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Abstract: To detect open circuit faults of grid-connected T-type inverters, this paper proposed a
real-time method based on fast S transform and random forest. The three-phase fault currents of the
inverter were used as the inputs of the new method and no additional sensors were needed. Some
fault current harmonics and direct current components were selected as the fault features. Then, fast S
transform was used to extract the features of fault currents, and random forest was used to recognize
the features and the fault type, as well as locate the faulted switches. The simulation and experiments
showed that the new method could detect open-circuit faults with low computation complexity and
the detection accuracy was 100%. The real-time and accurate open circuit fault detection method was
proven effective for grid-connected T-type inverter monitoring.
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1. Introduction

Inverters are a common and necessary interface for new types of energies and energy
storage units for the grid [1,2]. Additionally, with the increasing types of energy and more
intelligent control strategies, the power grid is becoming smarter than ever before [3,4].
An inverter is generally composed of switches, LC filters, and a direct current power
source. The switches are most likely to be faulted because of inappropriate operation or
unqualified manufacture. There are two typical faults of switches, i.e., short-circuit fault,
and open-circuit fault. The short circuit is quickly detected by the protection unit and cut
out. Normally, the inverter with a short-circuit fault will be stopped immediately. However,
the open-circuit fault is not responded to by the protection unit and the inverter keeps
running with harmonics and direct current (DC) components, which are harmful to the
power grid [5,6]. Hence, detecting the open-circuit fault of grid-connected inverters is
essential for the health of the smart grids.

Three-level inverters are often used in high-voltage-level or large power grids. There
are two main types of three-level inverters, i.e., neutral-point clamped inverters and T-type
inverters. Both of these inverters have 12 switches, but share different circuit topologies [7].
The T-type inverters have no clamping diodes and no requirement for large flying capacitors,
which reduces the power consumption and risk of capacitor fault of the inverter. There are
three main kinds of methods for the open-circuit fault detection of inverters: data-driven
methods, model-based methods, and signal processing methods.

Data-driven methods use the fault signal directly to train a model and use it to predict
the open circuit fault [8]. The deep learning method was used in [9], a neural network
was used in [10], and a relevance vector machine was used in [11]. The advantages of
these methods are that they require no human involvement and they possess quick fault
detection. However, the disadvantages are that the trained model is highly dependent on
big training data and is not flexible with grid disturbances.
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Model-based methods detect open-circuit faults based on the modeling of the physical
inverter systems. Sub-space state variables are employed to create an inverter system,
and the changing values of the state variables indicate different types of faults [12,13].
The advantages of these methods are their clear fault detection mechanisms and explain-
able results, while reliance on system parameters such as resistances and inductions of
the power grid impair their further application in grids with insufficient knowledge of
these parameters.

Signal processing methods find fault features by fault mechanism analysis and use sig-
nal processing methods to extract features such as wavelet transform [14], dq transform [15],
fold lines [16], and Kalman filter [17]. Then, the extracted features of the signals are rec-
ognized by manual thresholds or machine learning to detect the faults. Signal processing
methods take advantages of model-based methods, exploiting the fault mechanism, and of
data-driven methods, detecting the faults by artificial intelligence.

In order to detect open-circuit faults without additional sensors, inverter DC voltage
and currents are often used. By the analysis of the fault mechanism and faulted current
waveforms, it is found that the time-varying DC components and harmonics can reflect the
open-circuit fault of the T-type inverter. Hence, time–frequency methods can be useful in
fault detection. Fast S transform is a time–frequency analysis method with low computation
complexity and tunable resolution which can extract time-varying fault features accurately
and quickly. Random forest is a classical, accurate, and few-parameter machine-learning
method that can be used to train fault detection models. Then, the model is used to monitor
the fault status of the inverter.

The merits of this work and the techniques used herein are as follows:

(1) The open-circuit fault of a T-type inverter can be detected with high accuracy even if
there are load changes;

(2) The fault detection uses fast S transform and random forest, which can accommodate
real-time applications;

(3) The fault detection requires no manual threshold and additional sensors, which make
the method useful in real industrial applications.

This paper is organized as follows: Section 2 shows the design of the new method;
Section 3 gives the simulation and comparison of the new methods with existing meth-
ods; Section 4 shows the effectiveness of the experiments; and Section 5 summarizes the
whole work.

2. The Proposed Method

To extract the open-circuit fault features of the T-type inverter, the fault mechanism
should be studied first.

2.1. Fault Mechanism Analysis

The T-type grid-connected inverter system is shown in Figure 1. By space vector
pulse width modulation (SVPWM), the 12 switches SΦi (Φ = A, B, or C, i = 1, 2, 3, 4)
generate a three-phase alterative current (AC) to the power grid. The SΦ1 and SΦ2 are
symmetrical, and SΦ3 and SΦ4 are symmetrical. Taking phase A, for instance, the current
with Sa1 open-circuit fault and the one without the fault are compared in Figure 2a,b,
and the current with Sa3 open-circuit fault and the one without the fault are compared in
Figure 2c,d, respectively.

The T-type inverter works with space vector pulse width modulation (SVPWM), which
is shown in Figure 3. The space is divided into six sectors and each sector has four areas.
According to the amplitude of the voltage vectors, it can be classified as zero vector U0(PPP,
OOO, NNN), small-positive vector USP(POO, PPO, OPO, OOP, OPP, POP), small-negative
vector USM(NOO, NNO, ONO, OON, ONN, NON), middle vector UM(PON, OPN, NPO,
NOP, ONP, PNO), and large-vector UL(PNN, PPN, PNP, NPN, NPP, NNP). The phase
current can be written as follows:

iΦ = uΦ/ZΦ (1)
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Figure 1. The T-type grid-connected inverter system.

Figure 2. The current path of the T-type grid-connected inverter open-circuit fault.

The uΦ is related to the status of the voltage vector, and when there is an open-circuit
switch, the status of the voltage vector is changed, and the iΦ is changed correspondingly.
Taking phase A, for instance, the current with Sa1 open-circuit fault and the one without
the fault are compared in Figure 2a,b, and the current with Sa3 open-circuit fault and the
one without the fault are compared in Figure 2c,d respectively.

In Figure 2a,b, the Sa1 open-circuit fault turns the output state P to O when the Ia
is larger than 0. Then the positive Ia will decrease. In Figure 2c,d, the Sa3 open circuit
fault turns the output state O to P when the Ia is smaller than 0. Then, the negative Ia
will increase. The open circuit fault of Sa2 and Sa4 are similar to the ones of Sa1 and Sa3,
respectively, which are not presented here. vspace-6pt



Entropy 2023, 25, 778 4 of 12

Figure 3. Space vector diagram of T type inverter operation.

2.2. Fault Feature Analysis

The fault currents of Sa1 and Sa3 (Ia1 and Ia3) are shown in Figure 4a,b respectively,
and the frequency spectrums of the Ia1 and Ia3 are shown in Figure 4c,d respectively.

Figure 4. The open circuit currents and the spectrums of Sa1 and Sa3 respectively.

In Figure 4, it can be found that the energies of the DC component, fundamental
component (first harmonic), the second harmonic, and the third harmonic contain over 95%
energy of the faulted currents. Furthermore, the two fault currents have different second
and third harmonics. Hence, the DC component and the two harmonic components were
used as the features of the open circuit fault. Open circuit fault on different switches results
in different fault currents. Taking phase A, for instance, although both Sa1 fault and Sa3
fault make the upper-half of the sinusoidal current waveform disappear, the shapes of the
two corresponding distorted waveforms are different. The detailed explanation can be
found in [18]. The different distorted waveforms have different spectra, which are shown
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in Figure 4. Our method captures the dynamic harmonic features of the fault current to
detect and locate the open-circuit faulted switch.

2.3. Fault Feature Extraction

S transform is a powerful time–frequency analysis method that can extract the nonsta-
tionary harmonics accurately [19]. Denote the S transform of signal x(t) as

S(τ, f ) =
∫ ∞

−∞
x(t)g(τ − t, f )e−j2π f tdt (2)

g(τ − t, f ) =
1

σ
√

2π
e0.5( τ−t

σ )
2

(3)

For a sampled current signal, the process of discrete ST can be generally divided into
four steps:

(1) Use Fourier transform (FT) to the x(t) and obtain the spectrum H(m) where m is the
frequency sample index (m < N);

(2) Shift H(m) with n (n < N);
(3) Compute the FT of the Gaussian window:

G(m, n) = exp(−σ(2π2m2/n2)) (4)

where σ is the parameter to tune the shape of the Gaussian window;
(4) Multiply each H(m + n) with the corresponding G(m, n) and use Inverse FT to the

result. Then, the discrete ST is obtained as
S[ n

NT , jT
]
=

N−1
∑

m=0
H(m+n

NT )G(m, n)ei2πmj/N , n 6= 0

S[0, jT] = 1
N

N−1
∑

m=0
H(mT), n = 0

(5)

where N is the number of signal points, T is the sample interval, and m, n, j ∈ [0, N −
1]. The S[0, jT] is the DC component of the current signal.

It should be noticed that the amplitude of the inverter current can be changed by the
load. The three-phase currents Ia, Ib, and Ic can be transformed as [20]

[
Iα

Iβ

]
=

2
3

[
1 − 1

2 −
1
2

0
√

3
2 −

√
3

2

] Ia
Ib
Ic

 (6)

and the load current value can be obtained by

IL =
√

I2
α + I2

β (7)

Denote the amplitudes of the DC component, second harmonic, and third harmonic
as A0, A2, and A3, respectively, then the normalized features without the load change
interference can be designed as follows:

Ai =
Ai
IL

, (i = 0, 2, 3) (8)

From the process of discrete S transform of an N sample signal, it can be seen that the
computation complexity is O(N3). In fact, only half of H and G are needed because of the
redundancy of FT, and the computation complexity is reduced to O(0.5N3). Step 1 to Step 3
are the FT of the input signal and Gaussian window, which can be realized by Fast FT (FFT).
Step 4 is the inverse FT of the product of H and G, which can be realized by inverse FFT.
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Then, the computation complexity of the fast S transform is O(0.5N2log N), which is much
lower than the one of the original S transform.

2.4. Random Forest for Fault Detection

The features are different with different open-circuit faults. Hence, the feature recogni-
tion needs a nonlinear classifier. Random forest has few parameter settings, low computa-
tion complexity, and a low risk of overfitting, and is useful for recognizing the fault features.

A random forest is an ensemble of decision trees [21]. Many weak classifiers make a
strong one based on a voting strategy. The steps of random forest are as follows:

(1) Using bootstrap resampling on data set D to obtain a training set S = {(Fi, Li), i = 1,2,
. . . ,n}, where, Fi, Li are the feature set and label of the i-th sample, respectively. The F
is a set of M-rated harmonic amplitudes;

(2) Constructing classification and regression trees based on the S with
√

M features,
randomly selecting from F. CART uses the Gini index (GI) to split the tree.

GI = 1−∑C
c p(

c
s
) (9)

where p( c
s ) =

nc(s)
n(s) ,

C
∑

c=1
p2( c

s ) = 1, and p( c
s ) is the probability that s belongs to c, n(s)

is the number of samples in the training set whose value is s, nc(s) is the number of
samples in the training set which belong to c, and C is the number of classes. The
CART splits when the GI is minimized. Traditionally, the CART should be pruned
manually, but the pruning process can be automatically carried out by the assembly
learning of random forest.

(3) Repeat (1) until the tree grows to the maximum and the random forest is obtained.

When the test data are input, each tree of the random forest will return a label of the
data, and the majority of the outputted labels will be the final class of the data. The T-type
inverter has three phases, and each phase has three features (Ai (i = 0, 2, 3)). A total of
nine features are used to train the random forest, which is used to detect and located faulty
switches.

3. Simulations

Based on the scheme of T-type grid-connected inverter system shown in Figure 1, a
simulation was implemented on Matlab/Simulink. The sampling frequency was 10 kHz.
The solver is a variable step with ODE45. The fault recognition algorithm was realized
in Matlab. The personal computer had a Pentium i7 CPU and 16 GB of RAM. In this
application, the random forest had 500 trees, and the M was 9. The σ of the S transform
Gaussian window can be tuned small to obtain a quick response of the harmonic changes.
Here, the σ was set as 0.1.

Because Sa1 and Sa2 share similar features except for the polarity of the DC component,
and Sa3 and Sa4 shared the same similarity except for the polarity of the DC component,
and only the Sa1 and Sa3 faults were tested in this section.

3.1. Sa1 Open Circuit Fault Detection

In this case, Sa1 was open-circuited at 0.1 s, and the load changed to 1.5 p.u at 0.2 s.
The three-phase currents, features, and the detection result are shown in Figure 5. The
feature values are presented in Table 1.
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Figure 5. The Sa1 open circuit currents and their detection.

Table 1. Sa1 open circuit feature values.

Feature Value Phase A Phase B Phase C

DC component −0.41 0.57 −0.61
2nd harmonic 0.32 0.144 0.32
3rd harmonic 0.12 0.05 0.12

In Figure 5, it can be seen that the phase A current and phase C current have similar
features except that the DC component of phase A current was about 0.5 p.u and smaller
than the one of the phase C current. This is because the DC component in phase A is caused
by the open circuit fault, and half of the AC is turned to half the DC waveform. While the
one in Phase C is to keep ia + ib + ic = 0.

At 0.2 s the load changed to 1.5 p.u, but the features were barely changed after about
one cycle transient, because the feature was normalized by the load level in Equation (7).
The load changes can hardly affect the stability of the features. By the random forest process,
the values of features indicate that the open circuit was in phase A, and the negative polarity
of the DC component shows that the fault was with the upper arm. Then the open-circuit
fault is detected and the faulted switch Sa1 is located at about 0.12 s. The one-cycle delay is
the time when the features become stable after the fault, and the random forest recognized
the fault label quickly.

3.2. Sa3 Open Circuit Fault Detection

In this case, Sa3 is open-circuited at 0.1s, and the load changed to 1.5 p.u at 0.2 s. The
three-phase currents, features, and the detection result are shown in Figure 6. The feature
values are presented in Table 2.
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Figure 6. The Sa3 open-circuit currents and their detection.

Table 2. Sa3 open-circuit feature values.

Feature Value Phase A Phase B Phase C

DC component −0.55 0.63 −0.55
Second harmonic 0.53 0.15 0.32
Third harmonic 0.13 0.07 0.04

In Figure 6, it can be seen that the phase A current and phase C current had similar
harmonics but smaller DC components. Additionally, compared with the features in
Sa1 open-circuit fault, the features are different in the two cases, which comply with the
fault mechanisms.

At 0.2 s, the load changed to 1.5 p.u, and the features also kept stable against the load
change. By the random forest process, the values of features indicate that the open circuit
was in phase A, and the negative polarity of the DC component shows that the fault was
with the upper arm. Then the open circuit fault was detected and the faulty switch Sa3
was located.

4. Experiments

In this section, experiments of real fault detection for the grid-connected T-type inverter
are shown and interpreted. The inverter was connected to a distribution grid, and the
tests also featured load changes. The system included a T-type three-phase inverter, an
800 V DC power source as the DC supply, a rapid control prototyping (RCP) unit, and a
personal computer. The inverter was controlled by the unit. The inverter program was
realized and run by Simulink on a personal computer. The computer had an Intel i7 CPU
(8 cores, 4.9 GHz) and 16 GB of RAM, and ran on a Windows 10 system, which can detect
the fault in real time easily. The inverter filter inductance was 5 mH and the capacitance
was 50 uF. The unit can translate the Simulink program into C code and transmit the code
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to the inverter. Additionally, the unit can transfer the sampled voltage and current signals
of the inverter back to the computerm which uses the new method to detect and locate the
open-circuit fault of the switch. The platform and inverter are shown in Figure 7.

Figure 7. The experiment platform of the new method.

4.1. Sa2 Open Circuit Fault Detection

In this case, Sa2 is open-circuited at 0.1 s, and the load changed from 7 A to 5 A at
0.2 s. The three-phase currents, features, and the detection result are shown in Figure 8.
The feature values are presented in Table 3.

Figure 8. The Sa2 open-circuit currents and their detection.
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Table 3. Sa2 open-circuit feature values.

Feature Value Phase A Phase B Phase C

DC component 0.41 −0.57 0.60
Second harmonic 0.31 0.144 0.32
Third harmonic 0.12 0.049 0.12

In Figure 8, it can be seen that the features were similar to the ones of the Sa1 open-
circuit fault except for the polarity of the DC component. It is proven that the symmetry
switches have symmetrical features. The only difference is the sign of the remained half
waveform. In this case, the load changed to a smaller value, but the features were still
hardly changed, which shows that Equation (7) depressed the load change effect on the
detection significantly.

4.2. Sa4 Open Circuit Fault Detection

In this case, Sa4 was open-circuited at 0.1 s, and the load changed from 7 A to 5 A at
0.2 s. The three-phase currents, features, and the detection result are shown in Figure 9.
The feature values are presented in Table 4.

Figure 9. The Sa4 open-circuit currents and their detection.

Table 4. Sa4 open-circuit feature values.

Feature Value Phase A Phase B Phase C

DC component 0.55 −0.63 0.54
2nd harmonic 0.54 0.15 0.32
3rd harmonic 0.13 0.07 0.05
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Compared with the Sa2 open circuit fault, the features of this case are only different
in the polarity of the DC component. The reason is that the fault waveforms share similar
harmonics because of the fault mechanism but opposite the sign of waveforms. It can be
seen that the load changes had little influence on the features, and can also be known that
the harmonics in the faulty phase were quite different from the ones in the unfaulty phases,
and random forest could recognize the fault easily.

5. Conclusions

This paper proposed a grid-connected T-type inverter open-circuit fault detection
and locator. The fault mechanism was analyzed and the features, only based on inverter
currents, were designed to reflect the mechanisms. The features were extracted by fast S
transform. By normalization, load changes hardly affected the fault current features. Then,
random forest was employed to recognize the features and provide a label of the faulty
switches. Simulations and experiments of real faults showed that the method could detect
and locate the faulty switch correctly within one cycle. The fast and accurate detection
and location of the faulty switch make the new method very suitable for T-type inverter
monitoring in real applications.
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