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Abstract: The boundary conditions are crucial for numerical methods. This study aims to contribute
to this growing area of research by exploring boundary conditions for the discrete unified gas kinetic
scheme (DUGKS). The importance and originality of this study are that it assesses and validates
the novel schemes of the bounce back (BB), non-equilibrium bounce back (NEBB), and Moment-
based boundary conditions for the DUGKS, which translate boundary conditions into constraints
on the transformed distribution functions at a half time step based on the moment constraints. A
theoretical assessment shows that both present NEBB and Moment-based schemes for the DUGKS
can implement a no-slip condition at the wall boundary without slip error. The present schemes
are validated by numerical simulations of Couette flow, Poiseuille flow, Lid-driven cavity flow,
dipole–wall collision, and Rayleigh–Taylor instability. The present schemes of second-order accuracy
are more accurate than the original schemes. Both present NEBB and Moment-based schemes are
more accurate than the present BB scheme in most cases and have higher computational efficiency
than the present BB scheme in the simulation of Couette flow at high Re. The present Moment-based
scheme is more accurate than the present BB, NEBB schemes, and reference schemes in the simulation
of Poiseuille flow and dipole–wall collision, compared to the analytical solution and reference data.
Good agreement with reference data in the numerical simulation of Rayleigh–Taylor instability
shows that they are also of use to the multiphase flow. The present Moment-based scheme is more
competitive in boundary conditions for the DUGKS.

Keywords: DUGKS; boundary condition; moment-based scheme; dipole–wall collision; Rayleigh-
Taylor instability

1. Introduction

Discrete Unified Gas Kinetic Scheme (DUGKS) for all Knudsen Number Flows was
proposed [1], which combined the advantages of the Lattice Boltzmann method (LBM)
and the Unified Gas Kinetic Scheme (UGKS). The DUGKS and LBM can share the same
equilibrium distribution function, and both start from the Boltzmann equation. Although
the computational time cost of DUGKS is slightly higher than that of LBM in a continuous
flow, the numerical stability of DUGKS is better than that of LBM, and it can capture flow
characteristics that LBM is not competent to [2,3]. Both DUGKS and UGKS have asymptotic
preserving properties, where the time step is not limited by the collision time. For the
reconstruction of cell-interface flux, the UGKS adopts the analytical time-evolved integral
solution and the DUGKS adopts a simpler numerical characteristic solution, in which the
calculation time cost is approximately 70% of that in the UGKS [4]. In short, the DUGKS has
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a simple framework and the powerful ability to capture the flow characteristics in a wide
flow regime, which can make the DUGKS a competitive tool in comparison with LBM and
UGKS. Recently, the DUGKS has been successfully applied to a variety of flow problems
in different flow regimes, such as turbulent flows [5–8], micro flows [9–13], compressible
flows [4,14–17], multiphase flows [18–20], fluid-particle flows [21,22], flows with complex
geometries [23,24], gas mixture systems [25,26], pore-scale porous media flows [27], and
plasma physics [28,29]. In addition to flow problems, the DUGKS was also extended to
multiscale transport problems such as phonon heat transfer [30–32] and the radiation of
photons [33,34].

The boundary conditions are crucial for numerical methods [35–37]. If boundary
conditions are not properly introduced in the numerical methods, severe problems may
arise, such as the divergence of numerical solutions. In short, boundary conditions should
be treated with great care. Because the LBM and DUGKS share a common kinetic origin,
researchers tried to introduce the boundary conditions from the LBM into the DUGKS.
For example, two kinds of no-slip boundary conditions are widely used: The bounce-back
(BB) scheme [1] and the non-equilibrium bounce-back (NEBB) scheme [38]. They have
received considerable critical attention. For the LBM and DUGKS, there are distinctive
modeling differences in the particle evolution process. The LBM separates the particle
streaming and collision process. However, particle transport and collision are fully coupled
in DUGKS. This dynamic difference can result in the deviation of the boundary condition
in the LBM and DUGKS. For example, the boundary condition is processed at time t + 0.5∆t
in the DUGKS but at time t in the LBM. Yang et al. [39] have analyzed and assessed the BB
scheme and the NEBB scheme for the DUGKS. Although the BB scheme is a simple and
common method to apply the no-slip boundary condition, it introduces an additional error
(a purely artificial numerical slip error) into the DUGKS. The NEBB scheme eliminates the
error of the numerical slip, but the closure to find the unknowns at the wall is somewhat
arbitrary [40]. There are only a few studies on boundary conditions for the DUGKS, which
have not been studied thoroughly. So, it can bring renewed interest and value to introduce
and test other boundary conditions for the DUGKS.

Recently, the moment-based boundary condition has received increased interest and
attention [40–45], which is based on the moments of the LBM [40] and has not yet been
introduced to the DUGKS. Numerical simulations show that the moment-based boundary
condition converges with second-order accuracy using dipole–wall collisions [40], natural
convection in the square cavity [41], and lid-driven cavity flow [43–45]. A numerical simula-
tion of the Poiseuille flow shows that the moment-based boundary condition can eliminate
the spurious oscillations seen in solutions using other boundary conditions, considering the
nonzero deviatoric stress [42]. The moment-based boundary condition can be parallelized
easily for efficient computing, and it is conceptually simpler and more straightforward than
other methods that involve a mixture of the bounce-back rule, hydrodynamic moments,
momentum corrections, and other modifications to the distribution functions [44].

To the best of the authors’ knowledge, the moment-based boundary condition for
the DUGKS has not been analyzed. So, the present work introduces the moment-based
boundary condition to the DUGKS, and its numerical performance is studied in comparison
with the BB scheme and the NEBB scheme. Generally, for boundary conditions in the
DUGKS, the boundary nodes are located at the cell interface, and the unknown original
distribution functions are treated at time tn+1/2 = tn + 0.5∆t [39]. In the DUGKS, the
original distribution functions are obtained after the transformed distribution functions are
calculated. So, in this study, novel schemes of the BB, NEBB, and Moment-based boundary
conditions are proposed for the DUGKS, which treat the unknown transformed distribution
functions at time tn+1/2 = tn + 0.5∆t. That is, the implementation of the boundary condition
shifts from the original f (xw, ξα, t + h) to the transformed f (xw, ξα, t + h), which may
improve the numerical performance.

Assessment and validation of the novel schemes are necessary and important to their
application. To test boundary conditions for the DUGKS, numerical simulations have
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only focused on the Couette flow and the Poiseuille flow in Ref. [39]. Considering the
generality, more complex flows should be adopted to test boundary conditions, such as
the multiphase flow. The multiphase flows are of both academic and industrial inter-
est [46–52], such as the unsteady Rayleigh–Taylor instability. The benchmark problem
of Rayleigh–Taylor instability has been used to validate the newly developed numerical
approaches [18,19,50,51]. The bounce-back boundary conditions are applied to the bottom
and top wall boundaries in the DUGKS simulations of Rayleigh–Taylor instability [18].
However, to the best of the authors’ knowledge, the effect of varied wall boundary condi-
tions on the numerical simulation of Rayleigh–Taylor instability has been not investigated.
Therefore, in this work, the unsteady Rayleigh–Taylor instability is used to test and vali-
date the proposed schemes of boundary conditions, in addition to the Couette flow, the
Poiseuille flow, the dipole–wall collision, and the lid-driven cavity flow.

The rest of the paper is organized as follows. In Section 2, the DUGKS with a force
term, the original and novel schemes of BB, NEBB, and Moment-based boundary conditions
for the DUGKS are present. In Section 3, the boundary conditions are tested and assessed
using Couette flow, Poiseuille flow, Lid-driven cavity flow, vortex dipole–wall collision,
and Rayleigh–Taylor instability. In Section 4, the conclusions are drawn.

2. Numerical Method

It is noted that the present work is for isothermal continuum flow.

2.1. DUGKS with a Force Term

In the LBM, a modeled gas, which is composed of identical particles whose velocities
are restricted to a finite set of vectors, is considered. Similar to the LBM, the DUGKS follows
the lattice Boltzmann equation. It is inevitably necessary to introduce a force term to the
DUGKS in some cases, such as the external force driven by Poiseuille flow. The governing
equation of the DUGKS with a force term [3]:

∂ f
∂t

+ ξα · ∇ f = Ω + S (1)

Equation (1) describes the spatial and temporal evolution of the distribution f (ξα, x,
t) of particles with velocity ξα at position x and time t. The fundamental variable in gas
kinetic theory is the particle distribution function, which simultaneously represents the
density of mass in both physical space and velocity space.

The commonly used Bhatnagar–Gross–Krook (BGK) model is given as

Ω = ( f eq − f )/τ (2)

where τ denotes the relaxation time.
The force term is approximated as [3]

S = −a · ∇ξ f ≈ a · (ξ − u) f eq/RT (3)

where a denotes the acceleration due to the external force, and R and T represent the gas
constant and the temperature, respectively. For simplicity, the particle velocity ξ and the
fluid velocity u have been normalized by

√
3RT, giving a sound speed of cs = 1/

√
3 [53].

So, in the following simulations of isothermal continuum flow, the temperature T is constant
with cs

2 = RT = 1/3.
With the Taylor expansion at approximately zero particle velocity at a low Mach

number, the Maxwellian equilibrium distribution function f eq is approximated as [1]

f eq = Wαρ

[
1 +

ξα · u
c2

s
+

(ξα · u)2

2c4
s
− |u|

2

2c2
s

]
, c2

s = RT (4)
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In the widely used D2Q9 model [5], the velocity space {ξα} and the corresponding
weights {Wα} are given as

ξα =


(0, 0) α= 0,
c(cos[(α− 1)π/2], sin[(α− 1)π/2]) ,c =

√
3RT α= 1, 2, 3, 4,√

2c(cos[(2α− 9)π/4], sin[(2α− 9)π/4]) ,c =
√

3RT α= 5, 6, 7, 8,
(5)

Wα =


4
9 , α= 0
1
9 , α= 1, 2, 3, 4
1

36 , α= 5, 6, 7, 8

(6)

The computational domain is divided into the cells Vi,j = ∆xi∆yj centered at (xi, yj) in
the DUGKS with the D2Q9 model. As a finite volume scheme, the cell-averaged values of
the distribution function and the force term are introduced, denoted as f n and Sn,

f n = 1
|Vi,j|

∫
Vi,j

f (ξα, x, tn)dV,

Sn = 1
|Vi,j|

∫
Vi,j

S(ξα, x, tn)dV.
(7)

Integrating Equation (1) into each cell Vi,j from time tn = n∆t to time tn+1 = (n + 1)∆t,
and using the midpoint rule and trapezoidal rule, the evolution equation of the DUGKS is
advanced from tn to tn+1 as,

f n+1 − f n = − ∆t∣∣Vi,j
∣∣Fn+1/2 +

∆t
2

[
Ωn + Ωn+1

]
+

∆t
2

[
Sn + Sn+1

]
(8)

The scalar variable Fn+1/2 represents the flux across the cell interface, which is com-
puted as

Fn+1/2 =
∫

∂Vi,j

(ξα · n) f (ξα, xb, tn+1/2)dS (9)

where f (ξα, xb, tn+1/2) represents the distribution at the cell interface xb at the time
tn+1/2 = tn + h (h = ∆t/2), and n is the outward unit vector normal to the surface ∂Vi,j.

For the purpose of eliminating the simplicity, new distribution functions
are introduced:

f̃ ≡ f − ∆t
2

Ω− ∆t
2

S, f̃+ ≡ f +
∆t
2

Ω +
∆t
2

S (10)

The collision term can be expanded in the BGK collision model, and Equation (10) can
be converted to the following equations:

f =
2τ

2τ + ∆t
f̃ +

∆t
2τ + ∆t

f eq +
τ∆t

2τ + ∆t
S , (11)

f̃+ =
2τ − ∆t
2τ + ∆t

f̃ +
2∆t

2τ + ∆t
f eq +

2τ∆t
2τ + ∆t

S . (12)

The evolution equation of the DUGKS is simplified as

f̃ n+1 = f̃+,n − ∆t∣∣Vi,j
∣∣Fn+1/2 (13)

All other forms of the distribution function can be expressed in terms of f̃ in the
DUGKS. So, we focus on the distribution function f̃ .

As can be seen from Equation (13), the critical step is to evaluate the interface
flux Fn+1/2.
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For DUGKS with higher-order accuracy, more intermediate time steps can be selected,
for example, the flux at the cell interface at t∗ = tn + ∆t/6 and t∗∗ = tn + 3∆t/4 need
calculating [54]. Considering the easy implementation and fast computation in the present
study, we select the intermediate time step tn + ∆t/2 in the present study. Equation (1)
is integrated within a half time step (h = ∆t/2) along the characteristic line using the
trapezoidal rule to treat the collision and force terms, and we have

f (ξα, xb, tn+1/2)− f (ξα, xb − hξα, tn) =
h
2 [Ω(ξα, xb, tn+1/2) + Ω(ξα, xb − hξα, tn)] +

h
2 [S(ξα, xb, tn+1/2) + S(ξα, xb − hξα, tn)]

(14)

where xb at the cell interface denotes an end point along the characteristic line.
Similar to the above discussion, new distribution functions are introduced:

f = f − h
2

Ω− h
2

S =
2τ + h

2τ
f − h

2τ
f eq − h

2
S (15)

f
+
=

2τ − h
2τ + h

f +
2h

2τ + h
f eq +

2τh
2τ + h

S. (16)

With new distribution functions, Equation (14) is simplified as

f (ξα, xb, tn+1/2) = f
+
(ξα, xb − hξα, tn) (17)

With the Taylor expansion [1], the right term of Equation (17) can be approximated as

f
+
(ξα, xb − hξα, tn) = f

+
(ξα, xb, tn)− hξα · ∇ f

+
(ξα, xb, tn) (18)

where f
+
(ξα, xb, tn) and its gradients ∇ f

+
(ξα, xb, tn) can be approximated by linear inter-

polations. For the uniform mesh in the x-direction, e.g.,

∇ f
+
(ξα, xb, tn) ≈ f

+
(ξα ,xi+1,tn)− f

+
(ξα ,xi ,tn)

(∆xi+1+∆xi)/2 ,

f
+
(ξα, xb, tn) ≈ f

+
(ξα, xi, tn) +∇ f

+
(ξα, xb, tn)

∆xi
2 .

(19)

The distribution function f
+

(ξα, x, tn) at the cell center can be calculated as

f
+
=

2τ − h
2τ + ∆t

f̃ +
3h

2τ + ∆t
f eq +

3τh
2τ + ∆t

S (20)

Then, f (ξα, xb, tn+1/2) can be obtained by using Equations (17) and (18).
Similarly, the original distribution function f (ξα, xb, tn+1/2) can be obtained from

f (ξα, xb, tn+1/2):

f (ξα, xb, tn+1/2) =
2τ

2τ + h
f (ξα, xb, tn+1/2) +

h
2τ + h

f eq(ξα, xb, tn+1/2)

The equilibrium function f eq(ξα, xb, tn+1/2) at the cell interface can be determined by
the conserved variables. Based on the conservation of mass and momentum, the density
and velocity at the cell interface center can be given as

ρn+1/2|xb
= ∑

α

f (ξα, xb, tn+1/2), (ρu)n+1/2
∣∣
xb

= ∑
α

ξα f (ξα, xb, tn+1/2) + 0.5ρah (21)

Finally, the flux Fn+1/2 is obtained by Equation (9) after f (ξα, xb, tn+1/2) is determined
by Equation (15). Then, the tracked distribution function f̃ can be updated to the next time
step by Equation (13).
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Particularly, the following equation will be used in the DUGKS [3],

f̃+ =
4
3

f
+ − 1

3
f̃ (22)

The density ρ and velocity u at the cell center can be calculated from f̃ :

ρ = ∑
α

f̃ (ξα, x, tn), ρu = ∑
α

ξα f̃ (ξα, x, tn) + 0.5ρa∆t (23)

In the present DUGKS, the relaxation time τ is computed from τ = ν/RT, where ν is
the kinematic viscosity. The time step ∆t is independent of the relaxation time τ for all flow
regimes, and it is determined by the Courant–Friedrichs–Lewy (CFL) condition [55]:

∆t = χ
∆x
C

(24)

where χ is the CFL number, ∆x is the minimum grid spacing, and C is the maximum
discrete velocity. We set C to be

√
2 in the present work.

2.2. Original Schemes of No-Slip Boundary Conditions

The original schemes of BB, NEBB, and Moment-based boundary conditions are
introduced, and they are analyzed theoretically from the view of the moment.

The boundary conditions are applied to solve the unknown distributions that have
velocities pointing into the fluid domain. So, we need to find the unknown distributions.

2.2.1. Moment-Based Scheme

In brief, the Moment-based scheme states that the unknown distribution functions
at the boundary can be determined by the linearly independent moments. For the D2Q9
model, there are nine discrete velocity moments, including the 6 hydrodynamic moments
(the density ρ, momentum ρu, and momentum flux Π) and 3 non-hydrodynamic moments
(Qxxy, Qxyy, and Sxxyy) [40]:

ρ =
8
∑

α=0
fα, Πx = ρux =

8
∑

α=0
fαξαx, Πy = ρuy =

8
∑

α=0
fαξαy,

Πxx =
8
∑

α=0
fαξαxξαx, Πyy =

8
∑

α=0
fαξαyξαy, Πxy =

8
∑

α=0
fαξαxξαy,

(25)

Qxxy =
8

∑
α=0

fαξαyξ2
αx, Qxyy =

8

∑
α=0

fαξαxξ2
αy, Sxxyy =

8

∑
α=0

fαξ2
αxξ2

αy. (26)

For the no-slip wall boundary, we pick three linearly independent moments (momen-
tum Πx, Πy, and momentum flux Πxx), and impose constraints upon them, i.e., ux = uwx
(const), uy = 0, ∂xux = 0 for the south boundary (uwy = 0). Then, by Chapman–Enskog,
Πxx = Πxx

(0) + τΠxx
(1) = Πxx

(0) = cs
2ρ + ρux

2, because Πxx
(1) ≈ −2cs

2ρ∂xux = 0. We obtain
the following three conditions for three unknowns:

Πx = ρuwx, Πy = 0, Πxx = Π(0)
xx = ρ/3 + ρu2

wx (27)

For the south boundary (uwy = 0), solving these equations yields

f2 = f1 + f3 + f4 + 2( f7 + f8)− ρ/3− ρu2
wx

f5 = ρ/6− f1 − f8 + 0.5ρu2
wx + 0.5ρuwx

f6 = ρ/6− f3 − f7 + 0.5ρu2
wx − 0.5ρuwx

ρ = f0 + f1 + f3 + 2( f4 + f7 + f8)

(28)
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2.2.2. Non-Equilibrium Bounce Back Scheme

For the south boundary (uwy = 0), the Non-equilibrium Bounce-Back (NEBB) scheme
can be expressed as [38]:

f2 = f4
f5 = f7 − 0.5( f1 − f3) + 0.5ρuwx
f6 = f8 + 0.5( f1 − f3)− 0.5ρuwx
ρ = f0 + f1 + f3 + 2( f4 + f7 + f8)

(29)

where uwx denotes the wall velocity in the x-direction.
It is found that the calculation of the density in Equation (28) is the same as that in

Equation (29) when uwy = 0. Then, from a fresh perspective based on the moment, it is
found that the conditions of the NEBB scheme are

Πx = ρuwx, Πy = 0, Qxxy = ρuwy/3 = 0. (30)

That is, for the NEBB scheme, three linearly independent moments are picked for the
south boundary: Momentum Πx, Πy, and momentum flux Qxxy. Πx and Πy are useful in
defining the no-slip condition, but the condition on a component of the third-order moment
Qxxy seems somewhat arbitrary.

2.2.3. Bounce-Back Scheme

The Bounce-Back (BB) scheme assumes that a particle just reverses its velocity after
hitting the wall. The unknown distribution functions f (xw, ξα, tn+1/2) for particles leaving
the wall are determined as [1],

f (xw, ξα, tn+1/2) = f (xw,−ξα, tn+1/2) + 2ρwWα
ξα · uw

RT
, (ξα · n > 0) (31)

RT = c2
s (32)

where uw denotes the wall velocity and ρw denotes the density at the wall boundary,
which can be approximated well by the constant average density for nearly incompressible
flows [1].

For the south boundary (the wall velocity at y-direction uwy = 0), the unknown original
distribution functions f2, f5, and f6 are given as,

f2 = f4
f5 = f7 + ρwuwx/6
f6 = f8 − ρwuwx/6

(33)

where uwx denotes the wall velocity in the x-direction.
For the BB scheme, three linearly independent moments are picked for the south

boundary: Πy, Qxyy, and Qxxy, leading to the conditions on a moment basis,

Πy = 0, Qxyy = ρuwx/3, Qxxy = 0. (34)

Two components of the third-order moment Qxyy and Qxxy result in the numerical
slip error.

2.3. Novel Schemes of No-Slip Boundary Conditions

In the DUGKS, new transformed distribution functions are introduced to evaluate the
interface flux. So, the original scheme of boundary conditions should be transformed. The
original distribution functions f (xw, ξα, t + h) are obtained after the transformed distribution
functions f (xw, ξα, t + h) are calculated. So, the implementation of the boundary condition
shifts from the original f (xw, ξα, t + h) to the transformed f (xw, ξα, t + h), which may
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improve the numerical performance. It is noted that the particle streaming and collision
are fully coupled in the DUGKS.

As shown in Figure 1, in the present work, the boundary is located at a cell interface,
and we treat the unknown distribution functions f (xw, ξα, t + h) at the cell interface center
xw. Owing to new distribution functions and force terms in the DUGKS, we should convert
the original boundary conditions into a new format. The boundary conditions will be
translated into constraints on f (xw, ξα, t + h). It should noted that more details about
derivations for the novel schemes are shown in Appendix A.
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Considering Equation (21), we can obtain

Πx = ρux = f 1 − f 3 + f 5 − f 6 − f 7 + f 8 + 0.5ρaxh (35)

Πy = ρuy = f 2 − f 4 + f 5 + f 6 − f 7 − f 8 + 0.5ρayh (36)

With Equations (27), (35), and (36), the Moment-based scheme (Equation (28)) is
rewritten as

f 2 = f 1 + f 3 + f 4 + 2( f 7 + f 8)− ρ/3− ρu2
wx − 0.5ρayh

f 5 = ρ/6− f 1 − f 8 + 0.5ρu2
wx + 0.5ρuwx − 0.25ρaxh

f 6 = ρ/6− f 3 − f 7 + 0.5ρu2
wx − 0.5ρuwx + 0.25ρaxh

ρ = [ f 0 + f 1 + f 3 + 2( f 4 + f 7 + f 8)]/(1 + 0.5ayh)

(37)

In the Couette flow and lid-driven cavity flow, the top wall moves with the constant
velocity U0 (ax = ay = 0, uwx = U0, uwy = 0, ∂xuwx = 0), and the unknowns at the north
boundary can be written as

f 4 = f 1 + f 2 + f 3 + 2( f 5 + f 6)− ρ/3− ρU0
2

f 7 = ρ/6− f 3 − f 6 + 0.5ρU0
2 − 0.5ρU0

f 8 = ρ/6− f 1 − f 5 + 0.5ρU0
2 + 0.5ρU0

ρ = f 0 + f 1 + f 3 + 2( f 2 + f 5 + f 6)

(38)
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With Equations (30), (35), and (36), the NEBB scheme (Equation (29)) is rewritten as

f 2 = f 4 − 0.5ρayh
f 5 = f 7 − ( f 1 − f 3)/2 + 0.5ρuwx − 0.25ρaxh
f 6 = f 8 + ( f 1 − f 3)/2− 0.5ρuwx + 0.25ρaxh
ρ = [ f 0 + f 1 + f 3 + 2( f 4 + f 7 + f 8)]/(1 + 0.5ayh)

(39)

With Equations (34) and (36), the BB scheme (Equation (33)) is rewritten as

f 2 = f 4 − 0.5ρayh
f 5 = f 7 + ρuwx/6
f 6 = f 8 − ρuwx/6
ρ = [ f 0 + f 1 + f 3 + 2( f 4 + f 7 + f 8)]/(1 + 0.5ayh)

(40)

2.4. Analysis of Numerical Slip Errors of Novel Schemes

In the following, the numerical slip errors (uerror = ux − uwx) of the novel schemes of
no-slip boundary conditions are theoretically analyzed.

Inspired by Guo et al. [56], He et al. [57], Wang et al. [58], and Yang et al. [59], the
unidirectional steady flow is adopted to analyze the numerical error of boundary conditions.
The assumptions in the unidirectional steady flow are written as

uy = 0, ay = 0, ∂φ/∂x = 0, ∂φ/∂t = 0, ρ = const, (41)

where φ denotes an arbitrary flow variable. ax and ay denote the component of the accelera-
tion a in the x-direction and y-direction, respectively. Considering Equations (14) and (35),
we can obtain

f1 = τax(c− ux) f eq
1 /RT + f eq

1 , f3 = τax(−c− ux) f eq
3 /RT + f eq

3 (42)

With the Maxwellian equilibrium distribution function known, as shown in
Equation (4), we can obtain

f1 − f3 = 2ρ(τax + ux)/3 (43)

Yang et al. [39] treated the unknown distribution functions f (xw, ξα, t + h) at the cell
interface xw, and the numerical slip error of the BB scheme and NEBB scheme generated in
the DUGKS can be written as

u′error,BB = 2τax, u′error,NEBB = 0. (44)

However, in the present work, we treat the unknown distribution functions
f (xw, ξα, t + h) at the cell interface center xw.

For the Moment-based scheme, we substitute Equation (37) into Equation (35),
and obtain

uerror,Moment = ux − uwx = 0 (45)

For the NEBB scheme, we substitute Equation (39) into Equation (35), and obtain

uerror,NEBB = ux − uwx = 0 (46)

For the BB scheme, we substitute Equation (40) into Equation (35), and obtain

ρux = f 1 − f 3 + ρuwx/3 + 0.5ρaxh (47)

With Equations (15) and (43), we can obtain

f 1 − f 3 =
2τ + h

3
ρax +

2
3

ρux − haxux(1− ux) (48)
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It is found that the numerical slip error of the BB scheme in the present work is also
zero (uerror,BB = ux − uwx = 0) when the acceleration ax is equal to 0.

As shown in Equation (34), the only hydrodynamic condition is that the flow rate
through the wall is zero in the BB scheme, and the velocity along the wall is undefined.
The BB scheme does not impose a boundary condition on the tangential velocity at the
wall, resulting in the numerical slip velocity when the external force term exists. Both the
NEBB scheme and Moment-based scheme select momentum Πx and Πy, which can satisfy
the no-slip condition without generating numerical slip error. So, momentum Πx and Πy
are useful in defining the no-slip condition. It seems sensible to choose the hydrodynamic
moments instead of the non-hydrodynamic ones that do not appear in these equations of
motion [40].

2.5. Explore Extending Present Schemes to Curved Boundaries

To extend the current boundary treatment to curved boundaries, this work also tries
to introduce the methods from the LBM into the DUGKS, including the link method
(Ladd [60,61]), interpolated methods (Bouzidi et al. [62], Yu et al. [63]), and single-node
schemes (Zhao&Yong [64], Tao et al. [65], Zhao et al. [66], Chen et al. [67]). Although
the LBM and DUGKS share a common kinetic origin, we need to be aware of distinctive
features in the LBM and DUGKS. It should be noted that the present boundary conditions
treat the unknown transformed distribution functions f at the cell interface in the DUGKS.

2.5.1. Link Method

As shown in Figure 2, the link method approximates the curved solid boundary to
a stair-like zigzag line (dash line), which is set in the center of the solid and fluid nodes
(i.e., the cell interface). So, it is quite convenient for the DUGKS to apply the link method to
treat the curved boundaries by treating the unknown transformed distribution functions
f (xw, ξα, t + h) at the cell interface center xw and at time tn+1/2 = tn + 0.5∆t (h = 0.5∆t). If the
grid mesh is fine enough, it is easy and efficient to treat the curved boundaries by adopting
the current boundary treatment (as shown in Section 2.3) directly.
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Figure 2. Link method approximates curved boundary to zigzag one. The white square means fluid
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means numerical boundary. Gray circle denotes the cell interface center xb. Gray diamond denotes the
numerical boundary node xw, which is located at the cell interface center on the numerical boundary.
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2.5.2. Interpolated Method

In actuality, the link method makes the smooth curved boundary into the rough
boundary. To improve the curved boundary conditions, some interpolated methods are
developed. It should be noted that strategies to design interpolated schemes are not unique.
For example, in the LBM, two representative interpolated bounce-back (IBB) schemes
are the conditional scheme proposed by Bouzidi et al. [62] and the unified scheme by
Yu et al. [63]. It is noted that the interpolated methods are based on the bounce-back
scheme in the LBM. Similarly, the present BB scheme for the DUGKS can be applied to the
interpolated methods. However, it needs more implementation effort or other strategies to
extend the present NEBB scheme and Moment-based scheme to curved boundaries.

Conditional Scheme

Inspired by the conditional scheme [62], the IBB scheme in the DUGKS is proposed
by using linear (first-order treatment) or quadratic (second-order treatment) interpolation
formulas involving values at two or three nodes. The conditional scheme uses separate
treatments for q < 0.5 and q ≥ 0.5 according to the scaled distance.

Taking the boundary configuration in Figure 3 as an example, we use quadratic
interpolation to obtain,

f
(

x f , ξα, tn+1/2

)
= q(2q + 1) f

(
x f , ξα, tn−1/2

)
+ (1 + 2q)(1− 2q) f

(
x f f , ξα, tn−1/2

)
−q(1− 2q) f

(
x f f f , ξα, tn−1/2

)
+ 2ρwWα

ξα ·uw
c2

s
, q < 0.5,

(49)

f
(

x f , ξα, tn+1/2

)
= 1

q(2q+1)

[
f
(

x f , ξα, tn−1/2

)
+ 2ρwWα

ξα ·uw
c2

s

]
+ 2q−1

q f
(

x f f , ξα, tn+1/2

)
− 2q−1

2q+1 f
(

x f f f , ξα, tn+1/2

)
, q ≥ 0.5.

(50)
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node second-order bounce-back scheme for curved boundaries, which used pre- and 

Figure 3. Sketch of a curved boundary located between two lattice nodes arbitrarily. Grey cir-
cles represent the fluid nodes (i.e., xf, xff, xfff), black circle represents the solid node (xs), and
square box represents the intersection (xw) of the boundary and the grid line. ξα defines the lat-
tice velocity of the particle, which travels from xf to xff and ξα denotes the opposite direction of
ξα (ξα = −ξα). q (q = |xw − xf|/|xs − xf|) denotes the scaled distance.

When q = 1
2 , the conditional interpolation formulas are reduced to the “bounce-back”

scheme. Since a distribution function travels precisely one grid spacing from t to t + ∆t,
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particles that start from xf can end precisely at the same location only when xf is half a grid
spacing from the wall.

Unified Scheme

Inspired by the unified scheme [63], the present work treats the curved boundaries in
three main steps:

À A virtual distribution function f (xw, ξα, t + h) is interpolated from the distribution
functions at xf, xff and xfff. We use quadratic interpolation to obtain,

f (xw, ξα, tn+1/2) =
q(q+1)

2 f (x f , ξα, tn−1/2)+

(1 + q)(1− q) f (x f f , ξα, tn−1/2)−
q(1−q)

2 f (x f f f , ξα, tn−1/2)
(51)

Á According to the current boundary treatment, the unknown distribution function
f (xw, ξα, t + h) is obtained by using the known distribution function f (xw, ξα, t + h).
All the present BB, NEBB, and Moment-based schemes (as shown in Section 2.3) are
alternatives to calculate f (xw, ξα, t + h).

Â At last, we need to calculate the known distribution function f (xf, ξα, t + h), which is
interpolated from f (xw, ξα, t + h), f (xff, ξα, t + h), f (xfff, ξα, t + h).

f (x f , ξα, tn+1/2) =
2

(1+q)(2+q) f (xw, ξα, tn+1/2)+
2q

1+q f (x f f , ξα, tn+1/2)−
q

2+q f (x f f f , ξα, tn+1/2)
(52)

2.5.3. Single-Node Scheme

The interpolated methods [62,63] improve the accuracy to be second-order. However,
they involve at least two neighboring fluid nodes, e.g., xf, xff, and xfff. It is inevitable
to undermine the local computation property and further the parallel performance of
LBM [68,69]. Moreover, the required number of fluid nodes may not be available for some
cases, e.g., dense particle suspensions. Zhao and Yong (2017) [64] developed a single-
node second-order bounce-back scheme for curved boundaries, which used pre- and post-
collision density distributions to determine the unknown density distributions at the bound-
ary. An alternative single-node second-order scheme was proposed by Tao et al. (2018) [65].
Zhao et al. (2020) [66] derived a general single-node second-order scheme for curved
boundaries. However, the free parameter is limited within the range of [max(0, 2q − 1), 2q].
Later, it was reported that the free parameter γ can be arbitrarily chosen within the range
of [0, 2q] in a general single-node second-order scheme proposed by Chen et al. (2021) [67],
but γ should be normalized by the gird spacing ∆x. It should be noted that the single-node
schemes [64–67] do not involve the present Moment-based scheme.

Inspired by Zhao and Yong (2017) [64], the present single-node second-order BB
scheme in the DUGKS can be similarly expressed as,

f (x f , ξα, tn+1/2) =
2q

1 + 2q
f (x f , ξα, tn−1/2) +

1
1 + 2q

f (x f , ξα, tn−1/2) +
2

1 + 2q
ρ0Wα

ξα · uw

c2
s

(53)

where ρ0 represents the mean density.
Inspired by Tao et al. (2018) [65], the present single-node second-order NEBB scheme

in the DUGKS can be similarly expressed as,

f (x f , ξα, tn+1/2) =
1

1 + q
f (xw, ξα, tn+1/2) +

q
1 + q

f (x f f , ξα, tn+1/2) (54)

f (x f f , ξα, tn+1/2) = f (x f , ξα, tn−1/2) (55)
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f (xw, ξα, tn+1/2) = f
eq
(xw, ξα, tn+1/2) + f

neq
(xw, ξα, tn+1/2)

= f
eq
(xw, ξα, tn+1/2) + f

neq
(x f , ξα, tn+1/2)

= f
eq
(xw, ξα, tn+1/2) + f

neq
(x f , ξα, tn−1/2),

(56)

As shown in Equation (55), it is known that the distribution function at xff streams
directly from xf. The distribution function at xw is divided into two parts of equilibrium
and non-equilibrium, which are represented by the superscripts eq and neq, respectively.

For the equilibrium part at xw, it can be determined by the known velocity and the
approximate fluid density, according to the Maxwellian equilibrium distribution function
(Equation (4)). f

eq
(xw, ξα, tn+1/2) is approximated as

f
eq
(xw, ξα, tn+1/2) = f

eq
α (uw(t + h), ρw(t + h))

≈ f
eq
α (uw(t + h), ρ f (t + h)) ≈ f

eq
α (uw(t + h), ρ f (t− h))

(57)

It has been demonstrated that for low-speed flow, using ρf (t) and ρf (t + h) to approxi-
mate ρf (t + h) and ρw (t + h) have second- and third-order accuracies, respectively [70].

For the non-equilibrium part, it can be approximated and calculated by the non-
equilibrium distribution function at xf, with the idea of non-equilibrium bounce back [38,71].
f

neq
(xw, ξα, tn+1/2) is approximated as

f
neq

(xw, ξα, tn+1/2) ≈ f
neq

(x f , ξα, tn+1/2) ≈ f
neq

(x f , ξα, tn−1/2). (58)

f
neq

(xw, ξα, tn+1/2) is obtained having at least first-order accuracy, which is enough
for deriving a second-order construction of f (xw, ξα, tn+1/2) [65]. Hence, the present single-
node second-order NEBB scheme is second-order accurate in space theoretically.

Inspired by Chen et al. (2021) [67], taking the boundary configuration in Figure 4 as
an example, a general single-node second-order scheme for the DUGKS is expressed as

f (x f , ξα, tn+1/2) =
γ

1+γ f (x f , ξα, tn−1/2)+
1

1+γ

(
(1 + γ− 2q) f (x f , ξα, tn−1/2) + (2q− γ) f (x f , ξα, tn+1/2) + 2ρ0Wα

ξα ·uw
c2

s

)
.

(59)
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(q = |xw − xf|/|xs − xf|) denotes the scaled distance. γ (γ = |xr − xf|/|xs − xf|) is a non-negative
free parameter.

The constraint 1 < γ ≤ 2q is applied to ensure that both 1 + γ − 2q and 2q − γ are
non-negative.

In future work, the present schemes for curved boundaries in the DUGKS will be
further validated and analyzed by theoretical analysis and numerical tests.

3. Numerical Tests

We perform the numerical tests of the Couette flow, the Poiseuille flow, the Lid-driven
cavity flow, and the Rayleigh–Taylor instability to further assess the proposed scheme of
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boundary conditions for the DUGKS. In our simulations, the CFL number is set to be 0.95,
and Re = HU0/ν.

The convergence criterion for attaining the steady-state solution is

error = ∑
i,j

∣∣∣un
ij − un−1000

ij

∣∣∣/∑
i,j

∣∣∣un
ij

∣∣∣ ≤ 10−6 (60)

where un
ij = u(xi, yj, n∆t) represents the velocity in the fluid domain.

To assess the accuracy, we measure the L2 errors of steady velocity fields,

E(u) =
√

∑ (u− u′)2/
√

∑ (u′)2 (61)

where u′ is the analytical solution.

3.1. The Couette Flow

In the Couette flow, the top wall moves with the horizontal velocity U0 = 0.1, and the
bottom wall is fixed. We apply the proposed scheme of boundary conditions to the top
and bottom walls. The inlet and outlet adopt the periodic boundary condition. The gap
between the top and bottom wall is set as H = 1. For the no-slip condition, the analytical
solution of horizontal velocity in the Couette flow can be written as,

u(y)/U0 = y/H. (62)

It is noted that the convergence criterion for simulating the Couette flow follows
Equation (60). To test the accuracy, the L2 errors of horizontal velocity along the ver-
tical center line are measured at Re = 100, 1000, and 10,000. The results are shown in
Tables 1–3. Under different meshes (N × N, N = 16, 32, 64, 96, 128), the time step is
set as ∆t = 0.95

√
2/N = 0.08396893, 0.041984465, 0.020992233, 0.013994822, and

0.010496116, respectively.

Table 1. The L2 errors of the horizontal velocity of the Couette flow at Re = 100 (τ = 0.003).

N 128 96 64 32 16 8

BB 1.66628 × 10−13 1.27405 × 10−6 3.81605 × 10−6 8.79265 × 10−6 1.32854 × 10−5 1.72066 × 10−5

NEBB 1.27816 × 10−13 1.27338 × 10−6 3.81166 × 10−6 8.78087 × 10−6 1.32812 × 10−5 1.71994 × 10−5

Moment 1.27816 × 10−13 1.27338 × 10−6 3.81166 × 10−6 8.78087 × 10−6 1.32812 × 10−5 1.71994 × 10−5

Table 2. The L2 errors of the horizontal velocity of the Couette flow at Re = 1000 (τ = 0.0003).

N 128 96 64 32 16 8

BB 9.71675 × 10−11 2.1845 × 10−5 4.52773 × 10−5 9.18423 × 10−5 1.37823 × 10−4 1.84314 × 10−4

NEBB 1.09616 × 10−10 2.2389 × 10−5 4.51525 × 10−5 9.17737 × 10−5 1.38751 × 10−4 1.84293 × 10−4

Moment 1.09616 × 10−10 2.2389 × 10−5 4.51525 × 10−5 9.17737 × 10−5 1.38751 × 10−4 1.84293 × 10−4

Table 3. The L2 errors of the horizontal velocity of the Couette flow at Re = 10,000 (τ = 0.00003).

N 128 96 64 32 16 8

BB 1.22165 × 10−8 0.000228773 0.000462571 0.000926131 0.001389311 0.001852818

NEBB 1.21692 × 10−8 0.000229457 0.000462466 0.000926677 0.001390013 0.001852627

Moment 1.21692 × 10−8 0.000229457 0.000462466 0.000926677 0.001390013 0.001852627
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As shown in Figures 5–7, the present results agree very well with the analytic solution.
As shown in Tables 1–3, the numerical errors are almost negligible, even with a coarse mesh
(N = 8). It is shown that the BB scheme, NEBB scheme, and Moment-based scheme can
accurately simulate the Couette flow with the no-slip condition. As shown in Tables 1–3,
the L2 errors in the Moment-based scheme are equal to those in the NEBB scheme, which
are a little less than those in the BB scheme at Re = 100.
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Figure 5. Horizontal velocity profiles of the Couette flow at Re = 100 under different meshes.

To test the stability of the proposed scheme of boundary conditions at high Re, some
simulations are performed at Re = 105, 106, and 107 with N = 16. The steps of reaching the
steady state are shown in Table 4. It is found that both the NEBB scheme and thMoment-
based scheme converge to the steady state faster than the BB scheme.

Table 4. The steps of reaching the steady state.

Re 105 106 107

BB 13,936,000 84,718,000 341,489,000

NEBB 13,912,000 84,530,000 340,096,000

Moment 13,912,000 84,530,000 340,096,000

As shown in Table 5, the L2 error of the Moment-based scheme is equal to that of the
NEBB scheme, and the L2 errors of the Moment-based scheme and the NEBB scheme are
a little less than those in the BB scheme. The L2 errors are approximately 0.23%, 2.25%,
and 18.6% at Re = 105, 106, and 107, respectively. It is shown that the schemes can predict
acceptable results for the simulation of the Couette flow at high Re.
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Figure 6. Horizontal velocity profiles of the Couette flow at Re = 1000 under different meshes.

Table 5. The L2 errors of the horizontal velocity of the Couette flow at high Re with N = 16.

Re 105 106 107

BB 0.002295662 0.022480202 0.185716773

NEBB 0.002293253 0.02246215 0.185606295

Moment 0.002293253 0.02246215 0.185606295

3.2. The Lid-Driven Cavity Flow

In the lid-driven cavity flow, the top wall moves with the horizontal velocity
U0 = 0.1. The bottom wall and left- and right-side walls are fixed. The walls adopt
the present boundary conditions. The cavity length L is set to be 1. It is noted that the
convergence criterion for simulating the lid-driven flow follows Equation (60).

We perform some numerical simulations using the Moment-based scheme at Re = 400,
1000, 3200, 5000, 7500, and 10,000 with the different uniform meshes (N × N, N = 32, 64,
128, 256, and 512). The results of velocity profiles are present in Figures 8 and 9. It is found
that the results of the Moment-based scheme are in good agreement with the reference
data [72] with a relatively fine mesh (N = 128, 256, 512).

To compare the Moment-based scheme with the BB and NEBB scheme, some simula-
tions are performed at Re = 100, 400, 1000, 3200, 5000, 7500, and 10,000 with the fine mesh
(N = 256). The results of velocity profiles are present in Figures 10 and 11. It is shown
that the results of the Moment-based, BB, and NEBB schemes are all in good agreement
with the reference data [72]. Based on a comparison with the reference data, the proposed
schemes of the boundary conditions for the DUGKS are valid and suitable for simulating
the lid-driven cavity flow.
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Figure 7. Horizontal velocity profiles of the Couette flow at Re = 10,000 under different meshes.

3.3. The Poiseuille Flow

The Poiseuille flow is driven by an external force ρax with periodic boundary condi-
tions at the entrance and exit. Both the top and bottom walls adopt the proposed scheme of
boundary conditions. The gap between the top and bottom wall is set as H = 1. For the
no-slip condition, the analytical solution of horizontal velocity in the Poiseuille flow can be
expressed as,

u(y)/Umax = 4y/H(1 - y/H), (63)

where Umax = axH2/8ν.
It is noted that ay = 0 and the convergence criterion for simulating the Poiseuille flow

follows Equation (60). In this subsection, it is noted that the “Original” scheme represents
the boundary condition with ax = ay = 0 in Equation (37) or Equation (39), and the “Present”
scheme represents the proposed scheme of boundary condition with ax = g, ay = 0 in
Equation (37) or Equation (39).

To compare the present NEBB scheme (such as Equation (39) with ax = g, ay = 0) with
the original NEBB scheme (such as Equation (39) with ax = ay = 0), the original NEBB scheme
is also applied to both the top and bottom walls. The results are shown in Figures 12–14
and Table 6.

As shown in Figures 12–14, it seems that both the present and original NEBB schemes
agree very well with the analytical solution with N = 32, 64, and 128 at Re = 100, 1000,
and 10,000. Furthermore, the L2 errors of horizontal velocity are measured. As shown in
Table 6, the L2 error of the present NEBB scheme is less than the original NEBB scheme,
which shows the present NEBB scheme is more accurate than the original NEBB scheme. It
is found that the present and original NEBB schemes are almost second-order accurate.
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Figure 8. The velocity profiles of the lid-driven cavity flow using the Moment-based scheme. Left:
Horizontal velocity along the vertical center line; Right: Vertical velocity along the horizontal center
line. (a,b) Re = 400; (c,d) Re = 1000; (e,f) Re = 3200.
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Figure 9. The velocity profiles of the lid-driven cavity flow with the Moment-based scheme. Left:
Horizontal velocity along the vertical center line; Right: Vertical velocity along the horizontal center
line. (a,b) Re = 5000; (c,d) Re = 7500; (e,f) Re = 10,000.
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Figure 10. The horizontal velocity along the vertical center line with the present schemes.
(a) Re = 400; (b) Re = 1000; (c) Re = 3200; (d) Re = 5000; (e) Re = 7500; (f) Re = 10,000.
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Figure 11. The vertical velocity along the horizontal center line with the present schemes.
(a) Re = 400; (b) Re = 1000; (c) Re = 3200; (d) Re = 5000; (e) Re = 7500; (f) Re = 10,000.
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Figure 12. The horizontal velocity profiles with the NEBB schemes in the Poiseuille flow at Re = 100.
(a) N = 16; (b) N = 32; (c) N = 64; (d) N = 128.

Table 6. L2 errors of horizontal velocity profiles with the present and original NEBB schemes.

Re N 16 32 64 128

Present
NEBB

100
E(u) 0.018755994 0.003825606 0.000710039 0.000136376

Order - 2.293591505 2.429718642 2.380306222

1000
E(u) 0.023801505 0.00582911 0.001413665 0.000454996

Order - 2.02970529 2.043835553 1.635515118

10,000
E(u) 0.024690217 0.00658069 0.002407783 0.002264078

Order - 1.907628779 1.450533728 0.088781481

Original
NEBB

100
E(u) 0.019112955 0.004009596 0.000801462 0.000181186

Order - 2.253021976 2.3227516 2.145163806

1000
E(u) 0.024169781 0.006020357 0.00150967 0.000503777

Order - 2.005283422 1.995616279 1.583376133

10,000
E(u) 0.025058973 0.006773108 0.002507213 0.002314213

Order - 1.887437355 1.433733542 0.115563095
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Figure 13. The horizontal velocity profiles with the NEBB schemes in the Poiseuille flow at Re = 1000.
(a) N = 16; (b) N = 32; (c) N = 64; (d) N = 128.

To compare the present Moment-based scheme (such as Equation (37) with ax = g,
ay = 0) with the original Moment-based scheme (such as Equation (37) with ax = ay = 0), the
original Moment-based scheme is also applied to both top and bottom walls. The results
are shown in Figures 15–17 and Table 7.

Table 7. L2 errors of horizontal velocity profiles with the Moment-based schemes.

Re N 16 32 64 128

Present
Moment

100
E(u) 0.017994738 0.003719606 0.000723119 0.00015594

Order - 2.274353273 2.362844288 2.213239174

1000
E(u) 0.023096898 0.005750074 0.00144144 0.000486723

Order - 2.006046599 1.996069655 1.566337141

10,000
E(u) 0.023992289 0.006505959 0.002441431 0.002298699

Order - 1.882737218 1.414034827 0.086909255

Original
Moment

100
E(u) 0.017880081 0.003662118 0.000694374 0.000141598

Order - 2.287603033 2.398892803 2.293909228

1000
E(u) 0.023085474 0.005744352 0.001438569 0.000485323

Order - 2.006769196 1.997509524 1.567617086

10,000
E(u) 0.023991094 0.006505425 0.002441139 0.002298563

Order - 1.882783739 1.414088594 0.086822289
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Figure 14. The horizontal velocity profiles with the NEBB schemes in the Poiseuille flow at
Re = 10,000. (a) N = 16; (b) N = 32; (c) N = 64; (d) N = 128.

As shown in Figures 15–17, it seems that both the present and original Moment-
based schemes agree very well with the analytical solution with N = 32, 64, and 128 at
Re = 100, 1000, and 10,000. Furthermore, the L2 errors of horizontal velocity are measured.
As shown in Table 7, the L2 error of the present Moment-based scheme is less than the
original Moment-based scheme, which shows the present Moment-based scheme is more
accurate than the original Moment-based scheme. It is found that the present and original
Moment-based schemes are almost second-order accurate.

Comparing Table 6 with Table 7, it is found that the original Moment-based scheme
is more accurate than the original NEBB scheme under different meshes, and the present
Moment-based scheme is more accurate than the present NEBB scheme with N = 16 and 32,
in contrast to the cases with N = 64 and 128.

To compare the present BB and original and present NEBB and Moment-based schemes
with the BB and NEBB schemes proposed by Yang et al. [39], we show the L2 errors in
Table 8.

Table 8. L2 errors of the present BB, original and present NEBB and Moment-based schemes, and
reference schemes proposed by Yang et al. [39].

Kinematic
Viscosity ν

Gird
Number N Present BB Original

NEBB
Present
NEBB

Original
Moment

Present
Moment BB [39] NEBB [39]

0.1 10 0.718039588 0.138149973 0.136013504 0.031323870 0.018755201 0.7231 0.0268

0.1 20 0.686509065 0.127035390 0.125775101 0.004820268 0.004451455 0.7182 0.0068

0.01 20 0.226712876 0.006759553 0.006523803 0.005189780 0.004274516 0.0106 0.0050
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Figure 15. The horizontal velocity profiles with the Moment-based scheme in the Poiseuille flow at
Re = 100. (a) N = 16; (b) N = 32; (c) N = 64; (d) N = 128.

As shown in Table 8, the original and present schemes can predict more accurate results
with a finer mesh. The L2 errors of the present BB and original and present NEBB schemes
are not very sensitive to the meshes, but the L2 errors of the original and present Moment-
based schemes are sensitive to the meshes. The L2 errors of the present BB and original
and present Moment-based schemes are not very sensitive to the kinematic viscosity, but
the L2 errors of the original and present NEBB schemes are very sensitive to the kinematic
viscosity. The L2 errors of the original NEBB scheme are more than those of the present
NEBB scheme, which are more than those of the NEBB scheme in Ref. [39]. With a fixed
kinematic viscosity and grid number, the L2 errors of the present Moment-based scheme
are minimal.

3.4. Normal Dipole–Wall Collision

Two counter-rotating vortices are propelled towards a solid boundary, and they collide
with the no-slip boundary. The vortex dipole–wall collision is found in nature, such as
the effect of the ground on the formulation of secondary vortices when an airplane takes
off or lands [73]; another natural phenomenon is the formulation of large-scale vortices
in geophysical turbulence on the coasts of seas and oceans [74]. Therefore, the vortex
dipole–wall collision is an important problem.
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Figure 16. The horizontal velocity profiles with the Moment-based scheme in the Poiseuille flow at
Re = 1000. (a) N = 16; (b) N = 32; (c) N = 64; (d) N = 128.

In this study, two counter-rotating vortices are confined to a square box with a size of
[−1, 1] × [−1, 1]. The present boundary conditions are applied to the no-slip walls. The
initial vortex is located at positions (x1, y1) and (x2, y2). The initial velocities are

ux0 = −0.5|We|(y− y1) exp
(
−(r1/r0)

2
)
+ 0.5|We|(y− y2) exp

(
−(r2/r0)

2
)

,

uy0 = 0.5|We|(x− x1) exp
(
−(r1/r0)

2
)
− 0.5|We|(x− x2) exp

(
−(r2/r0)

2
)

,

r0 = 0.1, ri =
√
(x− xi)

2 + (y− yi)
2, i = 1, 2.

(64)

The symbol r0 denotes the radius of the monopoles, and We represents the strength of
the vortices. To compare the numerical results, the total kinetic energy E(t) and the total
enstrophy Ω(t) are calculated

E(t) = 1
2

∫ 1
−1

∫ −1
1

∣∣u2
∣∣(x, t)dxdy,

Ω(t) = 1
2

∫ 1
−1

∫ −1
1

∣∣ω2
∣∣(x, t)dxdy, ω = ∂xuy − ∂yux,

(65)

where ω is the vorticity.
Clercx and Bruneau [75] simulated a dipole–wall collision using a Finite Difference

Method (FDM) and the Chebyshev Pseudospectral Method (CPM). Mohammed et al. [40]
simulated the dipole–wall collision using the LBM with two relaxation time models (TRT-
LBM). Their authoritative data will be used as benchmark numerical results. For a direct
comparison between the present work and the work of Ref. [40] and Ref. [75], we use the
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grid number (N) in the DUGKS as follows: Re = 625 (N = 1024), Re = 1250 (N = 1536),
Re = 2500 (N = 2048) and Re = 5000 (N = 3072).
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Figure 17. The horizontal velocity profiles with the Moment-based scheme in the Poiseuille flow at
Re = 10,000. (a) N = 16; (b) N = 32; (c) N = 64; (d) N = 128.

In the dipole–wall collision benchmark test for the normal case, two monopoles are
located at positions (x1, y1) = (0, 0.1) and (x2, y2) = (0,−0.1) initially. Then they are propelled
towards the right wall. To test the effect of the present schemes on the vortices after the
dipole collides, vorticity contour plots are present in Figures 18–21. As shown in vorticity
contour plots, the present schemes are effective to simulate the dipole–wall collision, but
the results with BB, NEBB, and Moment schemes are almost indistinguishable. To analyze
the present schemes quantitatively, the values of the first and second maxima enstrophy of
dipoles will be grouped for comparisons.

The present results for the first and second local maxima of the enstrophy are shown
in Tables 9 and 10, and we compare them with the results in Refs. [40,75]. The results
computed using the moment-based boundary condition with DUGKS and TRT-LBM are in
good agreement. However, the data obtained by the DUGKS appear to be more accurate
than the data obtained by the TRT-LBM in the sense that the data are in closer agreement
with the data obtained by FDM and CPM. The data obtained using the present moment-
based scheme appear to be more accurate than the data obtained using the present BB and
NEBB schemes in the sense that they are in closer agreement with the data obtained by
FDM and CPM. These show that the proposed moment-based scheme can be a competitive
method and gives us the confidence to use it to impose physically more complex conditions.
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where ω is the vorticity. 
Clercx and Bruneau [75] simulated a dipole–wall collision using a Finite Difference 

Method (FDM) and the Chebyshev Pseudospectral Method (CPM). Mohammed et al. 
[40] simulated the dipole–wall collision using the LBM with two relaxation time models 
(TRT-LBM). Their authoritative data will be used as benchmark numerical results. For a 
direct comparison between the present work and the work of Ref. [40] and Ref. [75], we 
use the grid number (N) in the DUGKS as follows: Re = 625 (N = 1024), Re = 1250 (N = 
1536), Re = 2500 (N = 2048) and Re = 5000 (N = 3072). 

In the dipole–wall collision benchmark test for the normal case, two monopoles are 
located at positions (x1, y1) = (0, 0.1) and (x2, y2) = (0, −0.1) initially. Then they are pro-
pelled towards the right wall. To test the effect of the present schemes on the vortices af-
ter the dipole collides, vorticity contour plots are present in Figures 18–21. As shown in 
vorticity contour plots, the present schemes are effective to simulate the dipole–wall col-
lision, but the results with BB, NEBB, and Moment schemes are almost indistinguisha-
ble. To analyze the present schemes quantitatively, the values of the first and second 
maxima enstrophy of dipoles will be grouped for comparisons. 

   
(a) BB (b) NEBB (c) Moment 

Figure 18. Vorticity contours of normal dipole–wall collision at t = 1 and Re = 625 (subdomain: 0.3 
≤ x ≤ 1, −0.6 ≤ x ≤ 0.6). 

Figure 18. Vorticity contours of normal dipole–wall collision at t = 1 and Re = 625 (subdomain:
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Table 9. The values of the first maxima enstrophy Ω(t) of the dipole.

Re
DUGKS with Present Schemes Mohammed et al.

(TRT-LBM) [40] Clercx and Bruneau [75]

BB NEBB Moment BB Moment FDM CPM

625 889.6 926.2 933.1 853.7 931.6 932.8 933.6

1250 1835 1861 1892 1752 1884 1891 1899

2500 3098 3157 3306 2993 3305 3270 3313

5000 5234 5346 5499 4975 5496 5435 5536

Table 10. The values of the second maxima enstrophy Ω(t) of the dipole.

Re
DUGKS with Present Schemes Mohammed et al.

(TRT-LBM) [40] Clercx and Bruneau [75]

BB NEBB Moment BB Moment FDM CPM

625 300.4 302.6 305.5 297.5 306.2 305.2 305.2

1250 708.7 714.8 725.8 705.4 727.5 724.9 725.3

2500 1377 1397 1412 1352 1413 1408 1418

5000 3423 3586 3701 3394 3702 3667 3733

For further comparison with reference data [76], we present the values of the energy
E(t) and enstrophy Ω(t) at different times, as shown in Tables 11 and 12. The results
obtained by the D3Q19-CM-LBM [76] show a slight mismatch (up to 3%) with respect to
the LBM study by Mohammed et al. [40]. It should be noted that the results obtained by
the DUGKS with the present Moment scheme are closer to the reference ones by Clercx
and Bruneau [75] than those obtained by the TRT-LBM with the Moment scheme [40].
We address this behavior regarding the adoption in the present work of a more accurate
boundary condition.

Table 11. Energy E(t) at salient time instants (t = 0.25, 0.50, 0.75).

Re t
TRT-LBM with

Moment
Scheme [40]

TRT-LBM with
Moment

Scheme [40]
FDM [75]

D3Q19-
CM-LBM

[76]

625
0.25 1.502 1.501 1.502 1.494

0.50 1.013 1.013 1.013 1.010

0.75 0.767 0.767 0.767 0.765

1250
0.25 1.720 1.719 1.721 1.710

0.50 1.312 1.312 1.313 1.308

0.75 1.061 1.061 1.061 1.057

2500
0.25 1.850 1.848 1.851 1.838

0.50 1.541 1.540 1.541 1.534

0.75 1.326 1.325 1.326 1.320
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Table 12. Enstrophy Ω(t) at salient time instants (t = 0.25, 0.50, 0.75).

Re t
DUGKS with

Present
Moment Scheme

TRT-LBM with
Moment

Scheme [40]
FDM [75]

D3Q19-
CM-LBM

[76]

625
0.25 472.5 472.1 472.7 467.2

0.50 381.1 382.6 380.6 374.0

0.75 255.6 256.0 255.0 244.8

1250
0.25 615.5 613.6 615.0 603.6

0.50 611.7 612.8 611.3 601.7

0.75 484.0 486.2 484.4 473.1

2500
0.25 727.1 725.6 727.8 705.3

0.50 917.2 917.6 916.6 898.1

0.75 806.1 809.9 805.5 790.2

3.5. Rayleigh–Taylor Instability

Rayleigh–Taylor instability can occur when a layer of heavy fluid descends as light
fluid below it rises. We perform a simulation using the same parameters as the first case
of Re = 256, as shown in Figure 7.4 in Ref. [77]. The left and right boundaries adopt
the periodic boundary conditions. For the upper and lower boundaries, the mentioned
boundary conditions are applied. A computational domain X × Y = 128 × 512 is employed.

Initially, there is a zero-velocity field, and the location of the perturbed interface is
set as y = 0.5Y + 0.1Xcos(2πx/X), where x, y, X, and Y are all in lattice units. We set the
densities of heavy fluid and light fluid to be ρh = 0.12 and ρl = 0.04, respectively, so that
At = (ρh − ρl)/(ρh + ρl) = 0.5. We set U = 0.04, and the gravitational acceleration is
g = U2/X = 1.25 × 10−5 in the -y direction.

In this study, the HCZ model [52] is introduced for the DUGKS to simulate the
Rayleigh–Taylor instability. In the model, two distribution functions satisfy the
following equations:

∂g
∂t

+ ξα · ∇g = − 1
τg

(g− geq) + Sg (66)

∂ f
∂t

+ ξα · ∇ f = − 1
τf

( f − f eq) + S f (67)

The distribution functions g and f, corresponding to the density ρ and phase order φ,
denote the particle distribution function in terms of position x, discrete particle velocity
ξα, and time t. The relaxation times τg and τf are related to the viscosity and the mobility
coefficient in the Cahn–Hilliard equation. Usually, we set τg = τf.

Sg and Sf represent the source terms, which can be written as

Sg = (ξ − u) · {ω(ξ, u)(Fs + ρa)− [ω(ξ, u)−ω(ξ, 0)]∇ψ(ρ)} (68)

S f = −ω(ξ, u)
(ξ − u) · ∇ψ(φ)

RT
(69)

ω(ξ, u) =
1

(2πRT)D/2

[
(ξ − u)2

2RT

]
(70)

Fs represents the force associated with surface tension,

Fs = κρ∇∇2ρ (71)

where the parameter κ determines the strength of surface tension and κ = 0.01 in
our simulations.
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ψ represents the function of the density ρ or phase order φ. ψ(ρ) and ψ(φ) are deter-
mined as [78]

ψ(ρ) = p− c2
s ρ (72)

ψ(φ) = pth − c2
s φ (73)

pth = φc2
s

1 + bφ/4 + (bφ/4)2 − (bφ/4)3

(1− bφ/4)3 − aφ2 (74)

In our simulations, a = 12RT, b = 4.
The equilibrium distributions geq and feq can be calculated as

f eq = φω(ξ, u) (75)

geq = ρRTω(ξ, u) + ψ(ρ)ω(ξ, 0) (76)

Since Equations (66) and (67) share the same format as Equation (1), we will not
repeat the detailed depiction of evolution in the DUGKS. In this subsection, we study
the effect of varied boundary conditions on the numerical simulation results of Rayleigh-
Taylor instability.

The results of varied boundary conditions at Re = 256 are shown in Figures 22–27.
Fifteen equal-interval contours ρ = 0.045, 0.05, 0.055, . . . , 0.115 are drawn in each figure. In
this subsection, it is noted that the “Original” scheme represents the boundary condition
with ax = ay = 0 in Equation (37) or Equation (39), and the “Present” scheme represents
the proposed scheme of the boundary condition with ax = 0, ay = -g in Equation (37) or
Equation (39).

As shown in Figures 22–27, the fluid interface does not diffuse in our simulations
by applying the mentioned boundary conditions. Compared to Figure 7.4 in Ref. [77],
the evolution of the interface is indistinguishable from the results computed on the same
mesh. It is shown that the present schemes are accurate and stable to simulate the Rayleigh-
Taylor instability.

Figures 28 and 29 show the density and vertical velocity profiles across the spike,
respectively. As shown in Figures 28 and 29, the interface thickness takes approximately
four grid spacings (y = 31, 32, 33, and 34). There exist some “jiggles” near the interface, and
the “jiggles” are different due to using different boundary conditions. From the magnified
view in Figures 28 and 29, the density and absolute value of vertical velocity near the
interface using present NEBB and Moment-based schemes are less than that using BB,
original NEBB, and original Moment-based schemes. Although the interface thickness is
not affected by different boundary conditions, choosing a wall boundary condition can
influence the density and velocity near the interface. Usually, numerical instability occurs
near the interface. So, the finding reminds us that wall boundary conditions should be
treated with care.

The simulation is executed on a Win10 X64 system with Intel(R) Core(TM) i5-8250U
CPU (1.60 GHz)s. For comparison, the convergence error and CPU time at the last time
step are recorded in Table 13. As shown in Table 13, the error and CPU time of the present
Moment-based scheme are minimal, although they are almost indistinguishable.
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Figure 28. Density profiles across the spike at t* = 5. The horizontal axis is the computational grid.

Table 13. The convergence error and CPU time at the last time step n = 16,000 (Re = 256).

Boundary Condition Error CPU Time

BB 2.784937 × 10−4 2671.988

Original NEBB 2.784937 × 10−4 2702.598

Present NEBB 2.784777 × 10−4 2701.447

Original Moment 2.784937 × 10−4 2700.497

Present Moment 2.784776 × 10−4 2669.315
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4. Conclusions

Owing to the DUGKS with transformed distribution functions and force terms, we
should convert the original boundary conditions into a new format. In this study, the
proposed schemes of the BB, NEBB, and Moment-based boundary conditions are proposed
for the DUGKS. The boundary conditions will be translated into constraints on the unknown
transformed distribution functions at a half time step (t + 0.5∆t). The present work tests
and analyzes, for the first time, the Moment-based scheme for the DUGKS. The mentioned
boundary conditions are evaluated through theoretical analysis and numerical tests.

Using the steady unidirectional flow, we theoretically analyze the numerical slip error
of the present BB, NEBB, and Moment-based schemes. It is found that the numerical slip
errors of both NEBB and Moment-based schemes are equal to zero, which implements the
no-slip condition at the wall boundary.

The accuracy and stability of the present schemes are validated by numerical tests
of Couette flow, Poiseuille flow, Lid-driven cavity flow, normal dipole–wall collision, and
Rayleigh–Taylor instability. The following conclusions are obtained:

(1) Couette flow

The present schemes can predict accurate results of simulating the Couette flow, even
with a coarse mesh for a large Reynolds number (Re = 106). The L2 errors in both NEBB
and Moment-based schemes are equal, which are a little less than those in the BB scheme at
Re = 100 under different meshes. Both the NEBB and Moment-based schemes are more
accurate and converge to the steady state faster than the BB scheme at high Re (Re = 100,000,
1,000,000, and 10,000,000).
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(2) Lid-driven cavity flow

The present schemes can predict accurate results by simulating the lid-driven cavity
flow. It is found that the results of the BB scheme are in better agreement with the reference
data than those of Moment and NEBB schemes at Re = 10,000.

(3) Poiseuille flow

The results of the present schemes agree very well with the analytical solution under
different meshes (N = 32, 64, 128) at Re = 100, 1000, and 10,000. The L2 errors of the present
NEBB and Moment-based schemes are less than the original NEBB and Moment-based
schemes, respectively, which shows the present schemes are more accurate than the original
schemes. It is found that the present schemes for the DUGKS are second-order accurate. The
original Moment scheme is more accurate than the original NEBB scheme under different
meshes. The present Moment scheme is more accurate than the present NEBB scheme with
N = 16 and 32, in contrast to the cases with N = 64 and 128. Compared with the BB and
NEBB schemes in Ref. [39], the L2 errors of the present Moment-based scheme are minimal.

(4) Normal dipole–wall collision

With the present moment-based scheme, the DUGKS appears to be more accurate
than the TRT-LBM. The data obtained by using the present moment-based scheme appears
to be more accurate than the data obtained by using the present BB and NEBB schemes in
the sense that they are in closer agreement with the benchmark data. These show that the
proposed moment-based scheme can be a competitive method.

(5) Rayleigh–Taylor instability

The present results agree well with the reference results, which show the present
schemes can effectively capture the evolution of the interface. It is found that the error
and CPU time of the present Moment-based scheme are minimal among the mentioned
boundary conditions. The Rayleigh–Taylor instability simulation shows that choosing a
wall boundary condition can influence the density and velocity near the interface slightly.
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Appendix A. Derivations for the Novel Schemes

Here the derivation process of the moment constraints that the transformed distribu-
tion functions f i obeys i the present schemes is shown.

For the south boundary (uwy = 0), the unknown distribution functions are f 2, f 5,
and f 6.

In the moment-based scheme, the moment constraints are:

Πx = ρuwx, Πy = 0, Πxx = Π(0)
xx = ρ/3 + ρu2

wx (A1)
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With the force term, expanding the density and the moment constraints (A1) yields
the system:

ρ = f 0 + f 1 + f 2 + f 3 + f 4 + f 5 + f 6 + f 7 + f 8
∏x = f 1 − f 3 + f 5 − f 6 − f 7 + f 8 + 0.5ρaxh = ρuwx

∏y = f 2 − f 4 + f 5 + f 6 − f 7 − f 8 + 0.5ρayh = 0
∏xx = f 1 + f 3 + f 5 + f 6 + f 7 + f 8 = ρ/3 + ρu2

wx

(A2)

Putting all the unknowns on the left-hand side, the system of equations takes the
following form:

f 2 + f 5 + f 6 = ρ− f 0 − f 1 − f 3 − f 4 − f 7 − f 8
f 5 − f 6 = ρuwx − f 1 + f 3 + f 7 − f 8 − 0.5ρaxh
f 2 + f 5 + f 6 = f 4 + f 7 + f 8 − 0.5ρayh
f 5 + f 6 = ρ/3 + ρu2

wx − f 1 − f 3 − f 7 − f 8

(A3)

Solving the system (A3) yields the unknown distribution functions in the moment-
based scheme:

f 2 = f 1 + f 3 + f 4 + 2( f 7 + f 8)− ρ/3− ρu2
wx − 0.5ρayh

f 5 = ρ/6− f 1 − f 8 + 0.5ρu2
wx + 0.5ρuwx − 0.25ρaxh

f 6 = ρ/6− f 3 − f 7 + 0.5ρu2
wx − 0.5ρuwx + 0.25ρaxh

ρ = [ f 0 + f 1 + f 3 + 2( f 4 + f 7 + f 8)]/(1 + 0.5ayh)

(A4)

In the NEBB scheme, the moment constraints are:

Πx = ρuwx, Πy = 0, Qxxy = 0. (A5)

With the force term, expanding the density and the moment constraints (A5) yields
the system:

ρ = f 0 + f 1 + f 2 + f 3 + f 4 + f 5 + f 6 + f 7 + f 8
∏x = f 1 − f 3 + f 5 − f 6 − f 7 + f 8 + 0.5ρaxh = ρuwx

∏y = f 2 − f 4 + f 5 + f 6 − f 7 − f 8 + 0.5ρayh = 0
Qxxy = f 5 + f 6 − f 7 − f 8 = 0

(A6)

Putting all the unknowns on the left-hand side, the system of equations takes the
following form:

f 2 + f 5 + f 6 = ρ− f 0 − f 1 − f 3 − f 4 − f 7 − f 8
f 5 − f 6 = ρuwx − f 1 + f 3 + f 7 − f 8 − 0.5ρaxh
f 2 + f 5 + f 6 = f 4 + f 7 + f 8 − 0.5ρayh
f 5 + f 6 = f 7 + f 8

(A7)

Solving the system (A7) yields the unknown distribution functions in the
NEBB scheme:

f 2 = f 4 − 0.5ρayh
f 5 = f 7 − ( f 1 − f 3)/2 + 0.5ρuwx − 0.25ρaxh
f 6 = f 8 + ( f 1 − f 3)/2− 0.5ρuwx + 0.25ρaxh
ρ = [ f 0 + f 1 + f 3 + 2( f 4 + f 7 + f 8)]/(1 + 0.5ayh)

(A8)

In the BB scheme, the moment constraints are:

Πy = 0, Qxyy = ρuwx/3, Qxxy = 0. (A9)
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With the force term, expanding the density and the moment constraints (A9) yields
the system:

ρ = f 0 + f 1 + f 2 + f 3 + f 4 + f 5 + f 6 + f 7 + f 8
∏y = f 2 − f 4 + f 5 + f 6 − f 7 − f 8 + 0.5ρayh = 0
Qxyy = f 5 + f 8 − f 6 − f 7 = ρuwx/3
Qxxy = f 5 + f 6 − f 7 − f 8 = 0

(A10)

Putting all the unknowns on the left-hand side, the system of equations takes the
following form:

f 2 + f 5 + f 6 = ρ− f 0 − f 1 − f 3 − f 4 − f 7 − f 8
f 2 + f 5 + f 6 = f 4 + f 7 + f 8 − 0.5ρayh
f 5 − f 6 = f 7 − f 8 + ρuwx/3
f 5 + f 6 = f 7 + f 8

(A11)

Solving the system (A11) yields the unknown distribution functions in the BB scheme:

f 2 = f 4 − 0.5ρayh
f 5 = f 7 + ρuwx/6
f 6 = f 8 − ρuwx/6
ρ = [ f 0 + f 1 + f 3 + 2( f 4 + f 7 + f 8)]/(1 + 0.5ayh)

(A12)
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