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Abstract: Unpaired single-image dehazing has become a challenging research hotspot due to its
wide application in modern transportation, remote sensing, and intelligent surveillance, among other
applications. Recently, CycleGAN-based approaches have been popularly adopted in single-image
dehazing as the foundations of unpaired unsupervised training. However, there are still deficiencies
with these approaches, such as obvious artificial recovery traces and the distortion of image processing
results. This paper proposes a novel enhanced CycleGAN network with an adaptive dark channel
prior for unpaired single-image dehazing. First, a Wave-Vit semantic segmentation model is utilized
to achieve the adaption of the dark channel prior (DCP) to accurately recover the transmittance
and atmospheric light. Then, the scattering coefficient derived from both physical calculations and
random sampling means is utilized to optimize the rehazing process. Bridged by the atmospheric
scattering model, the dehazing/rehazing cycle branches are successfully combined to form an
enhanced CycleGAN framework. Finally, experiments are conducted on reference/no-reference
datasets. The proposed model achieved an SSIM of 94.9% and a PSNR of 26.95 on the SOTS-outdoor
dataset and obtained an SSIM of 84.71% and a PSNR of 22.72 on the O-HAZE dataset. The proposed
model significantly outperforms typical existing algorithms in both objective quantitative evaluation
and subjective visual effect.

Keywords: dehaze; atmospheric scattering model; cycle generative adversarial network; dark
channel prior

1. Introduction

With the rapid development of digital society, computer vision technology is increas-
ingly being applied in the fields of autonomous driving, remote sensing imaging, and
intelligent monitoring. However, the quality of the images acquired by photographic
equipment in hazy weather is severely affected, with the target object being obscured and
the image losing a lot of detailed information. Furthermore, degraded images are not
conducive to subsequent high-level vision tasks. Therefore, a method for processing and
clarifying hazy degraded images is highly desired.

At present, single-image dehazing has become a mainstream method for image clarifi-
cation because it is cost-effective and requires no additional constraint information. Single-
image dehazing methods can be classified into image enhancement, image restoration and
learning-based approaches based on their mechanism.

Traditional image enhancement methods for dehazing include Retinex theory [1],
histogram equalization [2], and wavelet transforms. These methods adjust the contrast and
saturation of the image to achieve dehazing without considering the physical nature of
haze formation. However, these global enhancements often cause the loss of some local
information and perform poorly when facing hazy images in complex scenes. In recent
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years, many methods combining image fusion have been widely proposed. Zheng et al. [3]
used gamma correction to obtain a sequence of multiple exposed images from a single
hazy image, then integrated the best region of saturation using adaptive decomposition to
produce a clear image. Similarly, Galdran [4] utilized a multiscale Laplacian transform to
fuse artificially exposed images to achieve dehazing. Zhu et al. [5] implemented feature
extraction of a single image based on the idea of image space domain transformation; these
authors then used a multiscale fusion algorithm based on fast filtering and saturation curve
analysis to fuse the transformed image. These image fusion-based methods have improved
traditional image enhancement, but the complexity of the algorithms used in these methods
is high, and there are certain limitations to the stability of the dehazing they can provide.

Image restoration [6–9] uses prior knowledge or assumptions to establish a physical
model of image degradation to achieve clarity. He et al. [7] discovered the dark channel prior
(DCP) and mapped it to the atmospheric scattering model [10], designing an effective haze
removal method. Zhu et al. [8] revealed the connection between haze concentration, image
brightness, and saturation and developed the color attenuation prior. Berman et al. [9]
proposed that haze alters the original tight color clusters in RGB space and forms haze
lines through atmospheric light coordinates. Wang et al. [11] estimated the transmittance
based on a prior for which there exists a linear relationship between the minimum channel
of a hazy image and a clear image; these authors also introduced a weakening strategy
combined with a quad-tree method of subdividing additional channels to restore the
atmospheric light. Physical-model-based methods have been widely adopted since they
are simple and efficient. Unfortunately, this type of algorithm requires high accuracy in
parameter estimation and fails in regions that do not satisfy the prior; thus, the defogging
results are often accompanied by negative effects such as color distortion and halos.

Recently, learning-based methods have significantly pushed the state of the art of
unpaired image dehazing. Cai et al. [12] devised DehazeNet by integrating four dif-
ferent traditional defogging algorithms with deep learning. Zhang et al. [13] set two
sub-networks in the pyramid network to obtain the transmittance and the atmospheric
light, respectively. Li et al. [14] proposed a light-weight CNN network that they combined
with the atmospheric scattering model to achieve dehazing. Chen et al. [15] developed
GCANet on the basis of generative adversarial networks and adopted smooth convolu-
tion instead of extended convolution to solve the problem of grid artifacts. Similarly, a
series of networks [16–19] were designed to derive clear images directly from the input
hazy images without considering the degradation mechanism. Compared to conventional
image enhancement and prior-based haze removal models, learning-based methods have
achieved great progress. However, most of these methods are trained based on paired
data and rely on clear images for positive supervision. This training process of supervi-
sion leads to excessive sensitivity to samples and the poor generalization of real-world
haze removal. To address this issue, various unsupervised learning methods have been
proposed. Li et al. [20] presented an unsupervised, unpaired defogging algorithm based on
layer disentanglement, breaking away from training on large-scale datasets. However, this
algorithm often produces images with serious color distortion and poor stability during
defogging. Zhao et al. [21] proposed a weakly supervised RefineDNet, which combines
the dark channel prior with a learning-based method using unpaired data for adversarial
learning to improve the quality of the defogged images. Li et al. [22] integrated multi-scale
feature representation with an attention mechanism and designed an enhanced decoder to
improve the extraction of haze information. Ding et al. [23] unified the haze removal and
noise suppression tasks and introduced a region similarity fusion module to obtain the final
results. The development of unsupervised defogging algorithms has significantly alleviated
the overfitting problem associated with supervised methods, but the defogging results lack
realism, and the network structures tend to be complex, requiring higher computational
resources.

Known as a powerful tool for unpaired image processing, CycleGAN (cycle generative
adversarial network) [24] is characterized by its structure, which enables images to be
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converted between two domains. Recently, many unpaired CycleGAN-based dehazing
approaches have been widely proposed to solve the problem that paired samples are
nearly unavailable in the real world. Engin et al. [25] designed a CycleDehaze system that
combines a pyramid network for high-resolution images and introduces a cyclic perception
loss to improve the dehazing quality. Zheng et al. [26] introduced an enhanced attention
mechanism in the CycleGAN framework and applied it to the task of defogging remote
sensing images. Most CycleGAN-based dehazing methods ignore the physical properties
of the hazy environment; thus, the results lack realism and variability. In order to make
progress on this issue, Yang et al. [27] combined CycleGAN with the atmospheric scattering
model to recover the scene depth and haze density of images to improve dehazing quality
and achieved better results on synthetic datasets; however, their network, with its high-
complexity structure, is still limited regarding the accuracy of estimation for transmittance.

In this paper, we specifically propose a novel unpaired dehazing network termed
ADCP-CycleGAN (adaptive DCP combined with CycleGAN). The network consists of two
branches that implement the reconstruction of hazy and clear images, respectively. In the
dehazing process, we use the scale-adaptive DCP to accurately recover the transmittance
and atmospheric light and combine the variable scattering coefficient with depth to achieve
a more realistic rehazing process.

The contributions of this paper can be summarized as follows:

• A novel unpaired single-image dehazing model is proposed to fuse the dark channel
prior and the enhanced CycleGAN.

• An adaptive DCP is designed to rely on the Wave-ViT semantic segmentation model,
and it can accurately recover the transmittance and atmospheric light.

• In the enhanced CycleGAN method, the scattering coefficient β is obtained from
two different approaches in order to generate haze of various thicknesses and un-
even distributions. β1 is derived from the atmospheric scattering model, while β2 is
randomly sampled.

The article is organized as follows. Section 2 explains the preliminary knowledge of
the atmospheric scattering model and the dark channel prior, as well as the basic structure
of the cycle generative adversarial network. Section 3 elaborates the proposed image
dehazing method based on CycleGAN with the adaptive dark channel. The experimental
results, along with relevant discussions, are illustrated in Section 4. Conclusions and future
work are summarized in Section 5.

2. Preliminaries
2.1. Atmospheric Scattering Model

To describe the mechanism of haze generation, McCartney et al. [10] proposed an
atmospheric scattering model in 1977,

I(x) = J(x)t(x) + A(1− t(x)), (1)

where I(x) and J(x) indicate a hazy degraded image and a clear image, respectively. A is
the value of the global atmospheric light, and the transmission map, t(x), can be derived
from the following relationship:

t(x) = e−βd(x) (2)

where β is called the scattering coefficient, which can reflect the haze density. d(x) is the
depth of field.

Based on the atmospheric scattering model, a series of dehazing algorithms using
prior knowledge [6–9] have been proposed. Among them, the most representative one is
the dark channel prior [7] discovered by He et al.
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2.2. Dark Channel Prior

The prior refers to certain pixels with lower intensities in at least one RGB channel as
the dark channel, which can be represented as

Jdark(x) = min
y∈Ω(x)

( min
c∈{r,g,b}

Jc(y))→ 0, (3)

where Jc(y) denotes one of the RGB channels of a clear image, and Ω(x) is a patch centered
on pixel x. The internal transmittance of Ω(x) can be approximated as a constant provided
that the patch scale is sufficiently small. Substituting this into Equation (1), a mathematical
derivation gives an estimate of the transmittance:

t̃(x) = 1− min
y∈Ω(x)

( min
c∈{r,g,b}

Ic(y)
Ac ) (4)

where Ic(y) and Ac represent the original hazy image and the atmospheric ambient light in
one of the RGB components, respectively. The subtraction term in Equation (4) is actually
the dark channel intensity of Ic(y)

Ac . Combined with Equation (1), a clear result can be
obtained as follows:

J(x) =
I(x)− A

max(t(x), t0)
+ A, (5)

in which t0 is a tiny constant set to prevent the value of the denominator from being zero.
The patch size of the crucial parameter Ω(x) has a decisive impact on the defogging

result. As shown in Figure 1b–d, an oversized patch (Ω(x) = 30) would invalidate the
assumption that “the transmittance in the patch is constant”, and the patch tends to cross the
edge of the depth of field, leading to the halo effect. Conversely, as shown in Figure 1e–g,
if the patch scale is too small (Ω(x) = 3), the intensity of the dark pixels increases; thus, the
transmittance obtained from Equation (4) is less than the real value, which may result in
oversaturation, distortion, and an overall darkening of the image. Therefore, a single-scale
Ω(x) will cause many unexpected negative effects and reduce the image quality.

Figure 1. Effect of different patch sizes on dark channel prior (DCP) defogging. (a) Hazy input.
(b–d) represent the dark channel map, transmission map, and dehazing result, respectively, based on
Ω(x) = 30. (e–g) are the corresponding groups, while Ω(x) = 3.

Based on this, a number of algorithms were subsequently proposed to optimize DCP
performance. Chen et al. [28] proposed the concept of a “bright channel”, as opposed to the
dark channel, in order to solve the problem of the misalignment of brightness in dehazing
results. Zhu et al. [29] and Jackson et al. [30] introduced the energy minimization theory
and Raleigh scattering theory, respectively, to remove artifacts and halos. To some extent,
these approaches that introduce external theories act as a correction and complement to
the original DCP, while they also undermine the advantages of DCP, i.e., its efficiency
and simplicity. From the perspective of parameter adaption, Song et al. [31] compared
the defogging effect at different scales in detail and adaptively adjusted the scale range
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of the dark channel according to the color and edge characteristics of the hazy image.
Hu et al. [32] and Guo et al. [33] focused on segmenting the sky region, which does not
satisfy the prior, to improve the accuracy of transmittance recovery. Inspired by previous
research, we attempt to further subdivide the feature regions of the images and apply
more accurate segmentation techniques to improve the quality of parameter adaptation. In
Section 3.2, we will elaborate on the detailed optimization method.

2.3. CycleGAN

Cycle generative adversarial network was first designed by Zhu et al. [24]. It has a
network structure with two generators and dual discriminators by mirror-symmetrizing the
traditional GAN. Based on this special network structure, CycleGAN can convert images
in the original and target domains without the supervision of paired datasets, a property
that makes it widely preferred for unpaired dehazing tasks [25,26,34,35].

As shown in Figure 2, the previous CycleGAN-based dehazing networks contain a
rehazing cycle and a dehazing cycle. In essence, most of them simply treat “hazy” and
“clear” as two style domains for image transformation, with poor network interpretability
and severe traces of artificial recovery. Specifically, the rehazing operation ignores real
hazy environments that occur with various thicknesses and uneven distributions in the
natural world, resulting in a large gap between the generated hazy images and the actual
photographed hazy dataset. This means that the rehazing cycle has little significance for the
enhancement of dehazing processing and can even negatively affect the quality of outputs,
resulting in issues such as obvious artificial recovery traces and distortion.

Figure 2. Structure of previous CycleGAN-based dehazing.

In order to improve the above issues, we introduce critical physical information to
realize the enhancement of the dehazing and rehazing cycle. More details will be illustrated
in Section 3.1.

3. Proposed Method

In this section, we elaborate on an unsupervised unpaired dehazing network termed
ADCP-CycleGAN. We adopt adaptive DCP to accurately recover transmittance and at-
mospheric light for dehazing and achieve rehazing based on the depth and scattering
coefficients. The two cycle branches of hazy/clarity reconstruction are connected by the
atmospheric scattering model to form enhanced CyleGAN. The algorithm and network
structure are detailed as follows.
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3.1. Network Structure

The network consists of a hazy image reconstruction H-H branch and a clear image
reconstruction C-C branch, as shown in Figure 3.

Figure 3. The structure of ADCP-CycleGAN.

H-H Branch. Given a hazy image Hreal1 , we first perform Wave-ViT segmentation of
the image to obtain the regional feature map. After the DCP operation, a dark channel
map is obtained to deduce the transmittance T and atmospheric light A according to
Equation (4). Then, the clear image C f ake1 can be acquired as follows:

C f ake1 =
Hreal1 − A

T
+ A (6)

Based on the clear image, we can restore the depth D, at which time the scattering
coefficient β1 can be recovered to reflect the density of the haze distribution. With the
depth and scattering coefficients, we ultimately obtain the reconstructed hazy H f ake1 . In
this branch, the generator GC is the dehazing processor, and DC is the discriminator that
identifies whether C f ake1 pertains to the clean domain.

C-C Branch. We initially derive the depth information from the input clear image
Creal2 . The scattering coefficient β2 is randomly sampled in the range of [0.5, 2]. The
corresponding hazy image H f ake2 is subsequently acquired, and the same dehazing process
as in the H-H branch is then adopted to acquire the final reconstructed clear image C f ake2 ;
that is,

C f ake2 =
H f ake2 − A

T
+ A (7)

In this branch, the generator GH produces the haze, and the discriminator DH is used
for recognizing if H f ake2 belongs to the hazy domain.
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3.2. Adaptive DCP

In Section 2.2, we discussed in detail the drawbacks of the global fixedness of Ω in DCP.
In this section, we continue the idea of parameter adaption to make further improvements.

To achieve a more refined segmentation of the feature regions, we here adopt the
Wave-ViT model proposed by Yao et al. [36]. This model unites the wavelet transform with
the Transformer network. With reversible downsampling for the lossless recovery of object
texture details, it shows good performance in semantic segmentation tasks. The image
division effect is shown in Figure 4.

Figure 4. Hazy image region division. (a) Hazy image. (b) Sky region identification. (c) Foreground
region segmentation.

We determine distinct patch sizes based on the essential properties of different areas
in the image to achieve parameter self-adaption. The image can be divided into 3 regions:
(a) The Foreground region, which consists of complex objects with rich colors and high
saturation. An undersized patch may further aggravate the oversaturation phenomenon,
whereas an oversized patch will violate the change of transmittance distribution in this
region, causing an obviously distorted visual effect. Therefore, we set the patch scale of the
foreground area in a normal interval that varies uniformly with the saturation. Specifically,
the patch size of foreground area Ω f ore can be determined based on the saturation S and
luminance L as follows:

L(x) = rIr(x) + gIg(x) + bIb(x) (8)

S(x) = 1−
min

c∈{r,g,b}
Ic(x)

L(x)
(9)

Ω f ore = max{5, round(k · min
c∈{r,g,b}

Ic(x)} (10)

where the max and round operators are used to set the patch scale as a positive integer.
Based on previous research [7,28,31–33] on the defogging quality at different scales, we
further conducted a validation experiment on the RESIDE dataset [37]. The results demon-
strate that [5, 15] is a scale range that enables dark channel defogging to achieve optimal
results, and other patch scales below or above this range experience significant negative
effects, such as halos, luminance distortion, and oversaturation. Therefore, we take the
value of k as 15 to ensure that Ω in the foreground region is adaptive in this range. As
we calculate the brightness and saturation of the image in the HSI color space, the satura-
tion value is in the range of [0, 1]. In order to change the patch scale uniformly with the
saturation, we construct a linear mapping relationship between [5, 15] and [0, 1] so that
pixel blocks with different levels of saturation in the foreground area can correspond to the
suitable patches. (b) The Sky region has high brightness and low saturation. We choose a
larger patch scale in the [25, 30] range in this area to intensify the defogging effect. At the
same time, partitioning out the region helps us find the atmospheric light values using the



Entropy 2023, 25, 856 8 of 18

method in [7]. Notably, though we set the patch scale in the sky region to be much larger
than in the foreground area, the sky area usually does not contain too much detail, the color
saturation is more homogeneous, and the composition of the scene is simpler. At this point,
the negative effects of large patches can be reduced. (c) The Edge mutation region. We set
a smaller patch value in the range of [0, 3] in the depth of field border area to prevent halo
effect and to preserve richer detail information.

3.3. Acquisition of Scattering Coefficient

In order to simulate the generation of real haze environments, which occur with
various thicknesses and uneven distributions in the natural world, we optimize the rehazing
process based on the atmospheric scattering model by combining the depth and density.

In the H-H branch, the scattering coefficient β1 can be recovered according to Equation (2),
as shown below:

β1 = − ln T
D

(11)

Based on this, the reconstructed hazy H f ake1 can be described as:

H f ake1 = C f ake1e−β1D + A(1− e−β1D) (12)

Different from the H-H branch, the scattering coefficient β2 in the C-C branch is
randomly sampled in the range of [0.5, 2]. By altering the scattering coefficients, the
generator GH can produce hazy environments with arbitrary density distributions, as
shown in Figure 5. Correspondingly, the hazy image H f ake2 is subsequently acquired as
follows:

H f ake2 = Creal2e−β2D + A(1− e−β2D) (13)

Figure 5. Different hazy images generated by GH based on diverse depth-of-field and variable
scattering coefficients. (a) β = 0.5. (b) β = 1. (c) β = 2.

It is noteworthy that, based on the atmospheric scattering model, the transmittance T
and atmospheric light A derived from GC can be applied in GH to generate haze. Further-
more, these variable foggy images can also be used to augment the training of GC. This
mutually reinforcing haze removal/generation process constitutes the enhanced CycleGAN.

3.4. Calculation of Losses

GAN losses are incurred during the adversarial game between the generator and
the discriminator. In our network, this occurs to ensure the quality of the dehazing and
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rehazing process. In the H-H branch, the losses of the generator GC and the discriminator
DC can be expressed as follows:

LGAN(GC) = E[(DC(C f ake1)− 1)2] (14)

LGAN(DC) = E[(DC(Creal1)− 1)2] + E[(DC(C f ake1))
2] (15)

in which C f ake1 is a clear image constructed by the generator Gc, and Creal1 is sampled from
the clear image set Set{C}. In the C-C Branch, correspondingly, H f ake2 , which is derived
from the rehazing generator GH , and Hreal2 , which is sampled from the hazy image Set{H},
are adopted to calculate the loss, which can be described as

LGAN(GH) = E[(DH(H f ake2)− 1)2] (16)

LGAN(DH) = E[(DH(Hreal2)− 1)2] + E[(DH(H f ake2))
2]. (17)

Cycle-consistency losses calculate the consistency between the original and the target
domain at both ends of the loop branch. In the H-H branch, the input Hreal1 and the recon-
structed hazy image H f ake1 must display sufficient levels of consistency. Likewise, Creal2
should agree with C f ake2 . Thus, the cycle-consistency losses can be written as Equation (18),
where || ||1 denotes the L1 norm.

Lcyc = EHreal1
∼Set{H}||Hreal1 − H f ake1 ||1 + ECreal2

∼Set{C}||Creal2 − C f ake2 ||1 (18)

Cycle-perceptual losses. Although the cycle-consistency losses can be used to remove
part of the noise, we also add cycle-perceptual losses to extract richer details and advanced
features based on the VGG16 network to further enhance the structural similarity and
ensure more realistic visual effects. The perceptual loss can be seen as Equation (19), where
ϕ is the feature extractor and || ||2 denotes the L2 norm.

Lperceptual = ||ϕ(Hreal1)− ϕ(H f ake1)||2 + ||ϕ(Creal2)− ϕ(C f ake2)||2 (19)

Thus, the total loss function of ADCP-CycleGAN can be derived as:

Ltotal = λ1LGAN + λ2Lcyc + λ3Lperceptual (20)

λ1, λ2, and λ3 are the weight-balancing factors of the three loss functions.

4. Experiment
4.1. Experimental Configuration

Datasets. In the experiment, four diverse datasets were adopted. (a) The RESIDE
datasets [37] contain large amounts of hazy images synthesized artificially. SOTS-indoor
and SOTS-outdoor contain 500 hazy/clear images indoors and outdoors, respectively,
while ITS and OTS include 13,990 and 72,135 indoor and outdoor hazy and clear images,
respectively. (b) The O-HAZE [38] dataset from the 2018 NTIRE Single Image Defogging
Challenge contains 45 pairs of outdoor fogged/clear images with 10 pairs for testing. The
images within this dataset are of high resolution and originate from real shots. (c) The
BeDDE [39] dataset contains 208 real-world paired fogged/clear images of high quality
captured in 23 different Chinese cities. We conducted qualitative comparison experiments
on this dataset to evaluate its generalization ability and assess the subjective visual quality
of real-world defogging effects. (d) In addition to the validation on the reference dataset,
to compare the visual effects, we additionally introduced 30 hazy images captured in real
life, as well as Fattal’s dataset [40], which contains 31 real hazy images as non-reference
samples.
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Competitors & Metrics. We compared the proposed method with several state-of-art
algorithms, including the most representative prior-based defogging algorithm, DCP [7];
supervised methods, including DehazeNet [12], GCANet [15], and FFANet [19]; and
unsupervised methods, including ZID [20], RefineDNet [21], D4 [27], and USID [22]. For
persuasive and reliable comparisons, the parameter settings were still implemented according to
the content in Refs. [7,12,15,19–22,27]. We chose SSIM, PSNR [41], and LPIPS [42] as objective
evaluation metrics for the dehazing performance on the reference dataset. For the test on
the non-reference dataset, we focused on the evaluation of the visual effect of the dehazed
image; thus, the information entropy (IE) and average gradient (AG) were employed to
reflect the overall information and the local detail performance of the image, respectively.
Moreover, we introduce the NIQE [43] (natural image quality evaluator) metric, which can
be expressed as

D(v1, v2, ∑1, ∑2) =

√
(v1 − v2)T(

∑1 +∑2
2

)−1(v1 − v2), (21)

where v1, v2, ∑1, and ∑2 represent the mean MVG value and variance matrices of the natural
and distorted image, respectively. NIQE evaluates the test image by extracting features
from the natural landscape, and its smaller value means the image is more compatible with
human eye perception.

Training Settings. In the training phase, we randomly select 6000 images each from
ITS and OTS, 380 images each from SOTS-indoor and SOTS-outdoor, and the training set
from O-HAZE as input samples. Notably, due to the small sample size and high image
resolution in the O-HAZE dataset, we cropped the 35 images into 700 copies to achieve
sample expansion. All training images were rescaled to 256 × 256. We set λ1, λ2, and λ3 as
discussed in Section 3.4 to 0.2, 1, and 0.0001, respectively, to balance the weights of the three
loss functions. The learning rate of the Adam optimizer was set to 0.0001, with a batch size
of 2; furthermore, β1 = 0.5, and β2 = 0.999. We trained our model with an Nvidia GeForce
RTX 2080 Ti graphics card and conducted our experiments on PyTorch.

4.2. Results on Reference and No-Reference Datasets

Comparison of reference datasets. Table 1 summarizes the average value of SSIM,
PSNR, and LPIPS for every dehazing method tested on the SOTS-indoor (120 remaining
images that differed from the training set, SOTS-outdoor (120 remaining images that dif-
fered from the training set), and O-HAZE datasets (10 test images cropped into 500 copies).
On the SOTS-indoor test set, the supervised algorithms FFANet and GCANet demonstrate
their strong capabilities and significant advantages. This is due to the fact that the super-
vised algorithms can sufficiently learn the image features based on paired datasets, thus
performing well in simpler indoor scenes. Our proposed method achieves the best results
among unsupervised algorithms. In outdoor haze removal, our algorithm performs the best
among all nine algorithms on both SOTS-Outdoor and O-HAZE datasets, demonstrating
that the proposed method maintains better generalization and high-quality defogging
effects even in complex outdoor scenes. Meanwhile, it is worth noting that the supervised
methods lose their dominant positions. To some extent, the results reflect the overfitting
issues of supervised algorithms and their poor generalization abilities in handling complex
scene defogging tasks.

Furthermore, we display visual comparisons in Figure 6. As can be observed, DCP
results in an overall low brightness with obvious color distortion in the sky area. This is due
to the fact that the prior is not met in the sky region. While ZID can remove haze, it suffers
from significant color distortion in the fogged image. In the case of indoor defogging,
RefineDNet produces some unpredictable noises in certain localized areas, such as the
color block in the upper left corner of (g) and (h). The indoor defogging results of D4
suffer from serious over-brightening in the deep field due to its inaccurate estimation of
atmospheric light, which is determined by taking the brightest pixel point as atmospheric
light. This estimation method may lead to over-brightening of the image, especially in
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indoor images with artificial noise, such as light sources and mirrors. On the other hand,
FFANet, GCANet, and our supervised algorithm perform better in indoor defogging, with
the former two being better at preserving the details of distant indoor objects. The outdoor
defogging results, as shown in Figure 6c–f, reveal the overfitting problem of FFANet, as
evidenced by the noticeable color halos on the gable roof in rows d and f. The proposed
method exhibits better removal of residual haze in distant parts of the image, such as the
distant buildings in row f. Overall, our algorithm shows good generalization ability for
various types of defogging tasks, achieving thorough defogging and satisfactory subjective
visual perception.

Table 1. Quantitative evaluation of nine algorithms on RESIDE and O-HAZE datasets. The best score
is indicated in Bolded.

Type Methods
SOTS-Indoor SOTS-Outdoor O-HAZE

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Prior DCP [7] 16.61 0.855 0.225 19.41 0.861 0.122 12.32 0.516 0.473

Supervised
DehazeNet [12] 19.82 0.821 0.186 24.75 0.927 0.065 16.47 0.624 0.229

GCANet [15] 30.23 0.975 0.161 24.36 0.894 0.115 18.51 0.693 0.332
FFANet [19] 34.31 0.977 0.152 21.23 0.835 0.173 18.36 0.829 0.170

Unsupervised

RefineDNet [21] 25.06 0.929 0.199 23.58 0.914 0.047 19.27 0.853 0.152
ZID [20] 17.26 0.801 0.244 12.19 0.614 0.396 9.82 0.437 0.528
D4 [27] 25.40 0.934 0.207 25.75 0.936 0.035 19.90 0.844 0.147

USID [22] 20.09 0.873 0.218 24.97 0.930 0.044 20.12 0.862 0.140
Ours 25.98 0.941 0.157 26.95 0.949 0.031 22.72 0.871 0.136

Figure 6. Comparative test of nine algorithms on RESIDE datasets. Rows (a),(b),(g),(h) show indoor
defogging results, and rows (c–f) show outdoor defogging results. ADCP-CycleGAN dehazes well in
different defogging scenarios.
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Additionally, we compared the number of trainable parameters and the running time
of our proposed ADCP-CycleGAN with other methods under the same experimental
environment and summarized the results in Table 2. Of these methods, the prior-based
DCP [7] does not require trainable parameters, and USID [22] outperforms the other
algorithms in terms of the number of parameters and running time since it does not rely
on calculating physical parameters in the atmospheric scattering model. The proposed
method demonstrates acceptable network complexity and defogging efficiency, with fewer
parameters and faster running speed compared to other state-of-the-art algorithms.

Table 2. Comparison of the number of trainable parameters and average running time of different
dehazing methods.

Type Methods Number of Parameters Runtime (s)

Prior DCP [7] - 0.2930

Supervised
DehazeNet [12] 0.008× 106 1.6200

GCANet [15] 0.660× 106 0.9275
FFANet [19] 4.964× 106 1.3418

Unsupervised

RefineDNet [21] 63.378× 106 0.7053
ZID [20] 48.232× 106 57.3681
D4 [27] 11.707× 106 0.0579

USID [22] 4.022× 106 0.0432
Ours 4.275× 106 0.0656

Comparison on no-reference real datasets. To verify the generalization ability of the
network and the realism of the defogging results, we additionally introduced no-reference
datasets. The quantitative evaluation results are reported in Table 3. Our method obtains the
best scores in all three metrics, which means that the defogged images achieve acceptable
results in terms of information content, detail representation, and visual effect.

Table 3. Quantitative evaluation of nine algorithms on no-reference datasets. The best score is
indicated in Bolded.

Type Methods IE↑ AG↑ NIQE↓
Prior DCP [7] 7.2658 7.4342 9.3858

Supervised
DehazeNet [12] 7.2945 7.0627 7.7306

GCANet [15] 7.3098 6.4246 6.9544
FFANet [19] 7.1056 7.1901 7.3398

Unsupervised

RefineDNet [21] 7.0903 7.9750 6.8427
ZID [20] 7.2770 5.1849 12.4221
D4 [27] 7.2251 7.4858 7.1425

USID [22] 7.3560 8.0217 7.0951
Ours 7.5238 9.8605 6.5364

In order to demonstrate the defogging effect more clearly, we framed some local
details of the image and zoomed in for comparison, as shown in Figure 7. In rows a and c,
we framed the text area and zoomed in. Our method successfully preserved more edge
details and restored the text information well. For the nature landscape image in row b, our
method has effectively removed the residual haze, resulting in a natural color perception
of the defogged image. Though GCANet also produces results with less residual haze,
there are noticeable distortions in the sky region in rows b and d. FFANet defogging in
real-world scenes is not desirable, as there are noticeable haze residues in the results and a
large number of artifacts in the sky area of row d. In addition, the hues of USID dehazing
results in rows c and d lacking naturalness and realism, resulting in poor visual effects. To
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summarize, our algorithm consistently shows good defogging performance on real-world
no-reference datasets, providing appealing subjective and visually realistic effects.

Figure 7. Comparative test of nine algorithms on no-reference datasets. The proposed method shows
strong generalization ability and robustness in various real-world defogging tasks, with satisfactory
overall picture quality and detailed information performance (a–e).

In addition, we conducted abundant extended experiments on the BeDDE dataset, and
the visual comparison of the defogging results is shown in Figures 8 and 9. The satisfactory
defogging effects further reveal the strong generalization ability and defogging stability of
the proposed algorithm.
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Figure 8. Comparative test of nine algorithms on BeDDE datasets.
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Figure 9. Comparative test of nine algorithms on BeDDE datasets.

4.3. Ablation Study

To verify the effectiveness of the different components in ADCP-CycleGAN, we
conducted an ablation study on the network. Three additional models were trained and
compared with our proposed model on the SOTS dataset as follows: (a) Model A removes
the Wave-ViT semantic segmentation and parameter adaptation module, and thus, the
transmittance and the atmospheric light are recovered by the original DCP method; (b) the
value of the scattering coefficient in Model B is set to a fixed constant; and (c) Model C
deletes the cycle perceptual loss.



Entropy 2023, 25, 856 16 of 18

The dehazing results of the four models are reported in Figure 10. After removing the
semantic segmentation module for the parameter adaptation of DCP, the defogging results
of Model A show an obvious distortion. For the areas where the prior fails (such as the
white floor tiles in row b), the distortion phenomenon appears, and the brightness of the
picture in row c is also significantly darker. Model B lacks realism in the subjective visual
effect of the defogging result since the scattering coefficient is set to a fixed value. Model C
has a degraded performance regarding detail recovery after removing the cycle perceptual
loss. The flowers in the far field in row c show an oversaturation of color, indicating that
the deletion of cycle perceptual loss has an impact on defogging stability.

Figure 10. Ablation study on RESIDE datasets. The defogging results of Model A showed obvious
oversaturation and color distortion. Model B showed significant haze residue. The defogging stability
of Model C was reduced compared with ADCP-CycleGAN (a–c).

It is worth noting that in the quantitative analysis (as shown in Table 4), the degrada-
tion of Model B compared to ADCP-CycleGAN is different in indoor and outdoor dehazing
tasks. This may due to the fact that the haze distribution in indoor scenes is more uni-
form compared to outdoors; thus, the scattering coefficient may have a more significant
impact on the outdoor haze removal. This also confirms that the scattering coefficient is
not negligible in the outdoor dehazing.

Table 4. Quantitative evaluation of ablation study. The best score is indicated in Bolded.

Methods
SOTS-Indoor SOTS-Outdoor

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Model A 21.60 0.872 0.209 22.78 0.904 0.046
Model B 24.22 0.921 0.166 24.19 0.916 0.043
Model C 23.09 0.919 0.173 24.48 0.925 0.037

ADCP-CycleGAN 25.98 0.941 0.157 26.95 0.949 0.031

5. Conclusions and Future Work

In this paper, we propose ADCP-CycleGAN, a novel enhanced CycleGAN network
with adaptive DCP for unpaired single-image dehazing. In the network, we achieve the
parameter adaption of DCP through a Wave-ViT semantic segmentation model to recover
the transmittance and atmospheric light accurately. We optimize the rehazing process by
deriving the scattering coefficient from both physical calculation and random sampling
means to simulate the real haze distribution. The atmospheric scattering model is applied
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to realize the connection between the dehazing and rehazing branch in order to build the
enhanced CycleGAN. The extended experiments on both reference/no-reference datasets
with diverse evaluation metrics confirm the effectiveness of our method. Specifically, our
approach can generate haze that is more consistent with real-world scenarios based on depth
and density. This could be particularly meaningful for tasks that require clear vision but
lack unpaired datasets, such as remote sensing images, autonomous driving, and intelligent
monitoring. Furthermore, we hope that our innovative combination of physical prior models
with CycleGAN for dehazing can contribute to future developments in unsupervised learning
for low-level vision tasks. However, there are also some aspects of our algorithm that deserve
improvement. The accuracy of the depth estimation of the proposed method is affected when
there is noise such as strong light and obscuration in the image. Meanwhile, due to the
incorporation of a physical model in the proposed method, its inherent limitations may result
in the local over-enhancement in a few defogged results. In our future work, we will also
investigate the post-processing of the defogged images to further improve the image quality.
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