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Abstract: In high-dimensional space, most multi-objective optimization algorithms encounter diffi-
culties in solving many-objective optimization problems because they cannot balance convergence
and diversity. As the number of objectives increases, the non-dominated solutions become difficult to
distinguish while challenging the assessment of diversity in high-dimensional objective space. To
reduce selection pressure and improve diversity, this article proposes a many-objective evolutionary
algorithm based on dual selection strategy (MaOEA /DS). First, a new distance function is designed
as an effective distance metric. Then, based distance function, a point crowding-degree (PC) strategy,
is proposed to further enhance the algorithm’s ability to distinguish superior solutions in population.
Finally, a dual selection strategy is proposed. In the first selection, the individuals with the best con-
vergence are selected from the top few individuals with good diversity in the population, focusing on
population convergence. In the second selection, the PC strategy is used to further select individuals
with larger crowding distance values, emphasizing population diversity. To extensively evaluate
the performance of the algorithm, this paper compares the proposed algorithm with several state-of-
the-art algorithms. The experimental results show that MaOEA /DS outperforms other comparison
algorithms in overall performance, indicating the effectiveness of the proposed algorithm.

Keywords: many-objective optimization; convergence; diversity; dual selection

1. Introduction

Evolutionary algorithms are widely used to optimize various problems [1,2], and one
of the important applications is multi-objective optimization problems (MOPs), which
exist in many practical engineering problems [3-7]. In many conflicting problems, we
need to consider optimizing multiple objectives simultaneously, and these objectives often
conflict with each other. The following are some applications of multi-objective optimiza-
tion in practical engineering. In truck cab design [3], a multi-objective particle swarm
optimization algorithm is used to make a proper tradeoff between the lightweight and
fatigue durability for the design of the truck cab. The maximization of fatigue life and mini-
mization of lightweight are chosen as two competing objectives to be optimized within a
multi-objective framework. One example of feature selection [4] proposed an algorithm for
feature selection of high-dimensional data, where the three objectives’ number of features,
balanced classification error rate, and distance metric are considered simultaneously, with
the goal to minimize these three objectives. In food recommendation problems [5], the
original recommendation problem is transformed into a four-objective mathematical model
and many-objective optimization algorithms are used to optimize and maximize the four
objectives: user preferences, numerical values, food diversity, and dynamic time wrapping.
A multi-objective fuzzy decision-making model [6] is proposed for coal production, which
includes five objectives: maximizing economics, guiding economics, safety investment,
minimizing energy, and environment. In article [7], the many-objective genetic algorithm
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is used to solve the example of supply chain, with the goal to minimize the six objectives:
order cost, holding cost, transportation cost, main warehouse shortage cost, overflow cost,
and support warehouses shortage cost.

In general, the minimum MOP is defined as:

{ min F(X) = (f1(X), 2(X),..., fu(X)) 1)

subject to X € RP

where M represents the number of objectives; X = (x1,X,...,xp) is the D-dimensional
decision vector; RP represents the D-dimensional decision space; and F(X) contains M
objective functions F = [fi, f2 ..., fm]. When the number of objectives of the MOP is M > 4,
it is called the many-objective optimization problem (MaOP). Compared to single-objective
problems, the objectives in many-objective problems conflict with each other, which means
that it is impossible to have an optimal solution to achieve the best performance of all
objectives. Therefore, the method of solving multi-objective problems is to find a set
of solutions that can be a compromise for all objectives. In the decision space, for any
two solutions x and y, if they satisfy Vi € 1,--- , M, fi(x) < fi(y) and Ji € 1,..., M,
fi(x) < fi(y), we say x dominates y or y is dominated by x. The solution that is not
dominated by any solution is defined as a Pareto optimal solution. The Pareto set (PS)
consists of all Pareto optimal solutions, while the objectives corresponding to the solutions
in the PS constitute the Pareto front (PF).

In the past few decades, a large number of multi-objective evolutionary algorithms
(MOEAs) have been proposed. MOEAs aim to obtain a solution set with both convergence
and diversity. So far, according to the selection mechanism, the methods to solve MOPs or
MaQOPs can be divided into four categories.

Pareto dominance-based algorithms belong to the first category. They enhance the selec-
tion pressure of the algorithm through improved or relaxed dominance relation.
NSGAII [8] is a representative algorithm of this category and is widely used [9]. Later, scholars
proposed some other dominance relations. For example, e-dominance [10], a-dominance [11],
fuzzy dominance [12], etc. In article [13], a method based on grid domination is proposed,
which enhances the selection pressure through three grid-based criteria. Zhang et al. [14]
adopted the knee point-based selection scheme to select non-dominated solutions. Although
the above algorithm can accelerate the convergence of the population, the improved domi-
nance relationship will lead to the deterioration of the diversity of the population [15]. At
present, several new dominance relations have been developed, such as SDR [16], CSDR [17],
and MultiGPO [18].

Indicator-based algorithms form the second category. These MAOEs use indicators
to guide population evolution. Hypervolume (HV) [19,20] is a strictly Pareto-compliant
and widely used indicator, but the time to calculate HV is expensive, so HypE [21] uses
Monte Carlo simulation to approximate the HV value of the solution. Inverted generational
distance (IGD) [22] is also a popular index to measure the convergence and diversity of
the solution set. The hypervolume adaptive grid algorithm (HAGA) [23] only calculates
the contribution hypervolume index of the grid population, which relatively saves the
calculation time. In addition, other indicators include AP [24], pure diversity (PD) [25], and
coverage PF (CPF) [26]. However, these methods have high computational complexity.

Decomposition-based algorithms are the third category. The main idea is to decompose
the MaOP into several sub-problems and solve them one by one, with the MOEA /D [27]
algorithm being a representative algorithm of this kind that is widely used [28]. NSGA-
III [29] uses Pareto dominance to emphasize convergence and uses uniformly distributed
reference points to manage diversity. MOEA /D-M2M [30] collaboration solves the sub-
problems. RVEA [31] is a reference vector-guided EA, which uses a scalarization method
to balance the convergence and diversity of solutions. However, the performance of these
methods on different problems is uncertain, and the effect is poor when dealing with
irregular PFs.
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Environmental-based selection is the fourth category, and the selection process can be
roughly divided into two steps. In [32], the first step is to select only one solution with
the best convergence indicator. In the second step, the diversity is measured according
to the cosine similarity, and the solution close to the first step is further selected. In [33],
the first step is to use the achievement scalarization function based on the R2 indicator for
primary selection. The second step takes advantage of the reference vector-guided objec-
tive space partition approach in diversity management for many-objective optimization.
In [34], in the first step, a solution with a small neighborhood density is selected to form
a candidate pool, where the neighborhood density of the solution is calculated based on
a new adaptive position transformation strategy. In the second step, the best solution for
convergence from the candidate pool is selected and inserted into the next generation.

Although the existing methods have made significant progress in solving MaOPs,
there are still many challenges. First, as the number of objectives M increases, there is a
dominance resistance phenomenon [35] where the number of non-dominated solutions
increases exponentially. Secondly, due to the curse of high-dimensionality, the evaluation
of diversity becomes difficult [31]. In addition, many important problems such as high
computational complexity and difficulty in balancing convergence and diversity need to be
solved [36].

It is well known that convergence and diversity are two key factors in the performance
of the MaOEA, which play different roles at different stages of the evolutionary process.
Specifically, the solution may not converge in the early search stage, so more convergence
pressure is needed to accelerate convergence. In the later search stage, the solution set is
basically close to PF. At this time, it is necessary to eliminate crowding and select a better
distributed solution set (i.e., good diversity). Therefore, we divide the whole selection
process into two stages, which is also inspired by the fourth type of environment selection
method. A dual selection strategy is proposed to avoid the negative impact of potential
conflicts between convergence and diversity. Specifically, in the first selection, convergence
is emphasized on the basis of diversity, and then diversity is emphasized with the proposed
PC strategy in the second selection. The main contributions of this article are summarized
as follows:

(1) This article proposes a dual selection strategy. In the first selection, the individuals
with the best convergence are selected from the top few individuals with good diversity
in the population, focusing on population convergence. In the second selection, the pro-
posed PC strategy is used to further select individuals with large crowding-degree values,
emphasizing population diversity.

(2) A new distance function is designed as a more effective distance metric. In addition,
when evaluating the diversity of the solution set, the PC strategy based on new distance
function not only considers the distance between the nearest two points in the objective
space as large as possible, but also considers the difference between each objective function
as large as possible and considers the influence of multiple points around on the diversity
of this point, so as to obtain a better diversity of the solution set.

(3) Extensive comparisons are made between MaOEA /DS and several state-of-the-art
algorithms for 93 instances of 31 test problems from 3 well-known test suites. The results
show that MaOEA /AS is a promising MaOEA.

The remainder of this article is organized as follows. Section 2 introduces the proposed
algorithm in detail. In Section 3, the experimental results and correlation analysis of the
algorithm are given. Finally, the conclusion is given in Section 4.

2. Proposed Algorithm
2.1. Framework of MaOEA/DS

Algorithm 1 describes the main framework of the proposed algorithm, MaOEA /DS.
First, a population O of size N is randomly generated. Then, more potential solutions O’
in the solution pool are selected. Next, the reproduction operation is used to generate
offspring O using simulated binary crossover and polynomial mutation. Then, O’ and
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O" are combined to generate a new population R. Finally, dual selection is performed to
select the best performance individual from R. This evolutionary search process is repeated
until the stop condition is satisfied, which finally outputs the final population. In addition
to improvements in ChooseSolutions and environment selection, the basic process of the
algorithm is similar to most other MOEAs. Other key components of MaOEA /DS are
described in detail below.

Algorithm 1 The framework of the algorithm for MaOEA /DS

Require: N (population size)
Ensure: O (final population)
1: O = Initialization (N)
2: While the stopping criterion is not met do
3: O = ChooseSolutions (O)
4. 0" =Reproduction (0’)
5:
6:

R=0u0o"

O = DualSelection (R, N)
7: Endwhile
8: return O;

2.2. Convergence Measurement

Population convergence is a pivotal problem in MaOEA design. One of the simplest
ways to measure convergence is to sum the fitness values of each objective. In this paper,
we use the achievement scalarization function (ASF) to measure the convergence of each
solution [29]. The ASF has been widely used to measure the convergence of each solution.
The smaller the ASF value of the solution, the better the convergence performance. Assum-
ing that there are N solutions, expressed as xj=12,...,N, then the definition of the ASF is
as follows:

Le(xj) = ASF(x),21"", w) :mM<f(>—“‘> o

! i=1 w;
where z?ﬁ“ is the minimum value of each objective of all solutions in N, M is the number
of objectives, w is the weight vector, and the weight vector of the i-th element is defined as:

GO
Tl fie(%))

Note here that if w; is equal to 0, it is set to 107°.

wi

®)

2.3. Diversity Measurement
2.3.1. Calculation Diversity

It is very important to measure the diversity of the population effectively in the whole
evolution process. However, with the rapid increase in the number of objectives, some
of these methods are not suitable for high-dimensional objectives or cannot handle the
problem of the PF with different shapes, for example, Euclidean distance and Manhattan
distance. In order to solve these problems, this article proposes a new distance function
to measure, which not only considers the distance between the nearest two points in the
objective space, but also considers the difference between each objective function when
evaluating the diversity of the solution set. The specific function is as follows. Assuming
that the set of the current objective spaceis A = {x!,- -+, x"}, x' = (xi,- -+, x},), we first
calculate the distance between x' and x/ at any two points:

o o o M xi — o
I;(x', %) :d<xl,x7) =[x = +6x% [] 1—(|i"7.k|
(k=1) [lxt — %72

)? 4)



Entropy 2023, 25,1015

50f19

|x;(7x{(\

where © is a parameter greater than 0 and /1 — ( )2 is the sine value of the angle

[l =12
between the straight line ¥—xand L = (Ly,---,Lym)(Lgy = 1, other components are
0). All these sine values are multiplied so that the included angle between x — x/ and
L= (Ly, -+ ,Lm)(Ly =1, other components are 0) is as small as possible (|x} — x}| as
large as possible), which ensures that each component will be as different as possible. A
good set of diversity is when the area it dominates is as large as possible. In other words,
large objective space, less sampling points. Therefore, considering the differences between
each objective function, we try to have a relatively large difference between the components
of any two points. For example, the first dimensional component of the first point is 0.5,
and the difference between the first components of other points and 0.5 should be as large
as possible.

2.3.2. PC Strategy

The method of evaluating the diversity of the solution set can directly affect the
final performance of the algorithm. The point crowding degree is a widely used method
for maintaining diversity in the field of multi-objective optimization. Crowding degree
can help us maintain diversity and good distribution when selecting solution sets. By
calculating the crowding degree of each solution, the density of the entire solution set can
be determined, and the PF can be selected according to the crowding degree. Because some
solutions may be closer to the PF, while others may be sparser or scattered, we can choose
to have higher point crowding degree values to ensure the selection of solutions with
good diversity.

The calculation method of point crowding degree usually involves dividing the ob-
jective function space into discrete grids and calculating the density and distance of the
solutions in each grid. Euclidean distance or Manhattan distance is usually used to calculate
the distance difference between solutions. Aiming at the characteristics of high dimensional
many-objective evolutionary problems with high dimension and complexity, based on a
new distance function, this article proposes a new PC strategy. The calculation process of
the PC strategy is as follows. Then, for any point x/, we determine its neighbors by the
following:

H = {x|x, = min{t|t > x{;,t € {xt, -, xl}}or
xp = max{t < xi,t IS {x,%,- xi ) ®)
x = (%1, ,xpm) €EAk=1,--- ,M,x £t}

Then, we calculate the crowding degree of x/:

D)= Y d(xf,y)/\m 6)

(yeH)

where d(x/, y) is calculated by Equation (4) and |H| represents the size of the set H. The
crowding degree CD(x/) of a point not only considers the Euclidean distance between two
points, but also considers the difference between each component, and finally considers the
influence of the neighbor solution on its crowding degree. The greater the CD(x/) value,
the better the sparsity of x/. By calculating the crowding degree of each individual, we
can delete the individuals with the smaller crowding degree value and then maintain the
diversity of the population. The core of the PC strategy is to determine the neighbors of
each point and measure the distance between two points to achieve our goal (the difference
between any components should be as large as possible). Therefore, ultimately, individuals
with a high crowding degree will be selected for retention.
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Algorithm 2 PC strategy

Require: O (temporary population), N (population size)
Ensure: O (final population)

1: While |O| <N

2:  For each solution in O7 do

3: Randomly select an individual to determine its neighbors by Equation (5)
4: Calculate the crowding degree value of individual by Equation (6)

5: End

6:  Put the individual o=arg max(CD(x)) to O

72 O=0Uo

8:  Update Ot and remove o from Ot

9: End while

10: return O

2.4. ChooseSolutions

ChooseSolutions is very vital for the whole evolution. Individuals with good con-
vergence or diversity are selected as parents to guide the search. Algorithm 3 shows the
process of ChooseSolutions. In order to better introduce stronger selection pressure and
maintain better diversity, we use the ASF and new distance function to calculate I, and
I3, respectively. Algorithm 3 shows more details of choosing solutions. First, two individ-
uals are randomly selected from O. Comparing the metrics of the two individuals, the
individual with smaller I, value and larger I; value enter the solution pool. Otherwise, an
individual will be randomly selected to enter the solution pool. The process continues until
the solution pool M is full.

Algorithm 3 ChooseSolutions

Require: O (initial population), N (population size)
Ensure: O’ (parent population)
1: 0O=9
2: While |O’| <N do
:  Randomly select two solutions p; and p; from population O
If Ic(p1) <Ic(p2) & Ii(p1,0) >14(p2,0)(0 € O,0 # p1,p2)
O =0U P1
Elself I.(p1)>1.(p2) & I;(p1,0) <ILi(p2,0)(0 € O,0 # pl, p2)
O =0'U P2
Else
Select one randomly
10: End
11: EndWhile
12: return O’;

2.5. Dual Selection

Execution environment selection aims to select the best performance individual from
the union set, where the convergence and diversity of the balanced solution set are crucial.
Algorithm 4 shows the details of the dual selection procedure. Firstly, the union set R is
normalized in the objective space. Then, the I. values of all individuals in R are calculated.
According to Equation (2), the solution of the minimum I, value is found and substituted
into the temporary optimal set O7. All individuals in R are non-dominated and sorted to
form a non-dominated set Ry. Next, we execute the dual selection strategy.

In the first selection (lines 6-12), the I; value from the non-dominated individuals
in R to the individuals in O is calculated by Equation (4). Corner individual refers to
the individual at the edge of the Pareto front solution set. Then, the I; value of corner
individuals is set to +co because they are the most representative individuals on the PF
and will definitely be selected into Or. All individuals are sorted in descending order
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according to the I; value. Then, the individual s with the minimum I. value in the top
N-|O7| individuals is found, i.e., the one with the best convergence. This process enhances
the convergence pressure on the basis of maintaining diversity, and repeats the operation
until the population reaches the condition.

In the second selection (lines 13-14), firstly, the temporary optimal set Ot is combined
with the non-dominated set Ry. In this process, we mainly evaluate the diversity perfor-
mance of the solutions. We use a new PC strategy, whose details are shown in Algorithm 2.
First, each solution in O performs the following two steps: each individual determines its
neighbors according to Equation (5), and then determines its crowding degree according to
Equation (6). The individual with the largest crowding degree in all candidate solutions
is selected in turn, and then it is removed from the candidate solution to update the can-
didate set. Next, we end the dual selection and, finally, output N individuals with the
best performance. In general, the first selection improves the convergence of the solution
set on the basis of maintaining diversity, the second selection selects individuals with
better distribution, and the dual selection balances the convergence and diversity of the
solution set.

Algorithm 4 Dual selection

Require: R (combined population), N (population size)
Ensure: O (final population)
1: Or=9

2: R=Objective space Initialization(R)
3: Calculate convergence value I of all individuals in R by Equation (2)
4: Put the individual s = argmin(I;) to Or
5: Non-dominated sorting of all individuals in R and get a set Ry
6: While |OT| <N do
7. Calculate diversity ValueldxieR =maX,jco, d(x', /) by Equation (4)
8. Set the I; value of each corner individual to +co
9:  Descending order according to la; value of all individuals
10:  Find s= arg min(I;) in top ranked N-|O7| individuals
11:  Remove s from R
122 EndWhile
13: Or = O7U Ry
14: O =PC strategy (Or)
15: return (O);

2.6. Computational Complexity Analysis

In this section, assuming that the number of objectives is M and the population size
is N, we analyze the time complexity of MaOEA /DS per generation. In ChooseSolutions,
the calculation of the ASF value and I; distance value requires O(MN) and O(MN?), and
the complexity of double selection is O (MN?), so the time complexity of MaOEA /DS is
O(MN?).

3. Experimental Research

To verify the performance of MaOEA /DS, we compare it with five state-of-the-art many-
objective evolutionary algorithms, NSGAIII [29], MOEA /DD [37], onebyoneEA [32], SPEAR [38],
and RVEA [31], on the widely used MaF, WFG, and DTLZ test suites. NSGA-III [29] supplies
and updates well-spread reference points adaptively to maintain the diversity among popula-
tion members. MOEA /DD [37] combines dominance- and decomposition-based approaches to
balance the convergence and diversity of the evolutionary process. onebyoneEA [32] selects the
solutions one by one. The first step is to select a solution with good convergence, and the second
step is to select a solution with good diversity. SPEAR [38] introduces an efficient reference
direction-based density estimator, a new fitness assignment scheme, and a new environmental
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selection strategy for handling MaOPs. RVEA [31] adopts a scalarization approach named
angle-penalized distance to balance convergence and diversity.

3.1. Experimental Settings

In this article, MaF1-15, WFG1-9, and DTLZ1-7 are selected for experimental com-
parison at 5, 10, and 15 objectives. Table 1 gives the parameter settings and character-
istics of these problems, where M is the number of objectives and D is the number
of decision variables. Each algorithm runs independently 20 times on each test prob-
lem. Finally, the results of the proposed MaOEA /DS algorithm and five comparison
algorithms are analyzed using the Wilcoxon rank sum test with a significance level of
0.05. In this experiment, the 6 in the PC strategy is 0.5. For a fair comparison, in the
reference [18], under the same M, we set the population size (represented as N) of all
algorithms to be the same, with 210, 275, and 240 for 5, 10, and 15 objectives, respec-
tively. The maximum generation (Gmax) is adopted as the termination criterion for all
algorithms, which is set to 200 for the WFG problems and 500 for the MaF problems.
The number of maximum fitness evaluation (MaxFE) = Gmax * N. These algorithms
are implemented on a PC equipped with Intel (R) Core (TM) i5-7500 CPU @ 3.40 GHz
3.41 GHz (Windows 10 operating system) using MATLAB language.

Table 1. Parameter settings and test problem characteristics.

Problem M D Characteristics

MaF1 5,10, 15 M+ K-1,K=10 Linear, with an inverted Pareto front

MaF2 5,10, 15 M+ K-1,K=10 Concave

MaF3 5,10, 15 M+ K-1,K=10 Multi-modal, convex

MaF4 5,10, 15 M+ K-1,K=10 Multi-modal, concave

MaF5 5,10,15 M+K-1,K=10 Convex, biased

MaF6 5,10,15 M+ K-1,K=10 Concave, degenerate

MaF7 5,10, 15 M+ K-1,K=20 Multi-model, mixed, disconnected

MaF8 5,10, 15 2 Linear, degenerate

MaF9 5,10, 15 2 Linear, degenerate

MaF10 5,10,15 M+ K-1,K=10 Mixed, biased

MaF11 5,10,15 M+ K-1,K=10 Convex, disconnected, non-separable

MaF12 5,10, 15 M+ K-1,K=10 Concave, non-separable, biased, deceptive

MaF13 5,10,15 5 Concave, unimodal, non-separable, degenerate

MaF14 5,10, 15 M*20 Linear, partially separable, largescale

MaF15 5,10, 15 M*20 Convex, partially separable, largescale

DTLZ1 5,10,15 M+ K-1,K=5 Linear, multi-modal

DTLZ2 5,10, 15 M+K-1,K=10 Concave

DTLZ3 5,10, 15 M+ K-1,K=10 Concave, multi-modal

DTLZ4 5,10,15 M+ K-1,K=10 Concave, biased

DTLZ5 5,10,15 M+ K-1,K=10 Concave, degenerate

DTLZ6 5,10, 15 M+ K-1,K=10 Concave, degenerate, biased

DTLZ7 5,10,15 M+ K-1,k=20 Mixed, disconnected, multi-modal, scaled

WEFG1 5,10, 15 M+L-1,L=10 Mixed, biased, scaled

WEFG2 5,10, 15 M+L-1,L=10 Convex, disconnected, multi-modal,
non-separable, scaled

WEFG3 5,10, 15 M+L-1,L=10 Linear, degenerate, non-separable, scaled

WEFG4 5,10, 15 M+L-1,L=10 Concave, multi-modal, scaled

WEFG5 5,10,15 M+L—-1,L=10 Concave, biased, scaled

WEFG6 5,10, 15 M+L-1,L=10 Concave, non-separable, scaled

WEG7 5,10, 15 M+L-1,L=10 Concave, biased, scaled

WEFGS8 5,10,15 M+L-1,L=10 Concave, biased, non-separable, scaled

WEFG9 5,10, 15 M+L-1,L=10 Concave, biased, multi-modal,

deceptive, non-separable, scaled
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3.2. Performance Metrics

This article adopts Inverted Generational Distance (IGD) and Pure distance (PD)
indicators to measure the comprehensive performance and diversity of different algorithms
on various test problems. The advantage of IGD is its computational efficiency and
versatility, which can simultaneously measure the convergence and diversity of solutions.
IGD [39] can be calculated by:

1GD(s,57) = £ minfsijdm(x'y)) @)

where S is the solution set obtained by the algorithm, S* is composed of evenly distributed
reference points sampled from the true PF, and dist(x, y) denotes the Euclidean distance
between solution y in S and solution x in §*. IGD measures the average minimum distance
from each solution from S$* to S . For an algorithm, a smaller IGD value means a better
quality of the objective vectors of obtained solutions for approximating the PF.

PD [25] proposed by Wang et al., should measure diversity by calculating the dissimi-
larity between solution x and solution set S for MaOPs, which is defined as follows:

PD(S) = rxrlrg;( (PD (s — xi) -+ d(xi, S— xi>) 8)

the calculation of d is as follows:

d(x,S) = min (dissimilarity (x, xi) ) )

x'eS

the calculation process of dissimilarity can be referenced [25], and the larger the PD, the
better the diversity of the solution set.

3.3. Experimental Results and Analysis

In this article, the proposed MaOEA /DS algorithm is compared with 5 other algo-
rithms on 45 MaF test problems and 27 WFG test problems. For each test problem, the
result with the best performance is marked in bold. “4-” means that MaOEA /DS is worse

than its competitor algorithm, “—" means that MaOEA /DS outperforms its competitor
algorithm, and “=" means that the competitor algorithm has the same performance as
MaOEA /DS.

3.3.1. MaF Suite

Table 2 reports the IGD mean and standard deviation values obtained by 6 MOEAs
on 45 MaF test problems. Of the 45 problem:s, the statistical performance of MaOEA /DS
on 26 problems is better than that of the comparison algorithm, which shows the good
performance of the algorithm in IGD form. NSGAIIl, MOEA /DD, onebyoneEA, SPEAR,
and RVEA outperform MaOEA /DS on 11, 8, 11, 8, and 16 problems, respectively, while
MaOEA /DS outperforms NSGAIIl, MOEA /DD, onebyoneEA, SPEAR, and RVEA on 32,
31, 31, 35, and 27 problems, respectively.

For 8 problems (MaF1, MaF2, MaF4, MaF5, MaF7, MaF8, MaF9, and MaF15) of the
partial PFs with incomplete coverage of the unit hyperplane, the IGD mean values of the
MaOEA /DS algorithm on 18, 19, 18, 20, and 16 problems are smaller than those of NSGAIII,
MOEA /DD, onebyoneEA, SPEAR, and RVEA algorithms, indicating that the MaOEA
/DS algorithm has the best overall performance in IGD form on most problems. For the
PF degradation problem MaF6, MaOEA /DS performs better than NSGAIIl, MOEA /DD,
onebyoneEA, SPEAR, and RVEA on 3, 3, 2, 3, and 3 problems.

When dealing with the problem of 6 PF projections completely covering the unit
hyperplane (MaF3, MaF10, MaF11, MaF12, MaF13, and MaF14), the IGD mean obtained
by the MaOEA /DS algorithm is smaller than the IGD mean obtained by the NSGAIII,
MOEA /DD, onebyoneEA, SPEAR, and RVEA algorithms on 11,9,11,12, and 8 problem:s.
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Table 2. Comparison of IGD values of six algorithms on MaF test problems.
Problems M NSGAIIL MOEA/DD 1by1EA SPEAR RVEA MaOEADS
MaF1 5 1.8345 x 10! 2.0954 x 10" 1.0163 x 10! 1.8912 x 10! 2.7142 x 10! 9.1426 x 1072
(1.02 x 102)— (3.46 x 1073)— (1.57 x 1073)— (1.33 x 1073)— (1.49 x 1072)— (717 x 107%)
10 2.7851 x 10~1 4.7343 x 101 3.2940 x 101 4.5138 x 10! 5.8318 x 10! 1.8858 x 107!
(2.98 x 1072)— (1.88 x 1072)— (6.83 x 1072)— (3.80 x 1072)— (5.44 x 1072)— (1.63 x 1073)
15 3.1709 x 10! 5.4376 x 107! 4.6163 x 107! 6.7984 x 107! 6.9034 x 10! 2.3064 x 107!
(4.91 x 1073)— (2.95 x 1072)— (3.50 x 1072)— (1.02 x 10~ 1)— (4.94 x 1072)— (1.63 x 1073)
1.1146 x 10! 1.2967 x 101 8.1707 x 102 1.1870 x 10" 1.1577 x 10~ 1 7.7596 x 1072
MaF2 5
(2.52 x 102)— (3.39 x 107)— (1.64 x 1072)— (9.00 x 10~%)— (1.09 x 10~3)— (1.97 x 1073)
10 2.0163 x 10! 2.5272 x 10! 2.6154 x 10! 2.0604 x 10! 2.5083 x 10! 1.4983 x 10}
(1.58 x 1072)— (3.17 x 1072)— (2.24 x 1072)— (5.08 x 1073)— (3.43 x 1072)— (1.53 x 1073)
2.0525 x 10! 4.1640 x 10" 4.8877 x 107! 4.4203 x 10! 5.1266 x 107! 1.7458 x 10!
15
(6.45 x 1072)— (3.63 x 107 2)— (343 x 1072)— (6.55 x 10~ 2)— (1.69 x 10~ 1)— (1.52 x 1073)
MaF3 5 7.5927 x 102 9.8271 x 102 1.5959 x 10~ ! 9.8271 x 10° 2.5097 x 10~1 4.5595 x 10°
(6.74 x 1073) + (5.33 x 1073)+ (2.33 x 1072)+ (1.13 x 10")— (6.07 x 10~ 1)+ (5.72 x 10°)
1.5189 x 10° 5.4546 x 10! 1.6063 x 10! 7.3295 x 10° 1.1948 x 10! 1.3143 x 10°
10
(1.64 x 10%)— (1.67 x 10%)+ (1.39 x 10~ 1)+ (2.37 x 10°)— (1.32 x 102) + (1.38 x 10°)
15 3.7160 x 102 6.0721 x 10~! 9.8368 x 10! 5.9275 x 10° 1.2125 x 101 5.6069 x 10!
(7.74 x 10%)— (9.22 x 10 )= (1.77 x 10%)= (1.46 x 107)— (9.50 x 102)+ (9.85 x 10~ 1)
MaF4 5 2.4726 x 10° 5.5061 x 10° 5.6277 x 10° 5.5966 x 100 3.3995 x 10° 1.7721 x 10°
(5.59 x 10~ 1)— (5.96 x 107 1)— (8.77 x 10~ 1)— (2.05 x 10°)— (4.66 x 107 1)— (5.19 x 1072)
9.2926 x 10! 3.9287 x 10? 2.4858 x 10? 5.4101 x 10? 2.0887 x 10? 5.5409 x 10!
10
(7.51 x 10%)— (1.14 x 101)— (4.70 x 10)— (5.82 x 10?)— (5.55 x 101)— (5.18 x 10°)
15 3.8655 x 10° 1.4061 x 10+ 1.0856 x 104 1.0386 < 10" 8.5214 x 10° 2.1546 x 103
(2.56 x 10%)— (2.89 x 10%)— (4.31 x 10?)— (6.85 x 104)— (1.99 x 10%)— (1.19 x 10%)
MaF5 5 1.9699 x 10° 3.9913 x 10° 3.9276 x 10° 1.9995 x 10° 1.9803 x 10° 9.4326 x 10°
(312 x 1073)+ (4.41 x 10~ )+ (6.95 x 10~ 1)+ (9.40 x 103)+ (5.49 x 1072)+ (2.49 x 10°)
10 7.7422 % 10! 2.9133 x 102 1.9743 x 10? 8.0777 x 10" 9.2979 x 10! 5.4744 x 10}
(1.01 x 10%)— (1.53 x 10")— (1.57 x 10")— (3.44 < 10%)— (9.82 x 10%)— (2.46 x 10')
2.4609 x 10° 7.2550 x 103 6.0073 x 10° 2.3936 x 103 3.1436 x 10° 2.8808 x 10°
15
(9.90 x 101)+ (1.92 x 10?)— (6.09 x 101)— (3.04 x 10%) + (4.70 x 10%)= (5.28 x 10?)
MaF6 5 1.6723 x 102 6.8523 x 1072 2.1072 x 1073 8.7946 x 102 7.2886 x 102 1.3447 x 1073
(3.28 x 1073)— (422 x 1073)— (3.91 x 107°)— (1.06 x 1072)— (1.07 x 1072)— (1.06 x 10~5)
10 6.5840 x 10! 9.6544 x 102 1.5991 x 103 2.0470 x 10~1 1.2223 x 10~ ! 1.0249 x 103
(3.15 x 10~ 1)— (1.41 x 1072)— (2.03 x 107%)— (5.51 x 10~2)— (1.66 x 10~2)— (7.98 x 1079)
15 8.1306 x 10! 1.2535 x 107! 1.8367 x 103 1.4864 x 10! 3.1968 x 10! 8.7607 x 103
(419 x 10 1) — (5.66 x 107°)— (217 x 1075) + (2.67 x 10")- (2.64 x 10~ 1)— (3.03 x 1072)
MaE7 5 2.8042 x 10! 2.7707 x 10° 3.1908 x 10! 3.5624 x 10~! 5.0036 x 10! 1.4840 x 10°
(841 x 1073)+ (7.04 x 10~ 1)— (2.93 x 1072)+ (4.61 x 102)+ (8.94 x 1072)+ (5.80 x 1072)
1.0373 x 10° 2.6091 x 10° 2.2874 x 10° 2.0232 x 10° 2.1306 x 10° 3.2525 x 10°
10
(6.70 x 10~2)+ (324 x 107 1)+ (6.08 x 10~ 1)+ (1.41 x 10 2)+ (4.08 x 10~ 1)+ (4.91 x 1072)
15 4.4230 x 10° 3.4683 x 10° 3.3704 x 10° 1.6740 x 10" 3.0298 x 1Q° 7.2025 x 10°
(5.33 x 10~ 1)+ (3.70 x 107 2)+ (4.89 x 10~ 1)+ (1.07 x 101)— (4.32 x 107 1)+ (2.28 x 107 1)
1.5775 x 10! 2.7897 x 101 3.5483 x 10! 5.3870 x 10? 3.0995 x 101 2.1188 x 10!
MaF8 5
(9.30 x 10~3)= (1.97 x 1072)— (6.98 x 1072)— (9.37 x 10%)— (2.81 x 1072)— (1.39 x 107 1)
10 3.6039 x 10! 9.1389 x 10! 3.3020 x 10! 4.1511 x 10? 9.5080 x 10! 1.9272 x 10~}
(7.04 x 1072)— (1.53 x 1072)— (4.78 x 1072)— (7.78 x 10?)— (113 x 10~ 1) — (1.49 x 1071)
15 4.0248 x 107! 1.3230 x 10° 3.8803 x 10! 5.2170 x 10? 1.3186 x 10° 3.3648 x 10~}
(8.14 x 1072)— (4.24 x 1072)— (6.64 x 1072)— (8.75 x 10?)— (2.41 x 10~ 1) — (2.86 x 1071)
MaF9 5 3.7274 x 10! 2.2488 x 10! 1.4953 x 101 9.0486 x 10! 2.8671 x 101 1.2036 x 10}
(1.72 x 107 1) — (2.96 x 1073)— (3.88 x 1072)— (2.55 x 107 1) — (4.34 < 1072)— (5.62 x 1072)
10 4.9636 x 10! 5.9556 x 10! 1.1363 x 10! 3.3454 x 10° 9.5706 x 101 9.4893 x 1072
(8.99 x 102)— (1.37 x 1073)— (6.91 x 1073)— (5.02 x 10%)— (1.80 x 10~ 1)— (3.09 x 1073)
15 3.8037 x 10! 9.5971 x 10! 1.8964 x 10! 9.4826 x 10° 1.3899 x 10° 1.5935 x 10}
(5.77 x 1072)— (8.40 x 1073)— (1.08 < 10~ 1)— (8.93 x 10°)— (241 x 107 1)— (6.06 x 1072)
MaF10 5 3.6920 x 10! 4.6014 x 107! 7.1500 x 10! 3.7513 x 10! 3.7971 x 10! 4.7631 x 10!
(5.36 x 1073)+ (2.80 x 1072)+ (3.80 x 1072)— (9.08 x 1073)+ (1.62 x 107 2)+ (221 x 1072)
1.0328 x 10° 1.3668 x 10° 1.7936 x 10° 1.3269 x 10° 1.1056 x 10° 1.3562 x 10°
10
(6.37 x 10~2) + (4.03 x 107 2)= (341 x 1072)— (9.56 x 10~ 2)= (4.06 x 1072)+ (1.27 x 10 1)
1.5889 x 10° 1.9856 x 10° 2.4284 x 10° 1.8819 x 10° 1.6686 x 10° 1.9067 x 10°
15
(8.03 x 10~2)+ (3.63 x 1072)— (4.36 x 1072)— (9.29 x 1072)= (4.28 x 1072)+ (8.31 x 1072)
MaF11 5 3.8913 x 10! 5.1030 x 10! 6.6779 x 101 3.9485 x 10! 3.8303 x 10! 4.3126 x 10!
(1.80 x 102)+ (1.26 x 1072)— (5.95 x 1072)— (2.96 x 102)+ (8.59 x 1073)+ (4.60 x 1072)
10 1.2442 x 10° 1.4645 x 10° 1.8264 x 10° 1.0825 x 10° 1.0938 x 10° 1.2951 x 10°
(1.32 x 10~ )= (2.26 x 1072)— (6.85 x 1072)— (1.01 x 10-2) + (3.20 x 1072)+ (5.00 x 1072)
15 1.5552 x 10° 1.9170 x 10° 2.3724 x 10° 1.4537 x 10° 1.7625 x 10° 1.9982 x 10°
(7.22 x 1072)+ (4.71 x 1072)= (8.88 x 1072)— (1.73 x 1072) + (1.18 x 10~ 1)+ (1.66 x 10~ 1)
MaF12 5 9.3413 x 10! 1.0323 x 10° 1.4009 x 10° 9.4416 x 107! 9.4320 x 10! 8.3780 x 10!
(332 x 107 3)— (4.53 x 1073)— (1.07 x 10~ 1) — (3.13 x 107 3)— (1.25 x 1073)— (6.30 x 1073)
10 4.4110 x 10° 6.2937 x 10° 5.4833 x 10° 4.5182 x 10° 4.2530 x 10° 3.6907 x 10°
(3.55 x 1072)— (2.33 x 10~ 1)— (2.50 x 10~ 1)— (1.52 x 1072)— (4.64 x 1072)— (3.57 x 1072)
15 7.9322 x 10° 8.6002 x 10° 9.8737 x 10° 8.4960 x 10° 7.4625 x 10° 6.9647 x 10°
(1.55 x 10~ 1) — (9.73 x 1072)— (2.52 x 1071 — (1.27 x 10~ 1) — (2.72 x 10~ 1) — (1.76 x 10~1)
MaF13 5 2.0432 x 101 2.0898 x 10! 8.2507 x 102 4.1492 x 10! 3.7273 x 10~1 1.0091 x 10!
(2.25 x 1072)— (5.52 x 102)— (4.60 x 10~3)+ (1.18 x 10~ 1)— (5.15 x 10~2)— (1.12 x 1072)
10 2.4480 x 107! 3.5242 x 10! 1.2224 x 10! 5.9085 x 10! 7.4754 x 107! 1.2418 < 10!
(1.53 x 1072)— (2.84 x 1072)— (9.64 x 10-3)— (2.24 x 10~ 1)— (2.33 x 107 1)— (1.16 x 1072)
15 2.9572 x 10~1 3.9552 x 10! 2.3828 x 101 8.2636 x 10! 9.9778 x 10~1 1.5684 x 10!
(5.52 x 102)— (3.51 x 10~ 2)— (5.18 x 1072)— (3.09 x 10~ 1)— (3.30 x 10~ 1)— (1.62 x 1072)
MaF14 5 1.6886 x 10° 7.1960 x 10~" 4.6061 x 10! 1.5536 x 10° 1.0467 x 10° 8.0980 x 10!
(9.20 x 107 1)— (1.31 x 107 H)= (8.63 x 10~2)+ (4.03 x 107 — (3.51 x 107 1)— (3.89 x 1071)
10 1.0122 x 10* 1.1579 x 10° 1.1651 x 10° 1.4573 x 10! 1.0298 x 10° 2.4867 x 10°
(3.72 x 10%)— (1.10 x 10~ )+ (1.83 x 10~ 1)+ (3.64 x 10%)— (6.80 x 10~2)+ (2.59 x 10°)
15 3.1051 x 10° 1.4145 x 1Q° 2.9030 x 10° 1.4737 < 10" 2.3754 x 10° 1.6806 x 10°
(2.52 x 10%)— (311 x 107 )= (1.01 x 10°)— (8.27 x 10%)— (1.51 x 10°)— (1.02 x 10°)
MaF15 5 1.1786 x 10° 4.8122 x 10! 6.0091 x 10! 1.3722 x 10° 5.5401 x 10! 7.4909 x 10”1
(1.79 x 10~ 1)— (243 x 1072)+ (5.94 x 1072)+ (5.21 x 10~ 1) — (4.63 x 1072)+ (6.19 x 1072)
10 2.5515 x 10° 1.0883 x 10° 1.0845 < 10° 1.2694 < 10" 1.0466 x 10° 1.0886 x 10°
(1.46 x 10%)— (7.25 x 1072)= (7.79 < 10°2)= (4.34 x 10°)— (5.05 x 10~2)+ (5.30 x 1072)
15 1.1451 x 10 1.5393 x 10° 1.5073 x 10° 3.9782 x 10! 1.2747 x 10° 1.2560 x 10°
(3.81 x 10%)— (1.89 x 10~ 1)- (8.67 x 1072)— (7.27 x 10%)— (4.96 x 1072)= (449 x 1072)
+/-/= 11/32/2 8/31/6 11/31/3 8/35/2 16/27/2 e

Note: Bold marks indicate the best-performing results.

Table 3 reports the PD mean and standard deviation values obtained by 5 MOEAs on
45 MaF test problems. Of the 45 problems, the statistical performance of MaOEA /DS is
better than that of the comparison algorithm on 23 problems. MaOEA /DS performs better
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than NSGAIII, MOEA /DD, onebyoneEA, and RVEA on 27, 36, 37, and 35 problems, and

shows significant advantages in MaF1, MaF2, MaF10, MaF11, and MaF12.

Table 3. Comparison of PD values of five algorithms on MaF test problems.

Problems M NSGAIIL MOEA/DD 1bylEA RVEA MaOEADS
MaF1 5 3.3319 x 107 1.1208 x 10° 5.3863 x 107 6.6932 x 10° 7.0322 x 107
(1.81 x 10%)— (4.79 x 10°)— (1.14 x 10%)— (2.72 x< 10°)— (2.01 x 10%)

2.3081 x 1010 5.7513 x 10° 2.2527 x 1010 1.1589 x 10? 6.4133 x 1010

10

(1.78 x 10%)— (5.49 x 108)— (1.22 x 1019)— (7.97 x 10%)— (3.73 x 10°)

15 1.3270 x 1012 7.9596 x 10° 2.1384 x 1011 5.7370 x 1010 2.0571 x 10'2
(1.09 x 101 — (6.21 x 10%)— (6.55 x 1010)— (4.06 x 1019)— (8.89 x 1010)

MaF2 5 3.2270 x 107 1.6717 x 107 4.4457 x 107 2.4069 x 107 6.5890 x 107
(1.67 x 10°)— (1.33 x 10°)— (1.36 x 10°)— (9.99 x 10°)— (1.41 x 10%)

10 3.0515 x 1010 1.0329 x 1010 5.0090 x 1010 1.0180 x 100 8.3065 x 10'°

(1.84 x 10%)— (1.57 x 10%)— (2.70 x 10%)— (9.06 x 10%)— (1.38 x 10%)

15 1.1881 x 102 1.0085 x 101 9.1750 x 1011 3.6893 x 1011 2.9968 x 1012
(6.55 x 1010)— (1.63 x 1010)— (1.77 x 10'1)— (1.25 x 1011 — (4.74 x 1010)

MaF3 5 5.8257 x 108 1.3061 x 107 1.1743 x 10° 5.2266 x 1012 2.5026 x 1016
(1.97 x 10%)— (7.91 x 10°)— (2.88 x 10%)— (1.71 x 1013)— (4.97 x 1016)

10 2.1425 x 1016 3.2286 x 1014 2.3644 x 1015 1.8866 x 101+ 3.0055 x 1017
(5.07 x 1010)= (7.66 x 101%)— (9.37 x 1015)— (6.39 x 1014)— (5.99 x 10'7)
15 2.7534 x 10'? 1.1964 x 10'8 6.9661 x 101© 3.5430 x 1017 9.1643 x 1018

(1.58 x 101%) -+ (4.22 x 10'8)= (227 x 1017)= (4.72 x 107)= (3.51 x 10%%)

MaF4 5 7.7320 x 108 2.3094 x 108 3.9203 x 108 5.5679 x 10° 8.4868 x 10°
(8.45 x 10%)— (7.00 x 10%)— (3.38 x 107)— (4.88 x 10%)+ (4.02 x 107)

10 1.5856 x 1012 5.2602 x 1010 2.1898 x 1012 6.4846 x 1010 7.3816 x 1012
(1.44 x 1011)— (2.42 x 1010)— (4.96 x 1012)— (4.16 x 1019)— (8.67 x 1011)
15 4.1146 x 1014 6.0924 x 1012 1.3627 x 1014 4.4447 x 10'5 2.5553 x 1015

(5.20 x 101%)— (3.75 x 1012)— (4.67 x 101%)— (5.56 x 1015)= (3.58 x 10'%)

MaF5 5 4.2557 x 107 3.4479 x 107 1.8283 x 108 5.9223 x 107 3.9550 x 10°
(2.61 x 10)+ (1.33 x 107)+ (1.77 x 107)+ (9.46 x 10°)+ (3.60 x 10°)

10 7.1406 x 1011 4.4412 x 1010 1.3170 x 1011 2.6867 x 1010 1.7981 x 10'2
(2.57 x 1010)— (7.61 x 10%)— (2.53 x 1010)— (1.86 x 1010)— (6.61 x 1011)
15 4.5741 x 101 1.0275 x 1012 3.1100 x 1012 5.1502 x 1012 5.3457 x 1013

(2.87 x 1013) (4.30 x< 10'1)— (9.00 x 10'1)— (1.91 x 1012)— (2.84 x 1013)

MaF6 5 7.6536 x 10° 2.2629 x 10° 8.9244 x 10° 1.0098 x 107 9.8181 x 10°
(8.79 x 10°)— (5.13 x 108)+ (1.22 x 10%)— (6.10 x 10%)+ (1.06 x 10°)

10 2.7420 x 10" 2.4333 x 10! 3.9959 x 10° 3.6042 x 1010 4.3752 x 10°

(1.31 x 1011) 4 (1.50 x 1011)+ (5.03 x 10%)= (3.59 x 1019)= (5.05 x 10%)

15 2.6140 x 10'3 1.8108 x 10'3 1.0301 x 10" 6.1231 x 1012 1.0215 x 1012

(5.10 x 1012)+ (7.54 < 1012)+ (1.74 x 1019)= (8.98 x 10'2)= (3.65 x 10'2)

MaF7 5 3.3163 x 107 6.9946 x 10° 5.0527 x 107 2.0499 x 107 2.6163 x 107
(4.01 x 10%)+ (2.25 x 10°)— (2.72 x 108)+ (2.26 x 10°)— (1.30 x 10°)

10 3.0412 x 1010 2.5230 x 10° 1.9470 x 1010 1.4350 x 1010 3.2261 x 10'°

(2.98 x 10%)= (1.50 x 10%)— (3.82 x 10%)— (1.66 x 10%)— (3.57 x 10%)

15 8.2819 x 1011 2.7418 x 1010 8.6616 x 1011 5.5074 x 1011 1.7344 x 1012
(9.20 x 1010)— (7.61 x 10%)— (2.20 x 1011y — (6.71 x 1019)— (1.09 x 1011)

MaF8 5 5.5114 x 107 2.7926 x 107 4.5399 x 107 4.5154 x 107 7.6084 x 107
(2.87 x 10°)— (3.74 x 10°)— (7.01 x 100)— (4.82 % 107)— (213 x 107)

10 5.8416 x 1010 8.4146 x 10° 7.9898 x 1010 3.0145 x 10° 1.0400 x 1011
(6.24 x 10°)— (1.83 x 10%)— (4.72 x 10%)— (4.42 x 10%)— (3.53 x 1010)

15 3.4310 x 10'2 3.7424 x 10M1 4.7257 x 1012 1.6260 x 105 6.1421 % 102

(3.87 x 1011)— (7.91 x 1010)— (3.34 < 101)— (1.34 x 10'5)+ (1.22 x 10'2)

MaF9 5 1.1741 x 10° 2.4433 x 10° 1.4494 x 108 9.2137 x 10° 1.3049 x 10°
(1.51 x 10%)= (3.23 x 10%)+ (2.83 x 10%)— (1.49 x 10%)— (1.41 x 10%)

10 4.2174 x 10'3 1.9709 x 1011 5.1355 x 1011 2.1073 x 10%1 2.1683 x 1012

(5.62 x 1012)+ (7.54 x 1011y — (6.33 x 1011)— (7.12 x 1011y — (1.56 x 1012)

15 7.2697 x 10'* 5.7323 x 1013 3.1115 x 1013 9.4348 x 1013 5.0343 x 1014

(4.58 x 1014)—= (2.20 x 1013)— (5.54 x 1013)— (1.34 x 10M)— (2.79 x 101%)

MaF10 5 6.4730 x 107 7.6450 x 107 6.7780 x 107 7.0786 x 107 1.1332 x 10®
(7.85 x 100)— (5.13 x 10°)— (3.08 x 10°)— (9.16 x 10°)— (8.62 x 10°)

10 8.3836 x 1010 3.9090 x 100 4.2543 x 1010 4.4973 x 1010 1.2945 x 10!

(1.04 x 1019)— (4.13 x 10%)— (4.45 x 10%)— (4.28 x 10%)— (2.05 x 10%°)

15 1.9522 x 1012 5.9587 x 1011 1.7360 x 1012 1.1251 x 10'2 3.7665 x 102

(2.34 x 1011)— (1.06 x 1011)— (9.32 x 1019)— (1.15 x 1011)— (271 x 101)

MaF11 5 7.8833 x 107 7.3497 x 107 8.5879 x 107 9.2926 x 107 1.6196 x 108
(3.18 x 10°)— (2.02 < 10%)— (3.75 x 10°)— (3.22 x 10%)— (6.92 x 10°)

10 6.2638 x 1010 3.9313 x 1010 6.7873 x 1010 5.2430 x 1010 1.4095 x 101!

(1.22 x 1010)— (1.98 x 10%)— (1.86 x 10%)— (3.16 x 10%)— (5.54 x 10°)

15 3.3836 x 1012 6.4481 x 1011 2.4917 x 1012 1.4629 x 1012 5.1382 x 10'2

(4.55 x 1011)— (7.02 x 1010)— (7.03 x 1019)— (1.33 x 1011)— (6.14 x 1011)

MaF12 5 2.8361 x 108 2.5124 x 108 3.2424 x 108 2.4679 x 108 6.6300 x 10°
(1.13 x 107)— (1.05 x 107)— (1.25 x 107)— (5.15 x 10%)— (9.77 x 10%)

10 4.7870 x 1011 2.9514 x 1011 5.6689 x 1011 3.6467 x 1011 1.7000 x 1012

(2.63 x 1010)— (1.82 x 1019)— (3.99 x 1010)— (1.21 x 1019)— (4.06 x 10'0)

15 3.3691 x 1013 1.1130 x 10'3 3.2282 x 1013 1.8148 x 1013 9.7656 x 1013

(2.15 x 10'?)— (1.20 x 10'?)— (3.95 x 10'?)— (1.51 x 10'?)— (5.11 x 10'2)

MaF13 5 1.6838 x 1012 5.1837 x 1010 2.3224 x 1010 2.9910 x 10° 1.0670 x 1012
(2.83 x 1012)+ (2.56 x 1011)— (1.09 x 1011y — (1.00 x 10%)— (5.84 x 10'2)

10 23591 x 10%7 2.0559 x 1018 4.2493 x 1010 1.7504 x 104 8.5663 x 1013

(4.48 x< 107)+ (6.80 x 1018)— (1.56 x 10'0)— (6.47 x 10'%)= (3.40 x 10'%)

15 44817 x 101° 3.2243 x 102 7.7767 x 1012 3.6364 x 101° 1.2819 x 1012

(7.71 x 1019)4 (7.60 x 1023)+ (2.42 x 1013)— (1.38 x 1010)— (5.13 x 101%)

MaF14 5 3.9516 x 108 1.1520 x 108 5.3314 x 107 1.7354 x 10° 2.9699 x 10°
(2.27 x 10%)— (5.74 x 107)— (2.79 x 107)— (1.52 x 10%)= (4.14 x 10°)

10 2.9858 x 101 3.4903 x 1010 7.6269 x 1010 3.0495 x 1010 4.9813 x 1010

(3.32 x 1011) (3.02 x 10'0)= (4.54 x 1010)+ (3.54 x 10'0)— (3.35 x 1010)

15 4.6355 x 1013 2.0714 x 1012 1.0548 x 1013 4.3050 x 1013 4.2768 x 1012

(4.55 x 1013)+ (1.66 x 1012)= (5.15 x 10'2)+ (1.06 x 10M)+ (6.82 x 1012)

MaF15 5 4.5279 x 108 6.8619 x 107 3.5312 x 107 2.9326 x 107 1.5157 x 10%
(5.90 x 107)+ (1.23 x 107)— (5.80 x 10°)— (7.29 x 10°)— (9.04 x 107)

10 8.7891 x 10'! 1.5901 x 1010 8.7310 x 1010 9.5543 x 10° 1.0067 x 10!

(2.84 x 101) (4.25 < 10%)— (1.06 x 1019)— (2.82 x 10%)— (1.99 x 1011)

15 9.7562 x 1013 9.4054 x 1011 3.8922 x 1012 2.1926 x 1011 2.2061 x 1012

(4.37 x 1013) + (5.66 x 1011)— (7.43 x 10114 (6.98 x 1019)— (5.53 x 1011)

+/—/= 14/27/4 6/36/3 5/37/3 5/35/5 —————

Note: Bold marks indicate the best-performing results.
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Next, we more intuitively observe the ability of the six algorithms to balance con-
vergence and diversity on the MaF test suite. Because scatter plots may only be drawn
readily in 2D or 3D Cartesian coordinate spaces, which are difficult for people to com-
prehend because of the high-dimensional space, an alternative to view data with four or
more dimensions is using parallel coordinates. The parallel coordinates representation of a
solution set can partly reflect data and can be an assistant tool (but not entirely replacing
measurement indicators) in assessing a many-objective solution set. Figure 1 gives the
solution sets obtained by six algorithms of five-objective MaFé. It can be clearly seen that
MaOEA /DS has the best effect, followed by RVEA. The convergence and diversity of other
algorithms are poor. MOEADD, SPEAR, and RVEA do not fully converge, while NSGAIII
and onybyoneEA converge, but their diversity is relatively poor.

NSGAIII on MaF6 MOEADD on MaF6

onebyoneEA on MaF6 SPEAR on MaF6

Dimension No. Dimension No.

MaOEADS on MaF6 rue PF of MaF6.

2
Dimension No. Dimension No.

Figure 1. The final solution set obtained by the six MOEAs on five-objective MaF6.

3.3.2. WFG Suite

Table 4 reports the IGD mean and standard deviation values obtained by 6 MOEAs
on 27 WEFG test problems. It can be seen that MaOEA /DS showed obvious advantages
on WFG3-7 and WFG9, while RVEA performed best on WFGL1. Specifically, MaOEA /DS
performs poorly for WFG1 with separable and unimodal problems, and NSGAIII performs
best for WFG2 with a scaled disconnected Pareto front. For WFG3 with a degenerate
Pareto front, MaOEA /DS performs best. In WFG4-9, they have larger “hill sizes”. In
addition, WFGS5 is a very deceptive problem, and the nonseparable reduction of WFG6
and WFG9 is more difficult. For WFGS, the distance-dependent parameters depend on
the position-dependent parameters, which means that the optimizer cannot simply find a
good set of distance parameters. Statistically, MaOEA /DS outperforms other algorithms on
most test problems. Overall, the proposed MaOEA /DS algorithm outperforms NSGAIII,
MOEADD, onebyoneEA, SPEAR, and RVEA on 17, 21, 24, 20, and 18 problems, respectively.
These comparison results show that the dual selection strategy effectively balances the
convergence and diversity.

Table 4. Comparison of IGD values of six algorithms on WFG test problems.

Problems M NSGAIIL MOEA/DD 1by1EA SPEAR RVEA MaOEADS
WEGI1 5 6.4633 x 101 7.4770 x 1071 7.5595 x 10~ 6.7558 x 101 5.8124 x 107! 8.4710 x 101
(6.51 x 1072)+ (1.29 x 10~ 1)+ (5.79 x 10-2)+ (3.99 x 1072)+ (822 x 102)+ (112 x 1071)

10 1.5127 x 100 1.4350 x 10° 1.6295 x 10° 1.7542 x 10° 1.1013 x 10° 1.6346 x 10°

(1.09 x 10~ 1)+ (6.92 x 1072)+ (8.66 x 1072)= (6.39 x 1072)— (6.19 x 10~2)+ (7.39 x 1072)

15 21024 x 10° 2.2105 x 10° 2.2549 x 100 24561 x 100 1.8934 x 10° 2.1960 x 100

(1.02 x 10~ 1)+ (1.51 x 10~ 1)= (1.06 x 10~ 1)= (117 x 1071 — (8.74 x 10~2)+ (718 x 1072)

WEG2 5 3.8803 x 101 4.7795 x 101 6.6180 x 10~ 4.0011 x 10! 3.9465 x 10~ 5.0158 x 10~
(3.55 x 1073)+ (149 x 1072)= (6.58 x 1072)— (3.72 x 1073)+ (149 x 1072)+ (144 x 1071)

10 1.2728 x 10° 1.3226 x 10° 1.7248 x 10° 1.0965 x 10° 1.1439 x 10° 1.3734 x 10°

(142 x 107 Y= (3.92 x 1072)= (8.17 x 1072)— (1.73 x 1072)+ (448 x 1072)+ (1.04 x 1071)

15 1.5488 x 10° 1.9522 x 10° 2.2395 x 10° 1.5550 x 10° 1.6373 x 10° 21271 x 10°

(4.63 x 102)+ (6.30 x 1072)+ (8.80 x 1072)— (315 x 1072)+ 9.51 x 1072)+ (2.50 x 1071)
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Problems M NSGAIII MOEA/DD 1by1EA SPEAR RVEA MaOEADS
WFG3 5 4.8297 x 10~ 6.2896 x 1071 1.3403 x 10° 4.6479 x 101 5.1447 x 10~ 5.2335 x 107!
(4.07 x 107%)+ (5.17 x 1072)— (112 x 107 H)— (7.07 x 10-2)+ (3.95 x 10-2)= (357 x 1072)

10 1.1622 x 10° 2.7565 x 10° 5.4942 x 10° 2.0733 x 10° 3.4513 x 10° 1.0877 x 10°
(343 x 107 )= (1.36 x 107 1)— (7.44 x 107 1) (2.35 x 107 1)— (910 x 107 1)— (1.74 x 1071)

15 2.3081 x 10° 5.9429 x 10° 1.0027 x 101 4.1699 x 10° 6.1477 x 100 1.3342 x 10°
(4.60 x 107 1)— (3.37 x 107 1)— (2.09 x 10%)— (326 x 10~ 1)— (1.54 x 10%)— (1.51 x 1077)

WEG4 5 9.6444 x 101 1.0525 x 10° 1.4603 x 10° 9.7538 x 101 9.5988 x 101 8.4458 x 1071
(2.86 x 107%)— (243 x 1073)— (124 x 107 1)— (395 x 1073)— (1.64 x 107%)— (4.67 x 1073)

10 4.5129 x 10° 6.2603 x 10° 5.8334 x 10° 4.5545 x 10° 4.3788 x 10° 3.7674 x 10°
(3.76 x 1072)— (1.85 x 107 1)— (1.50 x 10~ 1)— (1.63 x 1072)— (5.36 x 1072)— (9.69 x 1072)

15 8.1639 x 100 9.1861 x 10° 1.0698 x 101 8.5551 x 10° 8.8103 x 10° 7.6513 x 10°
(1.04 x 107 1)~ (2.64 x 107 1)~ (273 x 107 1)— (1.14 x 107 1) — (447 x 107 1)~ (218 x1071)

WEG5 5 9.4632 x 101 1.0341 x 10° 1.4240 x 10° 9.6416 x 101 95221 x 101 8.4068 x 107!
(3.16 x 1073)— (3.69 x 1073)— (1.16 x 107 1)- (4.86 x 1073)— (1.21 x 1073)— (5.95 x 10~3)

10 44617 x 10° 6.3231 x 10° 5.9291 x 10° 4.5370 x 10° 4.3830 x 10° 3.6612 x 10°
(2.56 x 1072)— (1.35 x 107 1)— (2.09 x 107 1)— (1.38 x 1072)— (6.85 x 1072)— (2.26 x 1072)

15 7.8952 x 100 9.4691 x 100 1.1154 x 10! 8.7390 x 100 8.5338 x 10° 7.1526 x 10°
(2.53 x 107 1)— (1.05 x 10~ 1)— (1.97 x 107 1) — (3.70 x 1072)— (228 x 107 1)— (242 x1071)

WEG6 5 9.6803 x 101 1.0471 x 10° 1.7912 x 100 9.7883 x 101 9.6504 x 101 8.8326 x 107!
(3.89 x 1073)— (3.93 x 1073)— (1.01 x 107 1)— (5.61 x 1073)— (217 x 1073)— (9.64 x 1073)

10 4.5839 x 10° 6.1404 x 10° 6.8068 x 10° 4.6045 x 10° 43851 x 10° 4.0783 x 10°
(1.77 x 10~2)— (1.61 x 10~ 1)— (1.76 x 10~1)— (1.85 x 10~2)— (7.54 x 1072)— (622 x1071)

15 7.9870 x 10 1.0504 x 10! 1.2767 x 10! 8.7871 x 10° 9.0782 x 10° 7.4515 x 10°
(3.09 x 10~1)— (3.10 x 10~ 1)— (3.03 x 107 1)— (3.64 x 1072)— (330 x 10~ 1)— (5.85 x 1071)

WFG7 5 9.6426 x 10~ 1.0626 x 10° 1.9143 x 10 9.7174 x 10~ 9.6430 x 101 8.4367 x 1071
(2.04 x 1073)— (440 x 1073)— (144 x 1071 — (2.82 x 1073)— (1.97 x 1073)— (6.11 x 1073)

10 4.5223 x 10° 5.3847 x 10° 6.0856 x 10° 4.5791 x 10° 4.3077 x 10° 3.6845 x 100
(6.67 x 1072)— (2.00 x 10~ 1)— (298 x 10~ 1)— (2.61 x 1072)— (5.42 x 1072)— (1.73 x 1072)

15 8.1571 x 10° 8.4210 x 10° 9.8908 x 10° 8.7380 x 10° 8.0012 x 10° 7.3786 x 10°
(6.56 x 10~2)— (5.68 x 10~ 1)— (4.71 x 107 1)— (8.30 x 10~ 2)— (4.04 x 107 1)— (1.05 x 10771)

WEGS 5 1.0012 x 10° 1.0640 x 10° 1.6039 x 10° 1.0091 x 10° 1.0047 x 10° 1.0140 x 10°
(9.84 x 1073)+ (3.83 x 1073)— (8.35 x 1072)— (7.04 x 1073)+ (2.44 x 1073)+ (7.00 x 1073)

10 4.5879 x 10° 5.6383 x 10° 6.6225 x 10° 4.7420 x 10° 4.4048 x 10° 43220 x 10°

(2.95 x 10~ 1)— (3.41 x 10~ 1)— (4.74 x 107 1)— (5.09 x 10~2)— (112 x 107 1) — (1.01 x 1077)

15 8.3752 x 100 1.0623 x 10! 1.1101 x 10 8.8914 x 10° 8.2328 x 10° 9.1297 x 10°

(5.81 x 107 1)+ (3.65 x 107 1)— 9.33 x 107 1)— (5.30 x 1072)+ (557 x 1071)+ (1.24 x 1071

WFG9 5 9.3306 x 101 1.0374 x 10° 1.3834 x 10 9.4986 x 101 9.4202 x 101 84771 x 107}
(5.68 x 1073)— (6.20 x 1073)— (1.29 x 107 1) — (1.34 x 1072)— (3.64 x 1073)— (1.06 x 10~2)

10 4.2991 x 10° 5.7643 x 10° 5.3871 x 10° 4.5102 x 10° 4.3134 x 10° 3.7706 x 10°
(531 x 1072)— (2.69 x 107 1)~ (1.84 x 107 1)— (2.56 x 1072)— (646 x 1072)— (6.76 x 1072)

15 7.9697 x 10° 8.8195 x 10° 9.7966 x 10° 8.7412 x 10° 7.5711 x 10° 0.2358 x 10°
(2.06 x 10~ 1)— (290 x 10~ 1)~ (232 x 107 1)— (533 x 1072)— (2.62 x 107 1)~ (1.39 x 1071)

+/-/= 8/17/2 3/21/31 1/24/2 7/20/0 8/18/1 e

Note: Bold marks indicate the best-performing results.

Table 5 reports the PD mean and standard deviation values obtained by 6 MOEAs
on 27 WEFG test problems. Of the 27 problems, the statistical performance of MOEA /DS
on 24 problems is better than that of the comparison algorithm. MOEA /DS performs
better than NSGAIII, MOEA /DD, onebyoneEA, SPEAR, and RVEA on 24, 26, 25, 26, and
26 problems. Interestingly, NSGAIII performs best on WFG1, and for the remaining test
problems, MaOEA /DS perform best, indicating that the proposed algorithm has good
diversity, in which the PC strategy plays an important role.

Table 5. Comparison of PD values of six algorithms on WEFG test problems.
Problems M NSGAIII MOEA/DD 1by1EA SPEAR RVEA MaOEADS
WEGL 5 1.1698 x 10 1.0498 x 108 8.7496 x 107 1.0863 x 108 1.0821 x 108 9.8028 x 107
(7.23 x 108)+ (9.20 x 10%)= (121 x 107)= (7.97 x 100)= (1.18 x 107)= (2.35 x 107)
10 8.7220 x 100 4.8276 x 1010 6.8518 x 1010 6.3103 x 1010 5.9034 x 1010 7.7569 x 1010
(6.70 x 10%)+ (5.47 x 10%)— (1.14 x 1010)— (9.06 x 10%)— (7.24 x 10%)— (1.26 x 100)
15 29552 x 102 2.2892 x 102 2.7933 x 1012 2.1454 x 102 1.5950 x 1012 2.7561 x 1012
(340 x 10'1)= (2.35 x 10'1)— (5.33 x 101)= (217 x 10— (3.26 x 101)— (5.97 x 10'1)
WEG2 5 1.0417 x 108 8.2058 x 107 8.9302 x 107 9.0338 x 107 9.8692 x 107 15066 x 108
(4.30 x 10%)— (2.79 x 106)— (4.10 x 10°)— (3.38 x 106)— (3.74 x 10%)— (1.79 x 107)
10 8.0549 x 1010 4.8425 x 1010 7.0575 x 1010 7.6180 x 1010 5.7366 x 1010 1.3398 x 10!
(1.89 x 1010)— (3.95 x 10%)— (2,51 x 10%)— (3.51 x 10%)— (3.09 x 10%)— (8.26 x 10°)
15 3.4325 x 1012 9.8461 x 101 2.6482 x 1012 3.1218 x 102 2.3737 x 1012 5.1493 x 1012

(2.68 x 1011)—

(1.48 x 10—

(1.17 x 101y —

(2.24 x 10—

(3.89 x 1011)—

(3.22 x 1011)
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Problems M NSGAIII MOEA/DD 1bylEA SPEAR RVEA MaOEADS

WFG3 5 2.0776 x 108 1.4575 x 108 2.2350 x 108 9.3675 x 107 1.6148 x 108 3.1291 x 108

(8.32 x 10°)— (7.26 x 106)— (7.10 x 10°)— (9.95 x 106)— (1.81 x 107)— (1.10 x 107)

10 2.5679 x 101 1.0499 x 101! 2.5963 x 101 7.5062 x 1010 1.6407 x 10 5.3135 x 10!

(2.36 x 1010)— (6.69 x 10%)— (1.32 x 1010)— (6.88 x 10%)— (1.75 x 1010)— (3.54 x 10'0)

15 1.0619 x 1012 5.1565 x 1012 9.9983 x 1012 4.1787 x 1012 8.7560 x 1012 2.1459 x 1013

(2.44 x 1012)— (3.98 x 1011)— (946 x 101)— (8.34 x 10M)— (2.02 x 1012)— (2,01 x 10'2)

wieh s R i 1oh- (B0 G o Fe o i)
.17 X — 49 x — 23 X — .59 x — .16 x — 42 x

10 2.9616 x 101 1.4211 x 101 2.7562 x 101 24797 x 101 1.9412 x 10 11261 x 1012

(2.95 x 1010)— (9.49 x 10%)— (1.53 x 1010)— (1.33 x 1019)— (1.49 x 1010)— (7.25 x 10'%)

15 2.3520 x 101 8.4796 x 10! 9.8140 x 1012 1.6176 x 101 1.0200 x 10 5.9666 x 10'3

(2.24 x 1012)— (6.41 x 10M)— (7.24 x 10M)— (1.77 x 1012)— (5.39 x 10')— (4.48 x 10')

wes s aR gt gy s W
.| - . - . - . - X - 33 x

10 3.7819 x 101 1.8887 x 1011 3.3906 x 1011 2.7034 x 101 22836 x 1011 1.3563 x 1012

(1.57 x 1010)— (1.21 x 1010)— (1.69 x 1010)— (1.24 x 1019)— (8.23 x 10%)— (2.97 x 1010)

15 3.0427 x 10%3 4.8106 x 1012 1.4339 x 1013 1.1252 x 1013 1.0359 x 1013 7.4247 x 1013

(2.10 x 10'2)— (4.73 x 10— (7.43 x 1011)— (5.24 x 10— (6.24 x 101)— (7.89 x 10'2)

wes s GROE AR G AR ey rane10)
92 x - 01 x — 44 x - 30 x — 21 x - 90 x

10 2.7307 x 1011 16171 x 1011 2.3104 x 1011 22149 x 1011 2.0821 x 10" 1.1482 x 1012

(1.42 x 1010)— (1.01 x 101)— (1.39 x 1010)— (1.23 x 101)— (9.68 x 10%)— (157 x 10')

15 25428 x 1013 4.2348 x 1012 8.8174 x 10'2 1.0614 x 10'3 8.5766 x 10'2 65029 x 1013

(1.56 x 1012)— (4.03 x 10— (7.38 x 1011)— (5.54 x 1011)— (5.11 x 101y — (8.12 x 10'2)

we s R ARY @ dTR A Han10)
49 x — .84 x — 77 X — .16 X — 42 x — .60 x

10 3.8882 x 101 25269 x 101 3.3607 x 101 4.2304 x 101 2.6579 x 101 1.3589 x 1012

(1.76 x 1010)— (1.07 x 1019)— (2.07 x 1010)— (1.42 x 1019)— (1.31 x 1010)— (3.25 x 100)

15 3.4182 x 1013 1.1550 x 10" 2.7436 x 1013 1.7104 x 1013 22836 x 1013 6.8444 x 1013

(2.65 x 1012)— (1.03 x 1012)— (4.63 x 1012)— (7.96 x 10— (2.25 x 1012)— (412 x 1012)

T N 40 M v M ) AR o)
24 x — .03 X — .50 x — .16 X — .01 x — 35 x

10 4.2663 x 101 1.7327 x 101 2.5967 x 101 3.8069 x 101 2.3532 x 101 1.3206 x 102

(6.03 x 1010)— (1.67 x 1010)— (3.51 x 1010)— (1.92 x 1019)— (2.48 x 1010)— (7.37 x 101%)

15 2.7028 x 101 5.3345 x 1012 1.5807 x 101° 1.1487 x 101 1.0916 x 101 5.0140 x 10'3

(2.55 x 1012)— (1.74 x 1012)— (4.38 x 1012)— (7.52 x 101)— (232 x101%)— (427 x 10'2)

R B 1 M 1 SR o SR e o)
. - A - . - . - A - 07 x

10 6.1450 x 1011 3.3937 x 101 6.2123 x 101 5.8324 x 101 4.2975 x 101 1.7008 x 102

(3.79 x 1010)— (2.46 x 1019)— (3.19 x 1010)— (2.77 x 1019)— (2.22 x 1010)— 1.03 x 1011)

15 4.1330 x 10" 15652 x 1013 3.8363 x 10" 2.2601 x 10" 2.4666 x 10'3 9.7837 x 103

(3.18 x 1012)— (1.72 x 1012)— (3.63 x 1012)— (1.41 x 1012)— (2.94 x 1012)— (5.15 x 10'2)

+/—/= 2/24/1 0/26/1 0/25/2 0/26/1 0/26/1 —————

Note: Bold marks indicate the best-performing results.

Figure 2 gives the solution sets obtained by 6 algorithms of 15-objective WFG9. It can be
clearly seen that MaOEA /DS has the best effect and has been well diffused throughout the
Pareto frontier, indicating its good convergence and diversity. Although other algorithms
mostly converge, their diversity is poor, with the onebyoneEA algorithm having the worst
diversity.

NSGAIII on WFG9 MOEADD on WFG9 onebyoneEA on WFG9 SPEAR on WFG9

l\

i

Dimension No. Dimension No. Dimension No.
RVEA on WFG9 MaOEADS on WFGY

rue PF of WFG9

Dimension No. Dimension No.

Figure 2. The final solution set obtained by the 6 MOEAs on 15-objective WFG9.

Figure 3 shows the evolution trajectory of IGD on all 15-objective WEG test problems,
where the horizontal coordinate represents the number of functional evaluations and the vertical
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coordinate represents the IGD value. This indicates the change trend of IGD value during
evolution. As we can see, the proposed MaOEA /DS algorithm has obvious advantages in
test problems except for WFG1, 2, and 8. In addition, there is an interesting phenomenon
that after a certain number of functional evaluations, the evolutionary curves of MOEA /DD
and onebyoneEA have an upward trend. For MOEA /DD, some solutions at the worst non-
dominated level can be unconditionally retained for the next generation, changing the diversity
of the population, so the IGD value has an upward trend. For onybyoneEA, in the early search
stage, the focus is on convergence, while in the later search stage, the focus is on population
diversity, resulting in reduced convergence, so the IGD value of onebyone increases.

WEGI WFG2 WEG3

43 \ E—— —
—&— NSGAIll \ W ON —&— NSGAIIl
1 —4— MOEADD S\ - A 12 4— MOEADD
onebyoneEA. 72 onebyonel: onebyoneEA
35 —%— SPEAR ) 4 SPEAR
A RVEA ! RVEA
—— MaOEADS —— MaOEADS
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S = =t =
: 25 6 P S—f—3
N o e e
25 -
ek
- 4 SR
= e
¥ 4
) b o oo o0 o—c—1
1 2 3 4 1 2 3 4 1 2 3 4
Number of function evaluations 1o¢ Number of function evaluations s 1% Number of function evaluations 0%
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1 o ~scam 1
—&— NSGAIIl — S NSGAII
49— MOEADD 05 e :%“;;\':;D 2 4— MOEADD
2 onchyaneEA ’ ‘ oncbyoncEA
12 —#*— SPEAR oA oncbyoneEA g
Y 10t /7 9 ——%— SPEAR *— SPEAR
£ RVEA / . ; £ RVEA
&— RVEA 11 .
[T MaOEADS | — % MiOEADS —*— MaOEADS
1 9.5 a ey e
2 4 =)
S N S ~
- = R S
10 ——— |
8.5 A A A
.
8 —=
750 o

1 2 3 4 1
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Figure 3. Evolution trajectory of IGD on all 15-objective WFG test problems (the error bars are very
tiny due to low variance between replicates, so the figure does not include error bars).

3.4. Validation of Distance Function

In order to verify the advantages of the distance function proposed in this paper, it is
compared with several distance-based algorithms: BiGE [40] (the Manhattan distance, L1-norm-
based), KnEA (the Euclidean distance, L2-norm-based) [14], and Two_Arch2 [41] (Lp-norm-
based (p < 1)). Table 6 reports the IGD mean and standard deviation values obtained by four
MOEAs on 21 DTLZ test instances. By comparing the statistical results on 21 test instances,
MaOEA /DS is superior to BiGE, KnEA, and Two_Arch2 on 18, 17, and 12 instances, respectively,
and its performance is far better than BiGE and KnEA, but KnEA performs best on DTLZ7. The
MaOEA /DS algorithm is slightly better than the Two_Arch2 algorithm, but the Two_Arch2
algorithm obtains the optimal result on the DTLZ1 problem. It can be seen that the Two_Arch2
algorithm still has advantages. Overall, MaOEA /DS performed best.
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Table 6. Comparison of IGD values of four algorithms on DTLZ test problems.

Problems M BiGE KnEA Two_Arch2 MaOEADS
DTLZ1 5 1.0159 x 107! (1.87 x 1072) — 14675 x 107! (751 x 1073 —  5.2960 x 1072 (7.29 x 10~%) = 5.6934 x 1072 (7.30 x 1073)
10 5.0422 x 107 (.11 x 107!) — 5.2582 x 10° (3.95 x 10°) — 1.0576 x 1071 (1.28 x 1073) + 1.2236 x 107 (1.47 x 1072)
15 8.0216 x 107! (3.74 x 107!) — 2.8731 x 10° (2.18 x 10%) — 1.4030 x 101 (2.61 x 1073) = 15616 x 107! (6.09 x 1072)
DTLZ2 5 20888 x 1071 (3.05 x 1073) —  1.7292x 107 233 x 10%) —  1.7280 x 10~ (1.94 x 107%) — 1.4821 x 1071 (1.46 x 1073)
10 45028 x 1071 (5.72 x 1073) —  4.7440 x 1071 (9.65 x 1072) —  4.2212 x 107! (2.65 x 1073) — 3.8524 x 107! (5.50 x 10~3)
15 57849 x 1071 (6.96 x 107%) — 64483 x 1071 (145 x 1071) —  6.2168 x 107! (9.58 x 1073) — 5.2766 x 10~ (7.28 x 1073)
DTLZ3 5 5.8813 x 107! (2.53 x 10~ ") — 39517 x 107! (1.64 x 10~') —  2.0178 x 10! (1.77 x 1072) — 1.7687 x 10! (2.24 x 1072)
10 2.1921 x 10! (6.63 x 10°) — 3.6317 x 102 (7.40 x 10') — 5.4771 x 107! (5.66 x 1072) + 1.0025 x 10° (4.93 x 10~1)
15 3.2595 x 10! (1.30 x 10') — 7.4939 x 102 (1.21 x 10%) — 3.1432 x 10° (2.25 x 10°) — 1.3577 x 10° (5.58 x 10~1)
DTLZ4 5 20948 x 1071 (491 x 107%) + 17147 x 1071 (536 x 1073) +  1.7499 x 10! (2.65 x 1073) + 8.9514 x 1071 (3.45 x 1072)
10 6.4786 X 1071 (216 x 1072) — 44757 x 1071 (3.97 x 103) —  4.1765 x 10! (2.68 x 107%) — 3.8072 x 1071 (242 x 1073)
15 7.9061 x 107! (8.73 x 1073) —  5.6598 x 107! (7.26 x 107%) —  5.6315 x 107! (3.68 x 1073) — 5.1872 x 107! (2.38 x 1073)
DTLZ5 5 9.8499 x 1072 (136 x 10°2) —  1.5473x 10! (3.62x 1072) — 59792 x 1072 (9.37 x 103) = 6.3489 x 1072 (9.84 x 1073)
10 3.2611 x 1071 (834 x 102) —  3.0687 x 107! (5.77 x 1072) —  1.6977 x 107! (3.37 x 1072) — 1.1390 x 101 (2.48 x 10-2)
15 4.0924 x 1071 (3.64 x 1072) —  5.0398 x 10~' 243 x 1071) —  3.5927 x 107! (1.23 x 10~!) — 1.2167 x 107! (2.45 x 1072)
DTLZ6 5 6.5350 x 1071 (7.64 x 1072) — 25323 x 1071 (899 x 1072) — 85504 x 102 (1.45 x 102) — 5.4738 x 10~2 (1.08 x 1072)
10 6.5240 x 107! (7.46 x 1072) — 2.3265 x 10° (5.92 x 10~1) — 3.6897 x 107! (1.36 x 10~1) — 1.9888 x 107! (6.62 x 1072)
15 7.2410 x 1071 (1.66 x 1071) — 23771 x 10° (4.87 x 1071) — 3.1099 x 10° (6.89 x 1071) — 2.2409 x 107! (6.48 x 1072)
DTLZ7 5 3.8680 x 1071 (1.17 x 1071y +  2.4199 x 107! (6.93 x 1073) + 2.5333 x 107! (6.32 x 1072) + 1.4964 x 10° (8.52 x 1073)
10 34717 x 10° (430 x 1071y = 87240 x 101 (8.63 x 1073) +  9.3805 x 107" (3.02 x 10~2) + 3.5455 x 10° (1.36 x 1071)
15 1.0394 x 10! (4.39 x 1071) — 4.9742 x 10° (7.79 x 1071) + 6.8648 x 10° (1.22 x 10°) + 7.7659 x 10° (3.40 x 1071)
+/=/= 2/18/1 4/17/0 6/12/3 e
Note: Bold marks indicate the best-performing results.
3.5. Analysis of the PC Strategy
The PC strategy proposed in this article is very important for environment selection,
because it further selects the solution set with good diversity based on the diversity indictors. In
order to verify the effectiveness of the PC strategy, we extend the PC strategy to NSGA-III to
update the external population, and the resulting variant is expressed as NSGA-III-PC. Table 7
reports the average IGD values obtained during 20 independent runs on 5, 10, and 15 objective
benchmarks. Of the 21 instances of the DTLZ test problems, NSGA-III-PC is superior to NSGA-
I in 15 instances. It can be seen that the PC strategy is a general framework that can be
integrated into other algorithms to improve the performance of the algorithm.
Table 7. The IGD values of NSGA-III and NSGA-III-PC on the DTLZ test problem.
M=5 M =10 M=15
Problem
NSGAIII NSGAIII-PC NSGAIII NSGAIII-PC NSGAIII NSGAIII-PC
6.7832 x 10~ 7.8151 x 10~2 4.1924 x 10° 7.9292 x 10~2 3.9094 x 10° 5.2415 x 10~2
DTLZ1 (3.19 x 107 1)— (1.55 x 10~2) (2.09 x 10%)— 9.07 x 1072) (1.55 x 10%)— (5.02 x 1072)
21379 x 101 1.1978 x 1071 5.2921 x 10~ 8.7973 x 10~2 6.9242 x 10~ 3.0851 x 10!
DTLZ2 (530 x 107~ (8.01 x 10-3) (6.93 x107%)— (1.53 x 1071) (491 x 107%)— (1.11 x 1071)
2.5655 x 10° 3.3894 x 101 2.2668 x 101 1.3876 x 10! 2.4893 x 10! 3.0549 x 101
DTLZ3 (2.04 x 10%)— (4.86 x 1072) (7.98 x 100)— (1.89 x 1071) (7.91 x 10%)— (219x1071)
3.1866 x 10~ 1.2052 x 1071 4.8177 x 1071 8.4755 x 102 6.5073 x 10~ 24466 x 107!
DTLZ4 137 x 1071) — (144 x 1072) (222 x1072%)— (1.46 x 1071) (7.70 x 1072)— (1.39 x 1071)
1.1653 x 101 6.3769 x 107! 1.6189 x 10! 1.0631 x 10° 2.3604 x 10! 1.1660 x 10°
DTLZ5 (5.92 x 10-2)+ (1.93 x 107%) (626 x 1072)+ (147 x 1072) (6.35 x 1072)+ (9.52x107%)
3.6662 x 10~ 4.8239 x 10% 2.9241 x 10° 1.9805 x 10° 2.9871 x 10° 2.6509 x 10°
DTLZ6 (3.63 x 10~ 1)— (517 x 1071) (346 x 10~ 1)— 659 x 1071) (5.53 x 107 1)— (945 x 1071)
41341 x 10! 3.2607 x 10° 42123 x 10° 1.0811 x 10’ 1.1936 x 10! 1.8970 x 10’
DTLZ7 (123 x 10-1)+ (4.18 x 1072) (1.00 x 100)+ (1.46 x 10°) (2.65 x 10%)+ (1.89 x 10°)
+/—/= 2/5/0 000 —————— 2/5/0 ————— 2/5/0 0000 —————

Note: Bold marks indicate the best-performing results.

Here, we perform ablation studies on Equation (4) and do not use other strategies for
verification. We only simply calculate the diversity of solutions to avoid the impact on
the verification results. D1 denotes the first term of Equation (4) (i.e., ||x' — x/||2), and D2
denotes the whole equation. In Table 8, we report the average PD obtained by D1 and D2 in
20 independent runs on 5, 10, and 15 objective test benchmarks. The larger the PD value, the
better the diversity. It can be seen that among the different objective numbers of DTLZ1-7
test problems, D2 is significantly better than D1 on 5, 7, and 5 test problems, respectively. It
can be seen that the second term of Equation (4) is very important to improve the diversity
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of the solution set, because the second term also considers the difference between each
component on the basis of the first term.

Table 8. The PD values of D1 and D2 on the DTLZ test problem.

M=5 M =10 M=15
Problem
D1 D2 D1 D2 D1 D2
85212 x 10° 1.2628 x 107 1.7961 x 107 2.7675 x 107 4.4747 x 108 3.1625 x 107
DTLZ1 (1.24 x 107)— (3.82 x 107) (222 % 107)— (4.85 x 107) (120 x 10%)+ (120 x 10%)
4.6448 x 10* 1.8988 x 10° 1.9157 x 107 3.3295 x 107 5.7880 x 107 3.2982 x 108
DTLZ2 (1.02 x 10%)— (2.83 x 105) (196 x 107)— (423 x 107) (8.03 x 107)— (6.01 x 108)
1.7157 x 108 3.8958 x 108 3.2317 x 10° 3.4134 x 10° 1.3651 x 10° 22978 x 1010
DTLZ3 (218 x 10°%)— (3.57 x 108) (6.83 x 10%)— (3.88 x 10%) (262 x 10°)— (6.86 x 101%)
1.6642 x 101 26147 x 10! 1.1560 x 10° 1.5995 x 10° 35229 x 102 29157 x 102
DTLZ4 (512 x 10")+ (213 %107 (873 x1071)— (2.96 x 10%) (7.78 x 10%)+ (5.74 x 10%)
4.3082 x 10° 4.7445 x 10° 2.7916 x 108 3.6615 x 108 4.9313 x 10° 52796 x 10°
DTLZ5 (5.25 x 10°)— (4.52 x 105) (1.90 x 10%)— (2.31 x 108) (6.02 x 10°)— (5.25 x 109)
3.9990 x 10° 1.8958 x 10° 1.3138 x 107 1.6605 x 107 1.0316 x 108 1.5215 x 108
DTLZ6 (6.80 x 10°)+ (222 x 10%) (1.46 x 107)— (2.75 x 107) (844 x 107)— (240 x 108)
4.5275 x 10° 6.3918 x 10° 9.7971 x 10° 1.0070 x 10'° 7.0671 x 1011 7.1353 x 101
DTLZ7 (1.37 x 10°)— (3.85 x 10%) (1.73 x 10%)— (1.33 x 10%) (1.08 x 1011)— (8.07 x 1010)
+/=/= 2/5/0 e 0/7/0 e 2/5/0 e

Note: Bold marks indicate the best-performing results.

3.6. Analysis of Dual Selection

In Section 3.3, comparing the IGD values, it is evident that the proposed algorithm
performs significantly better than other comparative algorithms, as in the first selection,
the individual with the best convergence is selected from the top few individuals with
good diversity and placed in the population, which narrows the range of optimal solutions.
In the second selection, based on the PC strategy, further individuals are selected with
better diversity. Comparing the PD values, it can be seen that the diversity of the proposed
algorithm far exceeds that of other algorithms. This stems from the advantages of the PC
strategy, as it not only considers the distance between the closest two points in the objective
space, but also the differences between each objective function when evaluating the diver-
sity of the solution set and considers the impact of the crowding degree of surrounding
individuals. Compared to most other environmental selection strategies, the dual selection
strategy does not require additional reference vectors and other parameter controls, and
the obtained solution set is relatively stable.

4. Conclusions

Aiming at the existing problems of high-dimensional multi-objective evolution, this
paper proposes a many-objective algorithm based on the dual selection strategy. First, a
new distance function is designed as an effective distance metric. Then, a PC strategy is
proposed to further enhance the algorithm'’s ability to select superior solutions. Finally,
a dual selection strategy is proposed. In the first selection, the individuals with the best
convergence are selected from the top few individuals with good diversity in the population,
focusing on population convergence. In the second selection, the PC strategy is used to
further select individuals with larger crowding distance values, emphasizing population
diversity. Extensive comparisons are made between MaOEA /DS and several state-of-the-
art algorithms for 93 instances of 31 test problems from 3 well-known test suites on 5, 10,
and 15 objectives. The results show that MaOEA / AS has better overall performance and is a
promising MaOEA. In addition, the proposed PC strategy is combined with other advanced
MaOPs methods. The results show that it is beneficial to improve the performance of other
MaOEAs algorithms.

The work of this paper is obvious to improve the diversity, and the PC strategy can
be extended to improve the diversity of other algorithms. In future work, the algorithm
should be applied to different practical problems to further verify the effectiveness of
the algorithm.
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