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Abstract: While it is generally accepted that quantum mechanics is a probability theory, its methods
differ radically from standard probability theory. We use the methods of quantum mechanics to
understand some fundamental aspects of standard probability theory. We show that wave functions
and operators do appear in standard probability theory. We do so by generalizing the Khintchine
and Bochner criteria for a complex function to be a characteristic function. We show that quantum
mechanics clarifies these criteria and suggests generalizations of them.
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1. Introduction

It is remarkable that standard probability theory, developed over the last 300 years
and with immense successful applications in almost all areas of science and engineering
is dramatically different from the most successful probability theory, namely quantum
mechanics. How is that possible? There are no wave functions or operators in classical
probability theory, while they are fundamental in quantum mechanics. We explore the
possibility that the two theories have commonalities, and in particular, we show that wave
functions and operators do, in fact, appear in standard probability theory. We do so by
rewriting the Khintchine and Bochner criteria of standard probability theory, which are
necessary and sufficient conditions for a complex function to be a proper characteristic
function. In addition, we show that quantum mechanics clarify these criteria and suggests
generalizations of them.

2. Quantum Mechanical Random Variables and Probability Densities

For notational clarity, we discuss the fundamental issues of quantum mechanics
central to our subsequent discussion of characteristic functions. In quantum mechanics,
one associates operators with observables [1,2]. The numerical values for the observable
are obtained by solving the eigenvalue problem for the operator (Operators are denoted in
boldface, and all integrals go from −∞ to ∞ unless otherwise noted), A,

Aua(x) = aua(x) (1)

where a are the eigenvalues and ua(x) are their corresponding eigenfunctions. In writing
Equation (1) we assume that the eigenvalues are continuous. The discrete case may be
straightforwardly obtained from the continuous case. From the usual probability point of
view, there are three fundamental idea relevant to our considerations.

Random variables. In quantum mechanics, the random variables are the eigenvalues.
They have to be real, and that is assured if the operator A is Hermitian. Additionally, if the
operator is Hermitian, the eigenfunctions are complete and orthogonal
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∫
u∗a′(x)ua(x) dx = δ(a− a′) (2)∫
u∗a(x′)ua(x) da = δ(x− x′) (3)

Quantum probability densities. To obtain the probability density corresponding to
the random variables, one expands the position wave function, ψ(x), as

ψ(x) =
∫

c(a)ua(x) da (4)

where the “expansion function” , c(a), is given by

c(a) =
∫

ψ(x)u∗a(x) dx (5)

The expansion function, c(a), is the wave function in the a representation and the probability
density for the random variable a is then

P(a) = |c(a)|2 (6)

This is a crucial aspect of quantum mechanics devised by Born in 1926. It is radically
different from the standard method of transforming probability density functions.

Expectation values. may be calculated in two different ways. Since |c(a)|2 is the
probability density, by the usual definitions of expectation value we have

〈a〉 =
∫

a|c(a)|2da (7)

However, one can also calculate it by way of

〈A〉 =
∫

ψ∗(x)Aψ(x)dx (8)

That Equations (7) and (8) are equivalent

〈a〉 = 〈A〉 (9)

is easily proven by inserting Equation (4) into Equation (8).

3. Standard Characteristic Function

In standard probability theory, the characteristic function for the random variable x
corresponding to a probability distribution P(x) is defined [3,4]

Mx(θ) =
∫

eiθxP(x) dx (10)

From the characteristic function, one may obtain the probability density by Fourier inversion,

P(x) =
1

2π

∫
M(θ)e−iθxdθ (11)

The characteristic function is the expectation value of eiθx.

Mx(θ) = 〈eiθx〉 (12)
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A fundamental aspect of characteristic functions is that expectation values may be obtained
by differentiation. In particular, the moments are given by

〈xn〉 = 1
in

dn

dθn Mx(θ)
∣∣
θ=0 (13)

If the moments are known, the characteristic function can be constructed by way of

Mx(θ) =
∞

∑
n=0

(iθ)n

n!
〈xn〉 (14)

However, we point out that the moments do not always determine a probability den-
sity function uniquely. Such densities are said to be “moment-indeterminate”, or “M-
indeterminate” and quantum mechanics has elucidated some issues in that regard [5–8].

Necessary and Sufficient Conditions for a Function to Be a Characteristic Function

A historically important question in probability theory has been finding necessary and
sufficient conditions for a complex function to be a characteristic function. The two best
known criteria are that of Khintchine and Bochner that we discuss in the following sec-
tions [3,4,9,10]. We mention here that there are some obvious conditions that a characteristic
satisfies, namely M(0) = 1 and M∗(−θ) = M(θ).

4. Khintchine Criteria, Quantum Mechanics, and Its Generalization

The Khintchine criteria is that a complex function, M(θ), is a characteristic function if
and only if it admits the representation

Mx(θ) =
∫

g∗(x)g(x + θ)dx (15)

for some functions, g(x), which is the normalized one∫
|g(x)|2dx = 1 (16)

While the Khintchine theorem is fundamental in probability theory, the nature of the
g(x) functions are seldom discussed, and the question of uniqueness is rarely mentioned.
We now discuss Equation (15) from a quantum mechanical point of view; this will allow
us to generalize the criteria and show that the g’s behave akin to wave functions, are not
unique and an infinite number are readily generated.

To understand the criteria from a quantum mechanical viewpoint, we calculate the
probability density by way of Equation (11). In anticipation of the results, we use p for the
random variable

P(p) =
∫

g∗(x)g(x + θ)e−iθpdxdθ (17)

making the change of variables x′ = x + θ ; dx′ = dθ we obtain

P(p) =
1

2π

∫∫
g∗(x)g(x′)e−i(x′−x)pdxdx′ (18)

which evaluates to

P(p) =
∣∣∣∣ 1√

2π

∫
g(x)e−ixp

∣∣∣∣2 (19)

If we write this as
P(p) = |ϕ(p)|2 (20)

with
ϕ(p) =

1√
2π

∫
g(x)e−ixp (21)
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then clearly ϕ(p) is the momentum wave function corresponding to the position wave
function g(x). Equation (20) is the probability distribution of momentum. Why momentum?
How did quantum mechanical momentum occur?We now rewrite the Khintchine theorem
in terms of operators. Using the fact that

g(x + θ) = eθ d
dx g(x) (22)

which is the case since eθ d
dx is the translation operator [11]. We write it as

eθ d
dx = eiθp (23)

where
p =

1
i

d
dx

(24)

is the quantum mechanical momentum operator. Therefore we may write the Khintchine
criteria Equation (15) as

M(θ) =
∫

g∗(x)eiθpg(x)dx (25)

In Equation (25) we see that M(θ) that is an expectation value, the expectation value of the
operator eiθp

M(θ) =
〈

eiθp
〉

(26)

This makes sense since, indeed, in standard probability theory the characteristic function is
given by Equation (12). However, we are calculating it from a quantum mechanics point of
view as per Equation (8). In anticipation of our generalization, we define the characteristic
function operator for momentum by

Mp(θ) = eiθp (27)

in which case the characteristic function is

Mp(θ) =
〈
Mp(θ)

〉
(28)

4.1. Non-Uniqueness of g(x)

We now show that the function g(x) appearing in Equation (15) is not unique. The
quantum viewpoint makes this clear. Let us suppose that g1(x) satisfies the Khintchine
criteria and therefore, the associated characteristic function is

M1(θ) =
∫

g∗1(x)g1(x + θ)dx (29)

The corresponding momentum wave, as given by Equation (21), is then

ϕ1(p) =
1√
2π

∫
g1(x)e−ixp (30)

Now, from a quantum mechanical point of view, we know the probability distribution is
the absolute value squared of ϕ1(a) and therefore defining

ϕ2(p) = ϕ1(p)eiS(p) (31)

where S(p) is an arbitrary real function gives the same probability distribution

|ϕ2(p)|2 = |ϕ1(p)|2 (32)
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We now find the corresponding g2(x). We have

ϕ2(p) = ϕ1(p)eiS(p) (33)

=
1√
2π

eiS(p)
∫

g1(x)e−ixpdx (34)

=
1√
2π

∫
g2(x)e−ixpdx (35)

Solving for g2(x) we obtain

g2(x) =
1

2π

∫∫
g1(x′)eiS(p)ei(x−x′)pdpdx′ (36)

Now consider
M2(θ) =

∫
g∗2(x)g2(x + θ)dx (37)

Straightforward substitutions of Equation (36) into Equation (37) give that

M2(θ) =
∫

g∗1(x)g1(x + θ)dx (38)

That is
M2(θ) = M1(θ) (39)

which shows that we can generate an infinite number of g(x) in the Khintchine criteria
from a given g(x) by choosing any phase function, S(p), in Equation (31).

4.2. Quantum Generalization of the Khintchine Criterion

Recall from Section 2 that the probability density for the random variable a is given by

P(a) = |c(a)|2 (40)

The characteristic function is

Ma(θ) =
∫
|c(a)|2eiθαdα =

∫
c∗(a)c(a)eiθαdα (41)

We now insert a delta function

δ(a− a′) =
∫

u∗a′(x)ua(x)dx (42)

to obtain
Ma(θ) =

∫∫∫
c∗(a′)c(a)u∗a′(x)ua(x)eiθαdadxda′ (43)

Using
eiθαua(x) = eiθAua(x) (44)

we have
Ma(θ) =

∫∫∫
c∗(a′)u∗a′(x)eiθAc(a)ua(x)dxdα′dα (45)

However
g(x) =

∫
c(a)ua(x)da (46)

and therefore
Ma(θ) =

∫
g∗(x)eiθAg(x)dx (47)

We define the characteristic function operator by

Ma(θ) = eiθA (48)
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in which case,
Ma(θ) =

〈
eiθA

〉
(49)

Therefore, a generalization of the Khintchine criterion is that M(θ) is a characteristic
function if and only if for a self adjoint operator A there exists the representation given by
Equation (47).

Proof. We now formally prove the sufficiency and necessity for Equation (47). The proba-
bility distribution is given by

P(a) =
1

2π

∫
e−iθa

(∫
g∗(x)eiθAg(x)dx

)
dθ (50)

substituting Equation (46) into Equation (50) we obtain that

P(a) = |c(a)|2 (51)

which proves the sufficiency. We note that |c(a)|2 is normalized if |g(x)|2 is normalized.
Consider now the necessity. We start with Equation (47) and define the characteristic
function the usual way

Ma(θ) =
1

2π

∫
e−iθa|c(a)|2da (52)

Substituting for c(a) as given by Equation (5) we obtain

Ma(θ) =
∫∫∫

eiθaψ(x′)u∗a(x′)ψ∗(x)ua(x) dxdx′da (53)

=
∫∫∫

ψ(x′)u∗a(x′)ψ∗(x)eiθAua(x) dxdx′da (54)

=
∫∫∫

ψ∗(x)eiθAψ(x′)δ(x− x′)dxdx′ (55)

which gives Equation (47).

4.3. Expectation Values

Using Equation (12) we have

〈an〉 = 1
in

dn

dθn M(θ)
∣∣
θ=0 (56)

=
1
in

dn

dθn

∫
g∗(x)eiθAg(x)dx

∣∣
θ=0 (57)

=
∫

g∗(x)Ang(x)dx (58)

which is the quantum mechanical way of calculating expectation values.

4.4. Time Dependence

If we have an operator, A(t), that is time dependent and Hermitian for all time, then
the time dependent characteristic function, M(θ, t), defined by

M(θ, t) =
∫

g∗(x, 0)eiθA(t)g(x, 0)dx (59)

is a proper characteristic function for all times. If the operator satisfies the Heisenberg’s
equation of motion

A(t) = eitHA(0)e−itH (60)



Entropy 2023, 25, 1042 7 of 12

then

M(θ, t) =
∫

g∗(x, 0) exp
[
iθeitHA(0)e−itH

]
g(x, 0)dx (61)

=
∫

g∗(x, 0)eitHeiθA(0)e−itHg(x, 0)dx (62)

=
∫

g∗(x, t)eiθA(0)g(x, t)dx (63)

where, as expected,

g(x, t) = e−itHg(x, 0) (64)

5. Born Rule by Way of Characteristic Function and Discrete Case

We now consider the case where the eigenvalues of the operator are discrete (The case
of spin is particularly interesting, and in regard to Wigner distributions, the characteristic
function has been previously calculated [12]). Although the previous results for the contin-
uous case can be repeated for the discrete case, we give a different perspective where we
derive quantum properties just from the characteristic function,

M(θ) =
〈

eiθA
〉
=
∫

ψ∗(x)eiθA ψ(x)dx (65)

If the operator A has a discrete spectrum, we write

Aun(x) = anun(x) (66)

where an are the discrete eigenvalues and un(x) are the corresponding eigenfunctions.
Since the operator is Hermitian the an are real and the eigenfunctions are complete and
orthogonal ∫

u∗n(x)uk(x)dx = δnk (67)

∑
n

u∗n(x)un(x′) = δ(x− x′) (68)

We expand the wave function as

ψ(x) = ∑
n

cnun(x) (69)

with
cn =

∫
ψ(x)u∗n(x)dx (70)

The probability distributions is then given by

Pa(a) =
∫

Ma(θ)
−iθa dθ (71)

=
1

2π

∫∫
ψ∗(x)eiθAψ(x)e−iθadx dθ (72)

Substituting Equation (69) into Equation (72) we have

P(a) =
1

2π

∫∫
∑
n,m

c∗mu∗m(x)eiθAcnun(x)e−iθadx dθ (73)

Using eiθAun(x) = eiθan un(x), Equation (73) immediately simplifies to give

P(a) =
1

2π ∑
n
|cn|2

∫
eiθan−iθa dθ (74)
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or
P(a) = ∑

n
|cn|2δ(a− an) (75)

Therefore, the only possible values for the random variables are the eigenvalues; the
corresponding probabilities are

P(an) = |cn|2 =

∣∣∣∣∫ ψ(x)u∗n(x)dx
∣∣∣∣2 (76)

This is precisely the Born rule with which Born initiated the probabilistic interpretation of
quantum mechanics.

6. Sum and Product of Two Characteristic Functions

Suppose A and B are Hermitian operators then their sum, C,

C = A + B (77)

is also Hermitian. The characteristic function is then

M(θ) =
∫

ψ∗(x)eiθC ψ(x)dx (78)

=
∫

ψ∗(x)eiθ(A+B) ψ(x)dx (79)

The simplification of Equation (79) is generally difficult. A simple case is where A and B
commute

[A,B] = 0 (80)

In such a case they have common eigenfunctions and we may write

Auα(x) = α uα(x) (81)

Buα(x) = β(α) uα(x) (82)

where α and β(α) are the respective eigenvalues, and uα(x) are the common eigenfunctions.
The characteristic function is then

M(θ) =
∫

ψ∗(x) eiθA eiθB ψ∗(x) dx (83)

=
∫

c∗(a′)u∗α′(x)eiθα eiθβ(α) c(a)uα(x) dα dα′ dx (84)

which evaluates to
M(θ) =

∫
eiθα eiθβ(α)|c(α) |2dα (85)

The probability density for α is therefore

P(α) =
1

2π

∫∫
M(θ, τ)e−iθα dθ dτ (86)

=
1

2π

∫∫
eiθα′ eiθβ(α′)

∣∣c(α′)∣∣2e−iθα dθdα′ (87)

=
∫

δ(α′ + β(α′)− α)
∣∣c(α′)∣∣2 dα′ (88)

Equation (88) can be simplified further by simplifying the delta function.
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6.1. Example: Linear Combination of x and p

Consider the operator made up of a linear combination of x and p

A = αx + βp (89)

The operator is Hermitian for real α and β. Solving the eigenvalue problem(
αx− iβ

d
dx

)
uλ(x) = λuλ(x) (90)

gives

uλ(x) =
1√
2πβ

ei(λx−αx2/2)/β (91)

where we have normalized to a delta function. Hence, we have the following trans-
form pairs

F(λ) =
1√
2πβ

∫
ψ(x)e−i(λx−αx2/2)/βdx (92)

ψ(x) =
1√
2πβ

∫
F(λ)ei(λx−αx2/2)/βdλ (93)

For the characteristic function, we have

M(θ) = 〈eiθA〉 (94)

=
∫

ψ∗(x) eiθ(αx+βp)ψ(x) dx (95)

=
∫

ψ∗(x) eiθ2αβ/2 eiαθx eiθβpψ(x) dx (96)

=
∫

ψ∗(x) eiθ2αβ/2 eiαθxψ(x + θβ) dx (97)

giving

M(θ) =
∫

ψ∗(x− 1
2 θβ) eiθαxψ(x + 1

2 θβ) dx (98)

The probability density for λ is then

P(λ) =
1

2π

∫
M(θ) e−iθλdθ (99)

=
1

2π

∫∫
ψ∗(x− 1

2 θβ) e−iθ(λ−αx)ψ(x + 1
2 θβ)dθdx (100)

which simplifies to

P(λ) =

∣∣∣∣∣ 1√
2πβ

∫
ψ(x)e−i(λx−αx2/2)/βdx

∣∣∣∣∣
2

= |F(λ)|2 (101)

6.2. Product of Two Characteristic Functions

A standard result in probability theory is that the product of two characteristic func-
tions M1(θ) and M2(θ) is also a characteristic function

M(θ) = M1(θ)M2(θ) (102)

This result is easily proven. Consider the probability distribution corresponding to M(θ),

P(x) =
1

2π

∫
M1(θ)M2(θ)e−iθxdθ (103)
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Using

M1(θ) =
∫

eiθx′P1(x
′
) dx′ (104)

M2(θ) =
∫

eiθx′′P2(x
′′
) dx′′ (105)

and substituting into Equation (103) one obtains that

P(x) =
∫∫∫

δ(x′ + x′′ − x)P1(x′) P2(x′′) dx′dx′′dθ (106)

and therefore
P(x) =

∫
P1(x′)P2(x− x′)dx′ (107)

That is, for the product of two characteristic functions the corresponding probability density
is the convolution of the two the probability densities. For the quantum case we have that

P(a) =
∫ ∣∣c1(a′)

∣∣2∣∣c2(a− a′)
∣∣2da′ (108)

where

c1(a) =
∫

ψ1(x)u∗a(x) dx (109)

c2(a) =
∫

ψ2(x)u∗a(x) dx (110)

Consider the product of two characteristic functions as per Equation (102)

M(θ) = M1(θ)M2(θ) (111)

=

(∫
ψ∗1 (x)eiθAψ1(x)dx

)(∫
ψ∗2 (x)eiθAψ2(x)dx

)
(112)

Since M(θ) is a characteristic function, we should be able to write it as

M(θ) =
∫

ψ∗(x)eiθAψ(x)dx (113)

for some wave function ψ(x). An interesting question (suggested by the referee) is to
express ψ(x) in terms of ψ1(x) and ψ2(x), That is, we want∫

ψ∗(x)eiθAψ(x)dx =

(∫
ψ∗1 (x)eiθAψ1(x)dx

)(∫
ψ∗2 (x)eiθAψ2(x)dx

)
(114)

This does not seem to be readily tractable. As an example, consider the case of momentum

A =
1
i

d
dx

(115)

then Equation (114) becomes∫
ψ∗(x)ψ(x + θ)dx =

(∫
ψ∗1 (x)ψ1(x + θ)dx

)(∫
ψ∗2 (θ)ψ2(x + θ)dx

)
(116)

For the case where ψ1(x) and ψ2(x) are Gaussian then ψ is also a Gaussian.
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7. Bochner’s Theorem and Quantum Formulation

Bochner’s criterion is that M(θ) is a characteristic function if it is positive definite.
That means that for any function ϕ(θ)∫∫

M(θ − θ′)ϕ(θ)ϕ∗(θ′)dθdθ′ ≥ 0 (117)

Using

M(θ − θ′) =
∫

ei(θ−θ′)xP(x)dx (118)

we calculate the left hand side of Equation (117)∫∫
M(θ − θ′)ϕ(θ)ϕ∗(θ′)dθdθ′ =

∫∫∫
ei(θ−θ′)xP(x)ϕ(θ)ϕ∗(θ′)dθdθ′dx (119)

=
∫∫∫

P(x)eiθx ϕ(θ)e−θ′x ϕ∗(θ′)dθdθ′dx (120)

=
∫

P(x)
∣∣∣∣∫ eiθx ϕ(θ)dθ

∣∣∣∣2dx (121)

Thus, the positivity is clear. Suppose we take x to be position corresponding to a wave
function ψ1, and ϕ a momentum wave function corresponding to ψ2(x)

P(x) = |ψ1(x)|2 (122)

ψ2(x) =
1√
2π

∫
eiθp ϕ(p)dp (123)

then ∫∫
M(θ − θ′)ϕ(θ)ϕ∗(θ′)dθdθ′ =

√
2π
∫
|ψ1(x)|2|ψ2(x)|2dx (124)

Consider now using the generalized characteristic function, Equation (47)

Ma(θ) =
∫

g∗(x)eiθAg(x)dx (125)

and taking

g(x) =
∫

c(a)ua(x) da (126)

where c(a), is the wave function in the a representation,

c(a) =
∫

g(x)u∗a(x) da (127)

Substituting Equation (126) into Equation (125) we obtain that

∫∫
M(θ − θ′)ϕ(θ)ϕ∗(θ′)dθdθ′ =

∫
|c(a)|2

∣∣∣∣∫ eiθa ϕ(θ)dθ

∣∣∣∣2da ≥ 0 (128)

which may be considered the quantum formulation of Bochner’s criteria.

8. Polya Sufficiency Criteria

The Polya criteria is a sufficient criteria for a function to be a characteristic function [3,13].
It only applies to probability densities that are one-sided. If a potential M(θ) is real and
hence satisfies M(−θ) = M(θ), and is convex for θ > 0, then it is the characteristic function
of a one sided probability density. A function is convex if it satisfies

M
(

θ1 + θ2

2

)
≤ M(θ1) + M(θ2)

2
(129)
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From the point of view of the generalized characteristic function the condition is that∫
ψ∗(x)ei(θ1+θ2)A/2ψ(x)dx ≤ 1

2

(∫
ψ∗(x)eiθ1Aψ(x)dx +

∫
ψ∗(x)eiθ2Aψ(x)dx

)
(130)

=
1
2

∫
ψ∗(x)

(
eiθ1A + eiθ2A

)
ψ(x)dx (131)

9. Conclusions

We have given a quantum mechanical generalization of the standard characteristic
function, and have shown that the Khintchine and Bochner criteria have a simple quantum
mechanical interpretation, allowing the generalization of these criteria. Moreover, we
have clarified what the g(x) functions are in the Khintchine criteria, Equation (15), and
have given a method to generate an infinite number of them. More importantly, we have
shown that they are wave functions as used in quantum mechanics. Of course, standard
probability theory does not deal with wave functions, but with probability densities directly.
On the other hand, quantum mechanics deals with wave functions and obtains probabilities
through them. It would be interesting to study to what extent standard probability theory
may be formulated in terms of wave functions.
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