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Abstract: Identifying influential nodes is a key research topic in complex networks, and there have
been many studies based on complex networks to explore the influence of nodes. Graph neural
networks (GNNs) have emerged as a prominent deep learning architecture, capable of efficiently
aggregating node information and discerning node influence. However, existing graph neural
networks often ignore the strength of the relationships between nodes when aggregating information
about neighboring nodes. In complex networks, neighboring nodes often do not have the same
influence on the target node, so the existing graph neural network methods are not effective. In
addition, the diversity of complex networks also makes it difficult to adapt node features with a
single attribute to different types of networks. To address the above problems, the paper constructs
node input features using information entropy combined with the node degree value and the average
degree of the neighbor, and proposes a simple and effective graph neural network model. The model
obtains the strength of the relationships between nodes by considering the degree of neighborhood
overlap, and uses this as the basis for message passing, thereby effectively aggregating information
about nodes and their neighborhoods. Experiments are conducted on 12 real networks, using the SIR
model to verify the effectiveness of the model with the benchmark method. The experimental results
show that the model can identify the influence of nodes in complex networks more effectively.

Keywords: complex networks; information entropy; influential node; relationship strength; SIR

1. Introduction

In the information age, human society and the natural world are filled with a large
number of complex networks, such as social networks, biological networks, and trans-
portation networks. The advancement of complex network theory has enabled a better
understanding of information dissemination and the formation of real-world network
structures [1–3]. Identifying influential nodes is one of the main research directions of
complex networks, and such nodes can have an important impact on the robustness and
connectivity of the network. Influential node identification has been applied to many fields,
such as human physiological behavior understanding [4], analysis of the urban function [5],
and price strategy analysis [6].

Much of the existing literature explores the influence of nodes in networks, and there
are some classical centrality methods for identifying node influence. The centrality-based
approach uses the structural and location information of the node in the network to
measure the influence of the node, which usually contains the local topology information,
the global topology information, and the path information between the nodes. Degree
centrality [7], a simple method based on local topology information, is widely used due
to its ease of operation. This local centrality method posits that the more neighboring
nodes a node has, the more influential it is. In addition, other common methods include
clustering coefficients [8], which consider the interconnection coefficients between nodes
and their neighbors, and H-index [9], which considers the magnitude of the degree of
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neighboring nodes. The ESCRM method [10] defines the similarity coefficients between
nodes based on their interaction relationships and local structural attributes, and then ranks
the nodes based on the similarity between them. Yang et al. [11] identified the influence
of nodes by considering node degrees, clustering coefficients, and neighboring nodes.
Classical methods based on global topological information include K-shell [12] (based
on node positions in the network) and eigenvector centrality [13] (which estimates node
importance based on neighbor importance). Since K-shell cannot provide fine-grained
node divisions, subsequent researchers have refined it, such as Liu et al. [14], who removed
redundant links to obtain a new K-shell value for each node, resulting in a more accurate
influence assessment. Wang et al. [15] proposed a node-sorting algorithm based on K-shell
iteration factors. Some methods rely on path information between nodes, such as closeness
centrality [16], which gauges node importance by node distance. However, closeness
centrality needs to calculate all node pairs in the network, which has high complexity
and is not applicable to large networks. The Katz centrality [17] method assigns weights
to the walks in the network and considers short walks more important than long walks.
Fei et al. [18] proposed a key node identification method based on the inverse-square
law, which considers that the attraction between nodes is inversely proportional to the
square of the distance between nodes, and describes the strength of a node as the sum of
the attraction between node pairs. However, in complex networks, the distribution and
characteristics of nodes in different networks are often not the same, and it is difficult to
adapt to different types of complex networks based on a single attribute. Yu et al. [19] used
the node propagation entropy and combined node-clustering coefficients with the influence
of first- and second-order neighboring nodes for influence identification. Zhang et al. [20]
selected four node features and used information entropy for weighting to obtain the final
node representation. Previous experiments [19–23] have shown that by using information
entropy combined with the centrality of nodes approach, performance is superior to that of
a single feature.

The advent of deep learning has spurred increased attention to applying deep learning
methods to explore node influence. Primary deep learning algorithms for node influence
ranking include graph convolutional neural networks (CNNs) and graph neural networks
(GNNs). Complex networks, as a kind of graph data, need to choose a graph embedding
technique to represent the nodes as low-dimensional vectors. CNNs are often used to
process various graph data by setting the receptive fields to obtain the features in the
network. After the development of CNNs, scholars started to use CNN [24] for the task of
node ranking. By defining the sampling method of node features in a complex network,
a receptive field can map the features of nodes into a subgraph so that CNN can be used
to achieve efficient node ranking. Although CNN can yield results based on node local
features, it does not permit nodes to aggregate neighbor information. Consequently, some
researchers utilize GNNs, which obtain node representations by aggregating neighbor
information, such as InfGCN [25], which uses GNN and chooses four classical centralities
as input to predict the propagation impact of nodes. The method of Zhang et al. [26] first
obtains the feature matrix based on the contraction matrix of the node, and then predicts the
impact of the node using GCN (graph convolution networks) and GNN. However, existing
methods have limitations. For instance, CNN-based methods tend to use the local adjacency
matrix of nodes, and global information cannot be awarded; graph neural network methods,
such as GCN, update node information mainly by aggregating neighborhood information.
The existing methods do not differentiate between nodes, thus making the propagation
effect less satisfactory.

In order to overcome the previous problems and make the model applicable to complex
networks, this paper considers two perspectives and proposes a new graph neural network
model, the RSGNN (GNN based on relationship strength) model. Firstly, in order to
overcome the limitation of single attribute, two basic features—the degree value of the
node and the average neighbor degree of the node—are considered in the construction
of the node input features, and their weights are determined using information entropy.
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It can be found that the introduction of information entropy can effectively improve the
model effect through parameter analysis. Secondly, to overcome the problem that previous
graph neural networks do not distinguish the importance of neighboring nodes when
aggregating them, a new graph neural network model is proposed. The strength of the
relationship between nodes is determined by considering the degree of neighborhood
overlap during message transmission so that the model not only considers the strength of
the relationship between a node and its first-order neighbors but also the strength of the
relationship between a node and its second-order neighbors that have common neighbors,
making the model more comprehensive in capturing the propagation influence of nodes.
The model is compared with the classical graph neural network model to illustrate the
effectiveness of the proposed model. The experimental results show that with different
infection probability coefficients, the RSGNN model is more effective in identifying the
influence of nodes in 12 real networks.

The rest of the paper is organized as follows. Section 2 presents the relevant knowledge.
Section 3 details how to use information entropy to construct node features and the graph
neural network model proposed in this paper. Section 4 overviews a large number of
comparative experiments that were carried out in 12 real networks. Section 5 concludes
the paper.

2. Preliminaries
2.1. Degree

In complex networks, the simplest index to measure the influence of nodes is the
degree of nodes. The number of edges of a node is regarded as the degree value of a node.
The more neighboring nodes are connected to a node, the more important the node is.

2.2. Information Entropy

In 1948, Shannon proposed the theory of information entropy. Information entropy is
used to represent the uncertainty of the source of information by quantifying the informa-
tion contained in the data. Information entropy is a metric used to measure the average
amount of information. Information entropy has been widely used in various fields, such
as data mining and statistical analysis.

Supposing that there are n events, the probabilities of the events occurring in order are
p(x1), p(x2), . . . , p(xn), and the sum of the probabilities of each event is 1, the information
entropy is

H(x) = −
n

∑
i=1

pi ln pi (1)

When calculating the information entropy values corresponding to multiple indicators,
the information entropy can be used to calculate the weights of multiple indicators, which
is an objective method of assigning weights.

2.3. Spreading Model

The benchmark simulator allows the effectiveness of each method to be verified by the
actual propagation dynamics. For the seed nodes in the network, the propagation process is
simulated uniformly using Monte Carlo methods to measure the propagation impact of the
nodes. In complex networks, seed nodes are usually used as the source of infection, and the
propagation process is simulated by the benchmark simulator to measure the propagation
impact of the nodes, using the proportional size of the number of activated nodes to the
total number of network nodes, called the infection ratio.

Many studies have proposed contagion models as a way to simulate the real-world
propagation process, such as the linear threshold model [27], independent cascade model [28],
and epidemic model [29]. In the simulation of the spread of complex networks, the epi-
demic model is widely used. In this paper, we use the susceptible–infected–recovered (SIR)
epidemic model [30] to examine the propagation efficiency of each node in the network.
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We transformed the node influence identification into a regression task. The propaga-
tion influence of each node is calculated using the SIR epidemic model, and the obtained
influence is considered as the corresponding label of each node. In the SIR epidemic model,
a node has three states, according to which the nodes can be classified into three categories:
susceptible, infected, and recovered. In the initial state, only the seed node is in the infected
state, and the rest of the nodes are in the susceptible state and may be infected. In each
round of propagation, the infectors infect the neighboring nodes in the susceptible state
with the infection probability, while the infectors move the recovery probability λ to the
recovery state. In the experiments of this paper, for simplicity, we set λ = 1; in other
words, the infected node tries to infect its neighbor nodes in proportion to the infection
rate in the process of spreading, and then turns into the recovered node. When there
are no more nodes in the infected state, the propagation process is terminated. At this
point, the statistical node infection ratio is used to measure the spreading impact of the
node. The number of recovered nodes in the network is counted, and the proportion of
such nodes to the total number of nodes is calculated and considered the percentage of
infection of the seed nodes. In order to obtain more objective experimental results, several
independent experiments were conducted, and the number of experimental simulations
was denoted as Sn. The average proportion of infections for experiments was calculated
using the following formula:

t =

Sn
∑

j=1
Nr

Sn ∗ N
(2)

where N is the total number of nodes in the network, Nr is the number of recovered nodes,
and t is the proportion of final nodes infected. In this paper, the number of experimental
simulations Sn is set to 500. To prevent the infection probability from being too large,
information spreading from any node can infect a large number of the network nodes,
and the infection probability β is considered at the network prevalence threshold [31]:

βth =< k > / < k2 > (3)

<k> is the average degree of the network, <k2> is the second-order average degree of
the network, and βth is the network epidemic threshold. In this paper, we take βth to two
decimal places. Finally, the proportion of infections is considered node labels, and the input
features and node labels are used to form the dataset from which the model is trained.

3. Proposed Method

This section provides a detailed introduction to the RSGNN model, covering three
aspects: the construction of node input features by information entropy, the implementation
of the message passing layer in the graph neural network, and the overall model framework.
Table 1 presents frequently used symbols and their meanings within this paper.

Table 1. Common symbols and explanations

Symbols Explanation of Symbols

V The set of nodes in the network
n Total number of nodes
A Adjacency matrix of the network
I Unit matrix of n×n dimensions
k(u) Degree value of node u
k(u) Average neighbor degree of node u
N (u) The list of neighbors of node u
B(u) The basic feature of node u
F(u) The input feature of node u
ω1 Weighting of the degree
ω2 Weighting of the average degree of the neighbor
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Table 1. Cont.

Symbols Explanation of Symbols

Cij Number of common neighbors of node i and node j
R Relationship strength matrix

3.1. Constructing Node Features by Information Entropy

The influence of a node in a complex network is closely related to its neighboring
nodes. Consequently, evaluating node influence requires considering information about
the node itself and its neighboring nodes. In this paper, we first obtain a list of each node’s
first-order neighbors and sort them by the degree of their neighbors. The input to the
RSGNN model comprises the basic features of the node and its neighboring nodes, with the
first position representing the node’s basic feature and the remaining positions representing
the basic features of neighboring nodes. The algorithm is described in Algorithm 1.

Algorithm 1: Algorithm for generating input features
Input: network
Output: the input features of the node
1. N (u)← Get a list of neighbors for each node.
2. k(u), k(u)← Calculate the degree of a node and the average degree of the
neighbor.
3. ω1, ω2 ← Calculate the weights of the node degree and the average degree of
the neighbor
using information entropy.
4. B(u), F(u)← Construct basic features and input features for each node.

Initially, acquire the first-order neighbor list of each node, and sort the nodes by
their neighbors’ degree to construct a neighbor list of nodes, N (u) = (u1, u2, . . . , um).
After obtaining the neighbor list, calculate the degree values of the nodes and the average
degree of the node’s neighbors:

k(u) =
1

|N (u)| ∑
v∈N (u)

k(v) (4)

The RSGNN model determines the weights of node degree values and neighbor
average degrees based on information entropy, and first normalizes the node degree values
and neighbor average degrees as follows:

k′(u) =
k(u)−min(k)

max(k)−min(k)
(5)

k′(u) =
k(u)−min(k)

max(k)−min(k)
(6)

where max(k) and min(k) represent the maximum and minimum values of degree values in
the network, respectively, and max(k) and min(k) represent the maximum and minimum
values of the average degree of the neighbor, respectively. The sum of the degrees of all
nodes in the normalized network and the sum of the average degree of the neighbor are
calculated such that Ksum = ∑

u∈V
k′(u), Ksum = ∑

u∈V
k′(u) so as to calculate the information

entropy values corresponding to the two features, which are calculated as follows:

Hk = − 1
ln n ∑

u∈V

k′(u)
Ksum

ln
k′(u)
Ksum

(7)
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Hk = − 1
ln n ∑

u∈V

k′(u)
Ksum

ln
k′(u)
Ksum

(8)

where Hk represents the information entropy value of the node degree and Hk represents
the information entropy value of the average degree of the neighbor. Further processing of
Hk and Hk leads to the final weights:

ω1 =
1− Hk

2− Hk − Hk
(9)

ω2 =
1− Hk

2− Hk − Hk
(10)

Using the calculated information entropy weight values, the node degree and the
average degree of the neighbor are weighted to obtain the basic features of the node:

B(u) = ω1 ∗ k(u) + ω2 ∗ k(u) (11)

Since the influence of a node in a complex network is closely related to its neighboring
nodes, the basic features of node u, B(u), are combined with the basic features of its neigh-
boring nodes to form the input features of the node, F(u). The input feature dimension
of a node is set to 24, and if the number of neighboring nodes is less than 24, it is filled
with 0. If the number of neighboring nodes is greater than 24, only the basic features
of the first 23 neighboring nodes are taken. For example, for node u, its input feature is
F(u) = [B(u), B(u1), . . . , B(u23)]. It can be observed that the final input feature F(u) con-
tains information related to the node, first-order neighbor nodes, and second-order neighbor
nodes simultaneously, allowing the model to comprehensively obtain node information.

3.2. Message Passing Layer

The strength of the relationship between nodes needs to be considered when identify-
ing node influence because different neighboring nodes tend to have different influences
on the target node. Previous graph neural network approaches have often overlooked
this aspect. In this paper, drawing on existing literature [32], we define the relationship
strength between nodes as the degree of overlap between the neighbors of two nodes,
using the number of common neighbors as a reference indicator to measure the relationship
strength. In this paper, we argue that the higher the number of common neighbors among
nodes, the more susceptible they are in message propagation. Based on this idea, this paper
proposes a new graph neural network algorithm to calculate node influence.

As shown in Figure 1, the first-order neighbors of node 1 are nodes 2, 3, and 5. As can
be seen from Figure 1, nodes 2 and 3 have common neighbors with node 1, are more closely
related, and have a greater influence on node 1 when information is disseminated; while
node 4 is not a first-order neighbor of node 1, it has two common neighbors with it (nodes
2 and 3) and therefore also has some influence on it.

The adjacency matrix of the network is defined as A. If Aij is 1, it indicates that there
are edges between node i and node j, and they are each other’s neighbor nodes. The number
of common neighbors of nodes i and j is defined as Cij. From the properties of the adjacency
matrix, we know that by using Ai. to denote the i-th row of the adjacency matrix and
A.j to denote the j-th column of the adjacency matrix, the inner product of Ai. and A.j is
the number of common neighbors of node i and node j Cij. To avoid missing first-order
neighbors that have no other common neighbors, for first-order neighbor nodes, the node
relationship strength is considered to be the number of common neighbor nodes Cij plus 2,
and for second-order neighbor nodes, the node strength is the number of common neighbor
nodes. The relationship strength matrix is defined as follows:

R = (A + I)(A + I) (12)
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in which

Rij =


k(i) + 1, i = j

Cij + 2, j ∈ N (i)

Cij, j /∈ N (i)

(13)

It can be observed that in the relationship strength matrix R, information about the
node itself is considered, as well as information about the node’s first-order neighbors
and its second-order neighbors, where there are common neighbors. Denoting the sum
of the elements of the i-th row of the relationship strength matrix R as Si, the influence of
neighbor node j on node i is expressed as

mi←j =
ej ∗ Rij√
S(i)S(j)

(14)

where ej is the current layer feature of node j and mi←j is considered the influence of
node j on node i. The influence of neighboring nodes on the current node is obtained by
considering the strength of the relationship between the neighboring nodes and the current
node. The information of the neighboring nodes in the node domain is aggregated and
combined with the node’s own features to obtain an updated representation of the node as

e(l)i = W1e(l−1)
i + ∑ W2m(l−1)

i←j (15)

where W1, W2 are the two trainable parameter matrices. After each layer of message
passing, the data are normalized using batch normalization to improve the training stability
and convergence rates. For an intuitive view of the overall algorithm, a matrix form
representation of the algorithm is provided:

e(l) = BatchNorm(Ie(l−1)W(l)
1 + Le(l−1)W(l)

2 ) (16)

L = D−1/2RD−1/2 (17)

where I is a unit array of size n×n, D is a diagonal matrix, and Dii = S(i), the sum of the
data in row i of the relational strength matrix R.

Figure 1. The RSGNN model is divided into three main steps: (1) constructing the input features
of the nodes and obtaining the relational strength matrix of the network, (2) inputting the input
features and relational strength matrix into the two message passing layers, and (3) obtaining the
final representation of the nodes through the fully connected layer.
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3.3. Model Framework

The training model process is shown in the Algorithm 2. The RSGNN model consists of
an input layer, two message passing layers, and a fully connected layer. The implementation
details are as follows:

Algorithm 2: Algorithm for training the RSGNN model.
Input: Training networks:G
Output: Trained model
1. F← Generate_Embeddings(G)
2. t← Calculate_Influence(G)
3. R← Generate_Relationship_Strength_Matrix
4. RSGNN← Create_RSGNN_Model()
5. RSGNNT ← Train_Model(RSGNN, F, t, R)
6. return RSGNNT

As shown in Algorithm 2, firstly, for each node in the network, the information entropy
is calculated based on its degree and the average degree of the neighbor, and is then used
as the weight to construct the basic and input features of the node.

Secondly, obtain the label of each node according to the SIR propagation model.
Thirdly, the input features of the node are normalized using batch normalization,

and the relationship strength matrix is constructed for each network.
Fourthly, initialize the RSGNN model.
Fifthly, the normalized features of the node and the relationship strength matrix of

the network are fed into the RSGNN model. The message-passing layer enables the nodes
to fuse multi-hop neighborhood information. After, the aggregated node information is
fed into the fully connected layer with an output dimension of 1. The output of the fully
connected layer is considered the fraction of nodes, and the node labels obtained from the
SIR model are chosen to minimize the loss function. The loss function is MSE (mean squared
error), the gradient optimization function is NAdam, and the learning rate is set to 0.001.

Finally, return the trained model.

4. Experimental Evaluation
4.1. Kendall Correlation Coefficient

In this paper, the Kendall τ rank correlation coefficient [33] is chosen as a criterion for
judging the different methods. The value of Kendall τ is a statistical value used to measure
the correlation of two random variables. The Kendall correlation coefficient is mainly
calculated by counting the number of concordant pairs and the number of discordant pairs
in the two lists, assuming that in the first list, node m is ahead of node n. If node m is
still ahead of node n in the second list, it is regarded as a concordant pair; otherwise, it is
regarded as a discordant pair, and the calculation formula is as follows:

τ =
Nc − Nd

(n(n− 1))/2
(18)

where Nc is the number of concordant pairs and Nd is the number of discordant pairs. It
can be seen that the more the number of concordant pairs, the more similar the ranking
results of the nodes in the list. The value of Kendall τ ranges from −1 to 1. When τ is 1, it
means that the two sorted lists are identical; when τ is −1, it means that the two sorted
lists possess exactly the opposite correlation; and when τ is 0, it means that the two sorted
lists are independent of each other.

4.2. Benchmark

(1) Degree centrality (DC) [7]

DC(u) =
k(u)
n− 1

(19)
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The degree value of a node refers to the number of neighbor nodes, where n is the
number of nodes in the network, k(u) represents the degree of the node, and DC(u) is the
degree centrality of the node.

(2) The K-shell decomposition method (KS) [12]
In the K-shell decomposition method, the nodes with degree 1 and the connected

edges are first removed, and the K-shell index of these nodes is set to 1. This process is
repeated until there are no nodes with degree 1 in the network. Next, the nodes with degree
2 and the connected edges are removed, and the K-shell index of the nodes is set to 2. This
process is repeated until there are no more nodes in the network.

(3) Betweenness centrality (BC) [34]

BC(u) = ∑
m 6=n 6=u

gu
mn

gmn
(20)

The betweenness centrality of nodes refers to the proportion of the number of shortest
paths passing through node u to all shortest paths in the network. gmn is the number of
shortest paths between node m and node n, and gu

mn is the number of shortest paths passing
through node u between node m and node n.

(4) PageRank centrality (PR) [35]
PageRank originated from network ranking and considers that the influence of a

web page depends on the number and quality of other pages pointing to it. PageRank
determines the importance of a node by considering the influence of neighboring nodes
and requires global iterative calculations.

(5) RCNN [24]
The RCNN model is implemented based on CNN. The authors first find its L-1 neigh-

bor nodes for each node, which constitute the node’s corresponding adjacency matrix,
and then combine the node’s adjacency matrix and the degree to generate the node’s L-
dimensional feature matrix. The RCNN model mainly contains two layers of convolution,
two layers of pooling, and one layer of fully connected layers. In the first layer of convolu-
tion, the size of the convolution kernel is 5 × 5, the numbers of input channels and output
channels are 1 and 16, respectively, the stride is 1, and the padding is 2. In the second layer
of convolution, the convolution kernel size, stride and padding are kept the same as the
first layer of convolution, the number of input channels is 16 and the number of output
channels is 32. After each layer of convolution, the nodes are convolved by a 2 × 2 max
pooling and finally by a fully connected layer of 32 × (L/4) × (L/4) to 1. The activation
function is chosen as ReLU, and the loss function is the squared loss function.

(6) InfGCN [25]
The InfGCN model is mainly based on GCN implementation, which consists of an

input layer, a GCN layer, three fully connected (FC) layers, and an output layer. InfGCN
selected four centrality metrics of nodes degree, closeness centrality, betweenness centrality,
and clustering coefficient as the characteristics of nodes. The input features go through one
GCN layer, and the exponential linear units (ELU) is chosen as the activation function, while
the authors add residuals and dropout in the GCN layer, and finally the node representation
is obtained after three fully connected layers. Note that the first two fully connected layers
are followed by a layer of activation function ELU.

(7) CGNN [26]
The CGNN model is mainly based on CNN and GNN. The CGNN model firstly

obtains the information of node L neighbors and constructs its adjacency matrix A(x);
secondly, according to the contraction algorithm, the condensed adjacency matrix B(x)
can be obtained, and the feature matrix F(x) of the node is obtained through A(x) and
B(x). After constructing the feature matrices of the nodes, the CGNN model is first passed
through two CNN layers, each followed by an activation layer and a pooling layer. In the
first layer of CNN, input channel is 1, output channel is 10, the convolutional kernel is
3 × 3, stride and padding is 1. In the second layer of CNN, the input channel is 10, the
output channel is 20, and the convolutional kernel, stride and padding are the same as
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the first layer. The activation function of the CNN layer is LeakyRelu. The node features
of 6 dimensions are then input into the two layers of GNN. After the two CNN layers,
a fully connected layer is followed, whose input dimension is ((l + 1)2/42) × 20 and output
dimension is 6:

ei+1 = σ(AeiWi + bi) (21)

In GNN, ei is the representation of the node at the i-th layer, A is the adjacency matrix
of the network, and the activation function is the sigmoid function. There are two layers
of the GNN model in CGNN, the W0 dimension is 6 × 2 and b0 dimension is two in the
first layer, and the W1 dimension is 2 × 4 and the b1 dimension is four in the second layer.
Finally, L2-norm and sigmoid are used to obtain node representation. The optimizer is
Adam and the loss function is MSE.

4.3. Datasets Description

The BA model is a scale-free network model, in which the degrees of vertices follow
a power-law distribution, and a very small number of nodes have a large number of
connections. The LFR model can generate complex networks with multiple associations
in which the degrees of nodes in each association follow a power-law distribution. In this
paper, the BA synthetic network and the LFR synthetic network are chosen to train the
model, and 12 real networks are selected to verify the model’s effectiveness. The networks
in this paper are all maximally connected components of the original network, and all the
networks are undirected graphs. Table 2 shows the details of the 12 real networks in the
test set, where n denotes the number of nodes in the network, |E| denotes the number of
edges in the network, <k> denotes the average degree value of the network, 4 denotes
the maximum degree value of the network, C denotes the clustering coefficients of the
network, and r represents the degree pearson correlation. The clustering coefficients C
and the degree pearson correlation coefficient r are two statistical indicators of a network.
The clustering coefficient C indicates the degree of aggregation of nodes in a network, and a
higher clustering coefficient indicates that the nodes are more closely connected to each
other. The degree Pearson correlation coefficient r measures the degree assortativity of the
network. A higher coefficient indicates that nodes in a network tend to be connected to
nodes that are similar to it, where r > 0 indicates that the network is assortative, and nodes
with a higher degree tend to be connected to nodes with a higher degree, where r < 0
indicates that the network is disassortative.

Table 2. The statistical indicators of the test data set.

Network n |E| <k> 4 C r

Adjnoun 112 425 8 49 0.16 −0.12
Facebook 4039 88,233 44 1045 0.52 0.06
Hamster 1788 12,476 14 272 0.09 −0.09

Jazz 198 2742 28 100 0.52 0.02
Faa 1226 2410 4 34 0.06 −0.01

Figeys 2217 6418 6 314 0.01 −0.33
Lesmis 77 255 7 36 0.5 −0.16
Moreno 117 465 8 26 0.17 −0.08

Netscience 379 914 5 34 0.43 −0.08
PowerGrid 4941 6594 3 19 0.1 0.00
Polbooks 105 442 9 25 0.35 −0.13

USAir 332 2126 13 139 0.4 −0.21

In order to better demonstrate the applicability of the RSGNN model to complex
networks in various domains, a number of well-known complex network datasets were
selected, including social networks, flight networks, biological protein networks, power
grid, collaboration networks, etc. The datasets are described as follows:
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Lesmis [36]: A co-occurrence network of characters in the novel Les Miserables, where
a node in the network represents a character in the book, and an edge represents the
relationship between two characters.

Polbooks [37]: A political book network, where a node in the network represents a
book, and an edge represents the simultaneous purchase of two related books.

Adjnoun [38]: A network of adjective and noun adjacencies commonly found in
DickensâĂŹ novel, David Copperfield, where the nodes in the network indicate adjectives or
nouns, while the edges indicate that both occur in any adjacent position.

Moreno [39]: This directed network captures 246 physicians in towns in Illinois, Peoria,
Bloomington, Quincy and Galesburg, with one node representing a physician and the sides
representing two physicians who know each other or are likely to have discussions.

Jazz [40]: A social network among jazz musicians, where the nodes represent musicians.
USAir [37]: A map of the U.S. airport route network, where the nodes in the network

represent airports, and the edges indicate a route between two corresponding airports.
Netsience [38]: The co-authorship of scientists in network theory and experiments,

where the vertices represent the researchers and the edges represent the co-authorship
relationships.

Faa [41]: A route database obtained from the FAA’s National Flight Data Center in
the United States, where the nodes represent airports or service centers, and the sides are
determined by strings of preferred routes.

Hamster [41]: A social network extracted from the site hamsterster.com, where nodes
represent users on the site and sides represent friendships or family ties between users.

Figeys [42]: Interaction networks between human proteins; an invaluable tool for
understanding protein function.

Facebook [43]: A social network from Facebook, where nodes represent users and
edges represent users’ friendships.

PowerGrid [44]: A network of information about the power grids of the western states
of the United States.

Larger disparities between complex network datasets can be found in the real world.
For example, in the social networks Facebook and Jazz, the clustering coefficients between
nodes are higher than those of other types of complex networks, and in terms of correlation,
both are biased toward homogeneity, which is due to the fact that in social networks, people
are more closely connected to each other. In the Facebook social network, the probability
that the remaining two users in a user group know each other is 51.91%, and there is a
tendency for users to hug each other, whereas in the bioprotein network Figeys, the con-
nections between nodes are sparser and the network shows heterogeneity in terms of the
degree Pearson correlation coefficient. In the PowerGrid network, there are 4941 nodes,
but the maximum degree value is only 19, and each node interacts with an average of
3 nodes, making the connections between nodes relatively sparse. In order to better see the
differences between the networks, we show visualizations of three networks—Facebook,
Figeys and PowerGrid—as shown in Figure 2. Figure 3 also shows the degree distribution
of these three networks.

Figure 2. Visualization of the networks: Facebook, Figeys and PowerGrid.
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Figure 3. Degree distribution of the networks: Facebook, Figeys and PowerGrid.

4.4. Ablation Experiment

In order to verify the effectiveness of using information entropy to combine the
node degree value and the average degree of the neighbor, the node’s degree value k(u),
the average degree of the neighbor k(u), and the feature B(u) constructed based on infor-
mation entropy were used as the basic features of the nodes to construct model inputs.
The corresponding models were named RSGNN_K, RSGNN_K, and RSGNN. The Kendall
correlation coefficient was used to measure the correlation between the output results of
each model and the ranking results of the SIR propagation model, with higher correlation
coefficient values indicating better model results. Table 3 shows the information entropy
weight values in the 12 real networks, and the experimental results under the 3 models.
It is worth noting that in all experimental results in this section, p-values are below 0.01,
proving that the results are statistically significant.

In Table 3, ω1 is the information entropy weight corresponding to the node degree
value, and ω2 is the information entropy weight of the first-order neighborhood average
degree. In all networks, the RSGNN model based on the features obtained from information
entropy fusion achieves optimal results. Additionally, by observing the weights, it can
be found that the weight of the node degree value is slightly larger than the weight of
the average degree of the neighbor. The larger the value of ω1, the more obvious the
advantage of the RSGNN_K model over the RSGNN_K model; the larger the ω2, the more
obvious the advantage of the RSGNN_K model using the average degree of the neighbor.
The comparison experiments on 12 networks show that using information entropy to
fuse the degrees of nodes and the average degree of the neighbor allows the model to
capture more comprehensive information about the nodes, making the experimental results
more valid.

Table 3. The Kendall correlation coefficient of the model with different input features.

Network ω1 ω2 RSGNN_K RSGNN_K RSGNN

Adjnoun 0.65 0.35 0.9 0.92 0.92
Facebook 0.68 0.32 0.8 0.79 0.81
Hamster 0.78 0.22 0.9 0.9 0.91

Jazz 0.82 0.18 0.92 0.9 0.93
Faa 0.7 0.3 0.82 0.85 0.88

Figeys 0.8 0.2 0.79 0.66 0.79
Lesmis 0.79 0.21 0.9 0.9 0.92
Moreno 0.69 0.31 0.85 0.87 0.87

Netscience 0.63 0.37 0.84 0.84 0.86
PowerGrid 0.7 0.3 0.52 0.59 0.59
Polbooks 0.74 0.26 0.85 0.88 0.9

USAir 0.84 0.16 0.89 0.88 0.89
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4.5. Compared with Benchmark Methods

In this section, we compare the RSGNN model with other benchmark methods. To bet-
ter evaluate the performance of the model under different infection probabilities and to
observe the effect of infection rate β on the experimental results, we set the values of infec-
tion rate β/βth to 1, 1.2, 1.4, 1.6, 1.8, and 2.0 for multiple experiments. We used the Kendall
correlation coefficient and the SIR model to evaluate the effectiveness of each method. We
compared the node ranking sequence obtained by each method with the node ranking
sequence obtained by the SIR model, and the larger the correlation coefficient obtained,
the closer the influence of the node is to the real influence of the node.

To verify the effectiveness of the model, 12 real networks were selected, and RSGNN
was compared with other methods in this paper. Figure 4 shows the Kendall correlation
coefficient values for each method in the 12 networks at different infection rate coefficients
and the percentage increment of RSGNN relative to the best comparison method in each
network. As shown in Figure 4, the RSGNN model outperformed in most cases, with the
highest Kendall correlation coefficient as the infection rate coefficient β/βth varied from 1
to 2. At the same time, the RSGNN model has a clear advantage regarding all probabilities
of infection. For example, in the network PowerGrid, there are 4942 nodes, the maximum
degree value of nodes is 19, most nodes have a degree distribution of 1–7, the connection
between nodes is relatively sparse, and there is no hub node with a large degree value.
The nodes are more uniformly distributed, and at this time, the use of degree centrality,
K-shell and other methods cannot well distinguish nodes. In the neural network-based
approach, the RCNN model inputs features to a degree; however, the RCNN model, using
the convolutional neural network, can find the local information of nodes, so the accuracy
rate is higher than the traditional method. The CGNN model inputs based on the node local
adjacency matrix. In the network PowerGrid, the local adjacency matrix of nodes has less
variance, and the aggregation of neighbor information shows that all nodes have the same
importance, so the performance is poor. The InfGCN model has four centrality methods
of nodes selected in the input features, which can mine more node features, and therefore
displays higher performance than the other methods in the baseline method; however, none
of these methods consider the connection strength between nodes when aggregating the
neighborhood node information, so the performance is weaker than the method proposed
in this paper. In the Facebook network, which has a high clustering coefficient, there are
4039 nodes with a large gap in degree distribution, with node degrees ranging from 1
to 1045. As can be seen from Figure 3, there are multiple associations in the Facebook
network, with 73 nodes having degree values greater than 190, presumably because the
core nodes in each community are in each association, and thus using degree centrality and
the K-shell method based on the location of nodes in the network can achieve good results.
In the Facebook network, from the clustering coefficient, C = 0.51 can be obtained, and
the direct degree of overlap of node neighbors is larger, so this paper considers the degree of
overlap of neighbors as the strength of the relationship between nodes and uses this as the
basis to achieve message aggregation, which performs better than the InfGCN and CGNN
methods. In the protein network Figeys, there are 2217 nodes in total, of which 962 nodes
have degree 1 and 332 nodes have degree 2. Most nodes have similar degree distribution,
so most methods cannot distinguish node influence well, and the neural network-based
methods perform better than previous centrality methods, and the RSGNN method, which
considers the strength of node relationships, outperforms the other. The experimental
results demonstrate that the RSGNN model outperforms the other methods, even though it
only utilizes the degree of the nodes and the average degree of the neighbor. For example,
the reason for outperforming the InfGCN method, which uses the classical features of four
nodes, is that the RSGNN model considers the strength of relationships between nodes to
aggregate node information, which has higher stability and can identify the influence of
nodes more accurately.
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4.6. Compared with GNN Methods

In order to verify the aggregation effect of the RSGNN model, we input the features of
this paper into other classical GNN models. In each graph neural network, we set up two
layers of aggregation: the activation function is ReLU, and the optimizer is NAdam. We
provide a brief introduction to three types of graph neural networks:

GCN (graph convolution network) [45]: The GCN model extends the convolution
operation from traditional data to graph data. The node feature matrix, adjacency matrix,
degree matrix, and other information of the graph network are required. The adjacency
matrix of the network needs to be normalized, and the core idea is to realize the aggregation
operation of node features by multiplying the adjacency matrix with the feature matrix.

GraphSAGE (graph sample and aggregate) [46]: It mainly consists of two steps,
sampling and aggregation: firstly, sampling the neighbors using the connection information
between nodes, and then fusing the information of the sampled neighbor nodes together
through a multi-layer aggregation function.

GAT (graph attention network) [47]: When aggregating feature information, the GAT
model applies the attention mechanism to determine the weight of node neighbors, and re-
alizes the adaptive matching of the weights of different neighbor nodes so as to aggregate
the neighbor nodes.

Figure 4. Kendall coefficient changes of RSGNN model and other models under different infection
probability ratios. The scale of the horizontal axis indicates the infection probability coefficient β/βth,
and the vertical coordinate is the Kendall correlation coefficient. In this experiment, all p-values are
below 0.01 and, therefore, the results are statistically significant.
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Table 4 shows the Kendall correlation coefficients between the output of the RSGNN
model and the three graph neural networks and the ranking results of the SIR model in the
12 real networks. Again, in the experiments in this section, all p-values are below 0.01 and,
therefore, the results are statistically significant.

Table 4. The Kendall correlation coefficients of the RSGNN model and three GNN models in 12
real networks.

Network GCN GAT GraphSAGE RSGNN

Adjnoun 0.84 0.5 0.77 0.92
Facebook 0.69 0.74 0.71 0.81
Hamster 0.84 0.7 0.73 0.91

Jazz 0.88 0.72 0.82 0.93
Faa 0.69 0.7 0.78 0.88

Figeys 0.73 0.66 0.64 0.79
Lesmis 0.71 0.65 0.73 0.92
Moreno 0.78 0.34 0.8 0.87

Netscience 0.65 0.73 0.77 0.86
PowerGrid 0.49 0.45 0.52 0.59
Polbooks 0.82 0.56 0.8 0.9

USAir 0.85 0.73 0.71 0.89

As seen in Table 4, the RSGNN model consistently outperformed the three graph
neural networks, delivering the best and most stable results. In contrast, the performance
of the three graph neural network models exhibited significant fluctuations. For instance,
the GCN model achieved a high result of 0.85 in the USAir network, GAT had a high
result of 0.74 in the Facebook network, and GraphSAGE scored 0.82 in the Jazz network.
However, in some networks, the results were below 0.5. The reasons for these disparities are
as follows: The GCN model requires the adjacency matrix of the entire network structure
for training and does not differentiate the strength of relationships between nodes. The GAT
model relies on the weights of nodes to neighboring nodes, which can lead to overfitting.
The GraphSAGE model depends on the sampling and aggregation of neighboring nodes,
and the fixed number of sampled nodes may result in the loss of local node information.
Furthermore, random sampling could make node features less stable. The RSGNN model,
on the other hand, takes into account the strength of relationships between nodes and
aggregates the information of neighboring nodes as well as the nodes’ own characteristics
when disseminating information.

5. Conclusions

Identifying influential nodes has become a key research direction in complex networks.
Existing methods tend to ignore the strength of relationships between nodes and cannot
adapt to the diversity of complex networks based on a single feature. Since complex
networks extracted from the real world contain less information about the weights between
nodes, this paper defines the strength of relationships between nodes by considering the
degree of neighborhood overlap between nodes and proposes a graph neural network
model RSGNN based on the strength of node relationships to identify node influence.
The model uses information entropy combined with the degree value of nodes and the
average degree of the neighbor to construct the input of the model. The strength of the
relationship between nodes is considered, and the information of neighboring nodes is
aggregated. To verify the effectiveness of the RSGNN model, this paper uses the Kendall
correlation coefficient as an evaluation metric and compares it with 7 existing methods in
12 real networks. The results demonstrate that the RSGNN model performs best under
various infection probability coefficients β/βth. Furthermore, the input features of the
RSGNN model were fed into three classical graph neural network models for comparison.
The experiments revealed that the RSGNN model can effectively aggregate neighborhood
information by considering the strength of the relationship of nodes and outperforms the
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selected graph neural network model. The RSGNN model proposed in this paper provides
a new idea for identifying the influence of nodes in complex networks; however, there are
still some challenges that need to be further overcome in future work. Firstly, the model
proposed in this paper is only applicable to undirected graphs, and we will continue to
explore its improvement in directed networks in future research; secondly, the current
application scenario of the model is static complex networks, and its extension to dynamic
networks can be considered in future work.
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