ϑ

(2)
p closeness grade,
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K(1)
p , K(2)

p , K(3)
p the relative importance of pth scheme,

Kp(p = 1(1)m) synthetic utility value of pth scheme.

Appendix A. The Proof of Theorem 1

Proof. (P1) and (P2) can be proved directly, but it is omitted here.
(P3): It is supposed that Ã and B̃ are two PF sets. If Ã = B̃, then we have µ̃Ã

(
xq
)
= µ̃B̃

(
xq
)
, η̃Ã

(
xq
)
= η̃B̃

(
xq
)

and ξ̃ Ã
(

xq
)
= ξ̃ B̃

(
xq
)
. Accordingly, based on the Equation (11), we can attain that SM

(
Ã, B̃

)
= 1 holds.

Further, If SM
(

Ã, B̃
)
= 1, then, by means of Equation (11), we have
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(
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(
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(
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(
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. (A1)

Because min{µ̃Ã(xq), µ̃B̃(xq)} = max{µ̃Ã(xq), µ̃B̃(xq)}, min{(1 − η̃Ã(xq)),
(1− η̃B̃(xq))} = max{(1− η̃Ã(xq)), (1− η̃B̃(xq))} and min{(1− ξ̃ Ã(xq)), (1− ξ̃ B̃(xq))} =
max{(1− ξ̃ Ã(xq)), (1− ξ̃ B̃(xq))} hold. Hence, when Equation (46) holds, we can attain that µ̃Ã

(
xq
)
, µ̃B̃

(
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)
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are true. Thus, we have Ã = B̃
(P4): It is assumed that Ã, B̃, and C̃ are three PF sets. If Ã ⊆ B̃ ⊆ Ã, then one has µ̃Ã

(
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)
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Further,

SM
(
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With the aid of Equations (46)–(48), we can acquire SM
(

Ã, B̃
)
≥ SM

(
Ã, C̃

)
. By the same manner, we have

SM
(

Ã, C̃
)
≥ SM

(
B̃, C̃

)
.

Appendix B. The Proof of Theorem 3

Proof. We can prove it with the help of mathematical induction on n. For n = 2, one has

PFGDWA(α̃1, α̃2) = δ1α̃1⊕̃δ2α̃2,

because δ1α̃1 and δ2α̃2 are PF numbers. Based on Definition 8, their integrated value δ1α̃1⊕ δ2α̃2 is also a PF
number, and we have

PFGDWA(α̃1, α̃2) = δ1α̃1 ⊕̃ δ2α̃2

=

(1 +
(

1
t

((
Φs

t
(
µ̃α̃1

))δ1 − 1
))− 1

s
)−1

,

(
1 +

(
1
t

((
Ψs

t
(
η̃α̃1

))δ1 − 1
)) 1

s
)−1

,

(
1 +

(
1
t

((
Ψs

t
(
ξ̃α̃1

))δ1 − 1
)) 1

s
)−1

⊕̃

(1 +
(

1
t

(
(Φs

t (µ̃α̃2 ))
δ2 − 1

))− 1
s
)−1

,

(
1 +

(
1
t

(
(Ψs

t (η̃α̃2 ))
δ2 − 1

)) 1
s
)−1

,

(
1 +

(
1
t

((
Ψs

t
(
ξ̃α̃2

))δ2 − 1
)) 1

s
)−1

=


1 +

(
1
t

(
2

∏
q=1

(
Φs

t

(
µ̃α̃q

))δq
− 1

))− 1
s
−1

,

1 +

(
1
t

(
2

∏
q=1

(
Ψs

t

(
η̃α̃q

))δq
− 1

)) 1
s
−1

,

1 +

(
1
t

(
2

∏
q=1

(
Ψs

t

(
ξ̃α̃q

))δq
− 1

)) 1
s
−1.

Therefore, Equation (17) keeps for n = 2. It is assumed that Equation (17) holds for n = d, namely,
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PFGDWA(α̃1, α̃2, · · · , α̃n) =
d
⊕̃

q=1

(
δq α̃q

)

1 +

(
1
t

(
d

∏
q=1

(
Φs

t

(
µ̃α̃q

))δq
− 1

))− 1
s
−1

,

1 +

(
1
t

(
d

∏
q=1

(
Ψs

t

(
η̃α̃q

))δq
− 1

)) 1
s
−1

,

1 +

(
1
t

(
d

∏
q=1

(
Ψs

t

(
ξ̃α̃q

))δq
− 1

)) 1
s
−1.

Then, when n = d + 1, based on the operations in Definition 8, one has

PFGDWA(α̃1, α̃2, · · · , α̃d, α̃d+1) =
d+1
⊕̃

q=1

(
δq α̃q

)
= δ1α̃1 ⊕̃ δ2α̃2 ⊕̃ · · · ⊕̃ δn α̃n ⊕̃ δd+1α̃d+1

=


1 +

(
1
t

(
d

∏
q=1

(
Φs

t

(
µ̃α̃q

))δq
− 1

))− 1
s
−1

,

1 +

(
1
t

(
d

∏
q=1

(
Ψs

t

(
η̃α̃q

))δq
− 1

)) 1
s
−1

,

1 +

(
1
t

(
d

∏
q=1

(
Ψs

t

(
ξ̃α̃q

))δq
− 1

)) 1
s
−1

⊕̃

(1 +
(

1
t

((
Φs

t

(
µ̃α̃q

))δd+1 − 1
))− 1

s
)−1

,

(
1 +

(
1
t

((
Ψs

t

(
η̃α̃q

))δd+1 − 1
)) 1

s
)−1

,

(
1 +

(
1
t

((
Ψs

t

(
ξ̃α̃q

))δd+1 − 1
)) 1

s
)−1

=


1 +

(
1
t

(
d+1

∏
q=1

(
Φs

t

(
µ̃α̃q

))δq
− 1

))− 1
s
−1

,

1 +

(
1
t

(
d+1

∏
q=1

(
Ψs

t

(
η̃α̃q

))δq
− 1

)) 1
s
−1

,

1 +

(
1
t

(
d+1

∏
q=1

(
Ψs

t

(
ξ̃α̃q

))δq
− 1

)) 1
s
−1.

Based on the above steps, we can attain that PFGDWA(α̃1, α̃2, · · · , α̃d, α̃d+1) is a PF number, and Equa-
tion (17) holds for n = d + 1. Hence, Equation (17) keeps for all n. Accordingly, the theorem is proved.

Appendix C. The Proof of Property 1

Proof. Since α̃q = α̃ =
(
µ̃α̃, η̃α̃, ξ̃α̃

)
for all q, then one has

PFGDWA(α̃1, α̃2, · · · , α̃n) =
n
⊕̃

q=1

(
δq α̃q

)

=


1 +

(
1
t

(
n

∏
q=1

(
Φs

t

(
µ̃α̃q

))δq
− 1

))− 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(
Ψs

t

(
η̃α̃q

))δq
− 1

)) 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(
Ψs

t

(
ξ̃α̃q

))δq
− 1

)) 1
s
−1

=


1 +

(
1
t

(
n

∏
q=1

(Φs
t (µ̃α̃))

δq − 1

))− 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(Ψs
t (η̃α̃))

δq − 1

)) 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(
Ψs

t
(
ξ̃α̃

))δq − 1

)) 1
s
−1

=


1 +

(
1
t

((
1 + t

(
µ̃α̃

1− µ̃α̃

)s)
− 1
))− 1

s

−1

,

1 +
(

1
t

((
1 + t

(
1− η̃α̃

η̃α̃

)s)
− 1
)) 1

s

−1

,

1 +

(
1
t

((
1 + t

(
1− ξ̃α̃

ξ̃α̃

)s)
− 1

)) 1
s
−1

=

(1 +
(

µ̃α̃

1− µ̃α̃

)−1
)−1

,
(

1 +
1− η̃α̃

η̃α̃

)−1

,
(

1 +
1− ξ̃α̃

ξ̃α̃

)−1
 =

(
µ̃α̃, η̃α̃, ξ̃α̃

)
.

Hence, PFGDWA(α̃1, α̃2, · · · , α̃n) = α̃ holds.

Appendix D. The Proof of Property 2

Proof. Since µ̃α̃q ≥ ˜̃η ˜̃αq holds, then

(
Φs

t

(
µ̃α̃q

))δq
≥
(

Φs
t

(
µ̃ ˜̃αq

))δq

⇒ 1
t

(
n

∏
q=1

(
Φs

t

(
µ̃α̃q

))δq
− 1

)
≥ 1

t

(
n

∏
q=1

(
Φs

t

(
˜̃µ ˜̃αq

))δq
− 1

)

⇒ 1 +

(
1
t

(
n

∏
q=1

(
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t

(
µ̃α̃q
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− 1

))− 1
s
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∏
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(
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(
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⇒
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1
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(
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− 1
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s
−1

≥

1 +

(
1
t

(
n

∏
q=1

(
Φs

t

(
˜̃µ ˜̃αq

))δq
− 1

))− 1
s
−1

.
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By the same manner, because η̃α̃q ≤ ˜̃η ˜̃αq and ξ̃α̃q ≤ ˜̃ξ ˜̃αq , we have

1 +

(
1
t

(
n

∏
q=1

(
Ψs

t

(
η̃α̃q

))δq
− 1

)) 1
s
−1

≤

1 +

(
1
t

(
n

∏
q=1

(
Ψs

t

(
˜̃η ˜̃αq

))δq
− 1

)) 1
s
−1

,

1 +

(
1
t

(
n

∏
q=1

(
Ψs

t

(
ξ̃α̃q

))δq
− 1

)) 1
s
−1

≤

1 +

(
1
t

(
n

∏
q=1

(
Ψs

t

(
˜̃ξ ˜̃αq

))δq
− 1

)) 1
s
−1

.

Further, by the Definition 3, we have PFGDWA(α̃1, α̃2, · · · , α̃n) > PFGDWA( ˜̃α1, ˜̃α2, · · · , ˜̃αn). Additionally, when
µ̃α̃q = ˜̃η ˜̃αq , η̃α̃q = ˜̃η ˜̃αq , and ξ̃α̃q = ˜̃ξ ˜̃αq , we have PFGDWA(α̃1, α̃2, · · · , α̃n) = PFGDWA( ˜̃α1, ˜̃α2, · · · , ˜̃αn). Thus,
PFGDWA(α̃1, α̃2, · · · , α̃n) ≥ PFGDWA( ˜̃α1, ˜̃α2, · · · , ˜̃αn) holds.

Appendix E. The Proof of Property 3

Proof. By means of Property 1 and 2, we have

PFGDWA(α̃1, α̃2, · · · , α̃n) ≤ PFGDWA
(
α̃+1 , α̃+2 , · · · , α̃+n

)
= α̃+,

PFGDWA(α̃1, α̃2, · · · , α̃n) ≥ PFGDWA
(
α̃−1 , α̃−2 , · · · , α̃−n

)
= α̃−.

Hence, α̃− ≤ PFGDWA(α̃1, α̃2, · · · , α̃n) ≤ α̃+ holds.
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