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Abstract: Entropy density behavior poses many problems when we study non-equilibrium situations.
In particular, the local equilibrium hypothesis (LEH) has played a very important role and is taken for
granted in non-equilibrium problems, no matter how extreme they are. In this paper we would like to
calculate the Boltzmann entropy balance equation for a plane shock wave and show its performance
for Grad’s 13-moment approximation and the Navier–Stokes–Fourier equations. In fact, we calculate
the correction for the LEH in Grad’s case and discuss its properties.
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1. Introduction

Although the entropy concept has been considered for about 150 years, there are issues
that have pervaded until the first quarter of the XXI century; a crucial one was presented
succinctly by Hoover and Hoover in the preface to the first edition of their book entitled
“Time Reversibility, Computer Simulation, Algorithms, Chaos” [1]:

”Today a small army of physicists, chemists, mathematicians and engineers has
joined forces for a renewed attack on a classical problem, the ”irreversibility
paradox”.

The irreversibility paradox is also known as Loschmidt’s paradox, since he pointed
out that Newton’s laws are invariant under time reversal while, Boltzmann’sH function is
not. Later on, Zermelo used Poincaré’s recurrence theorem to provide further criticisms
of Boltzmann’s probabilistic interpretation of the second law, which led to a continuing
exchange between Boltzmann and Zermelo [2,3]. The more recent discoveries (chaos,
Lyapunov exponents, thermostats and fractals) have played a role in discussions of the
irreversibility paradox in the XX and XXI centuries [1].

There is a comment by von Neumann to Shannon in relation to a question raised by
the latter about what would be an appropriate term for a formula that he derived; the
following answer by von Neumann to Shanon was communicated to Myron Tribus by
Shannon [4]:

“You should call it entropy, for two reasons. In the first place your uncertainty
function has been used in statistical mechanics under that name, so it already
has a name. In the second place, and more important, no one really knows what
entropy really is, so in a debate you will always have the advantage.”

The previous joke is important because it shows that entropy is not a simple concept.
In fact, its meaning must be given within a clear context which settles the frame for its
correct interpretation.

The concept of entropy may be attributed to Claussius (1879) [5], however, as it is usual
for scientists to use the previous intuition of other authors. In the case of entropy, Carnot’s
ideas [6] were essential to the development of the entropy concept, providing Clausius
with relevant insights about it [7,8]. The origin of the concept by Carnot and Clausius
was in the phenomenological field of classical thermodynamics, meaning that it is given
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in terms of macroscopic variables. In the second half of the XIX century, Boltzmann [9]
adopted the nascent atomic hypothesis, an idea that at such time had detractors, to develop
an expression for entropy which is engraved on his tombstone [7]

SW = kB ln W, (1)

where SW is the entropy, kB is the Boltzmann constant and W the number of microstates
compatible with the conditions of an isolated macroscopic system. Furthermore, he con-
structed the Boltzmann kinetic equation and defined his famous (H) functional in terms
of the distribution function f (c, t), for homogeneous systems. It is simply generalized to
consider the non-homogeneous case in which f (c, x, t), then

H(x, t) =
∫

f (c, x, t)Ln f (c, x, t)dc, (2)

where f (c, x, t)dcdx gives us the number of particles which at time t are in the volume
element dcdx. It should be mentioned that the distribution function is now defined in the
so called µ space (c, x) and it must be a solution of the Boltzmann equation. In the case of
equilibrium, the distribution function becomes Maxwell’s velocity distribution [3,10], and
it gives the negative of the equilibrium entropy for an ideal gas, and as a consequence, it is
natural to define the local entropy as

SH(x, t) = −kBH(x, t). (3)

The entropy definition given in Equation (3) is valid for non-equilibrium situations as far
as theH functional is well defined.

We do not pretend to give a review on the origin of the concept and its development;
the interested reader will find critical insights in references [1,3,4,9–13] among others.

In this work our objective is more modest and amounts to a discussion of the entropy
as given by Boltzmann’sH entropy (SH) for a shock wave and its relation with the local
equilibrium hypothesis. As we will see, even in this simple case some problems arise.

The structure of this work is as follows. After this section we discuss the shock-wave
problem in Section 2. Section 3 deals with the distribution function for Grad’s 13-moment
approximation and the one provided by the Chapman–Enskog method at the Navier–
Stokes–Fourier (NSF) level. In Section 4 we deal with the entropy density, and in Section 5
we provide numerical results for several profiles. We end by giving some final remarks in
Section 6.

2. The Shock-Wave Structure

Let us consider a dilute gas in which a strong perturbation is produced so that a shock
wave propagates with a constant velocity along the positive x direction. In the reference
frame traveling with the shock wave we will have a stationary problem. Under these
conditions, the usual mass, momentum and total energy conservation equations reduce to
the case where the mass, linear momentum and total energy fluxes become constants. Then

ρu = c1, ρu2 + Pxx = c2, (4)

ρ
(u2

2
+ eint

)
u + Pxxu + qx = c3, (5)

where ρ is the mass density, u the velocity, Pxx = p + pxx is the xx component of the
pressure tensor, p is the pressure, T the temperature, pxx the xx component of the viscous
tensor, eint the internal energy density and qx the heat flux. The quantities c1, c2, c3 are
constants to be determined. We will consider an ideal monatomic gas in such a way that the
pressure is related to the density and temperature through the ideal gas equation of state:
p = ρ kB T. In this case, the internal energy is given as eint =

3
2

kBT
m . The thermodynamic

equilibrium points are characterized by Pxx = p, qx = 0, and we take the so-called upflow
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point as a reference (ρ0, u0), which corresponds to the cold and supersonic part of the shock.
Now we define reduced variables as

v =
u
u0

, ρ∗ =
ρ

ρ0
, τ =

kBT
mu2

0
, s =

x
λ

, λ =
4
3

µ0

ρ0u0
, η =

µ

µ0
, P =

pxx

ρ0u2
0

, Q =
qx

ρ0u3
0

, (6)

where the subscript 0 means the values of the quantities evaluated at the upflow. Equa-
tions (4) and (5), written in terms of the reduced variables, are given as

ρ∗v = 1, P+
τ

v
+ v− 1− τ0 = 0, vP+Q+

1
2
(
5τ − 5τ0 + v2 − 1

)
= 0; (7)

their solution when P = 0 and Q = 0 are called the Rankine–Hugoniot jump conditions
and determine the equilibrium points coordinates. One of them is the upflow, which is
taken as the reference, and the downflow is characterized as the subsonic and hot part of
the shock:

Upflow : v0 = 1, τ = τ0, (8)

Downflow : v1 =
1 + 5τ0

4
, τ1 =

3 + 14τ0 − 5τ2
0

16
, (9)

where τ0 = 3
5M2 and M = u0

c0
is the Mach number and c0 the speed of sound in the fluid

calculated at upflow.
Now let us calculate the entropy density change occurring between the equilibrium

points taking the upflow and downflow coordinates. Since we are dealing with an ideal
gas, the entropy change is well defined between the upflow and downflow coordinates and
we obtain

m∆S
kB

=
m(Sdown − Sup)

kB
= Ln

[(τ1

τ0

)3/2(v1

v0

)]
> 0. (10)

As an immediate consequence, it is clear that we are dealing with an irreversible process
occurring between the equilibrium points. This means that some dissipative processes take
place and the shock wave must have a structure caused by them [14–17]. Now the problem
turns out to be a search for the behavior of the dissipative effects present in the problem.
They are represented by the viscous tensor and the heat flux due to the fact that both have
already appeared in the conservation Equations (4) and (5). To go further, we recall that the
system is a dilute gas, where the ideal gas equation of state and the internal energy written
in terms of local variables are valid for the stationary shock wave.

Here we will have two lanes of research: First, the phenomenological scheme based on
the linear irreversible thermodynamics, which starts with the fundamental entropy relation
written for local variables. This means that the set of macroscopic variables describing
the system satisfies the “local equilibrium hypothesis”(LEH). Then, the thermodynamic
equilibrium relations are valid for local variables, the entropy density balance equation
has the common entropy flux and the entropy production is the product of fluxes and
thermodynamic forces [18].

The other scheme goes through the kinetic theory of gases based on the Boltzmann
kinetic equation and the corresponding distribution function (df). In this case, the entropy
density is directly related with theH Boltzmann functional as written in Equation (3) [9].
The application of the Maxwell transport equation allows for the writing of an entropy
density balance equation, which in some particular cases is compatible with the LEH. Its
compatibility depends on the approximation taken for the distribution function.

3. The Distribution Function

The kinetic theory approach to the study of non-equilibrium behavior for a dilute gas
is based on the Boltzmann equation describing the distribution function f (c, x, t) [10,19].
The kinetic scheme is not so easy to develop due to its structure and the lack of detailed
knowledge about the intermolecular interaction between particles. As a consequence, some
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approximate methods to deal with it have been studied. Here we will restrict ourselves to
the Chapman–Enskog (CE) and Grad’s moment methods; the first one is a perturbative
method where the Knudsen number defined as the ratio of the mean free path in the gas
and the macroscopic lenght play a very important role. On the other hand, Grad’s method
is a cumulant expansion in terms of the so called peculiar velocity C = c− u(x, t), where
u(x, t) corresponds to the average velocity in the gas [20] and c is the atomic velocity. Both
have their own limitations. The CE method is a perturbative one, and consequently the
Knudsen number must be small (Kn � 1) to obtain a reasonable approximation. On
the other hand, Grad’s method does not contain a smallness parameter; instead, a closure
hypothesis is involved. Here we will consider the first order Kn number expansion in
the CE method which drives to the Navier–Stokes–Fourier (NSF) constitutive equations.
This means that we will take the viscous tensor and the heat flux proportional to the
corresponding thermodynamic forces, i.e., the velocity and temperature gradients. In
contrast, Grad’s method is taken with a 13-moments closure hypothesis.

The local Maxwell distribution function is taken to start the writing of an approximate
solution of the Boltzmann equation:

f (0) = n
( m

2πkBT

)3/2
exp
(
− mC2

2kBT

)
, (11)

where n(x, t) is the local number density so that ρ(x, t) = n(x, t)m, and T(x, t) is the local
temperature and C = ‖C‖. The first order (Kn) in the CE approximation allows us to write
the df as

f CE = f (0)
[

1 +
mpij

2pkBT
CiCj −

mqi
pkBT

Ci

(
1− mC2

5kBT

)]
, qi = −κ∇iT, pij = −2µ(∇iuj), (12)

where κ is the thermal conductivity and µ the shear viscosity, and they depend on the
intermolecular potential. We recall that the bulk viscosity vanishes for a dilute gas and
(∇iuj) means the traceless ij components of the deformation rate tensor.

The Grad’s distribution function is written up to the thirteen moments approximation,
called (G13). In this case we will have a set of 13 coupled and nonlinear equations containing
the whole set of variables:

f G13 = f (0)
[

1 +
mpij

2pkBT
CiCj −

mqi
pkBT

Ci

(
1− mC2

5kBT

)]
, (13)

where the heat flux and the viscous tensor must be determined according to their transport
equations, obtained directly from the Boltzmann equation. Both dfs (12) and (13) share their
structure in the sense that they represent deviations of the local Maxwellian df, although
they are qualitatively different due to the fact that the CE df is closed according to the first
order Kn number. G13 has an arbitrary closure in 13 moments, leaving the viscous tensor
and the heat flux to be determined by the equations of motion. In the particular case of the
plane shock wave traveling along the x-direction, they can be written as

f = f (0)
[

1 +
mpxx

2pkBT
(
C2

x −
1
2
(c2

y + c2
z)
)
− mqx

pkBT
Cx

(
1− mC2

5kBT

)]
, (14)

which can be written in terms of the dimensionless velocity components:

Cr1 =
(cx − u0)

u0
, cr2 =

cy

u0
, cr3 =

cz

u0
. (15)
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Then, the dfs are written as

f (0) =
n
u3

0

( 1
2πτ

)3/2
exp
(
−C2

r
2τ

)
, (16)

f =
n
u3

0

( 1
2πτ

)3/2
exp
(
−C2

r
2τ

)[
1 +

vP
2τ2

(
C2

r1 −
1
2
(c2

r2 + c2
r3)
)
− vQCr1

τ2

(C2
r

5τ
− 1
)]

, (17)

where we have taken ρ∗v = 1 according to (7) valid for a steady shock wave. The df in
Equation (17) can be written as

f = f (0)
(
1 + φ

)
, (18)

where φ represents the deviation from the local Maxwellian df. It should be noticed that
in the CE df, the deviation represented is a first order in the Kn number, so φ ∼ O(Kn),
whereas in G13 there is not a smallness parameter.

All the kinetic calculations will be based on the df written as in Equation (18), hence
we should study its behavior as a function of the velocity for some Mach number values. To

proceed, we define the transversal speed Crt = ±
√

C2
r2 + C2

r3 and we give some examples
where we calculate the dfs for different Mach number values usually taken to calculate the
shock-wave structure. First of all we should notice that the heat flux and the viscous tensor
values must be given. However, they are functions of the dimensionless position s along the
shock wave, which means that we must calculate them in some position across the shock.
We have chosen the upflow, downflow and the center points. The center is the taken with the
condition that the normalized density profile satisfies the relation ρ(s)−ρ0

ρ1−ρ0
= 1

2 . Furthermore,
we need the corresponding values for P, Q, which are calculated with the shock-wave NSF
solution for a given Mach number. It should be noted that the density profiles depend on
the Prandtl number and the viscosity model taken to solve NSF equations. In particular,

we have taken the soft sphere temperature dependence in such a way that η(s) =
(

τ(s)
τ0

)σ
.

For Argon, we have fitted the value of the viscosity index (σ) so that the solutions to
the NSF equations reproduce the experimental normalized density profiles provided by
Alsmeyer [21,22]. The previous results have shown that the NSF equations are in good
agreement with Alsmeyer’s normalized density profiles if the viscosity is enhanced; this
procedure holds for Mach numbers in the range (1.55 ≤ M ≤ 9) provided that the
viscosity index is fitted for each Mach number [22]. From the fitted NSF numerical solution
we have determined the values xx component of the viscous pressure tensor and the heat
flux needed to evaluate the distribution function given by Equation (17). Notice that a
similar procedure can in principle be carried out for Grad’s approximation, but only for
Mach numbers lower than 1.65, since for higher Mach numbers, Grad’s approximation
does not provide a shock-wave solution [20].

Figure 1 shows the behavior of the reduced distribution function g = u3
0 f /n0 as a

function of the velocity components Cr1, Crt for Ar at M = 1.55.
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Then, the df’s are written as

f (0) =
n
u3

0

⇣ 1
2pt

⌘3/2
exp
⇣
�C2

r
2t

⌘
, (16)

f =
n
u3

0

⇣ 1
2pt

⌘3/2
exp
⇣
�C2

r
2t

⌘"
1 +

vP
2t2

�
C2

r1 �
1
2
(c2

r2 + c2
r3)
�
� vQCr1

t2

⇣C2
r

5t
� 1
⌘#

, (17)

where we have taken r⇤v = 1 according to (7) valid for a steady shock wave. The df in Eq.
(17) can be written as

f = f (0)
�
1 + f

�
, (18)

here f represents the deviation from the local maxwellian df. It should be noticed that
in the CE df the deviation represented is a first order in the Kn number so f ⇠ O(Kn),
whereas in G13 there is not a smallness parameter.

All the kinetic calculations will be based on the df written as in Eq. (18) hence we
should study its behavior as a function of the velocity for some Mach number values.

To proceed we define the transversal speed Crt = ±
q

C2
r2 + C2

r3 and we will give some
examples where we calculate the dfs for different Mach number values usually taken
to calculate the shock wave structure. The figure (1) show the behavior of the reduced
distribution function g = u3

0 f /n0 as a function of the velocity components Cr1, Crt for Ar
at M = 1.55.

Figure 1. At the left, the distribution function corresponds to the cold part of the shock and is
calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph in the middle we used the values
v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from solving the NSF equations, using a
viscosity index of value s = 1.6, and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [19]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

The dfs calculated at upflow and downflow are Gaussian dfs in the corresponding
equilibrium points. The df named as center describe the situation when the normalized
density equals 1/2. This point has been considered as representative of the region where
the gradients in the normalized density and temperature profiles have their most important
values. It has been observed that in such a region the df may have negative values [17? ?
,18]. In figure (1) negative values in the df are not apparent, however in Fig. 2 we provide
two intersections of the distribution function with the planes Crt = 0 and Crt = 2, negative
values of the distribution function are clearly exhibited in the last case. For larger Mach
numbers the situation drastically changes as shown in Fig. 3. On the other hand we must
notice that the calculations make sense only if the f expansion is convergent as usually it is
argued when f ⌧ 1.

4. The entropy density.

The entropy density is defined as

r(x, t)S(x, t) = �kB

Z •

�•
f (C, x, t)Ln

⇣u3
0 f (C, x, t)

n0

⌘
dCr, (19)
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their solution give us the equilibrium points coordinates 56

Upflow : v0 = 1, t = t0, (7)

Downflow : v1 =
1 + 5t0

4
, t1 =

3 + 14t0 � 5t2
0

16
, (8)

where t0 = 3
5M2 and M = u0

c0
is the Mach number and c0 the speed of sound in the fluid 57

calculated at upflow. 58

Now let us calculate the entropy density change ocurring between the equilibrium
points taking the upflow and downflow coordinates. Since those points are thermodynamic
equilibrium points in an ideal gas the entropy is well defined and we obtain

mDS
kB

=
m(Sdown � Sup)

kB
= Ln

h⇣t1

t0

⌘3/2⇣v1

v0

⌘i
> 0. (9)

As an immediate consequence we know that there is an irreversible process ocurring 59

between the equilibrium points. It means that some dissipative processes take place and 60

the shock wave must have a structure caused by them [? ]. Now the problem turms to 61

be a search for the behavior of the dissipative effects present in the problem. They are 62

represented by the viscous tensor and the heat flux due to the fact that both have already 63

appeared in the conservation equations (3, 4). To go further we recall that the system is a 64

dilute gas where the ideal gas equation of state and the internal energy written in terms of 65

local variables are valid for the stationary shock wave. 66

Here we will have two lanes of research, first the phenomenological scheme based 67

on the Linear Irreversible Thermodynamics which starts with the fundamental entropy 68

relation written for local variables. It means that the set of macroscopic variables describing 69

the system satisfies the “Local Equilibrium Hypothesis”(LEH). Then, the thermodynamic 70

equilibrium relations are valid for local variables, the entropy density balance equation 71

has the common entropy flux and the entropy production is the product of fluxes and 72

thermodynamic forces [? ]. 73

The other scheme goes through the kinetic theory of gases based on the Boltzmann 74

kinetic equation and the corresponding distribution function (df). In this case the entropy 75

density is directly related with the H Boltzmann functional which is written in terms of 76

the df [4]. The application of the Maxwell transport equation allows for the writing of an 77

entropy density balance equation which in some particular cases is compatible with the 78

LEH. Its compatibility depends on the approximation taken for the df. 79

3. The distribution function.[3? ] 80

The kinetic theory approach to study non-equilibrium behavior for a dilute gas is
based on the Boltzmann equation describing the distribution function f (c, x, t). The kinetic
scheme is not so easy to develop due to its structure and the lack of the intermolecular
interaction between particles. As a consequence some approximate methods to deal with
it have been studied. Here we will restrict ourselves to the Chapman-Enskog (CE) and
Grad’s moment method, the first one is a pertubative method where the Kundsen number
defined as the ratio of the mean free path in the gas and the macroscopic lenght plays a
very important role. On the other hand Grad’s method is a cumulant expansion in terms
of the so called peculiar velocity C = c � u(x, t), where u(x, t) corresponds to the average
velocity in the gas [? ]. Both, have their own limitations CE method is a perturbative one
and consequently the Knudsen number must be small (Kn ⌧ 1) to obtain a reasonable
approximation. On the other hand Grad’s method does not contain a smallness parameter,
instead a closure hypothesis is involved. Here we will consider the first order Kn number
expansion in CE method which drives to the Navier–Stokes–Fourier (NSF) constitutive
equations. It means that we will take the viscous tensor and the heat flux proportional
to the corresponding thermodynamic forces, i.e. the velocity and temperature gradients.
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

4. The entropy density. 87

The entropy density is defined as

r(r, t)S(r, t) = �kB

Z •

�•
f (C, r, t)Ln

⇣u3
0 f (C, r, t)

n0

⌘
dCr, (18)

where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88

as written in Eq. (17). Notice that the expression in (18) contains an adimensional quantity 89

in the logarithmic function. It was taken to consider as a reference the numerical density n0 90

which in the shock wave case will be the upflow value as done for all other variables in the 91

system. 92

rS = �kB

Z
f Ln

⇣u3
0 f

n0

⌘
dCr = �kB

Z
f (0)(1 + f)

"
Ln
⇣u3

0 f (0)

n0

⌘
+ Ln (1 + f)

#
dCr

= �kB

Z
f (0)

"
Ln
⇣u3

0 f (0)

n0

⌘
+ f � f2

2
+ A

#
dCr

�kB

Z
f (0)f

"
Ln
⇣u3

0 f (0)

n0

⌘
+ f � 1

2
f2 + A

#
dCr = �kB

Z
f (0)Ln

⇣u3
0 f (0)

n0

⌘

| {z }
rSloc

�kB

Z
f (0)

"
1 + Ln

⇣u3
0 f (0)

n0

⌘#
fdCr

| {z }
vanishes

� kB
2

Z
f (0)f2dCr

| {z }
non trivial

� kB

N

Â
k=3

 
(�1)k+1

k
+

(�1)k

k � 1

! Z
f (0) fndCr

| {z }
higher order terms

� kB

Z
f (0) O(fN+1) dCr

| {z }
residual

, (19)

since

A =
N

Â
k=3

(�1)k+1fk

k
+ O(fN+1), N 2 N. (20)
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

4. The entropy density. 87
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where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88

as written in Eq. (17). Notice that the expression in (18) contains an adimensional quantity 89

in the logarithmic function. It was taken to consider as a reference the numerical density n0 90

which in the shock wave case will be the upflow value as done for all other variables in the 91

system. 92
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where we have taken r⇤v = 1 according to (7) valid for a steady shock wave. The df in Eq.
(17) can be written as

f = f (0)
�
1 + f

�
, (18)

here f represents the deviation from the local maxwellian df. It should be noticed that
in the CE df the deviation represented is a first order in the Kn number so f ⇠ O(Kn),
whereas in G13 there is not a smallness parameter.

All the kinetic calculations will be based on the df written as in Eq. (18) hence we
should study its behavior as a function of the velocity for some Mach number values.

To proceed we define the transversal speed Crt = ±
q

C2
r2 + C2

r3 and we will give some
examples where we calculate the dfs for different Mach number values usually taken
to calculate the shock wave structure. The figure (1) show the behavior of the reduced
distribution function g = u3

0 f /n0 as a function of the velocity components Cr1, Crt for Ar
at M = 1.55.

Figure 1. At the left, the distribution function corresponds to the cold part of the shock and is
calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph in the middle we used the values
v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from solving the NSF equations, using a
viscosity index of value s = 1.6, and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [19]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

The dfs calculated at upflow and downflow are Gaussian dfs in the corresponding
equilibrium points. The df named as center describe the situation when the normalized
density equals 1/2. This point has been considered as representative of the region where
the gradients in the normalized density and temperature profiles have their most important
values. It has been observed that in such a region the df may have negative values [17? ?
,18]. In figure (1) negative values in the df are not apparent, however in Fig. 2 we provide
two intersections of the distribution function with the planes Crt = 0 and Crt = 2, negative
values of the distribution function are clearly exhibited in the last case. For larger Mach
numbers the situation drastically changes as shown in Fig. 3. On the other hand we must
notice that the calculations make sense only if the f expansion is convergent as usually it is
argued when f ⌧ 1.

4. The entropy density.

The entropy density is defined as

r(x, t)S(x, t) = �kB
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.
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where we have taken r⇤v = 1 according to (7) valid for a steady shock wave. The df in Eq.
(17) can be written as

f = f (0)
�
1 + f

�
, (18)

here f represents the deviation from the local maxwellian df. It should be noticed that
in the CE df the deviation represented is a first order in the Kn number so f ⇠ O(Kn),
whereas in G13 there is not a smallness parameter.

All the kinetic calculations will be based on the df written as in Eq. (18) hence we
should study its behavior as a function of the velocity for some Mach number values.

To proceed we define the transversal speed Crt = ±
q

C2
r2 + C2

r3 and we will give some
examples where we calculate the dfs for different Mach number values usually taken
to calculate the shock wave structure. The figure (1) show the behavior of the reduced
distribution function g = u3

0 f /n0 as a function of the velocity components Cr1, Crt for Ar
at M = 1.55.

Figure 1. At the left, the distribution function corresponds to the cold part of the shock and is
calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph in the middle we used the values
v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from solving the NSF equations, using a
viscosity index of value s = 1.6, and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [19]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

The dfs calculated at upflow and downflow are Gaussian dfs in the corresponding
equilibrium points. The df named as center describe the situation when the normalized
density equals 1/2. This point has been considered as representative of the region where
the gradients in the normalized density and temperature profiles have their most important
values. It has been observed that in such a region the df may have negative values [17? ?
,18]. In figure (1) negative values in the df are not apparent, however in Fig. 2 we provide
two intersections of the distribution function with the planes Crt = 0 and Crt = 2, negative
values of the distribution function are clearly exhibited in the last case. For larger Mach
numbers the situation drastically changes as shown in Fig. 3. On the other hand we must
notice that the calculations make sense only if the f expansion is convergent as usually it is
argued when f ⌧ 1.

4. The entropy density.

The entropy density is defined as
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Figure 2. The intersection of the reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 with the planes

(a) Crt = 0 and (b) Crt = 2. Here f is given by Eq. (16), and the shock wave corresponds to M = 1.55
in Argon. The solid line corresponds to g and the dashed one to the local Maxwellian that is obtained
from g by taking the fluxes equal to zero. We used the values v = 0.720, t = 0.347, P = 0.121 and
Q = �0.095 that come from solving the NSF equations and are calculated at the position x = 0, the
origin is determined by requiring that the normalized density profile is 1/2 at x = 0 [? ].

It should be pointed out that the former calculation is not rigorous since given the values 93

of the fluxes at a point within the shock it is possible to find reduced velocities such that f , 94

as given by Eq. (16) is negative and therefore its natural logarithm is not defined, this point 95

has been discussed in the literature [? ? ]. In Fig. 1 we provide the distribution function in 96

a shock wave at three different points for the shock profile in Argon at M = 1.55, negative 97

values for the distribution function are not apparent at the Center center of the shock. In 98

Fig. 2 we provide two intersections of the distribution function with the planes Crt = 0 and 99

Crt = 2, negative values of the distribution function are clearly exhibited in the last case but 100

they appear at the tail of the distribution function. For larger Mach numbers the situation 101

drastically changes as shown in Fig. 3. On the other hand, the final form obtained makes 102

sense for any value of f though its convergence is not guaranteed for N ! •. Usually it is 103

argued that f is small with respect to 1 , which is not true as can be infered from Fig. (3), 104

and only the non–trivial term is considered. 105

The direct substitution of Eq. (15) gives the expression for the local specific entropy,
which in fact coincides with the equilibrium entropy where the equilibrium values are
changed by their local counterparts,
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it should be noticed that the change of the local entropy between two points eliminates the 106

constants, then we can calculate the change upflow-downflow in the shock wave. Also, it 107

can be chosen a different reference point to measure the specific entropy, for example we 108

can take the entropy change between upflow and any coordinate x before downflow. 109

The second term in Eq. (19) vanishes due to the compatibility conditions. The last
term gives the first non trivial contribution consistent with the approximation we have
considered. The corresponding calculation is direct though somewhat cumbersome, then
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where we have taken r⇤v = 1 according to (7) valid for a steady shock wave. The df in Eq.
(17) can be written as

f = f (0)
�
1 + f

�
, (18)

here f represents the deviation from the local maxwellian df. It should be noticed that
in the CE df the deviation represented is a first order in the Kn number so f ⇠ O(Kn),
whereas in G13 there is not a smallness parameter.

All the kinetic calculations will be based on the df written as in Eq. (18) hence we
should study its behavior as a function of the velocity for some Mach number values.

To proceed we define the transversal speed Crt = ±
q

C2
r2 + C2

r3 and we will give some
examples where we calculate the dfs for different Mach number values usually taken
to calculate the shock wave structure. The figure (1) show the behavior of the reduced
distribution function g = u3

0 f /n0 as a function of the velocity components Cr1, Crt for Ar
at M = 1.55.

Figure 1. At the left, the distribution function corresponds to the cold part of the shock and is
calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph in the middle we used the values
v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from solving the NSF equations, using a
viscosity index of value s = 1.6, and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [19]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

The dfs calculated at upflow and downflow are Gaussian dfs in the corresponding
equilibrium points. The df named as center describe the situation when the normalized
density equals 1/2. This point has been considered as representative of the region where
the gradients in the normalized density and temperature profiles have their most important
values. It has been observed that in such a region the df may have negative values [17? ?
,18]. In figure (1) negative values in the df are not apparent, however in Fig. 2 we provide
two intersections of the distribution function with the planes Crt = 0 and Crt = 2, negative
values of the distribution function are clearly exhibited in the last case. For larger Mach
numbers the situation drastically changes as shown in Fig. 3. On the other hand we must
notice that the calculations make sense only if the f expansion is convergent as usually it is
argued when f ⌧ 1.

4. The entropy density.

The entropy density is defined as

r(x, t)S(x, t) = �kB
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.
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where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88

as written in Eq. (17). Notice that the expression in (18) contains an adimensional quantity 89

in the logarithmic function. It was taken to consider as a reference the numerical density n0 90

which in the shock wave case will be the upflow value as done for all other variables in the 91

system. 92
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where we have taken r⇤v = 1 according to (7) valid for a steady shock wave. The df in Eq.
(17) can be written as

f = f (0)
�
1 + f
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, (18)

here f represents the deviation from the local maxwellian df. It should be noticed that
in the CE df the deviation represented is a first order in the Kn number so f ⇠ O(Kn),
whereas in G13 there is not a smallness parameter.

All the kinetic calculations will be based on the df written as in Eq. (18) hence we
should study its behavior as a function of the velocity for some Mach number values.

To proceed we define the transversal speed Crt = ±
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r3 and we will give some
examples where we calculate the dfs for different Mach number values usually taken
to calculate the shock wave structure. The figure (1) show the behavior of the reduced
distribution function g = u3

0 f /n0 as a function of the velocity components Cr1, Crt for Ar
at M = 1.55.

Figure 1. At the left, the distribution function corresponds to the cold part of the shock and is
calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph in the middle we used the values
v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from solving the NSF equations, using a
viscosity index of value s = 1.6, and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [19]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

The dfs calculated at upflow and downflow are Gaussian dfs in the corresponding
equilibrium points. The df named as center describe the situation when the normalized
density equals 1/2. This point has been considered as representative of the region where
the gradients in the normalized density and temperature profiles have their most important
values. It has been observed that in such a region the df may have negative values [17? ?
,18]. In figure (1) negative values in the df are not apparent, however in Fig. 2 we provide
two intersections of the distribution function with the planes Crt = 0 and Crt = 2, negative
values of the distribution function are clearly exhibited in the last case. For larger Mach
numbers the situation drastically changes as shown in Fig. 3. On the other hand we must
notice that the calculations make sense only if the f expansion is convergent as usually it is
argued when f ⌧ 1.

4. The entropy density.

The entropy density is defined as
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.
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where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88
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Then, the df’s are written as
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where we have taken r⇤v = 1 according to (7) valid for a steady shock wave. The df in Eq.
(17) can be written as

f = f (0)
�
1 + f

�
, (18)

here f represents the deviation from the local maxwellian df. It should be noticed that
in the CE df the deviation represented is a first order in the Kn number so f ⇠ O(Kn),
whereas in G13 there is not a smallness parameter.

All the kinetic calculations will be based on the df written as in Eq. (18) hence we
should study its behavior as a function of the velocity for some Mach number values.

To proceed we define the transversal speed Crt = ±
q

C2
r2 + C2

r3 and we will give some
examples where we calculate the dfs for different Mach number values usually taken
to calculate the shock wave structure. The figure (1) show the behavior of the reduced
distribution function g = u3

0 f /n0 as a function of the velocity components Cr1, Crt for Ar
at M = 1.55.

Figure 1. At the left, the distribution function corresponds to the cold part of the shock and is
calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph in the middle we used the values
v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from solving the NSF equations, using a
viscosity index of value s = 1.6, and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [19]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

The dfs calculated at upflow and downflow are Gaussian dfs in the corresponding
equilibrium points. The df named as center describe the situation when the normalized
density equals 1/2. This point has been considered as representative of the region where
the gradients in the normalized density and temperature profiles have their most important
values. It has been observed that in such a region the df may have negative values [17? ?
,18]. In figure (1) negative values in the df are not apparent, however in Fig. 2 we provide
two intersections of the distribution function with the planes Crt = 0 and Crt = 2, negative
values of the distribution function are clearly exhibited in the last case. For larger Mach
numbers the situation drastically changes as shown in Fig. 3. On the other hand we must
notice that the calculations make sense only if the f expansion is convergent as usually it is
argued when f ⌧ 1.

4. The entropy density.

The entropy density is defined as

r(x, t)S(x, t) = �kB

Z •

�•
f (C, x, t)Ln

⇣u3
0 f (C, x, t)

n0

⌘
dCr, (19)
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their solution give us the equilibrium points coordinates 56

Upflow : v0 = 1, t = t0, (7)

Downflow : v1 =
1 + 5t0

4
, t1 =

3 + 14t0 � 5t2
0

16
, (8)

where t0 = 3
5M2 and M = u0

c0
is the Mach number and c0 the speed of sound in the fluid 57

calculated at upflow. 58

Now let us calculate the entropy density change ocurring between the equilibrium
points taking the upflow and downflow coordinates. Since those points are thermodynamic
equilibrium points in an ideal gas the entropy is well defined and we obtain

mDS
kB

=
m(Sdown � Sup)

kB
= Ln

h⇣t1

t0

⌘3/2⇣v1

v0

⌘i
> 0. (9)

As an immediate consequence we know that there is an irreversible process ocurring 59

between the equilibrium points. It means that some dissipative processes take place and 60

the shock wave must have a structure caused by them [? ]. Now the problem turms to 61

be a search for the behavior of the dissipative effects present in the problem. They are 62

represented by the viscous tensor and the heat flux due to the fact that both have already 63

appeared in the conservation equations (3, 4). To go further we recall that the system is a 64

dilute gas where the ideal gas equation of state and the internal energy written in terms of 65

local variables are valid for the stationary shock wave. 66

Here we will have two lanes of research, first the phenomenological scheme based 67

on the Linear Irreversible Thermodynamics which starts with the fundamental entropy 68

relation written for local variables. It means that the set of macroscopic variables describing 69

the system satisfies the “Local Equilibrium Hypothesis”(LEH). Then, the thermodynamic 70

equilibrium relations are valid for local variables, the entropy density balance equation 71

has the common entropy flux and the entropy production is the product of fluxes and 72

thermodynamic forces [? ]. 73

The other scheme goes through the kinetic theory of gases based on the Boltzmann 74

kinetic equation and the corresponding distribution function (df). In this case the entropy 75

density is directly related with the H Boltzmann functional which is written in terms of 76

the df [4]. The application of the Maxwell transport equation allows for the writing of an 77

entropy density balance equation which in some particular cases is compatible with the 78

LEH. Its compatibility depends on the approximation taken for the df. 79

3. The distribution function.[3? ] 80

The kinetic theory approach to study non-equilibrium behavior for a dilute gas is
based on the Boltzmann equation describing the distribution function f (c, x, t). The kinetic
scheme is not so easy to develop due to its structure and the lack of the intermolecular
interaction between particles. As a consequence some approximate methods to deal with
it have been studied. Here we will restrict ourselves to the Chapman-Enskog (CE) and
Grad’s moment method, the first one is a pertubative method where the Kundsen number
defined as the ratio of the mean free path in the gas and the macroscopic lenght plays a
very important role. On the other hand Grad’s method is a cumulant expansion in terms
of the so called peculiar velocity C = c � u(x, t), where u(x, t) corresponds to the average
velocity in the gas [? ]. Both, have their own limitations CE method is a perturbative one
and consequently the Knudsen number must be small (Kn ⌧ 1) to obtain a reasonable
approximation. On the other hand Grad’s method does not contain a smallness parameter,
instead a closure hypothesis is involved. Here we will consider the first order Kn number
expansion in CE method which drives to the Navier–Stokes–Fourier (NSF) constitutive
equations. It means that we will take the viscous tensor and the heat flux proportional
to the corresponding thermodynamic forces, i.e. the velocity and temperature gradients.
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

4. The entropy density. 87

The entropy density is defined as

r(r, t)S(r, t) = �kB

Z •

�•
f (C, r, t)Ln

⇣u3
0 f (C, r, t)

n0

⌘
dCr, (18)

where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88

as written in Eq. (17). Notice that the expression in (18) contains an adimensional quantity 89

in the logarithmic function. It was taken to consider as a reference the numerical density n0 90

which in the shock wave case will be the upflow value as done for all other variables in the 91

system. 92
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since

A =
N

Â
k=3

(�1)k+1fk

k
+ O(fN+1), N 2 N. (20)
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

4. The entropy density. 87

The entropy density is defined as

r(r, t)S(r, t) = �kB

Z •
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f (C, r, t)Ln

⇣u3
0 f (C, r, t)

n0

⌘
dCr, (18)

where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88

as written in Eq. (17). Notice that the expression in (18) contains an adimensional quantity 89

in the logarithmic function. It was taken to consider as a reference the numerical density n0 90

which in the shock wave case will be the upflow value as done for all other variables in the 91

system. 92
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Then, the df’s are written as
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where we have taken r⇤v = 1 according to (7) valid for a steady shock wave. The df in Eq.
(17) can be written as

f = f (0)
�
1 + f

�
, (18)

here f represents the deviation from the local maxwellian df. It should be noticed that
in the CE df the deviation represented is a first order in the Kn number so f ⇠ O(Kn),
whereas in G13 there is not a smallness parameter.

All the kinetic calculations will be based on the df written as in Eq. (18) hence we
should study its behavior as a function of the velocity for some Mach number values.

To proceed we define the transversal speed Crt = ±
q

C2
r2 + C2

r3 and we will give some
examples where we calculate the dfs for different Mach number values usually taken
to calculate the shock wave structure. The figure (1) show the behavior of the reduced
distribution function g = u3

0 f /n0 as a function of the velocity components Cr1, Crt for Ar
at M = 1.55.

Figure 1. At the left, the distribution function corresponds to the cold part of the shock and is
calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph in the middle we used the values
v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from solving the NSF equations, using a
viscosity index of value s = 1.6, and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [19]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

The dfs calculated at upflow and downflow are Gaussian dfs in the corresponding
equilibrium points. The df named as center describe the situation when the normalized
density equals 1/2. This point has been considered as representative of the region where
the gradients in the normalized density and temperature profiles have their most important
values. It has been observed that in such a region the df may have negative values [17? ?
,18]. In figure (1) negative values in the df are not apparent, however in Fig. 2 we provide
two intersections of the distribution function with the planes Crt = 0 and Crt = 2, negative
values of the distribution function are clearly exhibited in the last case. For larger Mach
numbers the situation drastically changes as shown in Fig. 3. On the other hand we must
notice that the calculations make sense only if the f expansion is convergent as usually it is
argued when f ⌧ 1.

4. The entropy density.

The entropy density is defined as

r(x, t)S(x, t) = �kB

Z •

�•
f (C, x, t)Ln

⇣u3
0 f (C, x, t)

n0

⌘
dCr, (19)
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

4. The entropy density. 87

The entropy density is defined as

r(r, t)S(r, t) = �kB

Z •

�•
f (C, r, t)Ln

⇣u3
0 f (C, r, t)

n0

⌘
dCr, (18)

where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88

as written in Eq. (17). Notice that the expression in (18) contains an adimensional quantity 89

in the logarithmic function. It was taken to consider as a reference the numerical density n0 90

which in the shock wave case will be the upflow value as done for all other variables in the 91

system. 92
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Figure 1. At the left, the distribution function corresponds to the cold part of the shock and is
calculated using v = 1, τ = 240

961 ,P = 0 and Q = 0. For the graph in the middle we used the values
v = 0.720, τ = 0.347, P = 0.121 and Q = −0.095 that come from solving the NSF equations, using a
viscosity index of value σ = 1.6, and are calculated at the position x = 0; the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [22]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , τ = 5711523
14776336 ,P = 0 and Q = 0.

The dfs calculated at the upflow and downflow are Gaussian dfs in the corresponding
equilibrium points. The df named as center describes the situation when the normalized
density equals 1/2. This point has been considered as representative of the region where
the gradients in the normalized density and temperature profiles have their most important
values. It has been observed that in such a region, the df may have negative values [23,24].
In Figure 1, negative values in the df are not apparent; however, in Figure 2 we provide
two intersections of the distribution function with the planes Crt = 0 and Crt = 2; negative
values of the distribution function are clearly exhibited in the last case.

Figure 2. The intersection of the reduced distribution function g ≡ u3
0 f /n0 versus Cr1 with the planes

(a) Crt = 0 and (b) Crt = 2. Here f is given by Equation (17), and the shock wave corresponds
to M = 1.55 in Argon. The solid line corresponds to g and the dashed one to the local Maxwellian
that is obtained from g by taking the fluxes equal to zero. We used the values v = 0.720, τ = 0.347,
P = 0.121 and Q = −0.095 that come from solving the NSF equations and are calculated, using a
viscosity index of value σ = 1.6, at the position x = 0; the origin is determined by requiring that the
normalized density profile is 1/2 at x = 0 [22].

For larger Mach numbers, the situation drastically changes, as shown in Figure 3.
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Figure 3. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (16), for a M = 8 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 3

320 , P = 0 and Q = 0. For the
graph in the middle we used the values v = 0.422, t = 0.180, P = 1.774 and Q = �0.790 that come
from solving the NSF equations, using a viscosity index of value s = 0.9, and are calculated at the
position x = 0, the origin is determined by requiring that the normalized density profile is 1/2 at
x = 0 [19]. The graph at the right corresponds to the hot part of the shock and is calculated using
v = 67

256 , t = 64119
327680 , P = 0 and Q = 0.

The direct substitution of Eq. (16) gives the expression for the local specific entropy, which
in fact coincides with the equilibrium entropy where the equilibrium values are changed
by their local counterparts,

rSlocal
nkB

=
mSlocal

kB
=
h
Ln
�
vt3/2�+

3
2
(1 + Ln 2p)

i
, (22)

it should be noticed that the change of the local entropy between two points eliminates the
constants, then we can calculate the change upflow-downflow in the shock wave. Also, it
can be chosen a different reference point to measure the specific entropy, for example we
can take the entropy change between upflow and any coordinate x before downflow.

The second term in Eq. (20) vanishes due to the compatibility conditions. The last
term gives the first non trivial contribution consistent with the approximation f2 we have
considered. The corresponding calculation is direct though somewhat cumbersome, then

rDS
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=
mDS
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rDSlocal
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✓
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8
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Q2

5t

◆
+ ... (23)

Equation (23) shows that the entropy density has two completely different terms, the
first one comes from the local contribution in the df. In contrast, the second part contains
quadratic contributions in the dissipative effects. If we consider the CE expansion up to first
order in Kn number we notice that the local part is independent of the Kundsen number
approximations. However the terms containing the dissipative fluxes are second order Kn
contributions. It is not the case when we consider the description in the Grad’s moments
approximation, then the second term is the simplest non-trivial contribution to the entropy
density.

The entropy flux will be defined as follows

JS = �kB

Z
C f Ln

⇣u3
0 f

n0

⌘
dC, (24)
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

4. The entropy density. 87

The entropy density is defined as

r(r, t)S(r, t) = �kB
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⇣u3
0 f (C, r, t)

n0

⌘
dCr, (18)

where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88

as written in Eq. (17). Notice that the expression in (18) contains an adimensional quantity 89

in the logarithmic function. It was taken to consider as a reference the numerical density n0 90

which in the shock wave case will be the upflow value as done for all other variables in the 91

system. 92
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Then, the df’s are written as

f (0) =
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where we have taken r⇤v = 1 according to (7) valid for a steady shock wave. The df in Eq.
(17) can be written as

f = f (0)
�
1 + f

�
, (18)

here f represents the deviation from the local maxwellian df. It should be noticed that
in the CE df the deviation represented is a first order in the Kn number so f ⇠ O(Kn),
whereas in G13 there is not a smallness parameter.

All the kinetic calculations will be based on the df written as in Eq. (18) hence we
should study its behavior as a function of the velocity for some Mach number values.

To proceed we define the transversal speed Crt = ±
q

C2
r2 + C2

r3 and we will give some
examples where we calculate the dfs for different Mach number values usually taken
to calculate the shock wave structure. The figure (1) show the behavior of the reduced
distribution function g = u3

0 f /n0 as a function of the velocity components Cr1, Crt for Ar
at M = 1.55.

Figure 1. At the left, the distribution function corresponds to the cold part of the shock and is
calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph in the middle we used the values
v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from solving the NSF equations, using a
viscosity index of value s = 1.6, and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [19]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

The dfs calculated at upflow and downflow are Gaussian dfs in the corresponding
equilibrium points. The df named as center describe the situation when the normalized
density equals 1/2. This point has been considered as representative of the region where
the gradients in the normalized density and temperature profiles have their most important
values. It has been observed that in such a region the df may have negative values [17? ?
,18]. In figure (1) negative values in the df are not apparent, however in Fig. 2 we provide
two intersections of the distribution function with the planes Crt = 0 and Crt = 2, negative
values of the distribution function are clearly exhibited in the last case. For larger Mach
numbers the situation drastically changes as shown in Fig. 3. On the other hand we must
notice that the calculations make sense only if the f expansion is convergent as usually it is
argued when f ⌧ 1.

4. The entropy density.

The entropy density is defined as

r(x, t)S(x, t) = �kB

Z •

�•
f (C, x, t)Ln

⇣u3
0 f (C, x, t)

n0

⌘
dCr, (19)
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

4. The entropy density. 87

The entropy density is defined as

r(r, t)S(r, t) = �kB

Z •

�•
f (C, r, t)Ln

⇣u3
0 f (C, r, t)

n0

⌘
dCr, (18)

where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88

as written in Eq. (17). Notice that the expression in (18) contains an adimensional quantity 89

in the logarithmic function. It was taken to consider as a reference the numerical density n0 90

which in the shock wave case will be the upflow value as done for all other variables in the 91

system. 92
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their solution give us the equilibrium points coordinates 56

Upflow : v0 = 1, t = t0, (7)

Downflow : v1 =
1 + 5t0

4
, t1 =

3 + 14t0 � 5t2
0

16
, (8)

where t0 = 3
5M2 and M = u0

c0
is the Mach number and c0 the speed of sound in the fluid 57

calculated at upflow. 58

Now let us calculate the entropy density change ocurring between the equilibrium
points taking the upflow and downflow coordinates. Since those points are thermodynamic
equilibrium points in an ideal gas the entropy is well defined and we obtain

mDS
kB

=
m(Sdown � Sup)

kB
= Ln

h⇣t1

t0

⌘3/2⇣v1

v0

⌘i
> 0. (9)

As an immediate consequence we know that there is an irreversible process ocurring 59

between the equilibrium points. It means that some dissipative processes take place and 60

the shock wave must have a structure caused by them [? ]. Now the problem turms to 61

be a search for the behavior of the dissipative effects present in the problem. They are 62

represented by the viscous tensor and the heat flux due to the fact that both have already 63

appeared in the conservation equations (3, 4). To go further we recall that the system is a 64

dilute gas where the ideal gas equation of state and the internal energy written in terms of 65

local variables are valid for the stationary shock wave. 66

Here we will have two lanes of research, first the phenomenological scheme based 67

on the Linear Irreversible Thermodynamics which starts with the fundamental entropy 68

relation written for local variables. It means that the set of macroscopic variables describing 69

the system satisfies the “Local Equilibrium Hypothesis”(LEH). Then, the thermodynamic 70

equilibrium relations are valid for local variables, the entropy density balance equation 71

has the common entropy flux and the entropy production is the product of fluxes and 72

thermodynamic forces [? ]. 73

The other scheme goes through the kinetic theory of gases based on the Boltzmann 74

kinetic equation and the corresponding distribution function (df). In this case the entropy 75

density is directly related with the H Boltzmann functional which is written in terms of 76

the df [4]. The application of the Maxwell transport equation allows for the writing of an 77

entropy density balance equation which in some particular cases is compatible with the 78

LEH. Its compatibility depends on the approximation taken for the df. 79

3. The distribution function.[3? ] 80

The kinetic theory approach to study non-equilibrium behavior for a dilute gas is
based on the Boltzmann equation describing the distribution function f (c, x, t). The kinetic
scheme is not so easy to develop due to its structure and the lack of the intermolecular
interaction between particles. As a consequence some approximate methods to deal with
it have been studied. Here we will restrict ourselves to the Chapman-Enskog (CE) and
Grad’s moment method, the first one is a pertubative method where the Kundsen number
defined as the ratio of the mean free path in the gas and the macroscopic lenght plays a
very important role. On the other hand Grad’s method is a cumulant expansion in terms
of the so called peculiar velocity C = c � u(x, t), where u(x, t) corresponds to the average
velocity in the gas [? ]. Both, have their own limitations CE method is a perturbative one
and consequently the Knudsen number must be small (Kn ⌧ 1) to obtain a reasonable
approximation. On the other hand Grad’s method does not contain a smallness parameter,
instead a closure hypothesis is involved. Here we will consider the first order Kn number
expansion in CE method which drives to the Navier–Stokes–Fourier (NSF) constitutive
equations. It means that we will take the viscous tensor and the heat flux proportional
to the corresponding thermodynamic forces, i.e. the velocity and temperature gradients.
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Figure 3. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (16), for a M = 8 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 3

320 , P = 0 and Q = 0. For the
graph in the middle we used the values v = 0.422, t = 0.180, P = 1.774 and Q = �0.790 that come
from solving the NSF equations, using a viscosity index of value s = 0.9, and are calculated at the
position x = 0, the origin is determined by requiring that the normalized density profile is 1/2 at
x = 0 [19]. The graph at the right corresponds to the hot part of the shock and is calculated using
v = 67

256 , t = 64119
327680 , P = 0 and Q = 0.

The direct substitution of Eq. (16) gives the expression for the local specific entropy, which
in fact coincides with the equilibrium entropy where the equilibrium values are changed
by their local counterparts,

rSlocal
nkB

=
mSlocal

kB
=
h
Ln
�
vt3/2�+

3
2
(1 + Ln 2p)

i
, (22)

it should be noticed that the change of the local entropy between two points eliminates the
constants, then we can calculate the change upflow-downflow in the shock wave. Also, it
can be chosen a different reference point to measure the specific entropy, for example we
can take the entropy change between upflow and any coordinate x before downflow.

The second term in Eq. (20) vanishes due to the compatibility conditions. The last
term gives the first non trivial contribution consistent with the approximation f2 we have
considered. The corresponding calculation is direct though somewhat cumbersome, then

rDS
nkB

=
mDS

kB
=

rDSlocal
nkB

� v2

t2

✓
3P2

8
+

Q2

5t

◆
+ ... (23)

Equation (23) shows that the entropy density has two completely different terms, the
first one comes from the local contribution in the df. In contrast, the second part contains
quadratic contributions in the dissipative effects. If we consider the CE expansion up to first
order in Kn number we notice that the local part is independent of the Kundsen number
approximations. However the terms containing the dissipative fluxes are second order Kn
contributions. It is not the case when we consider the description in the Grad’s moments
approximation, then the second term is the simplest non-trivial contribution to the entropy
density.

The entropy flux will be defined as follows

JS = �kB

Z
C f Ln

⇣u3
0 f

n0

⌘
dC, (24)
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

4. The entropy density. 87

The entropy density is defined as

r(r, t)S(r, t) = �kB

Z •

�•
f (C, r, t)Ln

⇣u3
0 f (C, r, t)

n0

⌘
dCr, (18)

where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88

as written in Eq. (17). Notice that the expression in (18) contains an adimensional quantity 89

in the logarithmic function. It was taken to consider as a reference the numerical density n0 90

which in the shock wave case will be the upflow value as done for all other variables in the 91

system. 92
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Then, the df’s are written as
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where we have taken r⇤v = 1 according to (7) valid for a steady shock wave. The df in Eq.
(17) can be written as

f = f (0)
�
1 + f

�
, (18)

here f represents the deviation from the local maxwellian df. It should be noticed that
in the CE df the deviation represented is a first order in the Kn number so f ⇠ O(Kn),
whereas in G13 there is not a smallness parameter.

All the kinetic calculations will be based on the df written as in Eq. (18) hence we
should study its behavior as a function of the velocity for some Mach number values.

To proceed we define the transversal speed Crt = ±
q

C2
r2 + C2

r3 and we will give some
examples where we calculate the dfs for different Mach number values usually taken
to calculate the shock wave structure. The figure (1) show the behavior of the reduced
distribution function g = u3

0 f /n0 as a function of the velocity components Cr1, Crt for Ar
at M = 1.55.

Figure 1. At the left, the distribution function corresponds to the cold part of the shock and is
calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph in the middle we used the values
v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from solving the NSF equations, using a
viscosity index of value s = 1.6, and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [19]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

The dfs calculated at upflow and downflow are Gaussian dfs in the corresponding
equilibrium points. The df named as center describe the situation when the normalized
density equals 1/2. This point has been considered as representative of the region where
the gradients in the normalized density and temperature profiles have their most important
values. It has been observed that in such a region the df may have negative values [17? ?
,18]. In figure (1) negative values in the df are not apparent, however in Fig. 2 we provide
two intersections of the distribution function with the planes Crt = 0 and Crt = 2, negative
values of the distribution function are clearly exhibited in the last case. For larger Mach
numbers the situation drastically changes as shown in Fig. 3. On the other hand we must
notice that the calculations make sense only if the f expansion is convergent as usually it is
argued when f ⌧ 1.

4. The entropy density.

The entropy density is defined as

r(x, t)S(x, t) = �kB

Z •

�•
f (C, x, t)Ln

⇣u3
0 f (C, x, t)

n0

⌘
dCr, (19)
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

4. The entropy density. 87

The entropy density is defined as

r(r, t)S(r, t) = �kB

Z •

�•
f (C, r, t)Ln

⇣u3
0 f (C, r, t)

n0

⌘
dCr, (18)

where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88

as written in Eq. (17). Notice that the expression in (18) contains an adimensional quantity 89

in the logarithmic function. It was taken to consider as a reference the numerical density n0 90

which in the shock wave case will be the upflow value as done for all other variables in the 91

system. 92
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Figure 2. The intersection of the reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 with the planes

(a) Crt = 0 and (b) Crt = 2. Here f is given by Eq. (16), and the shock wave corresponds to M = 1.55
in Argon. The solid line corresponds to g and the dashed one to the local Maxwellian that is obtained
from g by taking the fluxes equal to zero. We used the values v = 0.720, t = 0.347, P = 0.121 and
Q = �0.095 that come from solving the NSF equations and are calculated at the position x = 0, the
origin is determined by requiring that the normalized density profile is 1/2 at x = 0 [? ].

It should be pointed out that the former calculation is not rigorous since given the values 93

of the fluxes at a point within the shock it is possible to find reduced velocities such that f , 94

as given by Eq. (16) is negative and therefore its natural logarithm is not defined, this point 95

has been discussed in the literature [? ? ]. In Fig. 1 we provide the distribution function in 96

a shock wave at three different points for the shock profile in Argon at M = 1.55, negative 97

values for the distribution function are not apparent at the Center center of the shock. In 98

Fig. 2 we provide two intersections of the distribution function with the planes Crt = 0 and 99

Crt = 2, negative values of the distribution function are clearly exhibited in the last case but 100

they appear at the tail of the distribution function. For larger Mach numbers the situation 101

drastically changes as shown in Fig. 3. On the other hand, the final form obtained makes 102

sense for any value of f though its convergence is not guaranteed for N ! •. Usually it is 103

argued that f is small with respect to 1 , which is not true as can be infered from Fig. (3), 104

and only the non–trivial term is considered. 105

The direct substitution of Eq. (15) gives the expression for the local specific entropy,
which in fact coincides with the equilibrium entropy where the equilibrium values are
changed by their local counterparts,

rSlocal
nkB

=
mSlocal

kB
=
h
Ln
�
vt3/2�+

3
2
(1 + Ln 2p)

i
, (21)

it should be noticed that the change of the local entropy between two points eliminates the 106

constants, then we can calculate the change upflow-downflow in the shock wave. Also, it 107

can be chosen a different reference point to measure the specific entropy, for example we 108

can take the entropy change between upflow and any coordinate x before downflow. 109

The second term in Eq. (19) vanishes due to the compatibility conditions. The last
term gives the first non trivial contribution consistent with the approximation we have
considered. The corresponding calculation is direct though somewhat cumbersome, then

rDS
nkB

=
mDS

kB
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rDSlocal
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Figure 3. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (16), for a M = 8 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 3

320 , P = 0 and Q = 0. For the
graph in the middle we used the values v = 0.422, t = 0.180, P = 1.774 and Q = �0.790 that come
from solving the NSF equations, using a viscosity index of value s = 0.9, and are calculated at the
position x = 0, the origin is determined by requiring that the normalized density profile is 1/2 at
x = 0 [19]. The graph at the right corresponds to the hot part of the shock and is calculated using
v = 67

256 , t = 64119
327680 , P = 0 and Q = 0.

The direct substitution of Eq. (16) gives the expression for the local specific entropy, which
in fact coincides with the equilibrium entropy where the equilibrium values are changed
by their local counterparts,

rSlocal
nkB

=
mSlocal

kB
=
h
Ln
�
vt3/2�+

3
2
(1 + Ln 2p)

i
, (22)

it should be noticed that the change of the local entropy between two points eliminates the
constants, then we can calculate the change upflow-downflow in the shock wave. Also, it
can be chosen a different reference point to measure the specific entropy, for example we
can take the entropy change between upflow and any coordinate x before downflow.

The second term in Eq. (20) vanishes due to the compatibility conditions. The last
term gives the first non trivial contribution consistent with the approximation f2 we have
considered. The corresponding calculation is direct though somewhat cumbersome, then
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Equation (23) shows that the entropy density has two completely different terms, the
first one comes from the local contribution in the df. In contrast, the second part contains
quadratic contributions in the dissipative effects. If we consider the CE expansion up to first
order in Kn number we notice that the local part is independent of the Kundsen number
approximations. However the terms containing the dissipative fluxes are second order Kn
contributions. It is not the case when we consider the description in the Grad’s moments
approximation, then the second term is the simplest non-trivial contribution to the entropy
density.

The entropy flux will be defined as follows

JS = �kB

Z
C f Ln

⇣u3
0 f

n0

⌘
dC, (24)
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +

q
C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

4. The entropy density. 87

The entropy density is defined as

r(r, t)S(r, t) = �kB

Z •

�•
f (C, r, t)Ln

⇣u3
0 f (C, r, t)

n0

⌘
dCr, (18)

where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88

as written in Eq. (17). Notice that the expression in (18) contains an adimensional quantity 89

in the logarithmic function. It was taken to consider as a reference the numerical density n0 90

which in the shock wave case will be the upflow value as done for all other variables in the 91

system. 92
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since

A =
N

Â
k=3

(�1)k+1fk

k
+ O(fN+1), N 2 N. (20)
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Then, the df’s are written as

f (0) =
n
u3

0

⇣ 1
2pt

⌘3/2
exp
⇣
�C2

r
2t

⌘
, (16)

f =
n
u3

0

⇣ 1
2pt

⌘3/2
exp
⇣
�C2

r
2t

⌘"
1 +

vP
2t2

�
C2

r1 �
1
2
(c2

r2 + c2
r3)
�
� vQCr1

t2

⇣C2
r

5t
� 1
⌘#

, (17)

where we have taken r⇤v = 1 according to (7) valid for a steady shock wave. The df in Eq.
(17) can be written as

f = f (0)
�
1 + f

�
, (18)

here f represents the deviation from the local maxwellian df. It should be noticed that
in the CE df the deviation represented is a first order in the Kn number so f ⇠ O(Kn),
whereas in G13 there is not a smallness parameter.

All the kinetic calculations will be based on the df written as in Eq. (18) hence we
should study its behavior as a function of the velocity for some Mach number values.

To proceed we define the transversal speed Crt = ±
q

C2
r2 + C2

r3 and we will give some
examples where we calculate the dfs for different Mach number values usually taken
to calculate the shock wave structure. The figure (1) show the behavior of the reduced
distribution function g = u3

0 f /n0 as a function of the velocity components Cr1, Crt for Ar
at M = 1.55.

Figure 1. At the left, the distribution function corresponds to the cold part of the shock and is
calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph in the middle we used the values
v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from solving the NSF equations, using a
viscosity index of value s = 1.6, and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [19]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

The dfs calculated at upflow and downflow are Gaussian dfs in the corresponding
equilibrium points. The df named as center describe the situation when the normalized
density equals 1/2. This point has been considered as representative of the region where
the gradients in the normalized density and temperature profiles have their most important
values. It has been observed that in such a region the df may have negative values [17? ?
,18]. In figure (1) negative values in the df are not apparent, however in Fig. 2 we provide
two intersections of the distribution function with the planes Crt = 0 and Crt = 2, negative
values of the distribution function are clearly exhibited in the last case. For larger Mach
numbers the situation drastically changes as shown in Fig. 3. On the other hand we must
notice that the calculations make sense only if the f expansion is convergent as usually it is
argued when f ⌧ 1.

4. The entropy density.

The entropy density is defined as

r(x, t)S(x, t) = �kB

Z •

�•
f (C, x, t)Ln

⇣u3
0 f (C, x, t)

n0

⌘
dCr, (19)
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Figure 1. The reduced distribution function g ⌘ u3
0 f /n0 versus Cr1 and Crt ⌘ +
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C2

r2 + C2
r3, where f

is given by Eq. (15), for a M = 1.55 shock in Argon . At the left the distribution function corresponds
to the cold part of the shock and is calculated using v = 1, t = 240

961 , P = 0 and Q = 0. For the graph
in the middle we used the values v = 0.720, t = 0.347, P = 0.121 and Q = �0.095 that come from
solving the NSF equations and are calculated at the position x = 0, the origin is determined by
requiring that the normalized density profile is 1/2 at x = 0 [? ]. The graph at the right corresponds
to the hot part of the shock and is calculated using v = 2161

3844 , t = 5711523
14776336 , P = 0 and Q = 0.

4. The entropy density. 87

The entropy density is defined as

r(r, t)S(r, t) = �kB

Z •

�•
f (C, r, t)Ln
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n0

⌘
dCr, (18)

where S(r, t) is the specific entropy. The calculations will be done with the CE and G13 dfs 88

as written in Eq. (17). Notice that the expression in (18) contains an adimensional quantity 89

in the logarithmic function. It was taken to consider as a reference the numerical density n0 90

which in the shock wave case will be the upflow value as done for all other variables in the 91

system. 92
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their solution give us the equilibrium points coordinates 56

Upflow : v0 = 1, t = t0, (7)

Downflow : v1 =
1 + 5t0

4
, t1 =

3 + 14t0 � 5t2
0

16
, (8)

where t0 = 3
5M2 and M = u0

c0
is the Mach number and c0 the speed of sound in the fluid 57

calculated at upflow. 58

Now let us calculate the entropy density change ocurring between the equilibrium
points taking the upflow and downflow coordinates. Since those points are thermodynamic
equilibrium points in an ideal gas the entropy is well defined and we obtain

mDS
kB

=
m(Sdown � Sup)

kB
= Ln

h⇣t1

t0

⌘3/2⇣v1

v0

⌘i
> 0. (9)

As an immediate consequence we know that there is an irreversible process ocurring 59

between the equilibrium points. It means that some dissipative processes take place and 60

the shock wave must have a structure caused by them [? ]. Now the problem turms to 61

be a search for the behavior of the dissipative effects present in the problem. They are 62

represented by the viscous tensor and the heat flux due to the fact that both have already 63

appeared in the conservation equations (3, 4). To go further we recall that the system is a 64

dilute gas where the ideal gas equation of state and the internal energy written in terms of 65

local variables are valid for the stationary shock wave. 66

Here we will have two lanes of research, first the phenomenological scheme based 67

on the Linear Irreversible Thermodynamics which starts with the fundamental entropy 68

relation written for local variables. It means that the set of macroscopic variables describing 69

the system satisfies the “Local Equilibrium Hypothesis”(LEH). Then, the thermodynamic 70

equilibrium relations are valid for local variables, the entropy density balance equation 71

has the common entropy flux and the entropy production is the product of fluxes and 72

thermodynamic forces [? ]. 73

The other scheme goes through the kinetic theory of gases based on the Boltzmann 74

kinetic equation and the corresponding distribution function (df). In this case the entropy 75

density is directly related with the H Boltzmann functional which is written in terms of 76

the df [4]. The application of the Maxwell transport equation allows for the writing of an 77

entropy density balance equation which in some particular cases is compatible with the 78

LEH. Its compatibility depends on the approximation taken for the df. 79

3. The distribution function.[3? ] 80

The kinetic theory approach to study non-equilibrium behavior for a dilute gas is
based on the Boltzmann equation describing the distribution function f (c, x, t). The kinetic
scheme is not so easy to develop due to its structure and the lack of the intermolecular
interaction between particles. As a consequence some approximate methods to deal with
it have been studied. Here we will restrict ourselves to the Chapman-Enskog (CE) and
Grad’s moment method, the first one is a pertubative method where the Kundsen number
defined as the ratio of the mean free path in the gas and the macroscopic lenght plays a
very important role. On the other hand Grad’s method is a cumulant expansion in terms
of the so called peculiar velocity C = c � u(x, t), where u(x, t) corresponds to the average
velocity in the gas [? ]. Both, have their own limitations CE method is a perturbative one
and consequently the Knudsen number must be small (Kn ⌧ 1) to obtain a reasonable
approximation. On the other hand Grad’s method does not contain a smallness parameter,
instead a closure hypothesis is involved. Here we will consider the first order Kn number
expansion in CE method which drives to the Navier–Stokes–Fourier (NSF) constitutive
equations. It means that we will take the viscous tensor and the heat flux proportional
to the corresponding thermodynamic forces, i.e. the velocity and temperature gradients.

Figure 3. The reduced distribution function g ≡ u3
0 f /n0 versus Cr1 and Crt ≡ +

√
C2

r2 + C2
r3, where

f is given by Equation (16), for an M = 8 shock in Argon. At the left the distribution function
corresponds to the cold part of the shock and is calculated using v = 1, τ = 3

320 ,P = 0 and Q = 0.
For the graph in the middle we used the values v = 0.422, τ = 0.180, P = 1.774 and Q = −0.790 that
come from solving the NSF equations, using a viscosity index of value σ = 0.9, and are calculated at
the position x = 0; the origin is determined by requiring that the normalized density profile is 1/2 at
x = 0 [22]. The graph at the right corresponds to the hot part of the shock and is calculated using
v = 67

256 , τ = 64119
327680 ,P = 0 and Q = 0.

On the other hand, we must notice that the calculations make sense only if the φ
expansion is convergent, as usually it is argued when φ � 1.

4. The Entropy Density

The entropy density is defined as

ρ(x, t)S(x, t) = −kB

∫ ∞

−∞
f (C, x, t)Ln

(u3
0 f (C, x, t)

n0

)
dCr, (19)

where S(x, t) is the specific entropy. The calculations are performed with the CE and G13
dfs as written in Equation (18). Notice that the expression in (19) contains an adimensional
quantity in the logarithmic function. This was taken to consider as a reference the numerical
density n0, which in the case of the shock wave will be the upflow value, as for all other

variables in the system. Let us define g(C, x, t) =
u3

0 f (C,x,t)
n0

, g(0)(C, x, t) =
u3

0 f (C,x,t)
n0

to
shorten the notation.

ρS = −kB

∫
f Ln gdC = −kB

∫
f (0)(1 + φ)

[
Ln g(0) + Ln (1 + φ)

]
dC

= −kB

∫
f (0)
[

Ln g(0) + φ− φ2

2

]
dC− kB

∫
f (0)φ

[
Ln g(0) + φ− 1

2
φ2

]
dC + · · ·

= −kB

∫
f (0)Ln g(0)

︸ ︷︷ ︸
ρS loc

dC−kB

∫
f (0)
(

1 + Ln g(0)
)

φdC
︸ ︷︷ ︸

vanishes

− kB
2

∫
f (0)φ2dC

︸ ︷︷ ︸
non trivial

+ · · · (20)

The direct substitution of Equation (16) gives the expression for the local specific entropy,
which in fact coincides with the equilibrium entropy where the equilibrium values are
changed by their local counterparts,

ρSlocal
nkB

=
mSlocal

kB
=
[
Ln
(
vτ3/2)+ a constant

]
. (21)

It should be noticed that the change of the local entropy between two points eliminates the
constants, and we can then calculate the change in upflow–downflow in the shock wave.
Furthermore, a different reference point can be chosen to measure the specific entropy; for
example, we can take the entropy change between the upflow and any coordinate x before
the downflow.
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The second term in Equation (20) vanishes due to the compatibility conditions. The
last term gives the first non trivial contribution consistent with the approximation φ2 we
have considered. The corresponding calculation is direct, although somewhat cumbersome;
then

ρ∆S
nkB

=
m∆S

kB
=

ρ∆Slocal
nkB

− v2

τ2

(
3P2

8
+

Q2

5τ

)
+ ... (22)

Equation (22) shows that the entropy density has two completely different terms; the
first one comes from the local contribution in the df. In contrast, the second part contains
quadratic contributions in the dissipative effects. If we consider the CE expansion up to
first order in the Kn number we notice that the local part is independent of the Knudsen
number approximations. However, the terms containing the dissipative fluxes are second
order Kn contributions. It is not the case when we consider the description in the Grad’s
moments approximation; then the second term is the simplest non-trivial contribution to
the entropy density.

The entropy flux will be defined as follows:

JS = −kB

∫
C f Ln

(u3
0 f

n0

)
dC, (23)

where we only need the x component, which can be written as follows:

JSx

kBu4
0
= −

∫
Crx f Ln gdCr = −

∫
Crx f (0)(1 + φ)

[
Ln g(0) + Ln (1 + φ)

]
dCr

= −
∫

Crx f (0)
[
Ln g(0) + φ− φ2

2
+ ...

]
dCr = −

∫
Crx f (0)φ

[
Ln g(0) + φ− 1

2
φ2 + ...

]
dCr

= −
∫

Crx f (0)Ln g(0) dCr
︸ ︷︷ ︸

−
∫

Crx f (0)Ln g(0) φ dCr
︸ ︷︷ ︸

−1
2

∫
Crx f (0)φ2dCr

︸ ︷︷ ︸
+...

vanishes non− trivial non− trivial (24)

Now we calculate the terms in Equation (24) and define the dimensionless entropy flux in
the x direction giving the following result:

JSx
n0kBu0

= js =
Q
τ

(
1− 2

5
vP
τ

+ ...
)

, (25)

valid up to the same approximation as the entropy density. It must be noted that Equa-
tion (22) is obtained from the local distribution function labeled as f (0), and the result is
consistent with the entropy density in equilibrium evaluated with the local variables. Fur-
thermore, due to the compatibility conditions, the entropy density can be calculated with f
instead of f (0), and both results coincide. On the other hand, the first term in the entropy
flux structure coincides with its usual expression in linear irreversible thermodynamics
(LIT) [18] and it contains the heat flux over the temperature Q

τ . This contribution is the
first non-trivial term in the entropy flux and, in the CE approximation, is a first order Kn
contribution. The second term corresponds to a correction which contains the product of
dissipative fluxes, being a second order in the Knudsen number.

4.1. Navier–Stokes–Fourier (NSF)

To begin the analysis we will consider the first order Kn number in the df according to
the CE method. In this case the constitutive equations for the dissipative constributions
are given be the usual Navier–Newton and Fourier equations [10,19,23]. The NSF set of
equations are then obtained directly by the direct substitution of the constitutive equations
for the viscous tensor and the heat flow, as specified in Equation (12), all of them written in
terms of the dimensionless variables defined in Equation (6). Then
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τ

v
+ v− ηv′ = τ0 + 1, (26)

−vηv′ − 15η

8Pr
τ′ +

1
2
(5τ + v2) =

1
2
(5τ0 + 1). (27)

where v′, τ′ mean the velocity and temperature derivatives with respect to s, Pr = cpη0
κ0

=
2
3 is the Prandtl number and the reduced viscosity η is modeled through a power of
the temperature:

η =
µ

µ0
=
( τ

τ0

)σ
. (28)

The viscosity index (σ) can be determined by fitting experimental viscosity values or by
using calculated viscosities obtained from formulas of the kinetic theory of gases with the
interaction potential obtained from ab initio calculations.

Now we take the local equilibrium entropy density balance calculated as follows:

d
dx
(
ρSlocalu + J

loc

Sx
)
=

n0kBu0

λ

d
ds

[
Ln (v τ3/2) +

Q
τ

]
=

n0kBu0

λ

(
−Qτ′

τ2 +
Q′
τ

+
τ3/2v′ + (3/2)v

√
ττ′

vτ3/2

)
. (29)

According to the conservation laws valid in the shock wave (see Equation (7)), it is possible
to write

Q′ = −3τ′

2
−
[
1 + τ0 − v

]
v′, P =

(1 + τ0)v− v2 − τ

v
, (30)

d
dx
(
ρSlocalu + J

loc

Sx
)
=

n0kBu0

λ

(
−Q τ′

τ2 +
τ + v2 − v(1 + τ0)

vτ
v′
)
=

n0kBu0

λ

(
− τ′

τ2Q−
v′

τ
P
)

. (31)

Therefore, the reduced entropy balance equation is

d
ds

(
S∗local + jloc

Sx

)
= Σ∗S

∣∣
local , (32)

where

S∗local =
m Slocal

kB
, jloc

Sx =
Q
τ

, Σ∗S
∣∣
local=

λ

n0 kB u0
ΣS = −Q τ′

τ2 −
P v′

τ
. (33)

The entropy production density in its dimensionless expression is given as

Σ∗S
∣∣
local= −

1
τ

(Qτ′

τ
+ Pv′

)
. (34)

We recall that the thermodynamic forces associated with the heat flux and viscous tensor

are given as Xτ = d
ds

(
1
τ

)
, Xv = − 1

τ
dv
ds , respectively. The expression given in Equation (32)

corresponds to the entropy density balance where the local equilibrium hypothesis is taken
as it is in the usual linear irreversible thermodynamics approach [18]. In particular, the
entropy production is the product of thermodynamic forces by fluxes.

Σ∗S
∣∣
local= XτQ+ XvP. (35)

To calculate the numerical values we need the solution for the local variables v(s), τ(s)
and the corresponding fluxes P, Q. In this case we must take the NSF equations as written in
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Equations (26) and (27) to calculate the temperature and velocity profiles for a given Mach
number and the viscosity index for a particular substance.

4.2. The Grad’s 13-Moment Approximation G13

Now we will work with G13 approximation, and as a first step we write the equations
to be solved in this approximation. To do that we take the conservation equations, Equa-
tion (7) with the G13 equations, to determine the behavior of the viscous tensor and the
heat flux, namely, [20,25],

3
4

d
ds

(vP) + 2
5

dQ
ds

+ P
( τ

ηv
+ v′

)
+

τ

v
v′ = 0, (36)

vQ′ + (τ − vP)dP
ds

+
5τ

2v
τ′ +

[7
2

τ′ − v
( d

ds
τ

v

)]
P+

(16
5

v′ +
8τ

9ηv

)
Q = 0. (37)

The set of Equations (7), (36) and (37) can be solved numerically to obtain the corresponding
profiles with the same model for viscosity, as in the NSF case.

As a second step, the G13 df is taken to calculate the entropy density, which will
contain the already calculated local part and some additional terms coming from the
non-local contributions; both are shown in Equations (20)–(22). It should be noted that
the non-local contributions are nonlinear terms in the viscous tensor and the heat flux.
Furthermore, the entropy flux will have the local part and the non-local terms, as shown
in Equation (25), where the non-local terms are bilinear in the viscous tensor and the heat
flux. Now we will take the higher order terms, O(φ2), and calculate their derivative with
respect to the dimensionless position; hence, using the results from the Appendix A, we
obtain that the entropy balance equation is then written as follows:

d
ds
(
ρStotalu + Jtotal

Sx

)
=

λ

n0 kB u0

{
1
τ

(
−Qτ′

τ2 −
Pv′

τ

)

+
1

4τ

(
−7v′

5
+

3v2v′

τ
+

27vτ′

5τ

)
P+

1
5τ

(
2τ′

τ
+

4vv′

τ
− 2v′

v
+

3 v2 τ′

τ2

)
Q

+
v

4τ2

(
3vτ′

τ
− 7v′

5

)
P2 +

1
5τ3

(
3v2τ′

τ
− 2vv′

)
Q2 +

2
5τ2

(
−v′ +

v2v′

τ
+

2vτ′

τ

)
PQ
}

, (38)

where ρStotalu is given in Equation (22) and the entropy flux Jtotal
s is written in Equation (25).

A close view of the entropy balance Equation (38) shows us that it contains the usual
local part and several terms which have a different structure, in the sense that they are
not the products of fluxes and thermodynamic forces as it happened in the NSF case (see
Equation (35)). In fact, we know that the thermodynamics forces and their corresponding
fluxes definitions are not unique due to the existence of Meixner transformations [26].
Hence, we wonder if it is possible to redefine the thermodynamic forces and recover the
mentioned structure; however, it is easily seen that there are some kind of crossed effects
which prevent such efforts. Furthermore, there are additional nonlinear contributions
which make the problem worse.

5. The Local Equilibrium Hypothesis (LEH) and Beyond

In order to go a step further in the analysis of the calculations performed in the last
section, we will specify as clearly as possible the content and implications of the local
equilibrium hypothesis. First of all, it is important that it has been the cornerstone in the
development of linear irreversible thermodynamics [18] and a lot of irreversible studies
and generalizations [27–34]. It takes the classical thermodynamics relations to establish
that the local variables describing a situation out of thermodynamic equilibrium can be
written in the same way as they stand in thermodynamic equilibrium. This means that the
equation of state, the caloric equation as well as the fundamental TdS relation are valid in
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local equilibrium. The line of thinking behind it focus on some situations which are not
too far from true equilibrium, no matter that we do not have a quantitative criterion to be
sure about such a fact. The NSF set of equations has kinetic support with the CE expansion
in the Knudsen number Kn as we noticed before; the entropy density calculation must
then be taken only with what we called the local term due to the fact that quadratic terms
in the dissipative fluxes P, Q become of the order Kn2. The entropy flux at order Kn is
just proportional to Q/τ, and the entropy production up to the same order corresponds to
the product of fluxes and the thermodynamic forces, as identified in the literature [18,35].
It should be mentioned that according to the LEH, the entropy production density must
be positive definite for any position along the shock wave. This condition is completely
fulfilled with the NSF set of equations. Sometimes it is taken to extract conclusions about
the transport coefficients, shear viscosity, thermal conductivity, diffusion coefficients, etc.,
when they are needed. In this context we see that the NSF set of equations is completely
consistent with the LEH up to the first order in the Knudsen number.

Concerning the G13 equations, we must recall that their kinetic support is given
through an arbitrary closure hypothesis and they do not have a smallness parameter to
give them a systematic way to characterize the kind of approximation they represent. With
the calculations carried out before, we have a starting point to analyze the results. First of
all, the calculations were performed with the φ2 contributions. The NSF calculations have
the same structure; however, the Knudsen number order has given us a way to classify
each term and neglect Kn2 contributions. The lack of the smallness parameter in G13
avoids such a classification and we must consider the complete expression. Some terms are
consistent with LEH, but some others are not. In this case we can say that we have non-local
contributions which are not negligible. Obviously, the entropy production density has a
different structure than the one consistent with LEH.

It should be pointed out that the G13 equations may have a phenomenological in-
terpretation through the extended irreversible thermodynamic (EIT) description. EIT
considers the fluxes as relevant and independent variables and as constituting the basis
to write a generalization of the TdS fundamental relation [34]. The steps followed by
EIT drive an entropy production with the same structure as we have found for the G13
set of equations [36]. This means that the LEH is not obeyed in the EIT formulation. A
similar quotation can be made for Burnett equations, which rise as an approximate solution
for the Boltzmann equation at the second order in the Kn number [10]. The Burnett’s
equation’s origin is completely kinetic and derived from the CE method; however they
have a thermodynamic context, as shown in Reference [37]. In both cases, G13 and Burnett,
among other sets of equations, are not compatible with LEH, although they correspond to
a thermodynamic context.

The numerical results will be given us a clear idea about the relevance of the non-local
contributions.

6. Numerical Results

Let us study the performance of NSF and G13 in relation to the entropy density
behavior. In order to compare the models the normalized variables are defined as follows:

ρn(s) =
1/v(s)− 1/v0

1/v1 − 1/v0
, τn(s) =

τ(s)− τ0

τ1 − τ0
. (39)

Figure 4 shows the normalized and temperature profiles for He at M = 1.59, and to reduce
the variables we have taken the following:

u0 = 1183.3884
mt
sec

, ρ0 = 1.93× 10−8 gr
cm3 , kB = 1.380649× 10−23 J

K
,

m = 6.6465× 10−27 kg, µ0 = 13.0310× 10−6 Pa · s =⇒

λ ≈ 0.7607 mm, τ0 =
3

5 M2 =⇒ τ0 = 2000/8427 for M = 1.59. (40)
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Figure 4. Normalized density and normalized temperature profiles for He at M = 1.59 and the
viscosity index σ = 0.6716. The normalized density according NSF is the red line and the green
dashed line gives the G13 profile. The blue line corresponds to NSF normalized temperature and the
green solid line to the G13 model. The black central line indicates the values 1/2 for the normalized
density, as usual in the literature.

In addition, we used the soft sphere model, given by Equation (28), to fit the val-
ues of the transport coefficients of 4He reported by Hurly [38] using ab initio values
for the interatomic potential. The resulting value for the viscosity index, obtained from
the fit, is σ = 0.6716 [25]. With the previous information, the solutions to the NSF dif-
ferential equations, given by Equations (26) and (27), or to Grad’s equations, given by
Equations (36) and (37), were determined by electing the normalized density profile with
the value 1/2 for s ≈ 18.3 [25,39].

The normalized density and temperature profiles and their comparison with exper-
imental data for G13 and NSF have been discussed in the literature [25,39], as shown in
Figure 4. The results represented here are shown to demonstrate that they have the usual
behavior in both NSF and G13 models. The viscous tensor and the heat flux are shown
in Figure 5 for both models. It is clear that they vanish in the equilibrium points, as it
should be.
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Figure 5. Comparison between the viscous tensor and heat flux profiles for He at M = 1.59. Red
solid lines correspond to the NSF model and the blue solid lines to the G13 approximation.

Figure 6 shows the entropy density change profile in the cases corresponding to
the NSF local expression; the local contribution in G13 model and the complete entropy
density change for the G13 case are calculated with the solution for the G13 equations. The
comparison between the local and the total entropy change calculated with the G13 model
solutions shows how relevant the non-local terms become. It shows in a clear way that
the non-local contributions in the G13 approximation are not negligible. A conspicuous
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feature of the local entropy density profile is that it exhibits a maximum, as shown in
Figure 6. The entropy discussed in the work by Margolin et al. [17] is monotonic, which is
expected outside of equilibrium according to some researchers. However, the results of
numerically solving the Boltzmann equation by Malkov et al. [40] report non-monotonic
entropy profiles. For other theories in which the entropy in a shock wave is discussed, the
interested reader is referred to the relevant bibliography [41,42].

5 10 15 20 25 30
s

0.05

0.10

0.15

0.20

mΔ

kB

Figure 6. The entropy change profile according to the NSF (red line), local contribution to the entropy
change according to the Grad-13 approximation (blue line) and the total entropy change (green line)
calculated with the G13 profiles.

In Figure 7, the usual entropy flux for the NSF model is shown in contrast with the local
contribution in the G13 case where a big difference is evident. In this case, the non-local
contribution in the G13 approximation becomes the leading part.

5 10 15 20 25 30
s

-0.15

-0.10

-0.05

j

Figure 7. Entropy density flux in the NSF and Grad-13 approximation. The red solid line corresponds
to NSF, the blue solid line corresponds to the local contribution according to the G13 case and the
green line gives the total entropy density flux as calculated with the G13 profiles.

The entropy production is presented and compared in Figure 8, where it is shown that
the non-local contribution plays a very significative role in the total entropy production. In
this case, it is seen that its difference with the total entropy production is somewhat small.
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Figure 8. Entropy density production according to NSF and G13 models. The red solid line is the NSF
profile, the blue solid line corresponds to the local contribution according to the G13 approximation
and the green line gives the total entropy production calculated with the G13 profiles.

7. Concluding Remarks

There is no doubt about the entropy concept difficulties, much of them caused because
an incomplete context is given when it is applied to a particular problem. Even more,
the local equilibrium hypothesis must be applied carefully, since it has somewhat blurry
limitations. In particular, sometimes it is extended indiscriminately, taking as a basis the
second law of thermodynamics for an isolated system, without questioning its validity
under the particular conditions imposed by the problem. The work presented here has
tried to show explicitly the contrast between the entropy calculations based on the NSF and
the Grad13 models, within the frame of their application to study the shock-wave structure
in dilute gases. The NSF model is consistent with the LEH, and the Grad13 moments do
not perform in the same way. In fact, the calculation shown allows a quantitative estimate
of how different the entropy production is in this case. The differences come from the
numerical solutions for the variables (v(s), τ(s)) in each model; however, the difference
in the structure is more important, as it is shown in Equation (38). In particular, the last
three terms are second order in the fluxes, and due to the lack of a smallness parameter,
their order of magnitude is not known. The entropy production in the G13 model does not
have the structure required by the LHE. Moreover, its non-local contributions cannot be
neglected, at least in this particular example. It must be said that Grad’s moment method is
just one model to show the problem set in this work; for example, the Burnett set constitutes
another set which is not consistent with LEH.

It should be noted that the shock-wave problem with the NSF or G13 equations can be
solved independently of the definition of entropy used. For a glimpse of the vast literature
available on shock waves in dilute gases, the reader can refer to the bibliography cited in
reference [43], which also provides a few references to shock waves in dense gases. For the
latter case, the interested reader may take a look at chapter 6 of the book by Hoover and
Hoover [1].
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Appendix A

This appendix is devoted to some details concerning the non-local contributions to the
entropy production in the G13 model. First of all, we write the non-local contributions in
the entropy density and the entropy flux:

ρ∆S
nkB

∣∣∣
non−local

= − v2

τ2

(
3P2

8
+

Q2

5τ
+ ...

)
(A1)

jS
∣∣∣
non−local

= −2
5

vPQ
τ2 + ... (A2)

whose derivatives are

d
ds

∆S∗non−local = −
3v2PP′

4τ2 − 2v2QQ′
5τ3 +

(
−2vv′

5τ3 +
3v2τ′

5τ4

)
Q2 +

(
−3vv′

4τ2 +
3v2τ′

4τ3

)
P2, (A3)

d
ds

jS
∣∣
non−local= −

2v
5τ2QP′ − 2v

5τ2PQ
′ −
(

2v′

5τ2 −
4vτ′

5τ3

)
PQ. (A4)

We then obtain that the non–local entropy production is given by

Σ∗S

∣∣∣∣
non−local

= −
(

2v
5τ2Q+

3v2

4τ2P
)
P′ −

(
2v2

5τ3Q+
2v
5τ2P

)
Q′ −

(
2vv′

5τ3 −
3v2τ′

5τ4

)
Q2 +

(
−3vv′

4τ2 +
3v2τ′

4τ3

)
P2 +

(
− 2v′

5τ2 +
4vτ′

5τ3

)
PQ. (A5)

Now we introduce the viscous tensor and heat flux derivatives taken from the conservation
Equation (7) written as

P′ =
( τ

v2 − 1
)

v′ − τ′

v
, Q′ = −3τ′

2
−
(
P+

τ

v

)
v′, (A6)

so that

Σ∗S

∣∣∣∣
non−local

=
3P2v2τ′

4τ3 − 7P2vv′

20τ2 −
2PQv′

5τ2 +
2PQv2v′

5τ3 +
4PQvτ′

5τ3 − 7Pv′

20τ

+
3Pv2v′

4τ2 +
27Pvτ′

20τ2 +
3Q2v2τ′

5τ4 − 2Q2vv′

5τ3 +
2Qτ′

5τ2 +
3Qτ′

5τ3 +
4Qvv′

5τ2 −
2Qv′

5τv
. (A7)

Equation (A7) can then be simplified :

Σ∗
∣∣
non−local=

v
4τ2

(
3vτ′

τ
− 7v′

5

)
P2 +

1
5τ3

(
3v2τ′

τ
− 2vv′

)
Q2 +

2
5τ2

(
−v′ +

v2v′

τ
+

2vτ′

τ

)
PQ+

1
4τ

(
−7v′

5
+

3v2v′

τ
+

27vτ′

5τ

)
P+

1
5τ

(
2τ′

τ
+

4vv′

τ
− 2v′

v
+

3 v2 τ′

τ2

)
Q. (A8)
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