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Abstract: A short description of the notion of states of quantum systems in terms of conventional
probability distribution function is presented. The notion and the structure of entangled probability
distributions are clarified. The evolution of even and odd Schrödinger cat states of the inverted
oscillator is obtained in the center-of-mass tomographic probability description of the two-mode
oscillator. Evolution equations describing the time dependence of probability distributions identified
with quantum system states are discussed. The connection with the Schrödinger equation and the
von Neumann equation is clarified.
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1. Introduction

The motivation of this work is to show, using a simple example of a quantum oscillator
and its evolution, that the oscillator states can be described by conventional probability
distributions. The dynamics of the oscillator states are described by the time dependence
of the probability distribution identified with the quantum state. This description of the
quantum system is valid for all the oscillator systems, including the inverted oscillator. The
explicit description of this time evolution of the probability distribution, called the center-
of-mass tomographic probability distribution of the two-mode inverted oscillator, is one of
the goals of our work. Another objective of this paper is to study the structure of probability
distribution functions, which describe the entangled states of the quantum system.

The conventional languages of quantum mechanics and classical mechanics are very
different from each other. The language of classical mechanics operates with definitions,
such as functions, point-wise multiplication, and probabilities. The quantum mechanical
language is much more complicated. It operates with such definitions as operators, density
matrices, and state vectors. At the dawn of quantum mechanics, in the time of Dirac, it
was even called matrix mechanics because of its mathematical apparatus. There are some
phenomena and concepts that have passed from classical mechanics to quantum mechanics.
The principle of superposition in quantum mechanics appeared as a natural extension
of the phenomenon of wave interference in classical mechanics, and Bohr’s quantization
rule was inspired by the classical condition for maximum wave interference, which was
applied to the de Broglie wave. Some phenomena of quantum mechanics have no classical
analogs, such as spin phenomenon or entanglement of states. It would be interesting to
enrich the classical theory with some concepts that appear in quantum mechanics, and that
were not previously in the classical theory. One such concept is the entangled probability
distribution, which we will consider in this paper.
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The states of the quantum system in standard formulation of quantum mechanics [1]
are determined either by vectors |ψ〉 in the Hilbert space [2] or by density operators ρ̂ acting
in the Hilbert space [3]. The vectors in the Hilbert space are associated with wave functions
ψ(x) of pure quantum states, and the density operators are associated with pure or mixed
states described by density matrices [4] or matrix elements of the density operators in some
representations. Different representations of quantum states were constructed, e.g., Wigner
functions W(q, p), which are quasiprobability distributions [5,6] that have some properties
of probabilistic distributions. In classical mechanics, the system states are described by
objects that are probability distribution functions, and their properties are described by
conventional probability theory [7]. The probability theory is also used to study different
aspects of quantum system properties [8] as well as in connection with quantum mechanical
methods applications to other areas of science [9]. Some new aspects of quantum system
correlation properties, such as entanglement phenomena, were discussed in [10,11]. The
entanglement phenomenon in quantum physics provides the possibility to apply this
notion in classical probability theory [12]. The functions that define the states of a quantum
system, and that are probability distribution functions, were introduced in [13]; they were
named symplectic tomograms, and this representation was called probability representation
of quantum mechanics (see also [14–18]). Some mathematical aspects of the probability
representation of quantum and classical states were discussed in [19,20]. The possibility of
finding the probability representation of quantum states is based on the existence of the
invertable map of the density operators of mixed or pure quantum states, which is mapped
onto conventional probability distribution functions. We will discuss this map in our paper,
using the example of quantum oscillator states.

The tomograms and the entanglement phenomenon in the two-mode squeezed states
and two-mode even and odd coherent states were considered in [21]. Stimulated Raman
scattering and stimulated Brillouin scattering of light were considered within the frame of
the symplectic tomography scheme in [22,23]. Furthermore, the entanglement phenomenon
in the processes of stimulated light scattering of different types, and its connection with the
probability distribution functions determining the states of photon and phonon modes, was
discussed [22–25]. In [26], the evolution of different kinds of states in the Kerr medium, in-
cluding maximum entangled states, were theoretically studied within the frame of the optical
tomography scheme (which is a partial case of the symplectic tomography scheme). The
instability of the reconstructed tomogram determining the state was considered in [27] in con-
nection with the Radon transform properties. In [28], it was shown that, in classical mechanics,
the Hermitian operators can be introduced, and the concepts of classical mechanics can be
formulated in a language analogous to the quantum mechanics language. In [29], a review
of classical probability representations of quantum states and observables is presented. New
fundamental aspects of quantum mechanics based on the groupoid approach are investigated
in [30]. In [31], the evolution of states of a system containing quantum and classical parts was
studied. The cosmology features were considered within the frame of the probability repre-
sentation of quantum states in [32,33]. The density matrix properties, using the symplectic
representation of quantum mechanics, are given in [34]. In some tomographic methods, the
quantization is based on the associative star product of the functions; applications of these
approaches in different kinds of experiments were discussed in [35–44].

The idea to construct the probability representation of quantum states is based on the
method of mapping operators onto functions called symbols of operators. This method is
the same method that is used to construct the Wigner function [5] and other quasidistribu-
tions, such as the Husimi function [45] and the Glauber–Sudarshan P-function [46,47].

The aim of this paper is to study properties of the probability representation and
to consider the probability distributions, describing the quantum states in the case of
continuous variables. We will consider the dynamics of the quantum oscillator states as
the dynamics of the probability distributions, including the superpositions of the wave
functions and the superposition principle. Moreover, some examples of the probability
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distributions for continuous variables (called tomographic probability distributions) will
be studied for quantum oscillator systems.

The paper is organized as follows: The notion of entangled probability distributions
describing the quantum states in the probability representation of quantum mechanics
is discussed in Section 2. A specific example of the entangled probability distribution
for a two-mode oscillator is considered in Section 3. The time dependence of states in
different representations of quantum mechanics is described in Section 4. The probability
representation of quantum states is described in Section 5, using the method of quantizer–
dequantizer operators, as well as the evolution equation for the probability distributions
and other functions corresponding to quasiprobability representations of system states.
The symplectic tomography of oscillator system states is discussed in Section 6, and the
dynamics of operator symbols for the Hamiltonians, which are quadratic forms of position
and momentum operators, are considered in Section 7. The center-of-mass tomography and
dynamics of the Schrödinger cat states of the ordinary and inverted two-mode oscillators,
including explicit expressions for time evolution of the center-of-mass tomograms, are
presented in Section 8. The conclusions and prospectives of the probability representation
of quantum mechanics for studying entanglement and dynamics of the states of quantum
systems are presented in Section 9.

2. Entangled Probability Distributions of Random Variables

In order to discuss the entangled probability distribution notion, we will address the
concept of the conditional probability notion using an example of a probability distribution
of two random variables P(X, a), where X and a are real continuous parameters and the
non-negative function satisfies the normalization condition∫

P(X, a)dXda = 1. (1)

Then, the conditional probability distribution P(X|a) is related to the function P(X, a) by
the Bayes formula

P(X|a) = P(X, a)∫
dXP(X, a)

,

where a the parameter describing the condition of measuring variable X. The important
property of this formula is the normalization condition of the function P(X|a), which reads∫

dXP(X|a) = 1. (2)

This means that for conditional probability distributions, the integration of the function as
the function of the random variable X gives the result that does not depend on the condition
parameter a. Analogous properties take place for conditional probability distributions of
general random variables, which we will use in our construction of entangled probability
distributions in an example of the function of two random variables X1 and X2.

Following [12], we introduce the concept of separable and entangled probability dis-
tributions using the notion of entangled states in quantum mechanics, and, as introduced
in [13,16,48], the notion of probability representation of quantum states. In this represen-
tation of a quantum system, the density operators of separable states can be written as
a convex sum of tensor products of the density operators of the subsystems. Using the
probability representation of the density operators, we formulate the new notion in the
conventional probability theory using, as an example, the probability distribution of two
random variables that are obtained using the invertible map of the density operators, which
are mapped onto the probability distributions. Definition: the conditional probability
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distribution P(X1, X2|a1, a2) is deemed separable if it can be represented as the convex sum
of the products of the probability distributions P(k)(X1|a1) and P(k)(X2|a2) of the form

P(X1, X2|a1, a2) = ∑
k
PkP(k)

1 (X1|a1)P(k)
2 (X2|a2). (3)

Here, P(X1, X2|a1, a2) ≥ 0, P1(X1|a1) ≥ 0, P2(X2|a2) ≥ 0, coefficients Pk ≥ 0, ∑k Pk = 1
and ∫

P(X1, X2|a1, a2)dX1dX2 = 1. (4)

The probability distribution P(X1, X2|a1, a2) is called the entangled probability distribution
if it cannot be presented as the convex sum of the form (3), i.e.,

P(X1, X2|a1, a2) 6= ∑
k
PkP(k)

1 (X1|a1)P(k)
2 (X2|a2). (5)

For separable probability distribution∫
P(X1, X2|a1, a2)dX2 = ∑

k
PkP(k)

1 (X1|a1) (6)

and ∫
P(X1, X2|a1, a2)dX1 = ∑

k
PkP(k)

2 (X2|a2). (7)

For the entangled probability distributions, we apply the probability distribution Π(X1|a1)
as the integral (6) ∫

P(X1, X2|a1, a2)dX2 = Π(X1|a1), (8)

and it cannot be presented as a convex sum as in (6).
The proof of the independence of the integral (8) on the parameter a2 is analogous

to the proof of (1), where one uses the Bayes formula for the function of two random
variables, X1 and X2, and two conditions described by the parameters a1 and a2, which can
be multi-component parameters.

3. Examples of the Entangled Probability Distributions

The entangled probability distribution can be related to probability distributions
realized by using the superposition principle of quantum state wave functions; for example,
the superposition of Fock states resembling states of two–mode oscillators with the wave
functions. We consider the very simple model of state ψ+(x1, x2) of the form

ψ+(x1, x2) =
1√
2
(ψ0(x1)ψ1(x2) + ψ1(x1)ψ0(x2)) =

x1 + x2√
π

exp

(
−

x2
1

2
−

x2
2

2

)
. (9)

The function (9) is the superposition of wave functions of two-mode oscillators. The
functions |ψ0(x1)〉 and |ψ0(x2)〉 are ground states of the first and second oscillators, i.e.,

ψ0(x1) =
e−

x2
1
2

π1/4 , ψ0(x2) =
e−

x2
2
2

π1/4 , (10)

and the function ψ1(x1) is the first excited state of the first oscillator, and ψ1(x2) is the first
excited state of the second oscillator, i.e.,

ψ1(x1) =

√
2x1

π1/4 e−
x2

1
2 , ψ1(x2) =

√
2x2

π1/4 e−
x2

2
2 . (11)
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One can extend the construction of the superposition function (9) by following the superpo-
sition states of the oscillators studied in the literature, which are even and odd states [49].
The state (9) is the even state, i.e., ψ+(−x1,−x2) = ψ+(x1, x2) and one can consider an odd
state, which reads

ψ−(x1, x2) =
1√
2
(ψ0(x1)ψ1(x2)− ψ1(x1)ψ0(x2)) =

x2 − x1√
π

exp

(
−

x2
1

2
−

x2
2

2

)
. (12)

This state is the odd state, i.e., ψ−(−x1,−x2) = −ψ−(x1, x2), which is the analog of odd
coherent states (odd Schrödinger cat states). The more general superposition state ψb(x1, x2)
can be given by the following construction

ψb(x1, x2) =
1√
2

(
ψ0(x1)ψ1(x2) + eibψ1(x1)ψ0(x2)

)
=

1√
π

(
x2 + eibx1

)
exp

(
−

x2
1

2
−

x2
2

2

)
. (13)

An example of a simple separable state is a state that is not a superposition state, for instance,

ψs(x1, x2) = ψ0(x1)ψ1(x2). (14)

Using the relationship between the symplectic tomogram and the wave function [50]

w(X1, X2|µ1, µ2, ν1, ν2) =

1
4π2|ν1||ν2|

∣∣∣∣∫ ψ(x1, x2) exp
(

iµ1

2ν1
x2

1 +
iµ2

2ν2
x2

2 −
iX1x1

2ν1
− iX2x2

2ν2

)
dx1dx2

∣∣∣∣2, (15)

one can obtain the explicit form of the conditional probability distribution
w+(X1, X2|µ1, ν1, µ2, ν2) for the even state (9), i.e.,

w+(X1, X2|µ1, ν1, µ2, ν2) =

(
ν2

2 + µ2
2
)
X2

1 + 2(ν1ν2 + µ1µ2)X1X2 +
(
ν2

1 + µ2
1
)
X2

2

π
(
ν2

1 + µ2
1
)3/2(

ν2
2 + µ2

2
)3/2

× exp

[
−

X2
1

µ2
1 + ν2

1
−

X2
2

µ2
2 + ν2

2

]
. (16)

For the particular case where ν1 = ν2 = 1, µ1 = µ2 = 0, one gets

w+(X1, X2|µ1 = 0, ν1 = 1, µ2 = 0, ν2 = 1) =
1
π
(X1 + X2)

2 exp
(
−X2

1 − X2
2

)
. (17)

One can check that the function w+(X1, X2|µ1, ν1, µ2, ν2) (17) satisfies the condition∫ ∫
w+(X1, X2, |µ1, ν1, µ2, ν2)dX1dX2 = 1. (18)

As we know, this probability distribution function corresponding to superposition of the
wave functions (9) determines the quantum state, which is the entangled state. Due to this,
we call this probability distribution the entangled probability distribution. In quantum
mechanics, the wave functions of two–mode oscillators, which are obtained by means of
superposition of two different wave functions, are entangled pure states. In connection with
this, the tomographic probability distribution is described by the probability distribution
function (16), and it cannot be represented in the form of Equation (3). On the other hand,
it can be represented by the integral
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w+(X1|µ1, ν1) =
∫

w+(X1, X2|µ1, ν1, µ2, ν2)dX2 =

exp
(
− X2

1
µ2

1+ν2
1

)
√

π
(
µ2

1 + ν2
1
)
[

1
2
+

X2
1

µ2
1 + ν2

1

]
. (19)

One can check that ∫
w+(X1|µ1, ν1)dX1 = 1. (20)

The function w+(X1|µ1, ν1) (19) is a marginal conditional probability distribution of position
X1, which is the position of the first oscillator, and the conditions are labeled by the
real parameters µ1 and ν1. Moreover, if we repeat analogous calculations for the second
oscillator, we get

w+(X2|µ2, ν2) =
∫

w+(X1, X2|µ1, ν1, µ2, ν2)dX1 =

exp
(
− X2

2
µ2

2+ν2
2

)
√

π
(
µ2

2 + ν2
2
)
[

1
2
+

X2
2

µ2
2 + ν2

2

]
. (21)

One can check that ∫
w+(X2|µ2, ν2)dX2 = 1. (22)

The function w+(X2|µ2, ν2) is a marginal conditional probability distribution of position
X2, which is the position of the second oscillator, and the conditions are labeled by the real
parameters µ2 and ν2.

The function (16) is the probability distribution function; it has the form of the sum of
three functions that contain products of Gaussian functions and different terms of position
products of X1 and X2. The two terms are the probability distribution functions. The third
term that is obtained from the integral (15) is not a probability distribution function, but
when added to the two terms mentioned above it gives the probability distribution function
(tomographic probability distribution).

An analogous procedure can be followed in the case of the odd states, and one gets
the explicit form of the conditional probability distribution w−(X1, X2|µ1, ν1, µ2, ν2) for the
odd state (12), i.e.,

w−(X1, X2|µ1, ν1, µ2, ν2) =

(
ν2

2 + µ2
2
)
X2

1 − 2(ν1ν2 + µ1µ2)X1X2 +
(
ν2

1 + µ2
1
)
X2

2

π
(
ν2

1 + µ2
1
)3/2(

ν2
2 + µ2

2
)3/2

× exp

[
−

X2
1

µ2
1 + ν2

1
−

X2
2

µ2
2 + ν2

2

]
. (23)

Additionally, in the case of state with the phase (13), we obtain the explicit form of the
conditional probability distribution

wb(X1, X2|µ1, ν1, µ2, ν2) =(
ν2

2 + µ2
2
)
X2

1 + 2X1X2 cos
[
b− arccos

(
(µ2

1 + ν2
1)(µ

2
2 + ν2

2)
)]

+
(
ν2

1 + µ2
1
)
X2

2

π
(
ν2

1 + µ2
1
)3/2(

ν2
2 + µ2

2
)3/2

× exp

[
−

X2
1

µ2
1 + ν2

1
−

X2
2

µ2
2 + ν2

2

]
. (24)

For the separable state (14), the tomographic probability distribution given by the
Formula (15) reads

w0,1(X1, X2|µ1, ν1, µ2, ν2) =
2X2

2√
π2(µ2

1 + ν2
1)(µ

2
2 + ν2

2)
3/2

exp

(
−

X2
1

µ2
1 + ν2

1
−

X2
2

µ2
2 + ν2

2

)
. (25)
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The probability distribution (25) has the form of the product of the probability distributions
of each mode state w0(X1|µ1, ν1) and w1(X2|µ2, ν2).

Our assertion is as follows: The structure of an entangled probability distribution in
the general case always has the form of the sum of two terms, namely, the first term is the
convex sum of the products of the probability distributions, and the second term is the sum
of the products of the terms that are not probabilities. However, when summed, these two
terms lead to an entangled probability distribution. This entangled probability distribution
has all the properties of the conventional probability distribution.

4. Evolution of States in Different Representations

Let us recount the description of quantum state dynamics in the Hilbert space H,
where the pure quantum state is associated with the state vector |ψ〉 [2], and the other states,
including the pure states, are also described by the density operators ρ̂ [3,4] acting on the
vectors in the Hilbert spaceH. The dynamics of the states are described by the Schrödinger
equation (h̄ = 1)

i
∂|ψ(t)〉

∂t
= Ĥ|ψ(t)〉, (26)

where Ĥ is the system Hermitian Hamiltonian (Ĥ = Ĥ†).
For the time-independent Hamiltonian, the state vector |ψ〉 evolves by means of the

evolution operator û(t) = exp(−iĤt) of the form

|ψ(t)〉 = û(t)|ψ(0)〉, û(0) = 1̂. (27)

For the pure state with the state vector |ψ(t)〉, the density operator is given by the formula
ρ̂(t) = |ψ(t)〉〈ψ(t)|, and the Schrödinger Equation (27) provides the equation for the
density operator of the form (the von Neumann equation)

i
∂(|ψ(t)〉〈ψ(t)|)

∂t
= Ĥ|ψ(t)〉〈ψ(t)| − |ψ(t)〉〈ψ(t)|Ĥ. (28)

This equation is also valid for mixed states with the Hermitian density operator ρ̂(t) =
∑k λk|ψk(t)〉〈ψk(t)|. Here, the parameters λk are probabilities describing mixed states. The
equation can be given in the following form

∂ρ̂(t)
∂t

+ i[Ĥ, ρ(t)] = 0. (29)

The solution of this equation, corresponding to the solution of Equation (27), reads

ρ̂(t) = û(t)ρ̂(0)û†(t). (30)

The operators such as position q̂ and momentum p̂ operators in the Heisenberg representa-
tion, namely, q̂H(t) and p̂H(t), are given as follows

q̂H(t) = û†(t)q̂û(t), p̂H(t) = û†(t) p̂û(t). (31)

The integrals of motion q̂0(t) and p̂0(t), which have the initial values q̂0(t = 0) = q̂ and
p̂0(t = 0) = p̂ and satisfy Equation (29), are connected with the Heisenberg position and
momentum operators for time-independent Hamiltonian by the relationship

q̂0(−t) = q̂H(t), p̂0(−t) = p̂H(t). (32)

The stationary states of a system |ψE(t)〉 satisfying the Schrödinger equation (26) have
the form

|ψE(t)〉 = û(t)|ψE(0)〉 = exp(−iEt)|ψE(0)〉, (33)
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where the vector |ψE(0)〉 is the eigenvector of the Hamiltonian operator, i.e.,

Ĥ|ψE(0)〉 = E|ψE(0)〉. (34)

The eigenvalue parameter E describes the energy level of the system. The superposition
principle of quantum states means that the vector |ψ(t)〉 of the form

|ψ(t)〉 = ∑
k

Ck|ψEk (t)〉, (35)

where Ck are complex numbers, is the solution of the Schrödinger equation (26). Further-
more, it means that the density operator ρ̂(t) of the form

ρ̂(t) = ∑
k

∑
k′

CkC∗k′ |ψEk (t)〉〈ψEk′
(t)| (36)

is the solution of the von Neumann equation (29). Moreover, it means that due to
Equations (33) and (34), we have

ρ̂(t) = ∑
k

∑
k′

CkC∗k′ exp(i(Ek − Ek′)t)|ψEk (t)〉〈ψEk′
(t)|, (37)

or

ρ̂(t) = ∑
k
|Ck|2|ψEk (0)〉〈ψEk (0)|+ ∑

k
∑

k′ 6=k
CkC∗k′ exp(i(Ek − Ek′)t)|ψEk (0)〉〈ψEk′

(0)|. (38)

The dynamics of the state density operator are determined for all the states, which can
be represented as superpositions of energy level states by Formula (38) since the vectors
|ψEk (t)〉 form the complete system of vectors in the Hilbert spaceH.

5. Quantum States Definition

Now we consider different representations of quantum states using the formalism
of quantizer–dequantizer operators D̂(~x) and Û(~x) [51], where ~x is a set of parameters
(x1, x2, . . . , xn) such that the density operators ρ̂ can be mapped onto the set of functions
fρ(~x), which are named symbols of operators, i.e.,

fρ(~x) = Trρ̂Û(~x). (39)

The operator Û(~x) is a dequantizer operator. It maps the operator on its symbol. The
density operator can be reconstructed from the symbol of the density operator with the
help of the inverse transform

ρ̂ =
∫

fρ(~x)D̂(~x)d~x. (40)

The operator D̂(~x) is a quantizer operator. All the state representations, including the
Wigner function [5], Husimi function [45], and the Glauber–Sudarshan function [46,47], and
corresponding symbols of other operators are formulated using corresponding quantizer–
dequantizer operators. Thus, the quantum mechanics can be formulated using the for-
malism of operators acting in the Hilbert space or their symbols that contain the same
information on quantum states. One can transform the quantum mechanics formalism and
obtain equations (differential or integral) for the density operator symbols. An important
novelty is that the possibility of describing quantum states by conventional probability
distributions exists [48,52].

All known functions that are quasiprobability distributions and describe the states of
quantum systems can be obtained using various pairs of the quantizer operator D̂(~x) and
the dequantizer operator Û(~x), where ~x = x1, x2, . . . xn. These operators make it possible to
map any operator Â acting in a Hilbert space, where the position operator q̂ and momentum



Entropy 2023, 25, 785 9 of 17

operator p̂ act on the function fA(~x), which is called the symbol of the operator Â, using
the following general mapping of the operators Â→ fA(~x) to functions, i.e.,

fA(~x) = Tr
(

ÂÛ(~x)
)
. (41)

The operator Â can be reconstructed from its symbol fA(~x) using the inverse transform
fA(~x)→ Â, i.e.,

Â =
∫

fA(~x)D̂(~x)d~x. (42)

So, the operator Â can be reconstructed from its symbol if the quantizer operator D̂(~x)
and the symbol of operator fA(~x) are known. The map given by Equations (41) and (42)
provides the possibility to introduce the star product of functions fA(~x) and fB(~x), which
are symbols of operators Â and B̂. The symbol of operator ÂB̂, which is product of operators
Â and B̂, is

fAB(~x) = Tr
(

ÂB̂Û(~x)
)
. (43)

We can present the star product of the functions fA(~x) and fB(~x)

( fA ? fB)(~x) = fAB(~x) (44)

using the relationships (41)–(43) in the integral form

( fA ? fB)(~x) =
∫

fA(~x1) fB(~x2)K(~x1,~x2,~x)d~x1d~x2. (45)

The kernel K(~x1,~x2,~x) is expressed in terms of the quantizer and dequantizer operators

K(~x1,~x2,~x) = Tr
(

D̂(~x1)D̂(~x2)Û(~x)
)
. (46)

The associativity condition for the product of operators, i.e.,
(
(ÂB̂)Ĉ

)
=
(

Â(B̂Ĉ)
)

causes
the star product of operator symbols to be associative as well. The formalism of quantizer–
dequantizer operators can be used to determine the evolution equation for the symbols of
the density operators. The von Neumann equation for the oscillator density operator ρ̂(t)
is written as (we use m = ω = h̄ = 1)

∂ρ̂

∂t
+ i
(

Ĥ(t)ρ̂(t)− ρ̂(t)Ĥ(t)
)
= 0. (47)

If we introduce the symbol fρ(~x, t) of the density operator ρ̂(t) and the symbol fH(~x, t)
of the Hamiltonian operator Ĥ(t), using an arbitrary pair of quantizer and dequantizer
operators, then Equation (47) becomes

∂ fρ(~x, t)
∂t

+ i
(

fH ? fρ − fρ ? fH
)
(~x, t) = 0. (48)

The equation for the evolution of the density operator symbol for the given Hamiltonian
Ĥ(t) has the general form of an integral equation

∂ fρ(~x, t)
∂t

+ i
∫ (

fH(~x1, t) fρ(~x2, t)− fρ(~x1, t) fH(~x2, t)
)
K(~x1,~x2,~x)d~x1d~x2 = 0. (49)

Here, the symbol of the Hamiltonian fH(~x1, t) = Tr
(

Ĥ(t)Û(~x1)
)

and the symbol of density
operator fρ(~x2, t) = Tr

(
ρ̂(t)Û(~x2)

)
. Using (39), (46), and (49), one obtains

∂ fρ(~x, t)
∂t

+ i
∫ [

Tr
(

Ĥ(t)Û(~x1)
)
Tr
(
ρ̂(t)Û(~x2)

)
− Tr

(
ρ̂(t)Û(~x1)

)
Tr
(

Ĥ(t)Û(~x2)
)]

×Tr
(

D̂(~x1)D̂(~x2)Û(~x)
)
d~x1d~x2 = 0. (50)
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Equation (50) can be written in the form of a kinetic equation for a probability distribution function

∂ fρ(~x, t)
∂t

+ i
∫

fρ(~x2, t)K(~x,~x2, t)d~x2 = 0, (51)

where
K(~x,~x2, t) =

∫
(K(~x1,~x2, x, t)− K(~x2,~x1, x, t)) fH(~x1, t)d~x1, (52)

and the symbol of density operator fρ(~x, t) is a probability distribution. For the symplectic
tomogram, the inverse quantum Radon transform reads [53,54]

ρ̂ =
1

2π

∫
w(X|µ, ν) exp

(
i(X1̂− µq̂− ν p̂)

)
dXdµdν. (53)

This means that the quantizer operator for the symplectic tomography method has the form

D̂(X|µ, ν) =
1

2π
exp

(
i(X1̂− µq̂− ν p̂)

)
. (54)

Thus, we have ~x = X, µ, ν, and the dequantizer reads

Û(X|µ, ν) = δ
(
i(X1̂− µq̂− ν p̂)

)
. (55)

The existence of (55) provides the possibility to map the density operator ρ̂ (applying
Formula (39)) onto the function (tomogram of the state). The existence of quantizer (54)
provides the possibility to reconstruct the density operator ρ̂ using the tomogram of the
quantum state. Such pairs of quantizer–dequantizer operators exist for all the other quantum
systems, including the two-mode usual and inverted oscillators discussed in this paper.

The kernel describing the star product of the operators in the symplectic tomography
is expressed as follows

K(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) =
1

4π2 Tr
[
exp

(
i(X11̂− µ1q̂− ν1 p̂)

)
×exp

(
i(X21̂− µ2q̂− ν2 p̂)

)
δ
(
i(X1̂− µq̂− ν p̂)

)]
. (56)

In an explicit form it reads

K(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) =
1

4π2 δ(µ(ν1 + ν2)− ν(µ1 + µ2))

× exp
(

i
2
(ν1µ2 − ν2µ1 + 2X1 + 2X2 − 2

ν1 + ν2

ν
X)

)
. (57)

In the case of a harmonic oscillator in the tomographic probability representation, the sym-
bol of density operator ρ̂(t) is given by the probability distribution function, (~x = X, µ, ν),

wρ(X|µ, ν, t) = fρ(~x, t) = Trρ̂(t)δ
(
X1̂− µq̂− ν p̂

)
, (58)

The Hamiltonian Ĥ can be mapped onto its symbol

fĤ(X, µ, ν) = Tr
(

Ĥδ(X1̂− µq̂− ν p̂)
)
. (59)

The symplectic tomogram (58) is the symbol of the density operator ρ̂, and it is the probabil-
ity distribution of position X [13] depending on extra parameters determining the reference
frame in the phase space where the position X is measured. For symplectic tomography,
the integral linear Equation (51) has the form

∂wρ(X|µ, ν, t)
∂t

+ i
∫

wρ(X2|µ2, ν2, t)K(X, µ, ν, X2, µ2, ν2, t)dX2dµ2dν2 = 0. (60)
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Here,

K(X, µ, ν, X2, µ2, ν2, t) =∫
[K(X1, µ1, ν1, X2, µ2, ν2, t)− K(X2, µ2, ν2, X1, µ1, ν1, t)] fH(X1, µ1, ν1, t)dX1dµ1dν1. (61)

The product of operators Â · B̂ is mapped onto the star product of their symbols

(ÂB̂)↔ (A ? B)(X, µ, ν) = Tr
(

ÂB̂δ(X1̂− µq̂− ν p̂)
)

(62)

with the kernel of the star product defined by means of the expression

(A ? B)(X, µ, ν) =∫
A(X1, µ1ν1)B(X2, µ2, ν2)K(X1, µ1ν1, X2, µ2, ν2, X, µ, ν)dX1dX2dµ1dµ2dν1dν2. (63)

This formula is the application of general Formula (46) for the kernel of the star product of
the symbols. This formula can be used to study the entanglement phenomena of states that
are superpositions of two-mode oscillator states.

6. Symplectic Tomography of Oscillators

One can calculate the tomographic probability distribution w(X|µ, ν), called the sym-
plectic tomogram of the state with density operator ρ̂|ψ〉 = |ψ〉〈ψ|, using the formula
analogous to (15) expressed in terms of wave function ψ(y) of the pure state in position
representation, which reads [50]

w|ψ〉(X|µ, ν) =
1

2π|ν|

∣∣∣∣∫ ψ(y) exp
(

iµ
2ν

y2 − iXy
ν

)
dy
∣∣∣∣2. (64)

The function is non-negative and satisfies the normalization condition∫
w|ψ〉(X|µ, ν)dX = 1. (65)

The physical meaning of the real parameters µ and ν is that they, due to using δ(X1̂− µq̂−
ν p̂) to determine the dequantizer Û(x) as a delta function, describe the axes of reference
frames in the phase space of position q̂ and momentum p̂, where the position X1̂ = µq̂ + ν p̂
is measured. Thus, the tomogram w(X|µ, ν) is the conditional probability distribution
determining the density operator for the state. If µ = 1, ν = 0, it is the density matrix
diagonal elements ρ(qq), and for µ = 0, ν = 1, the tomogram is the diagonal matrix
element ρ(pp). This means that if one knows the probability distributions of position and
momentum in all the reference frames in the phase space, the state (state density operator)
is known.

In the case of two-mode oscillators, the relationship between the symplectic tomogram
and wave function of the state is obtained by Equation (15). Using (15), one can obtain the
symplectic tomogram of the ground state of two-mode oscillators in the explicit form

w0(X1, X2|µ1, µ2, ν1, ν2) =
1

π
√

µ2
1 + ν2

1

√
µ2

2 + ν2
2

exp

(
−

X2
1

µ2
1 + ν2

1
−

X2
2

µ2
2 + ν2

2

)
, (66)

and the tomogram of coherent state of two-mode oscillators in the Gaussian form

wα(X1, X2|µ1, µ2, ν1, ν2) =
1

π
√

µ2
1 + ν2

1

√
µ2

2 + ν2
2

exp

(
− (X1 − X̄1)

2

µ2
1 + ν2

1
− (X2 − X̄2)

2

µ2
2 + ν2

2

)
, (67)

where X̄1 =
√

2µ1Reα +
√

2ν1Imα, X̄2 =
√

2µ2Reα +
√

2ν2Imα, and α is a complex number.
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7. Dynamics of Operator Symbols for Quadratic Hamiltonians in Position
and Momentum

Let us discuss the problem of finding the tomographic probability distribution evo-
lution for the systems with Hamiltonians, which are quadratic forms in position and
momentum operators. Such systems have integrals of motion that are linear in posi-
tion and momentum operators. Furthermore, the position and momentum operators
q̂H(t) and p̂H(t) are linear forms of the position q̂ and momentum p̂ operators with time-
dependent coefficients [55]. Due to this, we can explicitly obtain the time dependence of
the tomographic probability distributions describing the quantum states and correspond-
ing to solutions of the Schrödinger equation for wave functions and the von Neumann
equation for the density operators. The idea to obtain the solutions of these equations
was formulated in [48,52]. It is based on the following observation: Since the system
state tomogram is given by the symbol of the density operator ρ̂(t), i.e., (58), where the
density operator evolution for the von Neumann equation is described by the evolu-
tion operator û(t), i.e., ρ̂(t) = û(t)ρ̂(0)û†(t) the symbol of the density operator can be
rewritten in the form Tr

(
ρ̂(0)δ(X− µû†(t)q̂û(t)− νû†(t) p̂û(t)

)
. Here, û†(t)q̂û(t) = q̂H(t)

and û†(t) p̂û(t) = p̂H(t) are the Heisenberg position and momentum operators. Such
properties also occur in multi-mode systems with Hamiltonians, which are any quadratic
forms in position and momentum operators; for example, for two-dimensional oscillators,
both ordinary,

Ĥ(1) =
p̂2

1
2

+
p̂2

2
2

+
q̂2

2
2
+

q̂2
1

2
, (68)

and for two-dimensional oscillators, both inverted,

Ĥ(2) =
p̂2

1
2

+
p̂2

2
2
−

q̂2
2

2
−

q̂2
1

2
. (69)

The Hamiltonian Ĥ2 corresponds to the motion of the inverted oscillator. For such Hamil-
tonians, one has time-dependent Heisenberg operators of position and momentum of the
following forms: for the ordinary oscillator with the Hamiltonian (68)

q̂H(1);1(t) = cos t · q̂1 + sin t · p̂1, q̂H(1);2(t) = cos t · q̂2 + sin t · p̂2, (70)

p̂H(1);1(t) = − sin t · q̂1 + cos t · p̂1, p̂H(1);2(t) = − sin t · q̂2 + cos t · p̂2; (71)

and for the inverted oscillator with the Hamiltonian (69)

q̂H(2);1(t) = cosh t · q̂1 + sinh t · p̂1, q̂H(2);2(t) = cosh t · q̂2 + sinh t · p̂2, (72)

p̂H(2);1(t) = sinh t · q̂1 + cosh t · p̂1, p̂H(2);2(t) = sinh t · q̂2 + cosh t · p̂2. (73)

Developed formalism provides the possibility to obtain the description of time evolution for
all the multi-mode systems with time-dependent quadratic Hamiltonians. For such systems,
the Heisenberg position and momentum operators are linear forms with time-dependent
coefficients of usual positions and momenta.

8. Center-of-Mass Tomography

Let us introduce a dequantizer operator for the two-mode oscillator Û(X1, X2, µ1, ν1, µ1, ν2).
Then, the symplectic tomogram reads

w(X1, X2|µ1, ν1, µ2, ν2) = Tr
(
ρ̂δ(X11̂− µ1q̂1 − ν1 p̂1)δ(X21̂− µ2q̂2 − ν2 p̂2)

)
. (74)

The dequantizer operator Û(~x) in the case of the symplectic tomogram is δ(X11̂− µ1q̂1 −
ν1 p̂1)δ(X21̂− µ2q̂2 − ν2 p̂2). The density operator can be reconstructed from the symplectic
tomogram with the help of the quantizer operator D̂(X1, X2, µ1, µ2, ν1, ν2) =

1
4π2 exp(iX11̂−
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µ1q̂1 − ν1 p̂1) exp(iX21̂− µ2q̂2 − ν2 p̂2). Then, the symplectic tomogram of the first mode of
oscillator is related to (74) as

w(X1|µ1, ν1) =
∫

w(X1, X2|µ1, ν1, µ2, ν2)dX2. (75)

There is another type of tomography, named center-of-mass tomography. It was introduced
in [56] and developed in [57,58]. In center-of-mass tomography, the state is determined by the
center-of-mass tomogram. The center-of-mass tomogram is a symbol of the density operator

wcm(X|µ1, ν1, µ2, ν2) = Tr
(
ρ̂δ(X1̂− µ1q̂1 − ν1 p̂1 − µ2q̂2 − ν2 p̂2)

)
. (76)

The random variable X, which we named the center-of-mass coordinate, is measured in
phase space in rotated and scaled reference frames, which are determined by parameters
µ1, ν1, µ2, ν2. The dequantizer operator in center-of-mass tomography is

Û(X, µ1, ν1, µ2, ν2) = δ(X1̂− µ1q̂1 − ν1 p̂1 − µ2q̂2 − ν2 p̂2). (77)

The density operator can be reconstructed from the center-of-mass tomogram with the help
of the quantizer operator D̂(X, µ1, ν1, µ1, ν2), i.e.,

ρ̂ =
1

4π2

∫
wcm(X|µ1, ν1, µ2.ν2) exp

(
i
(
X1̂− µ1q̂− ν1 p̂1 − µ2q̂2 − ν2 p̂2

))
dXdµ1dν1dµ2dν2. (78)

The center-of-mass tomogram of odd and even coherent states is of the form

wcm,α(X|µ1, ν1, µ2, ν2) =

1√
π
√

σN2
±(α)

[
exp

(
−(X−

√
2Reα1µ1 −

√
2Reα2µ2 −

√
2Imα1ν1 −

√
2Imα2ν2)

2/σ
)

± exp
(
−2|α1| − 2|α2| − (X− i

√
2Imα1µ1 − i

√
2Imα2µ2 + i

√
2Reα1ν1 + i

√
2Reα2ν2)

2/σ
)

± exp
(
−2|α1| − 2|α2| − (X + i

√
2Imα1µ1 + i

√
2Imα2µ2 − i

√
2Reα1ν1 − i

√
2Reα2ν2)

2/σ
)

+exp
(
−(X +

√
2Reα1µ1 +

√
2Reα2µ2 +

√
2Imα1ν1 +

√
2Imα2ν2)

2/σ
)]

, (79)

where σ = µ2
1 + µ2

2 + ν2
1 + ν2

2 and N2
±(α) = 2

(
1± exp(−2|α1|2 − 2|α2|2)

)
. These tomo-

grams (79) determine the nonclassical even and odd coherent states in the probability
representation of quantum mechanics.

Following the method described in Section 7, we obtain the time-dependent center-
of-mass tomogram of Schrödinger cat states. This means that in Formula (79), we have to
replace µ1, ν1, µ2, ν2 with time-dependent Heisenberg parameters in the case of evolution
with the Hamiltonian of ordinary oscillator (68) of the form

µH(1);1 = µ1 cos t− ν1 sin t, µH(1);2 = µ2 cos t− ν2 sin t,

νH(1);1 = µ1 sin t + ν1 cos t, νH(1);2 = µ2 sin t + ν2 cos t. (80)

So, for the initial center-of-mass tomogram of odd and even states given by (79) after
evolution with the Hamiltonian (68), one obtains the explicit expression
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wcm,α(X|µ1, ν1, µ2, ν2, t) =
1√

π
√

σN2
±(α)

[
exp

(
−(X−

√
2Reα1(µ1 cos t− ν1 sin t)−

√
2Reα2(µ2 cos t− ν2 sin t)

−
√

2Imα1(µ1 sin t + ν1 cos t)−
√

2Imα2(µ2 sin t + ν2 cos t))2/σ
)

± exp
(
−2|α1| − 2|α2| − (X− i

√
2Imα1(µ1 cos t− ν1 sin t)

−i
√

2Imα2(µ2 cos t− ν2 sin t) + i
√

2Reα1(µ1 sin t + ν1 cos t)

+i
√

2Reα2(µ2 sin t + ν2 cos t))2/σ
)

± exp
(
−2|α1| − 2|α2| − (X + i

√
2Imα1(µ1 cos t− ν1 sin t)

+i
√

2Imα2(µ2 cos t− ν2 sin t)− i
√

2Reα1(µ1 sin t + ν1 cos t)

−i
√

2Reα2(µ2 sin t + ν2 cos t))2/σ
)

+exp
(
−(X +

√
2Reα1(µ1 cos t− ν1 sin t) +

√
2Reα2(µ2 cos t− ν2 sin t)

+
√

2Imα1(µ1 sin t + ν1 cos t) +
√

2Imα2(µ2 sin t + ν2 cos t))2/σ
)]

, (81)

where σ = µ2
1 + µ2

2 + ν2
1 + ν2

2 .
For inverted oscillators with Hamiltonian (69), the initial center-of-mass tomogram

given by (79) takes the form of conditional probability distribution of one random variable X

wcm,α(X|µ1, ν1, µ2, ν2, t) =
1√

π
√

σN2
±(α)

[
exp

(
−(X−

√
2Reα1(µ1 cosh t + ν1 sinh t)−

√
2Reα2(µ2 cosh t + ν2 sinh t)

−
√

2Imα1(µ1 sinh t + ν1 cosh t)−
√

2Imα2(µ2 sinh t + ν2 cosh t))2/σ
)

± exp
(
−2|α1| − 2|α2| − (X− i

√
2Imα1(µ1 cosh t + ν1 sinh t)

−i
√

2Imα2(µ2 cosh t + ν2 sinh t) + i
√

2Reα1(µ1 sinh t + ν1 cosh t)

+i
√

2Reα2(µ2 sinh t + ν2 cosh t))2/σ
)

± exp
(
−2|α1| − 2|α2| − (X + i

√
2Imα1(µ1 cosh t + ν1 sinh t)

+i
√

2Imα2(µ2 cosh t + ν2 sinh t)− i
√

2Reα1(µ1 sinh t + ν1 cosh t)

−i
√

2Reα2(µ2 sinh t + ν2 cosh t))2/σ
)

+exp
(
−(X +

√
2Reα1(µ1 cosh t + ν1 sinh t) +

√
2Reα2(µ2 cosh t + ν2 sinh t)

+
√

2Imα1(µ1 sinh t + ν1 cosh t) +
√

2Imα2(µ2 sinh t + ν2 cosh t))2/σ
)]

, (82)

where σ = cosh 2t(µ2
1 + µ2

2 + ν2
1 + ν2

2) + 2 sinh 2t(µ1ν1 + µ2ν2).

9. Conclusions

For almost a hundred years since the discovery and development of quantum mechan-
ics, there has been a problem with understanding its foundations and mysteries. One of the
main mysteries is the following problem. Why a classical object, such as the Moon orbiting
the Earth, exhibits behavior that we understand. Newton’s law of classical elliptical motion
ensures that the Moon rotates around the Globe with constant energy. This is intuitive and
fits our daily experience. However, since the beginning of the quantum age, we find that
the electron in the hydrogen atom revolves around the proton and has a spectrum of energy
levels that is completely contrary to our classical intuition. To understand this quantum
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behavior, a wave function dynamics formalism was developed that obeys the Schrödinger
equation and completely contradicts our classical intuition. The novelty of this article lies
in the fact that the results obtained within it open up the possibility of extending them to all
other quantum systems, and thus enhancing our understanding of quantum phenomena,
closer to the classical intuition. As an alternative to wave functions and density operators
describing the states of quantum objects, in the last century, a probability distribution was
proposed to describe the states of electrons.

Of course, quantum objects, such as electrons, move around protons according to
the equations of quantum evolution, such as the Schrödinger equation. They have energy
corresponding to quantized energy levels, and their trajectories do not coincide with the
trajectories of the Moon’s rotation around the Globe. In this sense, there is no direct
similarity between the quantum dynamics of electrons and the classical dynamics of the
Moon. However, the similarity between understanding quantum motion and classical
motion lies in the fact that both the motion of the Moon and the motion of electrons can be
described by conventional probability distribution functions.

This description is closer to our intuition and experience of the statistical description
of random motions. In science, this description has been the subject of lengthy research,
and over the past two decades it has been achieved. The time evolution of oscillators,
both conventional and inverted, is also studied in the present paper. This consideration
opens up the possibility of extending the probabilistic approach describing quantum states
to all other systems in order to apply these results to the development of new quantum
technologies, such as quantum computing, quantum information technology, etc.

To conclude, we summarize the main results of our paper. We developed the probabil-
ity representation of quantum states in which the system states are described by standard
probability distribution functions. These functions determine the density operators of
the states. For this, we considered two different schemes of such construction, namely,
symplectic tomography probability distributions [13] and center-of-mass tomographic prob-
ability distributions [56]. In our work, we considered time evolution of the tomographic
probability distributions, using an example of the Schrödinger cat states of the two-mode
oscillator. The main aim was to determine the time evolution and the explicit expressions
of center-of-mass tomographic probability distributions for even and odd coherent states
of two-mode oscillators in ordinary (81) and inverted (82) forms. The main result is that
the obtained probability distributions describe the entangled states of two-mode oscillator
and its evolution. In an example of such a state, we constructed the entangled probability
distributions and their dynamics. Furthermore, we studied the structure of generic entan-
gled probability distributions. The entangled probability distributions are the new forms of
standard probability distributions [12]. The possibility to construct such new probability
distributions can be studied considering multi-mode oscillators with time-dependent pa-
rameters. The entangled probability distributions are new forms of distributions introduced
using quantum mechanics. There are other new aspects of the classical probability theory
that can be found and formulated in view of the existence of the quantum formalism of
the Hilbert spaces and operators acting in the Hilbert spaces, such as Bell inequalities,
which can be considered as consequences of the entangled probability distributions as well
as several entropic inequalities that are obvious in quantum mechanics; however, these
relations are poorly clarified, and were not even discussed in the classical probability theory.
We will consider these problems and entropic properties of such probability distributions
in future publications.
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4. Landau, L. Das Dämpfungsproblem in der Wellenmechanik. Z. Phys. 1927, 45, 430–441. [CrossRef]
5. Wigner, E. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 1932, 40, 749–759. [CrossRef]
6. Schleich, W. Quantum Optics in Phase Space; Wiley-VCH: Hoboken, NJ, USA; Weinheim, Germany, 2001; ISBN 13 978-3527294350.

[CrossRef]
7. Kolmogoroff, A. Grundbegriffe der Wahrscheinlichkeitsrechnung; Part of Book Series Ergebnisse der Mathematik und Ihrer Grenzge-

biete; Springer: Berlin/Heidelberg, Germany, 1933; Volume 2. [CrossRef]
8. Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory; North-Holland Publishing Company: Amsterdam,

The Netherlands, 1982; ISBN 9780444863331/0444863338.
9. Khrennikov, A. Probability and Randomness. Quantum versus Classical; World Scientific: Singapore, 2016; ISBN 10 1783267968/13

978-1783267965. [CrossRef]
10. Khrennikov, A.; Basieva, I. Entanglement of observables: Quantum conditional probability approach. arXiv 2023, arXiv:2303.12393.
11. Khrennikov, A.; Basieva, I. Conditional probability framework for entanglement and its decoupling from tensor product structure.

J. Phys. A Math. Theor. 2022, 55, 395302. . [CrossRef]
12. Chernega, N.V.; Man’ko, O.V.; Man’ko, V.I. Entangled probability distributions. arXiv 2023, arXiv:2302.13065v1.
13. Mancini, S.; Man’ko, V.I.; Tombesi, P. Symplectic Tomography as Classical Approach to Quantum Systems. Phys. Lett. A 1996, 213,

1–6. [CrossRef]
14. Mancini, S.; Man’ko, V.I.; Tombesi, P. Classical-like description of quantum dynamics by means of symplectic tomography. Found.

Phys. 1997, 27, 801–824. [CrossRef]
15. Mancini, S.; Man’ko, V.I.; Tombesi, P. Wigner function and probability distribution for shifted and squeezed quadratures. J. Opt. B

Quantum Semiclass. Opt. 1995, 7, 615. [CrossRef]
16. Man’ko, O.V.; Man’ko, V.I. Quantum States in Probability Representation and Tomography. J. Russ. Laser Res. 1997, 18, 407–444.

[CrossRef]
17. Przhiyalkovskiy, Y.V. Quantum process in probability representation of quantum mechanics. J. Phys. A Math. Gen. 2022, 55, 085301.

[CrossRef]
18. Asorey, M.; Ibort, A.; Marmo, G.; Ventriglia, F. Quantum Tomography Twenty Years Later. Phys. Scr. 2015, 90, 074031. [CrossRef]
19. Uzun, N. Hydrodynamic interpretation of generic squeezed coherent states: A kinetic theory. Ann. Phys. 2022, 442, 168900.

[CrossRef]
20. Shabani, A.; Khellat, F. Quantum tomographic Aubry–Mather theory. J. Math. Phys. 2023, 64, 042706. [CrossRef]
21. Kuznetsov, S.V.; Kyusev, A.V.; Man’ko, O.V. Tomographic and statistical properties of superposition states for two-mode systems.

In International Workshop on Quantum Optics 2003; SPIE: Bellingham, WA, USA, 2004; Volume 5402. [CrossRef]
22. Kuznetsov, S.V.; Man’ko, O.V.; Tcherniega, N.V. Photon distribution function, tomograms and entanglement in Stimulated Raman

Scattering. J. Opt. B Quantum Semiclass. Opt. 2003, 5, 5503. [CrossRef]
23. Man’ko, O.V.; Tcherniega, N.V. Tomographic description of Stimulated Brillouin Scattering. J. Russ. Laser Res. 2001, 22, 201–218.

[CrossRef]
24. Giri, S.K.; Sen, B.; Pathak, A.; Jana, P.C. Higher-order two-mode and multimode entanglement in Raman processes. Phys. Rev. A

2016, 93, 012340. [CrossRef]
25. Pathak, A.; Kr̃epelka, J.; Per̃ina, J. Nonclassicality in Raman scattering: Quantum entanglement, squeezing of vacuum fluctuations,

sub-shot noise and joint photon–phonon number and integrated-intensity distributions. Phys. Lett. A 2013, 377, 2692–2701.
[CrossRef]

26. Rohith, M.; Sudheesh, C. Signatures of entanglement in an optical tomogram. JOSA B 2016, 33, 126–133. [CrossRef]
27. Facchi, P.; Ligabó, M.; Solimini, S. Tomography: Mathematical aspects and applications. Phys. Scr. 2015, 90, 074007. [CrossRef]
28. Claeyes, P.W.; Polkovnikov, A. Quantum eigenstates from classical Gibbs distributions. SciPost Phys. 2021, 10, 014. [CrossRef]
29. Khrennikov, A.; Alodjants, A. Classical (Local and Contextual) Probability Model for Bohm–Bell Type Experiments: No-Signaling

as Independence of Random Variables. Entropy 2019, 21, 157. [CrossRef] [PubMed]
30. Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Evolution of Classical and Quantum States in the Groupoid Picture of Quantum

Mechanics. Entropy 2020, 22, 1292. [CrossRef] [PubMed]
31. Elze, H.-T.; Gambarotta, G.; Vallone, F. General Linear Dynamics—Quantum, Classical or Hybrid. J. Phys. Conf. Ser. 2011,

306, 012010. [CrossRef]
32. Stornaiolo, C. Emergent classical universes from initial quantum states in a tomographical description. Int. J. Geom. Meth. Mod.

Phys. 2020, 17, 2050167. [CrossRef]

http://doi.org/10.1007/BF01343064
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1002/3527602976
http://dx.doi.org/0.1007/978-3-642-49888-6
http://dx.doi.org/10.1142/S0219749916400098
http://dx.doi.org/10.1088/1751-8121/ac8bb3
http://dx.doi.org/10.1016/0375-9601(96)00107-7
http://dx.doi.org/10.1007/BF02550342
http://dx.doi.org/10.1088/1355-5111/7/4/016
http://dx.doi.org/10.1007/BF02559668
http://dx.doi.org/10.1088/1751-8121/ac4b15
http://dx.doi.org/10.1088/0031-8949/90/7/074031
http://dx.doi.org/10.1016/j.aop.2022.168900
http://dx.doi.org/10.1063/5.0127998
http://dx.doi.org/10.1117/12.562263
http://dx.doi.org/10.1088/1464-4266/5/4/357
http://dx.doi.org/10.1023/A:1011304404336
http://dx.doi.org/10.1103/PhysRevA.93.012340
http://dx.doi.org/10.1016/j.physleta.2013.07.046
http://dx.doi.org/10.1364/JOSAB.33.000126
http://dx.doi.org/10.1088/0031-8949/90/7/074007
http://dx.doi.org/10.21468/SciPostPhys.10.1.014
http://dx.doi.org/10.3390/e21020157
http://www.ncbi.nlm.nih.gov/pubmed/33266873
http://dx.doi.org/10.3390/e22111292
http://www.ncbi.nlm.nih.gov/pubmed/33287060
http://dx.doi.org/10.1088/1742-6596/306/1/012010
http://dx.doi.org/10.1142/S0219887820501674


Entropy 2023, 25, 785 17 of 17

33. Berra–Montiel, J.; Molgado, A. Tomography in loop quantum cosmology. Eur. Phys. J. Plus 2022, 137, 283. [CrossRef]
34. Gosson, M.A. Symplectic Radon Transform and the Metaplectic Representation. Entropy 2022, 24, 761. [CrossRef]
35. Foukzon, J.; Potapov, A.A.; Menkova, E.; Podosenov, S.A. A New Quantum-Mechanical Formalism Based on the Probability

Representation of Quantum States. viXra 2016, viXra:1612.0298.
36. Chernega, V.N.; Belolipetskiy, S.N.; Man’ko, O.V.; Man’ko, V.I. Probability representation of quantum mechanics and star product

quantization. J. Phys. Conf. Ser. 2019, 1348, 012101. [CrossRef]
37. Bazrafkan, M.R.; Nahvifard, E. Stationary perturbation theory in the probability representation of quantum mechanics. J. Russ.

Laser Res. 2009, 30, 392–403. [CrossRef]
38. Filinov, V.S.; Schubert, G.; Levashov, P.; Bonitz, M.; Fehske, H.; Fortov, V.E.; Filinov, A.V. Center-of-mass tomographic approach to

quantum dynamics. Phys. Lett. A 2008, 372, 5064. [CrossRef]
39. Plotnitsky, A. Nature Has No Elementary Particles and Makes No Measurements or Predictions: Quantum Measurement and

Quantum Theory, from Bohr to Bell and from Bell to Bohr. Entropy 2021, 23, 1197. [CrossRef] [PubMed]
40. Miroshnichenko, G.P. CQED Quantum Tomography of a Microwave Range. arXiv 2015, arXiv:1510.03155.
41. Koczor, B.; Zeier, R.; Glaser, S.J. Continuous Phase-Space Representations for Finite-Dimensional Quantum States and their

Tomography. Phys. Rev. A 2020, 101, 022318. [CrossRef]
42. Toninelli, E.; Ndagano, B.; Valles, A.; Forbes, A. Concepts in quantum state tomography and classical implementation with

intense light: A tutorial. Adv. Opt. Photonics 2019, 11, 67–134. [CrossRef]
43. Almarashi, A.M.; Abd-Elmougod, G.A.; Raqab, M.Z. Quantum Extropy and Statistical Properties of the Radiation Field for

Photonic Binomial and Even Binomial Distributions. J. Russ. Laser Res. 2020, 41, 334–343. [CrossRef]
44. Leon, R.C.C.; Yang, C.H.; Hwang, J.C.C.; Lemyre, J.C.; Tanttu, T.; Huang, W.; Huang, J.H.; Hudson, F.E.; Itoh, K.M.; Laucht,

A.; et al. Bell-state tomography in a silicon many-electron artificial molecule. Nat. Commun. 2021, 12, 3228. [CrossRef]
45. Husimi, K. Some Formal Properties of the Density Matrix. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264–314. [CrossRef]
46. Glauber, R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. 1963, 131, 2766–2788. [CrossRef]
47. Sudarshan, E.C.G. Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett.

1963, 10, 277–279. [CrossRef]
48. Man’ko, O.V.; Man’ko, V.I. Probability Representation of Quantum States. Entropy 2021, 23, 549. [CrossRef] [PubMed]
49. Dodonov, V.V.; Malkin, I.A.; Man’ko, V.I. Even and odd coherent states and excitations of a singular oscillator. Physica 1974, 72,

597–615. [CrossRef]
50. Man’ko, V.I.; Vilela Mendes, R. Noncommutative Time-Frequency Tomography. Phys. Lett. A 1999, 263, 53–61. [CrossRef]
51. Man’ko, O.V.; Man’ko, V.I.; Marmo, G.; Vitale, P. Star Products, Duality and Double Lie Algebras. Phys. Lett. A 2007, 360, 522–532.

[CrossRef]
52. Chernega, V.N.; Man’ko, O.V.; Man’ko, V.I. Entangled qubit states and linear entropy in the probability representation of quantum

mechanics. Entropy 2022, 24, 527. [CrossRef] [PubMed]
53. Man’ko, O.V.; Man’ko, V.I.; Marmo, G. Alternative Commutation Relations, Star Products and Tomography. J. Phys. A Math. Gen.

2002, 35, 699–719. [CrossRef]
54. Man’ko, O.V.; Man’ko, V.I.; Marmo, G. Tomographic Map within the Framework of Star-Product Quantization. In Quantum

Theory and Symmetries, Proceedings of the Second International Symposium Quantum Theory and Symmetries, Krakow, Poland, 18–21 July
2001; Kapuscik, E., Horzela, A., Eds.; World Scientific: Singapore, 2002; pp. 126–133. [CrossRef]

55. Dodonov, V.V.; Man’ko, V.I. Invariants and the Evolution of Nonstationary Quantum Systems. In Proceedings of the P.N. Lebedev
Physical Institute; Nova Science: Commack, NY, USA, 1989; Volume 183, ISBN 0-941743-49-7.

56. Arkhipov, A.S.; Lozovik, Y.E.; Man’ko, V.I. Tomography for several particles with one random variable. J. Russ. Laser Res. 2003,
24, 237–255. [CrossRef]

57. Dudinets, I.V.; Man’ko, V.I. Center-of-mass tomography and Wigner function for multimode photon states. Int. J. Theor. Phys.
2018, 57, 1631–1644. [CrossRef]

58. Amosov, G.G.; Man’ko, V.I. A classical limit for the center-of-mass tomogram in view of the central limit theorem. Phys. Scr. 2009,
80, 025006. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1140/epjp/s13360-022-02504-1
http://dx.doi.org/10.3390/e24060761
http://dx.doi.org/10.1088/1742-6596/1348/1/012101
http://dx.doi.org/10.1007/s10946-009-9079-9
http://dx.doi.org/10.1016/j.physleta.2008.05.053
http://dx.doi.org/10.3390/e23091197
http://www.ncbi.nlm.nih.gov/pubmed/34573822
http://dx.doi.org/10.1103/PhysRevA.101.022318
http://dx.doi.org/10.1364/AOP.11.000067
http://dx.doi.org/10.1007/s10946-020-09883-9
http://dx.doi.org/10.1038/s41467-021-23437-w
http://dx.doi.org/10.11429/ppmsj1919.22.4_264
http://dx.doi.org/10.1103/PhysRev.131.2766
http://dx.doi.org/10.1103/PhysRevLett.10.277
http://dx.doi.org/10.3390/e23050549
http://www.ncbi.nlm.nih.gov/pubmed/33946800
http://dx.doi.org/10.1016/0031-8914(74)90215-8
http://dx.doi.org/10.1016/S0375-9601(99)00688-X
http://dx.doi.org/10.1016/j.physleta.2006.08.057
http://dx.doi.org/10.3390/e24040527
http://www.ncbi.nlm.nih.gov/pubmed/35455190
http://dx.doi.org/10.1088/0305-4470/35/3/315
http://dx.doi.org/10.1142/9789812777850_0011
http://dx.doi.org/10.1023/A:1024051809262
http://dx.doi.org/10.1007/s10773-018-3690-x
http://dx.doi.org/10.1088/0031-8949/80/02/025006

	Introduction
	Entangled Probability Distributions of Random Variables
	Examples of the Entangled Probability Distributions
	Evolution of States in Different Representations
	Quantum States Definition
	Symplectic Tomography of Oscillators
	Dynamics of Operator Symbols for Quadratic Hamiltonians in Position and Momentum
	Center-of-Mass Tomography
	Conclusions
	References

