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Abstract: The demand for complex equipment aftermarket parts is mostly sporadic, showing typical
intermittent characteristics as a whole, resulting in the evolution law of a single demand series
having insufficient information, which restricts the prediction effect of existing methods. To solve
this problem, this paper proposes a prediction method of intermittent feature adaptation from the
perspective of transfer learning. Firstly, to extract the intermittent features of the demand series, an
intermittent time series domain partitioning algorithm is proposed by mining the demand occurrence
time and demand interval information in the series, then constructing the metrics, and using a
hierarchical clustering algorithm to divide all the series into different sub-source domains. Secondly,
the intermittent and temporal characteristics of the sequence are combined to construct a weight
vector, and the learning of common information between domains is accomplished by weighting the
distance of the output features of each cycle between domains. Finally, experiments are conducted on
the actual after-sales datasets of two complex equipment manufacturing enterprises. Compared with
various prediction methods, the method in this paper can effectively predict future demand trends,
and the prediction’s stability and accuracy are significantly improved.

Keywords: intermittent time series; deep learning; demand forecasting; transfer learning; spare
parts management

1. Introduction

Intelligent operation and maintenance can automatically learn the rules from massive
after-sales data through machine learning, and efficiently provide a decision basis for the
production and sales activities of an enterprise. Demand forecasting, as one of the key
links, can effectively provide data support for the inventory arrangement of an enterprise.
With the gradual emphasis on aftersales service quality, accurate demand forecasting
has become an urgent problem for complex equipment-manufacturing enterprises. In
actual application, the demand for spare parts is closely related to the new project launch,
the intensity, and the environment of equipment use, which makes the aforementioned
factors show obvious intermittency and fluctuation, as shown in Figure 1, bringing a great
challenge to the accurate prediction of demand. However, from the cost point of view,
complex equipment parts cost a lot of money in production and storage, which brings a
huge burden to enterprises. Therefore, it is not only of academic value but also of practical
significance to study how to achieve effective demand forecasting, and thus reduce the
operating cost of enterprises.

At present, the forecasting methods of spare parts demand mainly focus on traditional
time series forecasting methods, which include exponential smoothing [1], moving aver-
age [2], SVR [3], random forest [4], BP [5], etc. These methods are adapted to demand
series with strong trends and periodicity. In fact, due to the influence of holidays, climate,
and other factors, the demand for spare parts will show a certain trend and periodicity
in time. However, the influence of the project’s sporadic plan, equipment usage inten-
sity, and environment makes demand show obvious intermittency. This intermittency
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dilutes the trend and periodicity of the sequence itself to a certain extent, making tradi-
tional time series prediction methods ineffective. Therefore, applying the intermittent
characteristics of the demand series to the forecasting model can effectively improve the
forecasting performance. As one of the representatives, Croston et al. [1] divided the time
series into demand size and demand time interval subseries and used the exponential
smoothing method to forecast them, respectively, followed by the ratio of the two, as the
demand forecasting value. Syntetos et al. [6] considered that Croston’s method directly
used the ratio as the forecast value has a bias, for which a correction factor is proposed
to smooth the ratio. Teunter et al. [7] found that the above methods do not update the
demand forecast value when there is no demand for a long period, so they proposed to
calculate the probability of demand occurrence first, then multiply the demand estimate to
obtain the demand forecast value. These methods achieve good forecasting results when
facing intermittent time series. However, they are limited by the problem of insufficient
evolutionary information of a single series to further improve the forecasting effect. For
collaborative prediction of multiple demand series, Montero-Manso et al. [8] applied the
XGBoost machine learning framework [9] to the M4 competition; it learns structured in-
formation among multiple commodity demand series by generating encoded features for
different series. Spyros et al. [10] pointed out that LightGBM [11], compared to XGBoost,
can directly support sequence numbering and other features, reduces the workload of
data processing and transformation, has significant advantages when oriented to multiple
sequence prediction, and is widely used in M5 competitions. Muhaimin et al. [12] generated
72 different features based on data characteristics and used an RNN model to predict future
demand, and the results showed that the method outperformed Croston et al.’s model.
Thanks to the structured information between the demand series, these methods have more
accurate prediction performance than previous methods. However, the sparse and widely
varying distribution of complex equipment spare parts demand makes the prediction effect
of these methods less stable.

The spare parts in the same equipment have the same intensity of use, which makes
the various spare part demands have a certain degree of correlation in the equipment. How-
ever, complex equipment often has different models and different numbers of equipment
working in different environments, which makes the correlation between the demands
complicated, and ultimately makes it difficult for previous models to accurately extract
common information between series. From the above analysis, it can be seen that the key
to intermittent time series prediction is (1) how to represent the differences between the
series and extract the association information between the demand series from the differ-
ences in order to further learn the common evolutionary law among spare parts demand;
(2) how to integrate the temporal and intermittent characteristics of the demand series
into the model in order to learn the inner evolutionary law of spare parts demand. Given
this, this paper proposes a prediction method of intermittent feature adaptation based on
transfer learning. Firstly, an intermittency metric is constructed based on the intermittency
characteristics of the demand series, and a clustering algorithm is introduced to divide the
originally disordered demand data into domains. Secondly, the intermittency and temporal
characteristics of the demand series are combined to construct a weight vector, and the
common evolution information among demands for spare parts is effectively learned by
weighting the distance between the output features of each cycle between domains in order
to improve the prediction effect. Finally, the experiments are conducted on the industrial
big data complex equipment spare parts demand prediction competition dataset and the
actual aftermarket data of a complex equipment manufacturing enterprise. The main
contributions of the method in this paper can be summarized as follows.

(1) A domain partitioning scheme for intermittent time series is proposed, which is
different from the existing classification methods for intermittent time series. The
scheme adopts a clustering method to measure the differences in two dimensions:
demand time and demand interval, thus enabling efficient and flexible differentiation
of spare parts with different evolutionary trends.
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(2) A domain adaptive algorithm for intermittent time series is proposed, which uses the
intermittent and temporal characteristics of demand series to construct weight vectors,
and learns the common information between domains by weighting the distance
between domains, and it can improve the accuracy of demand prediction from both
the special evolution law of demand series and the common evolution law between
demand series, and no similar study has been found yet.
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Figure 1. Intermittent time series data distribution: (a) 30-month number of sales for spare parts No. 108
and No. 152 in dataset 1; (b) 34-month failure counts for spare parts No. 3 and No. 259 in dataset 2.

2. Related Theories
2.1. Hierarchical Clustering

Hierarchical clustering is a clustering algorithm using a tree structure, which is mainly
divided into two clustering strategies, namely the top-down splitting strategy and bottom-
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up aggregation strategy; the second clustering strategy is used in this paper. This strategy
starts by dividing all the elements involved in clustering into one class each, then merging
the two most similar classes into a new class, and so on, until all elements are combined
into a predetermined number of classes or other termination conditions are met, at which
point the clustering algorithm ends.

2.2. Intermittent Time Series

The intermittency characteristic describes the sparsity, variability, and demand oc-
currence interval of the data, and represents the distribution characteristics of the data to
some extent. Two currently accepted metrics are ADI and C V2 [13], where ADI indicates
the average demand interval of a sequence and CV? indicates the degree of variation of a
sequence over time, and the calculation rules are as follows:

T S\?
ADI = CVv?= () 1
Tocc, X @

where T and Ty denote the total number of periods of the sequence and the number
of periods in which demand occurs, respectively; S is the standard deviation of nonzero
demand; and X is the mean of nonzero demand. According to the above two indicators,
the demand series can be classified into four different types, according to the following
rules [13]:

(1) Smooth demand (ADI < 1.32,CV? < 0.49);

(2) Intermittent demand (ADI > 1.32,CV? < 0.49);

(3) Irregular demand (ADI < 1.32,CV? > 0.49);

(4) Lumpy demand (ADI > 1.32,CV? > 0.49).

2.3. Maximum Mean Discrepancy

The maximum mean discrepancy, MMD [14], is used to measure the distance between
two distributions, and is often used as a loss function in domain adaptive models, which is
defined as follows:

S T
11X 1 X
S wTy — ||+ sy _ 1 T
MMD(X*,X") = Il 5 1 () %L o(x7)I @)
where X° and X' denote the source and target domains, respectively; and ¢(X) is the
kernel function. A Gaussian kernel function is used in this paper.

2.4. Predictive Performance Evaluation Metrics

In this paper, the mean absolute error (MAE), root-mean-square error (RMSE), and root-
mean-square scalar error (RMSSE) [10,15] are used to evaluate the forecasting performance
of the model, where MAE and RMSE are commonly used to evaluate the performance
of time series forecasting and RMSSE is commonly used to evaluate the performance of
intermittent time series forecasting, which is defined as follows:

t+h

1 =
! t;q 2 3)
P X i~ vi1)

RMSSE =

where t is the number of training sample periods,  is the number of forecast periods, y; is
the true value at the time, and 7; is the estimated value at the time.
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3. Intermittent Feature Adaptation-Based Spare Parts Demand Forecasting Method

In this section, a novel intermittent time series prediction method based on depth
feature transfer is proposed, which mainly contains the domain partitioning algorithm and
domain adaptive algorithm for intermittent time series. The flow chart of the method in
this paper is shown in Figure 2.
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Figure 2. Flow chart of the method.

3.1. Domain Partitioning Algorithm for Intermittent Time Series

The essence of domain classification of intermittent time series is to use classification
or clustering algorithms to divide them into different categories according to certain rules
so that there are large differences between different categories of these series. The current
classification algorithms mainly rely on the characteristics of the data to classify intermittent
time series, such as Petropoulos et al. [16], who classified spare parts based on the statistical
characteristics of the data of spare parts demand and chose a suitable prediction method for
each category. However, the above methods have two shortcomings: (1) the classification is
highly dependent on the seasonal, trend, statistical, and other characteristics of the series,
and the final classification results are highly dependent on the chosen prediction method,
i.e., good prediction results are available before finding a suitable classification boundary;
(2) the classification is a supervised method, and it is difficult to intelligently split the unla-
beled dataset, which in a practical environment, where the demand data are complex and
variable, will bring a huge workload. In contrast, the clustering algorithm [17] can simply
divide the data into several categories when a reasonable similarity index is available.

To realize the clustering of intermittent time series, the similarity index between series
is constructed here first. The similarity between intermittent time series is different from
general time series; the former is more concerned with the similarity of demand time within
the same period between the series, while the latter is concerned with the similarity of the
change in the quantity of spare parts demand in a certain period. In the relevant theoretical
chapters, ADI and C V2 are introduced, which reflect the average demand interval and
fluctuation range of the series, and distinguish the intermittency degree of the series to
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some extent. However, they do not measure the relationship between the series from the
perspective of demand occurrence time, so it is difficult to apply them to measure the
similarity of intermittent time series. In summary, the key to constructing a good similarity
index lies in the ability to accurately measure the relationship between demand times. To
this end, this section introduces the concepts of zero-demand interval and last demand time,
where zero-demand interval refers to how many cycles have passed since the last demand
occurred, and last demand time refers to the cycle in which the last demand occurred. The
following is the process of constructing the similarity index:

T
(1) Extend the original sequence X; = {xi]'}jT as X! = { i }] , where X; = {xij}]il

T
denotes the ith sequence; T denotes the number of time series cycles; X! = {xf j} -
]:

denotes the ith sequence after extension; x; = ( i ZPj, ld-) denotes the extended

. last 1f x;>0,X1051>0,j<last
element of the jth cycle, where zp; = {6 i e fost =]
1=

interval and [ d]' denotes the last demand tlme

denotes the 0 demand

(2) Calculate the similarity between the spare parts using the distance function
/ 1 / U
4(X], X}) = MMD (X}, X!).

In this section, the hierarchical clustering method is used to cluster the set of time
series { X! }l 1» and the steps are as follows:

(1) Initially, consider each sequence {X!}}_, in the set of demand series X! a class cluster.

(2) Calculate the distance between two Clusters of classes, merge the two classes with
the smallest distance into a new class, and delete these two classes. The distance
calculation formula is as follows:

Dap=1/(lA|xB) ¥ ¥ d(xg,x;) (4)

X;eAX;eB

where A and B denote the classes involved in the distance calculation, and |A| and |B|
denote the number of demand series in the class cluster.

(3) Repeat step 2 until the number of class clusters reaches a predetermined value.

Fmally, all time series {X’} are clustered in k classes {class; }l 1- and as k domains

=1
{domaml}i:l.

3.2. Intermittent Feature Adaptation Algorithm

Most of the existing transfer algorithms adopt the strategy of parameter transfer, which
requires a large dataset as the source domain; it is trained in the large dataset and then
fine-tuned in similar small data, while the size of the spare parts demand dataset is usually
small, and the distribution of different spare parts in terms of data characteristics varies
greatly, making it difficult to apply the parameter transfer strategy to the problem in this
paper. For this reason, this section adopts the strategy of domain adaptation [18] to realize
the information transfer between domains, as shown in Figure 3. The core of domain
adaptation lies in its loss function:

i#]

Loss = ZLpre ]/ZIyz +2Ld hl'h ) ®)
i=1 ij
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Figure 3. The framework of domain adaptive.

The first half of the formula is the prediction loss, which guides the model to learn
the future trend information of the sequence. The second half is the distance loss between
domains, which reduces the discrepancy of depth features between domains and completes
the information transfer from the source domain to the target domain.

However, the above formula only calculates the interdomain distance on the whole,
without paying attention to the time-dependent relationship of the hidden layer output in the
time series. Specifically, with GRU as the feature extractor, there is a temporal relationship
between the output features corresponding to each cycle of the time series. How to learn
this time-series relationship is the key to improve the prediction performance, so this paper
introduces the temporal distribution matching algorithm TDM [19], which contains two main
parts: the loss algorithm for constructing the distribution distance using the weight matrix
and the algorithm for updating the weight matrix. Considering the intermittency of demand
series, to make TDM applicable to intermittent time series, this section improves on TDM by
integrating intermittent features with the weight matrix, so that it can learn the structured
information between domains from the intermittency perspective.

TDM learns the temporal relationships between domains by using a weight matrix
& € RT to represent the importance of the feature distances for each cycle, where T denotes
the number of sequence cycles. By adjusting the weight matrix a, the domain feature
differences can be dynamically reduced. When given a specific source domain D; and
target domain Dj, the distribution loss is as follows:

Ligw(D;, Dj; ) Z«xl]d<hf,h]t, ) ®)

where 1x . denotes the feature importance weights of D; and D; at t moments, and

ht = 6(xt, hf 1) is the GRU network hidden layer output. Combining the predicted loss
yields the following target loss function:

1] 7]
ZLpre Yi, Ui) ZLtdm D;, Dj;“) @)

The hyperparameter A is used to balance the prediction loss and interdomain distance
loss of the model.

In summary, it can be seen that the TDM learns the interdomain time series relationship
by & weighting the hidden layer feature distance. At this time, how to update the parameter
« becomes the key to the feasibility of the above method. The original text directly adopts
the way of boosting. However, it has been analyzed in the introduction that intermittent
time series should not only consider the temporality of the features, but also the intermit-
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tency of the demand series. Therefore, this section incorporates intermittent features into
the boosting method, so that « can learn both the temporality and intermittency of features
in the updating process and better realize the sharing of knowledge among domains.

After the domain partitioning of the original data using the algorithm in Section 2.1,
the data within the domains still differ, and further mining the differences will help to learn
the structured information in them in depth at this time. Specifically, when two specific
domains are given, demand series in which the intermittent features are more similar
and demand series with larger differences should have different degrees of importance in
the process of reducing the differences in domain distributions. Given this, this section
proposes the coefficient of intermittent differences 8 between the demand series auxiliary
update parameter «, and it is calculated from the zero-demand interval sequence as well as
the demand occurrence time series. The equation is as follows:

B = sigmod (|zp; — zp;| + |Ipi — Ipj]) ®

The rules of computing zp and Ip are described in Section 2.1. 8 denotes the inter-
mittent difference between domains, and it is combined with « to realize the learning of
common knowledge between domains from both intermittent and temporal perspectives,
i.e., when the intermittent difference between domains is larger, the temporal difference is
larger. The focus is on reducing the difference among them and strengthening the learning
of domain knowledge among them.  and « are combined in the following process:

(1) At the beginning of training, the hidden layer features change a lot. To make the
update process of &« more smooth, the pretraining times are set here as epoch0. Before
the training times reach epoch0, « will be adjusted by the network adaptively; the
adjustment rule is « = f(h) x B, where f(h) is the output of the fully connected layer.

(2) When the model has completed epochQ pretraining times, the parameter « is updated
by the boosting method; where « is not updated when the distribution loss in the
new round does not increase compared to the previous round, and vice versa, the « is
updated with the following rules:

, (n) t(n—1 , (-1
ey _ [ iy < c dit ) < p o dig > agY ©)
- t,(n)

v ,r,jn other

o

where G (di’]{"), df:;”_1)> =(1+ a(df:](") - d;;}”_l))), o is the sigmod function.

4. Experimental Analysis

To verify the validity of the proposed method, we conducted experiments on
the spare parts demand data (Dataset 1) of Zoomlion enterprises provided by the
“Fifth National Industrial Internet Data Innovation Application Competition”
(https:/ /www.industrial-bigdata.com /Competition, accessed on 1 April 2023). The practi-
cality of the model was verified on the spare parts aftersales data of complex manufacturing
enterprises (Dataset 2); it is unpublished data. The experimental hardware environment
consisted of an i7-12700h processor, RTX3060 6 g graphics card, and 64 g ddr4 memory, and
the software environment comprised Matlab 2018 and Python 3.8.

4.1. Dataset Introduction

Dataset 1 contains historical sales data of 1200 spare parts for a total of 30 months from
January 2018 to June 2020, which includes data of spare parts in use quantity, equipment
working hours, equipment type, and other attributes. Dataset 2 contains 34 months of
spare parts sales data, which includes spare part numbers, spare part failures, and other
attributes. Details are shown in Table 1.
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Table 1. Data attributes.

Dataset Name Periods Number of Attributes
Spare Parts

Quantity, equipment working
hours, equipment type
Part numbers, number of spare
part failures

Dataset 1 30 1200

Dataset 2 34 999

Since this paper starts the research of spare parts demand prediction based on the
characteristics of sequence interval, the demand series with larger demand intervals were
filtered out according to the rule of ADI > 1.32, in which a total of 524 demand series were
filtered out from Dataset 1 and a total of 858 spare parts are filtered out from Dataset 2.

4.2. Comparison Method

The methods compared in the experiments can be divided into three categories, which
are traditional methods, machine learning methods, and deep learning methods, and the
details of the compared methods are shown in Table 2.

Table 2. Comparison method.

Method Type Method Name

Traditional Method SBA [6], ARIMA

Machine Learning SVR [3], BHT_ARIMA [20], Prophet [21], LightGBM [11]
Deep Learning LSTM [22]

In the experiments, the number of GRU layers was set to 3 and the hidden layer size
was set to 128 for the model in this paper. The number of LSTM layers was 2 and the
hidden layer size was set to 128. All model hyperparameters were searched by the grid to
the optimum.

For Dataset 1, the data from month 1 to month 30 were used as the training set, month
2 to month 29 as the validation set, and month 3 to month 30 as the test set. For Dataset 2,
the data from month 1 to month 32 are used as the training set, month 2 to month 33 as the
validation set, and month 3 to month 34 as the test set.

4.3. Analysis of the Results of Intermittent Time Series Domain Segmentation Algorithm

Dataset 1 and Dataset 2 are divided into different domains, where the effect of Dataset 1
is shown in Figure 4. From Figure 4, it can be seen that the demand within the domain has
greater similarity in intermittency and temporal order, while the demand between the domains
has greater differences. For example, spare parts No. 195 and No. 759 in domain B both have
an upward trend in month 15, and do not generate demand from month 1 to month 14. For
spare parts No. 152 in domain A and No. 195 in domain B, there is a significant difference in
the timing of the peak demand trend and in the time when demand did not occur.
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Figure 4. Domain division results. (a) Quantity demand of spare parts No. 152 and No. 282 in
domain A. (b) Quantity demand of spare parts No. 195 and No. 759 in domain B.

4.4. Analysis of Intermittent Feature Adaptation Algorithm Results

The goal of the domain adaptation algorithm is to reduce the difference in depth
features between domains, to achieve the extraction of common information, and finally,
to improve the prediction effect. The feature distribution of Dataset 1 before and after
adaptation is shown in Figure 5, and it can be clearly seen that feature adaptation can
significantly reduce the distribution distance between domains.
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Figure 5. Comparison of feature distribution before and after adaptation: (a) before domain
adaptation; (b) after domain adaptation.

After feature adaptation, the prediction effect of Dataset 1 is shown in Figure 6. Among
them, spare part No. 827 and spare part No. 756 belong to different domains. It can be
seen that spare part No. 827, as a whole, has a low number of demands, and no demand
is generated in the beginning period, while spare part No. 756 has a more stable demand
interval and has demand generated most of the time. To further address the contribution of
common information to accurate forecasting, common forecasting methods are introduced
here for the comparison of forecasting results, as detailed in Figure 7. In the experiment
here, the demand information for the first 29 months of spare parts from Dataset 1 is used
to forecast the demand for the 30th month. It can be seen in Figures 6 and 7 that traditional
methods such as ARIMA have good prediction results for a stable demand sequence such
as spare part No. 756, indicating that traditional methods can still achieve good prediction
results when the single sequence itself contains sufficient information on the law of demand
evolution. In the face of spare part No. 827 and other spare parts with a small number
of demand occurrences, the prediction effect of the previous method is not satisfactory,
but the method of this paper can achieve a more stable prediction effect at this time. This
indicates that the method of this paper makes full use of the information of the common
evolution law among the demand series; it makes up for the shortcoming of insufficient
information on the demand for a single spare part, and thus has a more stable prediction
effect than other prediction methods.
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Figure 6. Trend and forecast results for demand for spare parts No. 827 and No. 756.
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Figure 7. Comparison of the predicted results of spare parts No. 827 and No. 756.

Accurate prediction of intermittent time series is very difficult, and for most spare
parts, the method in this paper has difficulty in achieving the prediction shown in Figure 7,
while Figure 8 better represents the general level of prediction. From Figure 8, it is clear
that spare parts No. 210, No. 393, and No. 503 are situations where the traditional methods
outperform the methods in this paper. However, there are large deviations in the prediction
results of these methods for some parts. Compared with other methods, the method in this
paper is more stable in prediction results. Moreover, in the actual operating environment,
stable spare parts can effectively avoid extreme shortage and redundancy situations, thus
reducing the economic loss of the enterprise.
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Figure 8. Comparison of the predicted results of spare parts No. 152, No. 210, No. 393, and No. 503.

4.5. Ablation Experiments

The method in this paper consists of an intermittent time series domain partitioning
algorithm and a domain adaptive algorithm incorporating intermittent features. To further
verify the necessity of each part of the proposed method in this paper, the following ablation
experiments are therefore designed in this section:

Option 1: putting all the data directly into the base model GRU without dividing the
domain, as well as without using the domain adaptive algorithm.

Option 2: only the domain adaptive algorithm is used, and no intermittent difference
coefficient is used.

The results are shown in Table 3. From the table, we can see that compared with
the baseline model GRU, only the domain adaptive algorithm achieves advantages in all
indexes, which indicates that using the common information among spare parts demands
can improve the demand forecasting effect. After incorporating the intermittent difference
coefficient § in the domain adaptive algorithm, the forecasting effect is further improved,
which proves that using the intermittent feature to improve the performance of the domain

adaptive model is rationality.

Table 3. Comparison table of ablation experiments.

Option Dataset 1 Dataset 2
MAE RMSE RMSSE MAE RMSE RMSSE
Option 1 0.3477 0.6382 0.3082 0.1476 0.2853 0.0445
Option 2 0.3414 0.6324 0.2986 0.1179 0.2786 0.0458
Ours 0.3297 0.5996 0.2813 0.1058 0.2685 0.0399

In summary, the model in this paper can start from the common information among
spare parts demands and the intermittent characteristics of the sequence to explore the
essential characteristics of the demand series, and then have better prediction performance.

4.6. Comparison Experiment

In actual business, due to the long manufacturing cycle and long delivery time of
complex equipment spare parts, the demand for a longer period in the future needs to be
evaluated. Therefore, to verify the practicality of the method in this paper, this experiment
uses the historical demand quantity to predict the demand for the next three months and
compares seven commonly used prediction methods, and the experimental results are

shown in Table 4.
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Table 4. Comparison of performance indicators of different methods.
Method Dataset 1 Dataset 2
MAE RMSE RMSSE MAE RMSE RMSSE
SBA 0.3392 0.6365 0.2829 0.1606 0.2878 0.0432
ARIMA 0.3939 0.7081 0.3842 0.1391 0.3383 0.0484
SVR 0.3515 0.6530 0.3226 0.1184 0.2700 0.0414
prophet 0.5806 0.8320 0.4779 0.1627 0.2945 0.0479
BHT_ARIMA 0.7799 1.1119 0.6965 0.4006 0.8196 0.1039
LightGBM 0.3801 0.6094 0.3246 0.1482 0.2785 0.0421
LSTM 0.6718 0.8143 0.5648 0.1669 0.2746 0.0434
Ours 0.3298 0.5997 0.2814 0.1058 0.2686 0.0400

From Table 4, it can be seen that the method in this paper is the best in all indicators,
while the SBA method has a better result in Dataset 1 and a less obvious effect in Dataset 2.
It further shows that the method in this paper has a more stable prediction effect when
dealing with different datasets because it makes full use of the common information among

the series.

5. Concluding Remarks

In this paper, based on intermittent time series, a prediction method with intermittent
feature adaptation is proposed. The method effectively divides multiple fittings into different
subsource domains while combining the temporal information of demand series and intermit-
tent features to fully exploit the common information among domains, which improves the
prediction effect of the model in the face of sparse demand. The experimental results show that
the method in this paper can effectively improve the demand prediction accuracy and stability,
as well as providing reliable guidance for enterprises” production preparation.

In actual environments, some spare parts are online for short periods, which leads to
a lack of abundant historical demand data, while the relevant staff are more interested in
knowing the confidence intervals of future demand. Therefore, in the next step, we plan
to study the demand prediction problem of new online spare parts and provide reliable
support for the prediction of new online spare parts demand by introducing the demand
information of similar spare parts, while at the same time combining transfer learning
and probability distribution to give confidence intervals for demand prediction in order to

provide a more detailed decision basis for spare parts managers.
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