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Abstract: A thermodynamic process is a solution of the balance equations fulfilling the second
law of thermodynamics. This implies restrictions on the constitutive relations. The most general
way to exploit these restrictions is the method introduced by Liu. This method is applied here,
in contrast to most of the literature on relativistic thermodynamic constitutive theory, which goes
back to a relativistic extension of the Thermodynamics of Irreversible Processes. In the present
work, the balance equations and the entropy inequality are formulated in the special relativistic four-
dimensional form for an observer with four-velocity parallel to the particle current. The restrictions
on constitutive functions are exploited in the relativistic formulation. The domain of the constitutive
functions, the state space, is chosen to include the particle number density, the internal energy
density, the space derivatives of these quantities, and the space derivative of the material velocity
for a chosen observer. The resulting restrictions on constitutive functions, as well as the resulting
entropy production are investigated in the non-relativistic limit, and relativistic correction terms of
the lowest order are derived. The restrictions on constitutive functions and the entropy production
in the low energy limit are compared to the results of an exploitation of the non-relativistic balance
equations and entropy inequality. In the next order of approximation our results are compared to the
Thermodynamics of Irreversible Processes.

Keywords: special relativity; constitutive theory; dissipation inequality; relativistic continuum theory;
relativistic balance equations; low energy limit; Liu procedure

1. Introduction

The thermodynamic constitutive theory of special relativistic fluids started with the
relativistic Theory of Irreversible Processes (TIP) in a paper by Eckart [1]. Relativistic TIP
was generalized to mixtures of different chemical components [2–4] and to systems with
polarization and magnetization [5]. For a review of the problems and possible solutions
of special- and general-relativistic TIP see [6] and for an overview over the literature on
relativistic TIP [7,8].

The most general method to exploit the implications of the Second Law of Thermo-
dynamics on constitutive functions is the method of Liu [9]. A thermodynamic process
is a solution of the balance equations fulfilling the dissipation inequality. This imposes
constraints on the constitutive functions [10]. The result of this exploitation depends on the
set of variables the constitutive functions are defined on, the state space. The choice of the
state space is always the first step in the procedure. Here, the state space is a first order
gradient one.

In relativistic continuum theory, the method of Liu is mostly applied in the context of
Extended Thermodynamics [11], which is often motivated by kinetic theory, see f.i. [12].
Relativistic kinetic theory is based on the Boltzmann–Chernikov equation for the statistical
distribution function, the balance equations being the moment equations. They have been
derived for monatomic as well as polyatomic gases, see f.i. [12,13]. In this approach, there
is always the necessity of a closure relation, for example, maximum entropy closure. The
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fact that the Boltzmann–Chernikov equation is valid for dilute gases only is a limitation of
this kinetic theory. The kinetic theory of dense gases or even liquids requires two-particle or
many-particle distribution functions and assumptions about particle-particle interactions.
In non-relativistic theory it leads to the BBGKY hierarchy. Instead of particle–particle
interactions, continuum theory introduces constitutive functions.

In [14], the Liu procedure with the energy–momentum balance as a constraint led to
the conclusion that in the relativistic case it is not possible to have local Lagrange–Farkas
multipliers, a local entropy, and no additional term in the entropy flux (the assumptions of
relativistic TIP) simultaneously. This observation coincides with our observation here with
respect to the relativistic correction terms (the order 1

c5 ).
We will apply here method of Liu to exploit the implications of the Second Law of

Thermodynamics on constitutive functions. In the non-relativistic context this exploitation
of the dissipation inequality with a first order gradient state space leads exactly to the
assumptions (local equilibrium and the special form of the entropy flux) and results (the
entropy production) of TIP. This non-relativistic example is summarized in Section 2. In
Section 3, the balance equations of special relativistic continuum theory are formulated in
Lorentz covariant form and in the decomposition for an observer with four-velocity u with
Eckarts choice of the four-velocity. To prepare the low energy approximation, the kinematic
quantities are expanded in a series of v

c . In Section 4, the Second Law of Thermodynamics
is exploited with the balance equations for an observer as constraints. In lowest non-trivial
order 1

c3 the non-relativistic TIP is recovered. In the order of approximation 1
c5 it cannot be

concluded, in general, that the entropy flux is heat flux divided by temperature; however,
there may be an extra entropy flux. Local equilibrium η(e, n) still implies that the extra
entropy flux vanishes. Finally, the entropy production with relativistic correction terms
is derived.

Throughout this paper, we will deal with a one-component system (no mixture of
chemical components), which is a simple fluid (no internal angular momentum and no
antisymmetric part of the stress tensor). We will restrict ourselves to special relativity with
the convention for the Minkowski tensor diag(−1,1,1,1). For the indices of four-vectors
and tensors, we will use capital Latin letters to denote components from 0 to 3 (i.e., time
and space components) and Greek letters to denote components from 1 to 3 (i.e., space
components only).

2. Non-Relativistic Continuum Thermodynamics: Example of a Simple, Viscous, Heat
Conducting Fluid
2.1. Balance Equations

We have the following set of balance equations for the wanted fields of mass density $,
material velocity v, and specific internal energy e:

Mass:
d$

dt
+ $∇ · v = 0

Momentum: $
dv
dt
−∇ · t− $ f = 0 (1)

Internal energy: $
de
dt

+∇ · q− t : ∇v = 0

with a symmetric stress tensor t, because the fluid is not micro-polar. q is the heat flux and
d
dt =

∂
∂t + v · ∇ denotes the material time derivative.

In addition, we have the balance of entropy with a non-negative production σ

Entropy inequality $
dη

dt
+∇ ·φ = σ ≥ 0 (2)

with specific entropy η and entropy flux φ.
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Stress tensor, heat flux, entropy, and entropy flux are constitutive quantities. Constitu-
tive functions depend on the state space, here a first order gradient one

Z = {$, e,∇$,∇e,∇v} (3)

2.2. Exploitation of the Dissipation Inequality

The space and time derivatives of constitutive functions in the balance equations are
carried according to the chain rule. The balance equations are considered as constraints,
and the following inequality is exploited:

Balance of Entropy + λ$(Balance of mass) + λe(Balance of internal energy) +

+λv(Balance of momentum ) ≥ 0 (4)

The prefactors in front of the higher derivatives lead to the Liu equations:

$̇ : λ$ = −$
∂η

∂$
, (5)

ė : $λe = −$
∂η

∂e
, (6)

v̇ : $λv = 0, (7)

(∇$)˙ : 0 = $
∂η

∂∇$
, (8)

(∇e)˙ : 0 = $
∂η

∂∇e
, (9)

(∇v)˙ : 0 = $
∂η

∂(∇v)
, (10)

∇∇$ : −λe ∂q
∂∇$

=
∂Φ

∂∇$
, (11)

∇∇e : −λe ∂q
∂∇e

=
∂Φ

∂∇e
, (12)

∇∇v : −λe ∂q
∂∇v

=
∂Φ

∂∇v
. (13)

From Equations (8)–(10), it follows that η = η($, e), i.e., local equilibrium.
Consequently,

λ$ = λ$($, e), λe = λe($, e) = − 1
T

. (14)

Temperature T has been introduced by the equilibrium relation 1
T = ∂η

∂e = −Λe.
The extra entropy flux

Φ + λeq = k($, e) = 0

in an isotropic material, because it is a function of scalar variables only. We have the
classical relation of TIP Φ =

q
T .

With the definition
t = −p($, e)1 + tdyn (15)

the entropy production reads

σ =
1
T

tdyn : (∇v)sym︸ ︷︷ ︸
viscous flow

+ q · ∇ 1
T︸ ︷︷ ︸

heat conduction

(16)



Entropy 2023, 25, 952 4 of 11

3. Relativistic Balance Equations

The balance equations of particle number (replacing the balance of mass of the classical
theory), energy-momentum, and entropy are formulated in terms of the four-vector of
particle number NA, the symmetric energy-momentum tensor TBA and the four-vector of
entropy SA. For an observer at rest (i.e., in the non-relativistic limit) the 0-component of
this entropy-four-vector is the entropy density. For this observer, the 1,2,3-components of
SA are the components of the entropy flux.

The conservation of particle number, conservation of energy, and momentum are
formulated as

Particle number: NA
,A = 0 A = 0, 1, 2, 3 (17)

Energy-momentum: TBA
,A = 0 A, B = 0, 1, 2, 3. (18)

For energy-momentum it is supposed, that there is no supply. The

Entropy inequality SA
,A = σ ≥ 0 (19)

expresses the Second Law of Thermodynamics. The entropy production σ is a Minkowski-
scalar, i.e., observer independent.

Decomposition for an Observer

The four-velocity of an observer is introduced parallel to the particle current NA = nuA

(Eckarts choice of the four-velocity u) [1] with particle density n. This choice is motivated
by the analogy to the classical theory, where the material velocity is defined by streamlines
of particles.

For an observer with four-velocity u, we have the decomposition

NA = nuA (20)

TAB =
1
c2

(
EuAuB + qBuA + qAuB

)
− tAB (21)

SA = nηuA + ΦA (22)

with E: total energy density, q: heat flux, t: stress tensor, nη: entropy density, (η: entropy
per particle), and Φ: entropy flux. Details about the relativistic balance equations and the
decomposition for an observer can be found, for example, in [2,15].

With the aid of the projector hC
B = δC

B + 1
c2 uCuB, the energy–momentum balance is

decomposed into

uBTBA
,A = 0 balance of energy (23)

hC
B TBA

,A = 0 balance of momentum (24)

with A, B, C = 0, 1, 2, 3. The components t0α and t00 (α = 1, 2, 3) are eliminated by use of the
relations tABuB = tA0u0 + tAβuβ = 0. Analogously, we have qAuA = 0, i.e., q0u0 = −qαuα.

Explicitly the set of balance equations for an observer with four-velocity

uA = γ(c, vα), γ :=
1√

1− v2

c2

(25)

reads in three-dimensional notation (Greek indices run from 1, ..., 3):
Balance of particle number

1
c

(
dn
dt

+ n∂µvµ

)
+

1
c3 γ2naµvµ = 0, (26)
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where aµ =
dvµ

dt .
From total energy density the ’rest-mass-energy’ m0nc2 with rest mass per particle m0

is subtracted
ne = E−m0nc2 (27)

e: internal energy per particle. By the aid of the balance of particle number (26), the balance
of energy (23) results in the balance of internal energy

1
c3

(
∂ne
∂t

+ ∂ν(nevν) +
1
γ

∂νqν − tµν∂µvν

)
+

+
1
c5

(
γ2nevνaν + γqνaν +

1
γ

∂

∂t
(qνvν)− tµνvν

∂

∂t
vµ

)
= 0 (28)

From the balance of momentum (24) we obtain

1
c2 (naµ − ∂νtµν) +

1
c4

(
neaµ + γ2naνvνvµ − 1

γ2
∂

∂t
(vνtµν)+

+tαβvµ∂βvα +
1
γ

∂

∂t
qµ +

1
γ

qν∂µvν

)
+O( 1

c6 ) = 0 (29)

For γ, γ2, and 1
γ , the following series of expansions are inserted:

γ =
1√

1− v2

c2

= 1 +
v2

2c2 +O( 1
c4 ) (30)

γ2 =
1

1− v2

c2

= 1 +
v2

c2 +O( 1
c4 ) (31)

1
γ
=

√
1− v2

c2 = 1− v2

2c2 +O( 1
c4 ) (32)

Finally, the balance equations are written in a more compact form in terms of the
specific quantities (quantities per particle) and the material time derivative d

dt (see the
analogy in the case of the non-relativistic balance equations). All partial time derivatives
are replaced by material time derivatives by ∂

∂t =
d
dt − vµ∂µ. The final form of the balance

equations up to order 1
c5 reads

Particle number:

1
c

(
dn
dt

+ n∂µvµ

)
+

1
c3

(
1− v2

c2

)
naµvµ = 0 (33)

Internal energy:

1
c3

(
n

de
dt

+

(
1− 1

2
v2

c2

)
∂µqµ − tµν∂µvν

)
+

+
1
c5

(
vµ

dqµ

dt
− vµvα∂αqµ + 2qµaµ − qµvν∂µvν + tµνvµaν + tµνvµvα∂αvν

)
= 0 (34)

Momentum:

1
c2 (naµ − ∂νtµν) +

1
c4

(
naνvνvµ + neaµ + v2∂νtµν − aνtµν − vν

dtµν

dt
+

+vνvα∂αtµν + vαtµν∂αvν − vµtβγ∂βvγ +
dqµ

dt
+ qν∂µvν + qµ∂νvν

)
= 0 (35)

Entropy
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1
c3

(
n

dη

dt
+ ∂µΦµ

)
+

+
1
c5

(
−v2n

dη

dt
+ Φµaµ + vµ

dΦµ

dt
− vµΦα∂µvα − vµvα∂µΦα

)
=

1
c3 σ ≥ 0 (36)

The non-relativistic balance equations (see Section 2.1) are recovered in order 1
c3 in the

case that aµvµ = 0, as was noticed in [16].

4. Exploitation of the Second Law of Thermodynamics

The state space is chosen in analogy to the non-relativistic example

Z = {n, e, ∂µn, ∂µe, ∂µvν} (37)

The balance equations with multipliers are added to the balance of entropy:

balance of entropy (36) + Λn( balance of particle number (33))+

+Λe(balance of internal energy (34)) + Λv · ( balance of momentum (24)) ≥ 0. (38)

The resulting expression is linear in the higher derivatives, not included in the state
space. The factors in front of the higher derivatives lead to the following restrictions on
constitutive functions:

dn
dt

: 0 =
1
c

Λn +
1
c3 n

∂η

∂n

(
1− v2

c2

)
+

1
c5 vα

(
∂Φα

∂n
+ Λe ∂qα

∂n

)
+

+
1
c4 Λv

µ

(
−vν

∂tµν

∂n
+

∂qµ

∂n

)
(39)

O( 1
c3 ) : c2Λn = −n

∂η

∂n
(40)

de
dt

: 0 =
1
c3 n
(

∂η

∂e

(
1− v2

c2

)
+ Λe

)
+

1
c5 vα

(
∂Φα

∂e
+ Λe ∂qα

∂e

)
+

+
1
c4 Λv

µ

(
−vν

∂tµν

∂e
+

∂qµ

∂e

)
(41)

O( 1
c3 ) : Λe = −n

∂η

∂e
(42)

d∂µn
dt

: 0 =
1
c3 n

∂η

∂∂µn

(
1− v2

c2

)
+

1
c5 vα

(
∂Φα

∂∂µn
+ Λe ∂qα

∂∂µn

)
+

+
1
c4 Λv

α

(
−vν

∂tαν

∂∂µn
+

∂qα

∂∂µn

)
(43)

O( 1
c3 ) :

∂η

∂∂µn
= 0 (44)

d∂µe
dt

: 0 =
1
c3 n

∂η

∂∂µe

(
1− v2

c2

)
+

1
c5 vα

(
∂Φα

∂∂µe
+ Λe ∂qα

∂∂µe

)
+

+
1
c4 Λv

α

(
−vν

∂tαν

∂∂µe
+

∂qα

∂∂µe

)
(45)
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O( 1
c3 ) :

∂η

∂∂µe
= 0 (46)

d∂µvβ

dt
: 0 =

1
c3 n

∂η

∂∂µvβ

(
1− v2

c2

)
+

1
c5 vα

(
∂Φα

∂∂µvβ
+ Λe ∂qα

∂∂µvβ

)
+

+
1
c4 Λv

α

(
−vν

∂tαν

∂∂µvβ
+

∂qα

∂∂µvβ

)
(47)

O( 1
c3 ) :

∂η

∂∂µvβ
= 0 (48)

aµ : 0 = Λv
µ

1
c2 n + Λv

α
1
c4

(
nvµvα + neδα

µ − tα
µ

)
+

+
1
c3 Λn

(
1− v2

c2

)
vµ +

1
c5

(
Φµ + Λe(2qµ + vνtν

µ)
)

(49)

O( 1
c2 ) : Λv

α = 0 (50)

O( 1
c3 ) : Λv

α =
1
c

Λn 1
n

vα = − 1
c3

∂η

∂n
vα (51)

∂γ∂µz : 0 = − 1
c2 Λv

β

(
∂tβγ

∂∂µz
− 1

c2 vγvα
∂tβα

∂∂µz
− v2

c2
∂tβγ

∂∂µz

)
+

+
1
c3

(
∂Φγ

∂∂µz
+ Λe ∂qγ

∂∂µz

)
+

+
1
c5

(
−vγvα

∂Φα

∂∂µz
−Λevγvα

∂qα

∂∂µz
−Λe v2

2
∂qγ

∂∂µz

)
(52)

O( 1
c3 ) :

1
c3

(
∂Φγ

∂∂µz
+ Λe ∂qγ

∂∂µz

)
= 0, (53)

where z is the abbreviation for the variables z ∈ {n, e, vε}. In the equations of lowest order
in 1

c , i.e., keeping the terms up to order 1
c3 , it has been made use of the fact that Λv is of the

order 1
c2 and, therefore, leads to higher order correction terms.

In the residual inequality, the terms without higher derivatives are combined:

σ =
∂Φα

∂n
∂αn +

∂Φα

∂e
∂αe +

+
1
c2

(
−vµ∂µvαΦα − vµvα

(
∂Φα

∂n
∂µn +

∂Φα

∂e
∂µe
))

+ c2Λnn∂µvµ +

+Λe
((

1− 1
2

v2

c2

)(
∂qµ

∂n
∂µn +

∂qµ

∂e
∂µe
)
− tµν∂µvν

)
+

+Λe 1
c2

(
−vµvα

(
∂qµ

∂n
∂αn +

∂qµ

∂e
∂αe
)
− qµvν∂µvν + tµνvµvα∂αvν

)
+ (54)

+Λv
µc
(
−∂tµν

∂n
∂νn− ∂tµν

∂e
∂νe
)
+ Λv

µ
1
c

(
v2
(

∂tµν

∂n
∂νn +

∂tµν

∂e
∂νe
)
+

+vνvα

(
∂tµν

∂n
∂αn +

∂tµν

∂e
∂αe
)
+ vα∂αvνtµν −

−vµtαν∂αvν + qν∂µvν + qµ∂νvν
)

4.1. Results of the Exploitation of the Dissipation Inequality up to Order 1
c3

The results of the Liu procedure in the lowest non-trivial order are presented after
each of the Liu equations. Equations (44), (46) and (48) show that in this approximation
the entropy does not depend on the gradients, i.e., η(n, e) as in the non-relativisitic theory.
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Consequently, Λe and Λn also do not depend on the gradients. Together with the fact, that
1
c2 Λv is a higher order correction term, Equation (52) result in

∂(Φγ + Λeqγ)

∂∂µz
= 0. (55)

As in the non-relativistic theory, the extra entropy flux is a function of the scalar equilibrium
variables only: k(n, e), and consequently k = 0. The constitutive equation for the entropy
flux Φ =

q
T is the classical one of the Thermodynamics of Irreversible Processes.

The entropy production (54) reduces to

σ =
∂Φα

∂n
∂αn +

∂Φα

∂e
∂αe + c2Λnn∂µvµ +

+Λe
(

∂qµ

∂n
∂µn +

∂qµ

∂e
∂µe− tµν∂µvν

)
(56)

Because Φ + Λeq is a function of e and n only in this approximation,

∂Φα

∂n
∂αn +

∂Φα

∂e
∂αe + Λe

(
∂qµ

∂n
∂µn +

∂qµ

∂e
∂µe
)

= ∂α(Φα + Λeqα)− qα∂αΛe = −qα∂αΛe = qα∂α

(
n

∂η

∂e

)
. (57)

The entropy production can be rewritten as

σ = qα∂α

(
n

∂η

∂e

)
+ n

∂η

∂e
tµν∂µvν − n2 ∂η

∂n
∂µvµ (58)

Identifying n ∂η
∂e with 1

T as in equilibrium, the entropy production has the classical form as
in Irreversible Thermodynamics

σ = − 1
T2 qα∂αT +

1
T

tµν∂µvν − n2 ∂η

∂n
∂µvµ (59)

4.2. Results of the Exploitation of the Dissipation Inequality up to Order 1
c5

4.2.1. Restrictions on Constitutive Functions

In Equations (43), (45) and (47), the multipliers Λe and Λv are inserted and terms of
order higher than 1

c5 are neglected. Due to Equation (51), Λv is of the order 1
c3 , and the

terms 1
c4 Λv

α(. . . ) in the Liu Equations (43)–(47), are higher order correction terms, neglected
in this approximation.

The result is the following restrictions

0 =
1
c3 n

∂η

∂∂µz

(
1− v2

c2

)
+

1
c5 vα

(
∂Φα

∂∂µz
− n

∂η

∂e
∂qα

∂∂µz

)
(60)

or

1
c2 vα

∂kα

∂∂µz
= −n

∂η

∂∂µz

(
1− v2

c2

)
− 1

c2 vαqαn
∂2η

∂e∂∂µz
(61)

with z ∈ {n, e, vε} and k = Φ + Λeq. This extra entropy flux is not necessarily zero, and
the constitutive law of relativistic Irreversible Thermodynamics is an assumption. On the
other hand, if ∂η

∂∂µz = 0, i.e., the entropy depends on the equilibrium variables only, then the
right hand side of Equation (61) is zero, and the extra entropy flux vanishes. In this order
of approximation, the constitutive equation for the entropy flux as heat flux divided by
temperature is a consequence of the local equilibrium assumption for the entropy density.
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Inserting the multipliers in Equation (52) and neglecting terms of a higher order than
1
c5 leads to the restrictions

1
c5

1
n

∂η

∂n
vβ

∂tβγ

∂∂µz
+

1
c3

(
∂Φγ

∂∂µz
+ Λe ∂qγ

∂∂µz

)
+

+
1
c5

(
−vγvα

∂Φα

∂∂µz
+ n

∂η

∂e
vγvα

∂qα

∂∂µz
+ n

∂η

∂e
v2

2
∂qγ

∂∂µz

)
= 0. (62)

In the special case that Φ + Λeq = 0, this reduces to

∂η

∂n
vβ

∂tβγ

∂∂µz
+ n2 ∂η

∂e
v2

2
∂qγ

∂∂µz
= 0, (63)

z ∈ {n, e, vε}. The gradient-dependent stress tensor and heat flux are not independent of
each other but are related by Equation (63).

4.2.2. Entropy Production

Because Λv
α = − 1

c3
1
n

∂η
∂n vα, terms with the factor 1

c Λv
µ are higher order terms and are

neglected.

σ =
∂Φα

∂n
∂αn +

∂Φα

∂e
∂αe +

1
c2

(
−vµ∂µvαΦα − vµvα

(
∂Φα

∂n
∂µn +

∂Φα

∂e
∂µe
))

+ c2Λnn∂µvµ

+Λe
((

1− 1
2

v2

c2

)(
∂qµ

∂n
∂µn +

∂qµ

∂e
∂µe
)
− tµν∂µvν

)
(64)

+Λe 1
c2

(
−vµvα

(
∂qµ

∂n
∂αn +

∂qµ

∂e
∂αe
)
− qµvν∂µvν + tµνvµvα∂αvν

)
+

+Λv
µc
(
−∂tµν

∂n
∂νn− ∂tµν

∂e
∂νe
)

Equation (52)·c3 is added to Equation (64). After some rearrangement, this results in the
following expression for the entropy production in three-dimensional notation

σ = ∇ · krel︸ ︷︷ ︸
relativistic correction to the entropy flux

−q · ∇Λe︸ ︷︷ ︸
heat conduction

+ (∇ · v)
(
− ∂η

∂n
+

1
c2 v · (Φ + Λeq)

)
︸ ︷︷ ︸

volume viscosity

−Λe
(

δ− vv
c2

)
: (t · ∇v)︸ ︷︷ ︸

shear viscosity

− v2

2c2 Λe∇ · q +
1
c2

1
n

∂η

∂n
v · (∇ · t)︸ ︷︷ ︸

purely relativistic correction terms

, (65)

where we introduced the abbreviation

krel =
(

δ− vv
c2

)
· (Φ + Λeq). (66)

The volume viscosity term defines the relativistic dynamic pressure

− ∂η

∂n
+

1
c2 v · (Φ + Λeq)− trace(t)

Λe

3
= prel

dyn. (67)
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In the special case of local equilibrium, the specific entropy depends on the equilib-
rium variables only η(n, e). In this case Equation (60) reduces to

vα

(
∂Φα

∂∂µz
− n

∂η

∂e
∂qα

∂∂µz

)
=

∂

∂∂µz

(
vα

(
Φα − n

∂η

∂e
qα

))
= 0, (68)

i.e., vα

(
Φα − n ∂η

∂e qα
)
(e, n) is a function of the equilibrium variables. Because v is inde-

pendent of e and n, the vector Φ− n ∂η
∂e q is zero, and the entropy flux is the classical one

of TIP.
In this special case, the entropy production reduces to

σ = − v2

2c2∇ · (Λ
eq)−

(
1− v2

2c2

)
q · ∇Λe − (∇ · v) ∂η

∂n
+

Λe
(

δ− vv
c2

)
: (t · ∇v) +

1
c2

1
n

∂η

∂n
v · (∇ · t), (69)

The first term is the relativistic correction term of the entropy flux. The contributions to
the entropy production of heat flux and viscous flow are of the classical form of TIP with
relativistic corrections as prefactors. The last term is a relativistic correction term, also
related to viscous flow.

5. Conclusions

The restrictions on constitutive functions by the Second Law of Thermodynamics
have been exploited by the method of Liu, taking into account the relativistic balance
equations for an observer up to the order of 1

c5 . To the lowest non-trivial order of 1
c3 , the

results of the non-relativistic exploitation of the entropy inequality are recovered. These
are the assumptions of TIP—local equilibrium and entropy flux as heat flux divided by
temperature—as well the same expression for the entropy production as in TIP. In the
next order 1

c5 , an extra entropy flux Φ− q
T is not necessarily zero and the entropy may

depend on gradients. Here, the assumptions of TIP cannot be derived from the more
general method of Liu. However, if the entropy density is local, i.e., depends on particle
number and internal energy only, it follows that Φ =

q
T . Even in this case, there appears to

be a relativistic correction term in the entropy production, which is not of the form of the
classical TIP.
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