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Abstract: Social inequalities are ubiquitous and evolve towards a universal limit. Herein, we ex-
tensively review the values of inequality measures, namely the Gini (g) index and the Kolkata (k)
index, two standard measures of inequality used in the analysis of various social sectors through
data analysis. The Kolkata index, denoted as k, indicates the proportion of the ‘wealth’ owned by
(1− k) fraction of the ‘people’. Our findings suggest that both the Gini index and the Kolkata index
tend to converge to similar values (around g = k ≈ 0.87, starting from the point of perfect equality,
where g = 0 and k = 0.5) as competition increases in different social institutions, such as markets,
movies, elections, universities, prize winning, battle fields, sports (Olympics), etc., under conditions
of unrestricted competition (no social welfare or support mechanism). In this review, we present the
concept of a generalized form of Pareto’s 80/20 law (k = 0.80), where the coincidence of inequality
indices is observed. The observation of this coincidence is consistent with the precursor values of the
g and k indices for the self-organized critical (SOC) state in self-tuned physical systems such as sand
piles. These results provide quantitative support for the view that interacting socioeconomic systems
can be understood within the framework of SOC, which has been hypothesized for many years.
These findings suggest that the SOC model can be extended to capture the dynamics of complex
socioeconomic systems and help us better understand their behavior.

Keywords: social inequality; gini index; kolkata index; sandpile model; self-organized criticality

1. Introduction

The distribution of wealth has been a topic of discussion and concern throughout
human history. There is nothing more unequal than the distribution of wealth. No physical
quantity can be perceived without sophisticated measuring instruments within the span
wealth, which can vary by roughly nine orders of magnitude . This perception of wealth
inequality has led to social discord since ancient times, to the extent that the history of
popular struggles is broadly that against wealth inequality. In his dialogue (The Law)
describing the ideal settlement, Magnesia, Plato recommended that the ratio of wealth
between the poor and wealthy should exceed 1:4. However, societies have been far more
unequal than that; therefore, herein, we would like to review the universal and extreme
level of inequality in our society.

For the purpose of our discussion, we broaden our scope to include the study of
inequalities in assets earned through competitive means, which can also include revenues
earned through movies, citations of publications (of individuals, universities, journals, etc.),
gains from stock market fluctuations, etc. As we shall see, in all such cases, inequalities
are ubiquitous. However, the consequences are not similar. Wealth inequalities have a
variety of severe social consequences, for example, limiting access to basic needs such as
food, housing, healthcare, as well as access to education, thereby limiting opportunity for
upward mobility, etc. On the other hand, inequality in, for example, movie revenues, is of
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very little consequence for the larger society. Therefore, while policies exist to moderate
wealth inequalities in some cases, in other cases, the dynamics are completely unrestricted.
Hence, such dynamics provide a window into what may occur with respect to inequalities
in the distribution of some form of asset when such assets are sought after by competing
entities without any restriction.

We argue, however, that irrespective of the particular context, dynamics of inequality
follow broadly universal characteristics. It is, therefore, possible to shed light on a highly
complex situation of wealth inequality by characterizing its universal dynamics. This
characterization, of course, requires quantification of inequality through unambiguous
and possibly intuitive measures. We attempt to do just that in this article. We study a novel
inequality index; compare it with other existing inequality indices; and characterize the
universal dynamics, followed by those indices, by analyzing real data and apply the same
process to self-organized critical sand pile models driven by the production of entropy.

2. Social Inequality and Its Measures

Over a century ago (in 1896), Vilfredo Pareto [1] noticed that only 20% of Italy’s
people possessed 80% of the country’s wealth. He proceeded to conduct surveys in other
European nations, where he discovered, to his astonishment, that the same distribution
held. The Pareto Principle, also called Pareto’s 80/20 law, asserts that 20% of the causes are
responsible for 80% of the outcomes. In other words, the principle suggests that a small
fraction of the factors contribute to a large majority of the results. The Pareto Principle has
been used to analyze many different areas, from economics to quality management, even
in personal development. In business, it is often used to identify the most important areas
for improvement. For example, if a company wants to improve customer satisfaction, it
can use the Pareto Principle to identify the 20% of customers who are responsible for 80%
of the complaints.

In the year 1905, an American economist by the name of Max Lorenz [2,3] came up
with the Lorenz curve, which is a graphical representation of the distribution of wealth in a
society. If the population of a society is arranged in the ascending order of their wealth,
then the curve is created by plotting the cumulative fraction of the wealth (L(p)) possessed
by the p fraction of the poorest individuals (red curve shown in Figure 1).

If wealth were perfectly equally distributed, the Lorenz curve would be a straight line
from the origin to the top right corner of the graph (black dotted line in Figure 1). In reality,
the curve is usually downward-slanting, indicating that a relatively small portion of the
population holds a disproportionate share of the wealth based on the fraction of people
who possess wealth less than or equal to a certain amount, denoted as F(p), and the fraction
of total wealth possessed by those people, denoted as L(p). To illustrate this, consider a
society of N individuals with wealth distribution defined by the function f (y), where y
represents the wealth of each person. The fraction of individuals with wealth less than or
equal to p is calculated as the integral of f (y) from 0 to p, divided by N as follows:

F(p) =
1
N

∫ p

0
f (y) dy (1)

The fraction of total wealth possessed by those individuals is calculated as the integral of
y f (y) from 0 to p, divided by the total wealth of the society (µ) as follows:

L(p) =
1
µ

∫ p

0
y f (y) dy. (2)

Lorenz originally produced a graphical representation of L(p) plotted against F(p) using
a parametric method. Both L(p) and F(p) are functions that increase monotonically and
continuously from zero to one as p ranges from zero to infinity. The resulting plot, now
known as the Lorenz curve, can be displayed within a unit square, which is depicted in a
schematic form in Figure 1.
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Figure 1. The Lorenz curve or function (L(p), red) shows the proportion of total wealth owned by
a fraction (p) of people in ascending order of wealth. The black dotted line represents a scenario
of perfect equality in which everyone possesses the same amount of wealth. The Gini index (g) is
calculated as the area (S) between the Lorenz curve and the equality line (shaded region), normalized
by the total area under the equality line (S + S

′
= 1

2 ). The complementary Lorenz function (L̂(p) ≡
1− L(p) is) shown in green. The Kolkata index (k) is determined by the point at which the Lorenz
curve intersects the diagonal line perpendicular to the equality line. The value of L̂(k) = 1− L(k)
is equal to k, which indicates that k is a fixed point of L̂(p) and indicates the proportion of wealth
owned by the top (1− k) fraction of the population.

Mathematically, the Lorenz curve can be formulated in a more compact way as follows,

L(p) =
1
µ

∫ p

0
F−1(x) dx (3)

where F−1(x) = inf{y|F(y) ≥ x}, which means it will take the minimum value of y for
which F(y) ≥ x.

Along with the definition of the Lorenz curve, for economic inequality, another kind
of Lorenz curve is utilized, which is known as the ‘Complementary Lorenz curve’ (L̂(p);
green curve in Figure 1). The complementary Lorenz curve is a plot that represents the
distribution of wealth in a society in terms of the fraction of the total wealth held by
the richest fraction of the population. In contrast to the standard Lorenz curve, which
shows the fraction of the total population holding a given fraction of the total wealth,
the complementary Lorenz curve shows the fraction of the total wealth held by the top
fraction of the population. The complementary Lorenz curve is often used in the study of
income and wealth inequality, as it provides a different perspective on the distribution of
wealth in a society. For example, it can be used to compare the wealth held by the top 1%
of the population to the wealth held by the bottom 99% of the population. In a society with
a perfectly equal distribution of wealth, the standard Lorenz curve and the complementary
Lorenz curve would be the same and would be represented by the 45-degree line. In a
society with a high degree of inequality, the complementary Lorenz curve would be steeper
than the 45-degree line, indicating that a large fraction of the total wealth is held by a small
fraction of the population.

Therefore, to a certain extent, the Lorenz curve can be used to measure inequality.
While the Lorenz curves contain the complete information about the wealth distribution
and, consequently, that about wealth inequality, it is not often convenient to deal with the
full distribution function, particularly when a comparative analysis or ranking is required.
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This calls for some form of a summary statistics to be drawn from the Lorenz curves. For
this reason, in 1912, the Italian statistician and sociologist Corrado Gini developed the Gini
index [4]. The Gini index is a widely used metric to measure statistical dispersion in the
distribution of wealth or income among residents of a nation. It is commonly used to assess
levels of inequality in a society. To compute the Gini index, the area between the Lorenz
curve and the line of equality is divided by the total area under the line of equality. This
ratio provides a numerical value that represents the degree of inequality present in the
distribution of wealth or income. In Figure 1, the Gini index is

g =
S

(S + S′)
.

Equivalently, the Gini index is twice the area between the Lorenz curve and the line of
perfect equality,

g = 2
∫ 1

0
(p− L(p)) dp = 1− 2

∫ 1

0
L(p) dp. (4)

The Gini index ranges from 0 to 1, with 0 representing perfect equality and 1 representing
perfect inequality. The Gini index is used by economists to measure the income inequality
of a nation and is sometimes used to measure the inequality of other variables, such as
wealth distribution and health inequality. The significance of adopting alternative measures
of inequality is commonly recognized because no single summary statistic can capture all
characteristics of inequality displayed by the Lorenz curve and the Gini index. In particular,
the Gini index is known to be a rather non-intuitive measure, i.e., quoting its value does not
provide an immediate picture of the underlying inequality. Indeed, the problem is deeper
than intuition. Multiple Lorenz curves can have the same Gini index value. This means
that calculating Gini index does not uniquely define inequality.

One major factor contributing to economic inequality is socialization or the tendency
for the rich to become richer. This can occur because those with wealth have more resources
to invest and accumulate more wealth, while those without wealth may struggle to get
ahead. As a result, the gap between the rich and the poor can grow over time. The industrial
revolution transformed economic interactions. Shops sold things produced more efficiently
by factories. Economic socialization followed the industrial revolution. The automobile and
telephone made travel and communication easier. Economic socialization changed during
the Great Depression. As employment disappeared and wages diminished, people had to
find other methods to make money. To help people cope with the economic crisis, unem-
ployment insurance and welfare benefits were created. World War II reshaped economic
socialization by the mid-20th century. The US standard of living rose as more commodities
were available. Wealth spurred consumerism and the service industry. Socialization during
this time gave more people the chance to rise economically and partake in the prosperity.
The wealthy had more resources, jobs, and education than the poor. The global Gini (g)
index value increased during this period, and in 1980–1990, this value remained at g ' 0.65
(see [5]), i.e., the top 35% of the population earned almost 65% of the overall income. US
tax policy favored the wealthiest, allowing them to pay lower rates than the middle and
lower classes, increasing wealth disparity. Economic policies, such as taxation, subsidies,
and other economic interventions, began to impact residents’ economic behavior at this
time. In conclusion, economic inequality is a complex issue with many factors contributing
to its persistence and growth. While tools such as the Lorenz curve and Gini index help to
understand and quantify inequality, addressing the root causes of this issue will require a
more comprehensive approach.
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In recent years, there has been a growing concern about the increasing concentration
of wealth in the hands of a small percentage of the population. In 2011, the ‘Occupy Wall
Street’protest [6] was a response to this trend, with participants calling for greater economic
equality and a fairer distribution of wealth. The movement consisted of a campaign of civil
resistance, with protesters occupying public spaces in cities across the country to demand
changes to the economic and political system. The movement began on 17 September 2011,
when a group of protesters entered and began an occupation of Zuccotti Park in New York
City. The protests quickly spread to other cities in the United States and around the world,
inspiring similar protests in countries such as the United Kingdom, Spain, and Greece. The
movement has been largely credited with helping to spark the global Occupy movement,
which has seen occupations in many countries. The movement also served as a catalyst for
a wide range of progressive issues, including income inequality, corporate greed, and the
power of the financial sector.

The protesters argued that unless something were done to address economic inequality,
99% of the wealth would soon be possessed by just 1% of the population. The most famous
slogan of the Occupy Wall Street movement was “We are the 99%”. This slogan was used
to highlight the inequality that exists between the wealthiest 1% of the population and the
other 99%. The slogan was meant to emphasize that the economic system is broken and
that the wealthiest 1% are exploiting the resources of the other 99%. The slogan has since
been adopted by various movements around the world and is still in use today.

Now, the question is: is the disparity really this great? In reality, is it possible to
accurately determine what amount of the population possesses exactly what amount of
wealth? To find the answers of these queries, in 2014, a new social inequality measure
was introduced, name k-index or Kolkata index [7–9], providing the k fraction of wealth,
citations, or vote shares possessed, attracted, or obtained by the richest or most successful
(1− k) fraction of people, papers, or election candidates, respectively (see also [10] and
references therein). In Figure 1, the k point is the k index. Mathematically, we can say that
the k index for any income distribution is defined by the solution to the following equation:

k + L(k) = 1. (5)

Extensive data analysis implies that a k value of more than the Pareto value (0.80) across
competitive economies (where welfare measures are withdrawn), citation shares in top-
ranked universities or among successful individual scientists, or vote shares in vibrant
democratic elections has perhaps often continued for ages beyond our notice. Indeed,
observations suggest that the inequality measure (k) can be as high as 0.86, which is more
than the Pareto value (k = 0.80) but less than many apprehended limits or conjectures, such
as that in the ‘Occupy Wall Street’ slogan (k = 0.99). In short, data analysis suggests that
almost 14% of people, papers, election candidates, or even wars possess, attract, capture, or
cause about 86% of the wealth, citations, votes, or deaths, respectively. For example study
shows that about 12% of the 2386 publications (books, documents, letters, etc.) by Karl
Marx, as collected in his Google Scholar page maintained by the British National Library,
accounts for about 88% of the total 424,810 citations collected on that page as of today.

Furthermore, in 2016, Watkins et. al. wrote a review paper [11] on the evolution
of social systems to a self-organized critical state. Social systems evolve in complex and
unpredictable ways. However, many theorists have suggested that social systems tend to
move towards a state of self-organizing criticality, or an SOC state (see [12,13]). This is a
state in which the system is balanced between order and chaos, allowing for a dynamic and
adaptive response to changing environmental and social conditions. Such self-organization
can result in emergent properties, such as the emergence of group norms, the development
of new practices or technologies, and the emergence of social networks that can facilitate
collective action. Ultimately, the exact form that a social system takes is dependent upon
a variety of factors, including the available resources and the environmental and social
conditions. Examples of an SOC include earthquakes, forest fires, and the stock market.
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Therefore, in his book published in 2017 [14], Piketty highlights the fact that the
wealth of the top 10% of the population is continuously expanding at an alarming rate. He
argues that there is a tendency for the rate of return on capital to be higher than the rate
of economic growth, which leads to the concentration of wealth among a small number
of individuals. He suggests that this concentration of wealth poses a threat to democratic
societies, as it can lead to social and political instability.

In 2020, extensive data analysis [15] showed that as competition increases in various
social institutions, including markets, universities, and elections, the values of the two
general inequality indices (the Gini (g) and Kolkata (k) indices), approach one another.
It was further demonstrated that under conditions of unrestricted competition, these
two indices equalize and stabilize at a certain value (kmax ' 0.87 ' gmax). We suggest
interpretation of this coincidence of inequality indices as a broader application of Pareto’s
80/20 rule (k = 0.80). Additionally, the synchronicity of the inequality indices noted here is
strikingly comparable to that of self-organized critical (SOC) systems previously discussed.
The findings outlined the following sections provide quantitative evidence for the long-held
hypothesis that interacting socioeconomic systems can be observed within the context of
SOC systems.

Few social inequality indicators have been explored in relation to the subcritical
dynamical properties (measured in terms of the avalanche size distributions) of some
SOC models as their respective stationary critical states approach. A recent study [16]
(2022) showed that different models of self-organized criticality (SOC), including the Bak–
Tang–Wiesenfeld (BTW) sand pile, the Manna sand pile, the quenched Edwards–Wilkinson
interface (EW) model, and the fiber bundle interface (FBM), all display a similar precursor to
SOC state values of inequality measures, such as the Gini and Kolkata indices. These results
suggest that SOC systems share a high degree of commonality when it comes to indicators
of inequality. Additionally, comparing these findings to similar results from socioeconomic
systems with unrestricted competitions, it appears that inequality may emerge due to
proximity to SOC states. Specifically, the k index for SOC models appears to be around
'0.86. These observations provide further evidence for the universality of inequality
measures across various physical and socioeconomic systems. We parallelly numerically
demonstrated that the cluster or avalanche size distributions in the various SOC models
of self-tuned physical systems (also argued to model all social systems; see, e.g., [11]) do
reach a similar k value as the respective SOC points are approached, indicating that as one
approaches the SOC point, about 86% of the avalanche mass is carried away by 14% of the
avalanches. This is similar to the inequalities that we observed both mathematically and
empirically for different socioeconomic systems.

Figure 2 shows a schematic representation of this timeline since 1896 at a glance, as
discussed above.
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Figure 2. Timeline of the evolution of social inequality measures since 1896 and their universal
convergence to those for sand pile models prior to their respective self-organized critical (SOC) points.
We start the timeline from 1896 with the work of Pareto [1] and subsequent developments in 1905
by Lorenz [2] and Gini [4] in 1912. Then we observe the consistency of the Gini index (g) for a
decade-span 1980-1990 [5]. Subsequent protest happened in 2011 at the Wall Street for the advection
of the majority portion of the entire wealth in the hands of very few people [6]. In 2014, Kolkata
index (k) was introduced as another measure of inequality in the wealth distribution [7]. In 2016,
Watkins and others proposed that all social systems evolve towards the respective SOC state [11].
Piketty (2017) pointed out forcefully about the continuous growth of the wealth of top 10% of the
people [14]. In the year 2020, the work of Banerjee and others reported that the inequality of the social
systems has a tendency to evolve at a point of g = k ≈ 0.87 [9,15]. In 2022, Manna and others showed
numerically that many physical SOC systems show g = k ≈ 0.86 just preceding the SOC points in
the respective systems [16]. In this review, the figures and tables are arranged with self-contained
captions in an attempt to provide readers with an overview of our motivation and the main results
presented the introductory and concluding sections (15 figures and 13 tables and their captions).

3. Calculating the Inequality Indices

In the last section, we defined the Lorenz function and the two inequality measures
that summarize the inequality statistics of a society (Gini and Kolkata indices). In this
section, we proceed to calculate these quantities and attempt to find analytical relations
between them.

3.1. Properties of the Lorenz Curve

With the definition of Lorenz curve, as mentioned before, we can enumerate several of
the properties that such a curve must follow:

1. The Lorenz curve range from {F(p), L(p)} ≡ {0, 0} to {1, 1}.

Proof. Equation (3) shows see that at p = 0, F(0) = 0 and L(0) = 0. Similarly,
for p = 1, we have F(1) = 1 and L(1) = 1. Hence, as p ∈ [0, 1], the Lorenz curve
always ranges from {F(p), L(p)} ≡ {0, 0} to {1, 1}.

2. The Lorenz curve is a concave and monotonically increasing function of wealth.

Proof.
d L(p)

d p
=

f p
µ

(6)
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and,
d F(p)

d p
=

f
N

, (7)

so the slope of the Lorenz curve is given by,

d L(p)
d F(p)

=
N
µ

p (8)

As p ∈ (0, 1) and is always increasing, Equation (6) shows that the slope of the Lorenz
curve is always increasing. Hence, the Lorenz curve is a concave and monotonically
increasing function of wealth.

3. The Lorenz curve for a society in which each person possesses an equal amount of
wealth is a diagonally sloping line.

Proof. If each person in a society possesses an equal amount of wealth, wealth
distribution follows a Dirac delta function as,

f (y) = δ(y− y0)

Now,

F(p) =
1
N

∫ p

0
f (y) dy

=
1
N

∫ p

0
δ(y− y0) dy.

Therefore,

F(p) =

{
0 if p < y0

1 if p ≥ y0

Again,

L(p) =

{
0 if p < y0

1 if p ≥ y0

Hence, we can see that Lp = F(p) i.e., the Lorenz curve is a diagonal line for this
particular case.

4. The upper limit of the Lorenz curve is bounded by the equality line.

Proof. According to the second derivative of Equation (6),

d2L
dF2 =

N
µ

(
d F
d y

)−1
=

N
µ

N
f
≥ 0

Therefore, one can conclude from the above exercise that the Lorentz curve can never
exceed the diagonal line. Moreover, L = F = 0 when p = 0 and L = F = 1, as p→ ∞.
In addition, the concave topology of the Lorentz curve indicates that it is bounded by
the diagonal line (also known as the egalitarian line).

3.2. Exemplary Calculations of the Lorenz Curve

Here, we show the calculation of the Lorenz curve for some simple wealth distribution
functions, albeit continuous and discrete.

1. Uniform wealth distribution: Let us examine a society in which the distribution of income
is uniform over a finite range of values within the interval [a, b], where 0 < a < b < 1.
The corresponding probability density function is given by fu(x) = 1

(b−a) , and the
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cumulative distribution function is Fu(x) = (x − a)/(b− a) for all values of x within
[a, b]. Applying Equation (3), we obtain the following Lorenz curve for this distribution:

Lu(p) =
1

µu

∫ p

0
{a + (b− a)q} dq = p

[
1− (b− a)

(a + b)
(1− p)

]
, (9)

The distribution has a mean of µu = (a+b)
2 , and F−1

u (q) = a + (b− a)q. It is worth
noting that if a = 0, the Lorenz curve simplifies to Lū(p) = p2.

2. Exponential wealth distribution: Let us consider an exponential income distribution
characterized by the probability density function fE(x) = λe−λx, where λ > 0, and the
cumulative distribution function FE(x) = 1− e−λx for all x ≥ 0. The mean of this
distribution is given by µE = 1

λ , and F−1
E (q) = −( 1

λ ) ln (1− q). The Lorenz curve for
this distribution is therefore given by:

LE(p) =
∫ p

0
− ln (1− q) dq = p− (1− p) ln

(
1

1− p

)
. (10)

3. Pareto wealth distribution: Let us now consider a society with a Pareto-like income distri-

bution. The probability density function for this distribution is given by fP,α(x) = α(m)α

(x)α+1 ,
and the cumulative distribution function is FP,α(x) = 1− (m

x )
α, where m > 0 is the

minimum income, α > 0, and the probability density and cumulative distribution
functions are defined for all x ≥ m. The mean of this distribution is µP = αm

(α−1) ,

and F−1
P,α(q) = m(1− q)−(

1
α ), which gives the Lorenz curve as follows:

LP,α(p) =
(α− 1)

α

∫ p

0
(1− q)−(

1
α ) dq = 1− (1− p)1− 1

α . (11)

4. Discrete wealth distribution: To obtain the Lorenz function for a discrete income distri-
bution, consider an economy comprising G groups of people, where each group (g)
comprises ng individuals with the same income (xg) such that 0 ≤ x1 ≤ x2 ≤ · · · ≤ xG.
The total population of the economy is N, and the total income is M, leading to a mean
income of µg = M/N. The income distribution is a discrete random variable (X) with
a probability mass function of fG(xg) = ng/N for all g ranging from 1 to G and a dis-
tribution function (FG(x)) defined by 0 if x ∈ [0, x1), fG(x) = ng/N if x ∈ [xg, xg+1)
for any given g ranging from 1 to (G− 1), and 1 if x ≥ xG. We define N(g) and M(g)
as the cumulative proportion of the population and cumulative proportion of the total
income, respectively, for each group (g). For any given g ranging from 1 to G and any
qg ∈ (N(g− 1), N(g)], it can be verified that F−1

G (qg) = xg. Using the Lorenz function
formula, we can calculate the Lorenz function (LFG (pg)) for any given g ranging from
1 to G and any pg ∈ (N(g− 1), N(g)] as,

LFG (pg) = M(g− 1) + (pg − N(g− 1))
Nxg

M
. (12)

We make two observations in this context. The first observation states that the Lorenz
function is piecewise linear, which means that it is composed of several line segments.
The kink points represent the points where the direction of the Lorenz curve changes;
they occur at the boundaries of each income group. At these points, there is a jump
in the cumulative share of income that is distributed to each group, which causes a
change in the slope of the Lorenz curve. The second observation is that if there is only
one income group in the economy, then the Lorenz curve is a straight line passing
through the origin, with a slope of 1. This means that the distribution of income is
perfectly equal, and each individual in the economy has the same income. In this case,
the Lorenz curve coincides with the diagonal of the unit square, which represents the
line L(p) = p.
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3.3. Properties of the Gini Index

The above definition also implies several properties that are important to understand
when interpreting and using this index. Some of the key properties of the Gini index are:

1. Range: The Gini index ranges from 0 to 1, with 0 indicating complete equality (i.e.,
everyone has the same income or wealth) and 1 indicating complete inequality (i.e.,
one person has all the income or wealth);

2. Normalization: The Gini index is normalized, meaning that it can be used to compare
inequality across different populations or over time. This allows for meaningful
comparisons even when the populations or time periods have different sizes or levels
of income;

3. Sensitivity to changes in the distribution: The Gini index is sensitive to changes in the
distribution of income or wealth, meaning that even small changes in the distribution
can result in large changes in the Gini index. This property makes the Gini index a
useful tool for measuring the impact of policies or events that affect the distribution
of income or wealth;

4. Unimodality: The Gini index is unimodal, meaning that it has a single peak. This
property allows for the ranking of populations or time periods based on their level
of inequality;

5. Invariance to scale: The Gini index is invariant to scale, meaning that it is not affected by
changes in the units of measurement (e.g., dollars, euros, etc.). This allows for mean-
ingful comparisons of inequality across populations or time periods using different
currencies.

3.4. Exemplary Calculations of the Gini Index

Here, we show calculations of the Gini index for some simple continuous and discrete
wealth distributions.

1. Uniform wealth distribution: For a uniform distribution on a compact interval [a, b],
following 0 ≤ a < b < ∞ leads to the following Gini index,

gu = 2
∫ 1

0

[
q− q

{
1− (b− a)

(a + b)
(1− q)

}]
dq =

(b− a)
3(a + b)

. (13)

2. Exponential wealth distribution: An exponential distribution of the form FE(x) = 1− e−λx

for any x ≥ 0 and λ > 0 leads to the following Gini index,

gE = 2
∫ 1

0
[q− L(q)] dq = 2

∫ 1

0
(1− q) ln

(
1

1− q

)
dq =

1
2

. (14)

3. Pareto wealth distribution: A Pareto distribution of the form FP,α(x) = 1− (m/x)α with
m > 0 as the minimum income and α > 1 results in a Gini index of the following
form,

gP,α = 2
∫ 1

0

[
q−

{
1− (1− q)1− 1

α

}]
dq =

1
2α− 1

. (15)

As we graph the Gini index for various values of α, where α is greater than 1, we
observe that as α increases, the Gini index decreases. Additionally, as α approaches 1,
the Gini index tends towards 1. Furthermore, if we set α̂ to be equal to ln 5

ln 4 , then the
Gini index for gP,α is approximately 0.7565.

4. Discrete wealth distribution: Consider the discrete random variable FG discussed previ-
ously for which the Lorenz function is given by Equation (12). Accordingly, we have
the following explicit form of the Gini index,

gFG =
∑G

g=1 ∑G
t=1 ntng|xt − xg|

2 N M
. (16)
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Note that if ng = 1 for all g ∈ {1, . . . , G} so that G = N and M = ∑N
g=1 xg, then it

follows from Equation (16) that,

gFG =
∑G

g=1 ∑G
t=1 |xt − xg|

2 N ∑N
g=1 xg

. (17)

3.5. Properties of the k-Index

With the above definition, the k index has several characteristics, which are listed be-
low:

1. The k index is a unique fixed point of the complementary Lorenz function.

Proof. We can rewrite Equation (5) as,

k = 1− L(k) = L̂(k). (18)

Hence, the k index is a fixed point of the complementary Lorenz function. Since the
complementary Lorenz function maps [0, 1] to [0, 1] and is continuous (as shown in
Figure 1), it has a fixed point according to Brouwer’s fixed-point theorem. Further-
more, since L̂(p) is non-increasing, the fixed point has to be unique.

2. For any distribution, k ∈ [1/2, 1], and the normalized k index (K = 1− 2k) lies in the
interval [0, 1].

Proof. Observe that if L(p) = p, then, according to Equation (18), k = 1/2, and for
any other income distribution, 1/2 < k < 1. Also note that while the Lorenz curve
typically has only two trivial fixed points, that is, L(0) = 0 and L(1) = 1, the com-
plementary Lorenz function (L̂(p)) has a unique non-trivial fixed point (k). Now, the
normalized k index is given by K = 1− 2k, so if k ∈ [1/2, 1], then K ∈ [0, 1].

3. The k index as a generalization of the Pareto Principle.

Proof. The k index can be thought of as a generalization of the Pareto’s 80/20
rule. Note that L(k) = 1 − k ; hence, the top 100(1 − k)% of the population has
100(1− (1− k)) = 100k% of the income. Hence, the ‘Pareto ratio’ for the k index is
k/(1− k). Note that this proportion is derived internally from the distribution of
income, and typically, there is no expectation that it will align with the Pareto Principle.

4. Interpreting the k index in terms of rich–poor disparity.

Proof. Let us split society into two groups: the ‘poorest’ group, consisting of a frac-
tion (p) of the population, and the ‘rich’ group, consisting of a fraction (1− p) of the
population. Using the Lorenz curve (L(p)), we can determine the distance between the
“boundary person” and the poorest person on one hand and the distance between the
“boundary person” and the richest person on the other hand. These distances can be
calculated using the following equations:

√
p2 + L(p)2 and

√
(1− p)2 + (1− L(p))2,

respectively. The k index is a way of dividing society into two groups such that the
boundary person is equidistant from the poorest and richest persons. The disparity
function value at the k index is given by D(k) = k− 1/2. This function measures the
gap between the proportion (k) of the poor from the 50/50 population split. If so-
ciety is not completely equal, then k > 1/2, making it a useful tool to highlight the
rich–poor disparity. In this case, k defines the income proportion of the top (1− k)
proportion of the rich population.

5. The k index as a solution to optimization problems.

Proof. The k index is the unique solution to the following surplus maximiza-
tion problem:

k = argmaxP∈[0,1]

∫ P

0
(L̂(t)− t) dt. (19)
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The value of k is such that it maximizes the area between the complementary Lorenz
function and the income distribution line linked with an egalitarian distribution for the
lower-income population. Equation (19) is a consequence of the fact that L̂(p) ≥ p for
all p ∈ [0, k] and L̂(p) ≤ p for all p ∈ (k, 1]. Similarly, the k index is the only solution
to the surplus minimization problem (which is the dual of the problem in (19)):

k = argminP∈[0,1]

∫ 1

P
{(1− t)− L(t)} dt. (20)

Therefore, (1− k) is the fraction of the higher-income population for which the area
between the income distribution line associated with the egalitarian distribution and
the Lorenz function is minimized.

6. To reduce inequality between groups, the k index is a better indicator.

Proof. The ordering of Lorenz curves based on the k index is not the same as the
ordering based on the Gini index. While the Gini index is influenced by transfers only
within the poor or rich population, the ranking based on the k index is influenced
only by transfers between the two groups. This implies that if the objective is to
reduce inequality between the groups, then the k-index is a more appropriate measure
to use.

3.6. Exemplary Calculations of the k Index

Here, we show calculations of some simple continuous and discrete wealth distribution
functions. The majority of this subsection is adopted from [9].

1. Uniform wealth distribution: Consider a case in which the uniform distribution (F) is
defined for [a, b], where 0 ≤ a < b < ∞. Then, the k index is given by,

ku =
(3a + b) +

√
5a2 + 6ab + 5b2

2(b− a)
, (21)

and the normalized k index is given by,

Ku =
−2(a + b) +

√
5a2 + 6ab + 5b2

(b− a)
. (22)

2. Exponential wealth distribution: For the exponential distribution (FE), the complemen-

tary Lorenz function is given by L̂E(p) = (1− p)
[
1 + ln

(
1

1−p

)]
. One can show that

the k-index is kE ' 0.6822; hence, the normalized k index is KE ' 0.3644.
3. Pareto wealth distribution:For the Pareto distribution (FP,α), the complementary Lorenz

function is given by LP,α(p) = (1− p)1− 1
α . The k index is therefore a solution to the

following equation,
(1− kP,α)

1− 1
α = kP,α. (23)

It is difficult to provide a general solution to this equation. However, we have an
interesting observation in this context. If α = ln 5

ln 4 ' 1.16, then the k index is kP,α = 0.8,
corresponding to the Pareto principle or the 80/20 rule. Also note that the normalized
k index is KP,α = 0.6.

4. Discrete wealth distribution: Consider any discrete random variable with the distri-
bution function (FG) discussed above for which the Lorenz function is given by
Equation (12). To obtain the explicit form of the k index, one can first apply a simple al-
gorithm to identify the interval of the form [N(g− 1), N(g)) defined for g ∈ {1, . . . , G}
in which the k index can lie.
Since N(G) = M(G) = 1, if we have N(G− 1) + M(G− 1) < 1 in some step, then
in the next step, this algorithm has to end, since N(G) + M(G) = 2 > 1.
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Suppose that for any discrete random variable with the distribution function (FG)
discussed earlier, Algorithm 1 identifies g∗ ∈ {1, . . . , G} such that N(g∗)+ M(g∗) ≥ 1.
If N(g∗) + M(g∗) = 1, then kFG = N(g∗), and if N(g∗) + M(g∗) > 1, kFG is the
solution to the following equation:

kFG +

{
M(g∗ − 1) +

(
kFG − N(g∗ − 1)

)(Nxg∗

M

)}
= 1.

Thus, to derive the k index of any discrete random variable with distribution function
FG, we first my identify the group g∗ ∈ {1, . . . , G} such that kFG ∈ (N(g∗ − 1), N(g∗)]
(using Algorithm-1); then, using g∗, we obtain the following value of kFG :

kFG =

{
N(g∗) if N(g∗) + M(g∗) = 1,

µG+N(g∗)xg∗−M(g∗)
µG+xg∗

if N(g∗) + M(g∗) > 1.
(24)

Algorithm 1

Step 1: Consider the smallest g1 ∈ {1, . . . , G} such that N(g1) ≥ 1/2 and consider the
sum of N(g1) + M(g1). If N(g1) + M(g1) ≥ 1, then stop, and kFG ∈ (Ng1−1, N(g1)];
in particular, kF = N(g1) if and only if N(g1) + M(g1) = 1. Instead, if N(g1) +
M(g1) < 1, then go to Step 2, consider the group g1 + 1, and repeat the process.
...

Step t: Having reached Step t means that in Step (t− 1), we had N(g1 + t− 1) + M(g1 +
t− 1) < 1. Therefore, consider the sum of N(g1 + t) + M(g1 + t). If N(g1 + t) +
M(g1 + t) ≥ 1, then, stop; kFG ∈ [N(g1 + t− 1), N(g1 + t)), and, in particular, kF =
N(g1 + t) if and only if N(g1 + t) + M(g1 + t) = 1. If N(g1 + t) + M(g1 + t) < 1,
then proceed to Step (t + 1).

4. Analytical Studies on the Emerging Coincidence of the Gini and Kolkata Indices
4.1. A Landau-like Phenomenological Expansion of the Lorenz Function

Before going into specific forms of the Lorenz curve and their corresponding inequal-
ity indices, we will first outline an attempt to achieve a Landau-like phenomenological
expansion of the Lorenz function that obeys the abovementioned properties (see, e.g., [17]).
In particular, as a minimal non-trivial expansion, we could write

L(p) = Ap + Bp2, (25)

where A > 0, B > 0, and A + B = 1. It then follows that the calculation of g = 1−

2
1∫

0
L(p)dp and k = 1− L(k) gives

k =
(3g− 2)±

√
(2− 3g)2 + 12g
6g

, (26)

which, in the limit of g→ 0, gives k = 1/2+ 3g/8, which implies that if a situation arises in
which k = g, then k = g = 0.8, which is the Pareto value. In later sections, we will discuss
the actual situations and data in models under conditions of unrestricted competition.

4.2. Some Typical Power Law Forms of Lorenz Functions

An interesting observation is made when the Lorenz curve is parameterized through
a power law curve in p and when the respective Lorenz curve’s Gini index and k index are
plotted. When the power law index is increased, we observe that the values of the Gini and
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k indices converge towards each other and meet at a point around 0.87, which is not equal
to 1.

Here, we consider a set of Lorenz functions with the functional form L(p) = pn, where
p ranges within the interval [0, 1], and n is a positive integer greater than or equal to one.
For this family of functions, we can derive the corresponding Gini index gn, which is
equal to (n− 1)/(n + 1). To investigate this relationship further, we tabulated the Lorenz
functions (L(p)) for n values ranging from 1 to 20 and computed their associated Gini index
(gn) and k index (kn). The results of our calculations are presented in Table 1.

Table 1. The set of Lorenz functions of the form L(p) = pn with p ranging within the interval [0, 1]
and n values ranging from 1 to 20.

n L(p) = pn gn kn

(n = 1) p 0 1
2

(n = 2) p2 1
3

√
5−1
2 ' 0.618

(n = 3) p3 1
2 0.682

(n = 4) p4 3
5 0.725

(n = 5) p5 0.667 0.755

(n = 6) p6 0.714 0.778

(n = 7) p7 0.750 0.797

(n = 8) p8 0.778 0.812

(n = 9) p9 0.800 0.824

(n = 10) p10 0.818 0.835

(n = 11) p11 0.833 0.844

(n = 12) p12 0.846 0.853

(n = 13) p13 0.857 0.860

(n = 14) p14 0.867 0.866

(n = 15) p15 0.875 0.872

(n = 16) p16 0.882 0.877

(n = 17) p17 0.889 0.882

(n = 18) p18 0.895 0.886

(n = 19) p19 0.900 0.890

(n = 20) p20 0.905 0.894

Table 1 shows that if n = 13, then g13 ' 0.857 < k13 ' 0.860, and if n = 14,
then g14 ' 0.867 > k14 ' 0.866, implying that coincidence takes place for
n ∈ (13, 14) (see in Figure 3). The coincidence between the Gini index and the k index
occurs at n∗ ∈ (n1 = 13.82986, n2 = 13.82987); hence,

gn∗ = kn∗ ∈ (gn1 = 0.8651369, gn2 = 0.8651370) ∈
(

6
7

,
13
15

)
. (27)
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Figure 3. Graph of the Gini index (g) versus the k index (k), where the orange line represents the
equality line (g = k). The black dots indicate the (g, k) values for the Lorenz function, L(p) = pn, and n
ranges from 1 to 20. The inset shows the Lorenz curves for L(p) = p2 (red curve), L(p) = p13 (blue
curve), and L(p) = p14 (green dashed curve), with their corresponding k-index values (k1 ' 0.618,
k2 ' 0.860, and k3 ' 0.866, respectively). This figure is adopted from Banerjee et al. (2022) [15].

The above study shows that there is no positive integer (n) for which the g and k index
values coincide, and if n represents a positive real number, then there exists a value of
n = n∗ for which these index values coincide.

4.3. Some Generic Forms of Lorenz Functions

Therefore, with the above exercise, we observe a specific parameterized Lorenz func-
tion for which the Gini and k indices become equal. For more generic Lorenz functions,
this equality of the Gini and k indices is exemplified in Table 2 (also see Figure 4).

In this review article, we examine the properties of finite polynomial Lorenz functions
through the seven cases presented in Table 2. The first case (1) has already been addressed,
where a1 = . . . = an−1 = 0 and an = 1. In case (2), a1 = . . . = an = 1/n, which results
in a coincidence value of approximately 0.869 for some value between 65 and 66. This
coincidence value is higher than that obtained in case (1). In case (3), a1 = (n − 1)/n
and a2 = . . . = an = 1/[n(n − 1)]. Since the weight a1 is relatively high, k is close to
1/2; therefore, there is no coincidence between the Gini index and the k index. In case
(4), an = (n − 1)/n and a1 = . . . = an−1 = 1/[n(n − 1)], resulting in a coincidence
value of approximately 0.874 for some value between 17 and 18, which is higher than
that in case (2). In case (5), am = [6m(n + 1−m)]/[n(n + 1)(n + 2)] for all m = 1, 2, . . . , n,
and the coincidence value is 0.874 for some number between 40 and 41, which is not
an improvement compared to case (4). In case (6), am = [2(m + 1)]/[n(n + 3)] for all
m = 1, 2, . . . , n, and the coincidence value is 0.877 for some value between 29 and 30. Finally,
in case (7), the maximum coincidence value of 0.881 is achieved for some value between
77 and 78, where am = ∑n

m=1[ln(n + 1−m)/{∑n
r=1 ln(n + 1− r)}] for all m = 1, 2, . . . , n.

Overall, our analysis shows that the coincidence value is less than 8/9 (approximately 0.88)
for all seven cases discussed in Table 2.

Coincidentally with the data from different scenarios, the inequality in those scenarios
reaches a maximum point around 0.87 before dropping.
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Table 2. Different polynomial Lorenz functions (adopted from Banerjee et al. [15]).

Case L(n,a)(p) g(n,a) = k(n,a) Interval of n

(1) pn 0.865 (13, 14)

(2)
n
∑

m=1

(
1
n

)
pm 0.869 (65, 66)

(3)

{
(n−1)

n

}
p +

n
∑

m=2

{
1

n(n−1)

}
pm

Impossibility –

(4)

n−1
∑

m=1

{
1

n(n−1)

}
pm +{

(n−1)
n

}
pn

0.874 (17, 18)

(5)
n
∑

m=1

{
6m(n+1−m)
n(n+1)(n+2)

}
pm 0.874 (40, 41)

(6)
n
∑

m=1

{
2(m+1)
n(n+3)

}
pm 0.877 (29, 30)

(7) n
∑

m=1

 ln(n+1−m)
n
∑

r=1
ln(n+1−r)

pm 0.881 (77, 78)

Figure 4. The plot of the Gini index (g) versus the k index (k), where the orange line corresponds to
the g = k line. The black dots represent (g, k) values for several simple Lorenz functions, as listed
in Table 2. The black dots tend to converge towards the g = k line higher values of g. In the inset,
two different Lorenz curves are shown for cases (4) and (7) from Table 2. The red curve represents
the Lorenz curve for case (4) with a k-index value of k1 ' 0.682, while the blue curve represents the
Lorenz curve for case (7) with a k-index value of k2 ' 0.833. These results provide insight into the
relationship between the Gini index and the k index, as well as the behavior of these measures across
different Lorenz curves (adopted from [15]).

5. Real-World Data Indicating the Convergence of the Gini and Kolkata Indices in
Various Socioeconomic Contexts

In this section, we investigate the emergence of pervasive inequality as an observable
example of emergent properties in different socioeconomic systems. These systems exhibit
universal characteristics of the the Gini (g) and Kolkata (k) inequality indices, as shown
by real data collected from diverse social and economic systems. Our data collection and
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analysis were completed before the end of 2021. It is evident that these systems show
emergent properties when their dynamics are not externally fine-tuned. In the current
situation, this leads to an environment of unrestricted competition. To illustrate this
phenomenon, we consider a range of socioeconomic systems, including income, income tax
data, box office earnings from Hollywood (US) and Bollywood (India), daily Bitcoin price
fluctuations, election candidates (vote shares), universities (excellence/citation sharing),
publications by authors (citation shares), wars or social conflicts (human death shares), and
sports (Olympic medal share), among others. These systems demonstrate the emergence of
significant and widespread inequality indices, which we explore in detail in this section.

5.1. Socioeconomic Disparities: An Analysis of Income, Income Tax, and Box Office Earnings Data

In a report by the United Nations Development Program [18], it was found that the
global distribution of income is highly unequal, with the top 20% of the world’s population
receiving 82.7% of the world’s income. Despite concerns that the top 1% of wealthy
individuals possess 99% of the world’s wealth (as in ‘Occupy Wall Street’ protests), this
observation suggests that 82% of the world’s wealth is actually owned by 18% of the
population. To further explore this issue, we analyzed data from the IRS (US) [19,20] on the
cumulative income of the poorest (p) fraction of people over a period of 36 years (1983–2018)
and calculated the Lorenz function (L(p)). We also computed the Gini (g) and Kolkata (k)
indices for each year (see Figure 5).

We present a visual representation of the analysis conducted on the IRS income and tax
data [19,20] for a period of 36 years (1983–2018) in Figure 6. The graph depicts a consistent
increase in the inequality indices (g and k) over the years, which converge towards a value
of 0.87.

Similarly, we extend our analysis to the yearly income generated by the film industry
in Hollywood (USA [21]) and Bollywood (India [22]) for a period of 9 years (2011–2019).
Table 3 and Figure 7 demonstrate the results of our analysis of the income data for these
two film industries and show that both in Hollywood and in Bollywood, the box-office
income inequality index (k) increases, on average, to 0.88 and 0.83, respectively.

Figure 5. Plot of the Kolkata index (k) against the Gini index (g) for income and income tax data
extracted from IRS (USA) data [19,20] from the years 1983 to 2018. The data were obtained from the
corresponding Lorenz functions (L(p)) for each of these 36 years (adopted from [15]).



Entropy 2023, 25, 735 18 of 36

Table 3. An analysis of income inequality in box office earnings for movies released during the period
of 2011–2019 in two major film industries, Hollywood (USA) and Bollywood (India). Data taken from
refs. [21,22].

Movie
Box Office Collection

from Hollywood (USA) Movies

Release Total Gini Kolkata
Year Movies (g) (k)

2010 651 0.87 0.86

2011 730 0.87 0.87

2012 807 0.89 0.88

2013 826 0.90 0.88

2014 849 0.90 0.88

2015 847 0.91 0.89

2016 856 0.90 0.89

2017 852 0.91 0.89

2018 993 0.92 0.90

2019 911 0.92 0.90

Movie
Box Office Collection

from Bollywood (India) Movies

Release Total Gini Kolkata
Year Movies (g) (k)

2010 139 0.77 0.81

2011 123 0.78 0.82

2012 132 0.78 0.81

2013 136 0.76 0.79

2014 145 0.8 0.82

2015 166 0.8 0.82

2016 215 0.83 0.83

2017 251 0.85 0.84

2018 218 0.84 0.85

2019 246 0.85 0.86
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Figure 6. Trend of the Gini (g) and Kolkata (k) indices over time (year) for the US economy using
IRS data [19,20]. The graph clearly shows an increasing trend in the inequality measures over time,
indicating a decline in public welfare and a shift towards an SOC state of unrestricted competition.
The value of k in the tax data, which is argued to be a better indicator of the prevailing inequality
status, surpasses the Pareto value of 0.80 and is predicted to reach 0.87, similar to other socioeconomic
systems (e.g., movie income or citations) in which public welfare programs are completely absent
(this figure is adopted from [15]).

Figure 7. Scatter plot of the Kolkata index (k) versus the Gini index (g) for box office income obtained
from Hollywood (USA, data source: [21]) and Bollywood (India, data source: [22]) over a period of
9 years from 2011 to 2019. The plot provides a comparative analysis of the inequality measures for
these two major film industries (adopted from [15]).

In this case, we show that almost 88% of box office income share comes from only
12% of Hollywood movies measured from 2011 to 2019. Similarly, almost 83% of box office
income share comes from only 17% of Bollywood movies measured from 2011 to 2019.

5.2. Inequality in Bitcoin Value Fluctuations: A Data Analysis Study

Bitcoin is a decentralized cryptocurrency that operates on a ledger system without
any central bank control. Its introduction in 2008 and adoption in 2009 have made it the
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first and largest cryptocurrency, with a market value surpassing USD 1.03 trillionas of
November 2021, accounting for 2.9% of the world’s total narrow money supply. While
its decentralized nature has made it susceptible to market volatility, Bitcoin serves as an
example of unrestricted competition in currency markets.

In this study, we analyze the fluctuation of Bitcoin’s value, which is measured in
USD, by collecting daily price data from 1 January 2010 to 24 November 2021, using data
obtained from [23]. To investigate its value fluctuation, we calculate the absolute value
of the price changes in consecutive days and collect the fractional closing price changes,
except for a few days up to a date t (>t0). We then generate the Lorenz curve (refer to
Figure 8) for the closing price data up to a time (t (>>t0)) and proceed to estimate the g
and k indices as discussed in Figure 9.

Figure 8. The Lorenz function (curve) depicts the distribution of the difference in the closing price of
Bitcoin for consecutive days (adopted from [15]).

Figure 9. (Left): A graphical representation of the Kolkata index (k) plotted against the Gini index (g)
for the statistical analysis of the daily Bitcoin price. (Right): temporal variation of the g and k indices.
For comparison, a reference value of approximately 0.87 is provided in the figure (adopted from [15]).

Figure 9 demonstrates that g and k exhibit a pattern of repeatedly approaching each
other near the value of 0.87.

5.3. Inequality Analysis of Vote Data for Election Contestants

In this subsection, we analyze the inequality of vote shares among the candidates in
the Indian parliamentary elections held in 2014 and 2019. Table 4 demonstrates that there
exists a high level of inequality in the distribution of vote shares. The Gini and Kolkata
indices were found to be 0.83 and 0.86 for the 2014 election and 0.85 and 0.88 for the 2019
election, respectively. The values of these indices are similar to the value of approximately
0.87 observed in the case of unrestricted competition.
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Table 4. Gini (g) and Kolkata (k) index values obtained from the Lorenz function (L(p)) for the vote
shares in the Indian parliamentary elections held in the years 2014 and 2019, where the number of
contesting candidates was over 8000 in each year. The data used for the analysis were obtained from
references [24,25].

Year Total Voters g k

2014 5× 108 0.83 0.86
2019 6× 108 0.85 0.88

5.4. Inequality Analysis for Citation Data of Different Journals and Universities

Data obtained from the ISI Web of Science [26] show that the citations of the papers
published from different leading universities or institutions and leading journals are also
unequal; here, we take the average value from 1980 to 2010 (see Tables 5–7). Table 8 shows
that the most successful 18–25% of papers published by different universities or institutes
and journals received 82–76% of citations.

Table 5. Gini and Kolkata indices for citation inequalities of publications by authors from selected
universities analyzed in December 2013 using data obtained from the ISI Web of Science (adapted
from [7,27]).

Inst./Univ. Year

ISI Web of Science Data

Np Nc

Index Values

g k

Melbourne

1980 866 16,107 0.67 0.75

1990 1131 30,349 0.68 0.75

2000 2116 57,871 0.65 0.74

2010 5255 63,151 0.68 0.75

Tokyo

1980 2871 60,682 0.69 0.76

1990 4196 108,127 0.68 0.76

2000 7955 221,323 0.70 0.76

2010 9154 91,349 0.70 0.76

Harvard

1980 4897 225,626 0.73 0.78

1990 6036 387,244 0.73 0.78

2000 9566 571,666 0.71 0.77

2010 15,079 263,600 0.69 0.76

MIT

1980 2414 101,929 0.76 0.79

1990 2873 156,707 0.73 0.78

2000 3532 206,165 0.74 0.78

2010 5470 109,995 0.69 0.76

Cambridge

1980 1678 62,981 0.74 0.78

1990 2616 111,818 0.74 0.78

2000 4899 196,250 0.71 0.77

2010 6443 108,864 0.70 0.76

Oxford

1980 1241 39,392 0.70 0.77

1990 2147 83,937 0.73 0.78

2000 4073 191,096 0.72 0.77

2010 6863 114,657 0.71 0.76
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Table 6. Gini and Kolkata indices for citation inequalities of publications by authors from selected
Indian universities/institutes analyzed in December 2013 using data obtained from the ISI Web of
Science (adapted from [7]).

Inst./Univ. Year

ISI Web of Science Data

Np Nc

Index Values

g k

SINP

1980 32 170 0.72 0.74

1990 91 666 0.66 0.73

2000 148 2225 0.77 0.79

2010 238 1896 0.71 0.76

IISC

1980 450 4728 0.73 0.78

1990 573 8410 0.70 0.76

2000 874 19,167 0.67 0.75

2010 1624 11 497 0.62 0.73

TIFR

1980 167 2024 0.70 0.76

1990 303 4961 0.73 0.77

2000 439 11,275 0.74 0.77

2010 573 9988 0.78 0.79

Calcutta

1980 162 749 0.74 0.78

1990 217 1511 0.64 0.74

2000 173 2073 0.68 0.74

2010 432 2470 0.61 0.73

Delhi

1980 426 2614 0.67 0.75

1990 247 2252 0.68 0.76

2000 301 3791 0.68 0.76

2010 914 6896 0.66 0.74

Madras

1980 193 1317 0.69 0.76

1990 158 1044 0.68 0.76

2000 188 2177 0.64 0.73

2010 348 2268 0.78 0.79
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Table 7. Gini and Kolkata indices for citation inequalities of publications in selected science journals
in December 2013 using data obtained from the ISI Web of Science (adapted from [7]).

Inst./Univ. Year

ISI Web of Science Data

Np Nc

Index Values

g k

Nature

1980 2904 178,927 0.80 0.81

1990 3676 307,545 0.86 0.85

2000 3021 393,521 0.81 0.82

2010 2577 100,808 0.79 0.81

Science

1980 1722 111,737 0.77 0.80

1990 2449 228,121 0.84 0.84

2000 2590 301,093 0.81 0.82

2010 2439 85,879 0.76 0.79

PNAS(USA)

1980 - - - -

1990 2133 282,930 0.54 0.70

2000 2698 315,684 0.49 0.68

2010 4218 116,037 0.46 0.66

Cell

1980 394 72,676 0.54 0.70

1990 516 169,868 0.50 0.68

2000 351 110,602 0.56 0.70

2010 573 32,485 0.68 0.75

PRL

1980 1196 87,773 0.66 0.74

1990 1904 156,722 0.63 0.74

2000 3124 225,591 0.59 0.72

2010 3350 73,917 0.51 0.68

PRA

1980 639 24,802 0.61 0.73

1990 1922 54,511 0.61 0.72

2000 1410 38,948 0.60 0.72

2010 2934 26,314 0.53 0.69

PRB

1980 1413 62,741 0.65 0.74

1990 3488 153,521 0.65 0.74

2000 4814 155,172 0.59 0.72

2010 6207 70,612 0.53 0.69

PRC

1980 630 19,373 0.66 0.75

1990 728 15,312 0.63 0.73

2000 856 19,143 0.57 0.71

2010 1061 11,764 0.56 0.70

PRD

1980 800 36,263 0.76 0.80

1990 1049 33,257 0.68 0.76

2000 2061 66,408 0.61 0.73

2010 3012 40,167 0.54 0.69



Entropy 2023, 25, 735 24 of 36

Table 7. Cont.

Inst./Univ. Year

ISI Web of Science Data

Np Nc

Index Values

g k

PRE

1980 - - - -

1990 - - - -

2000 2078 51,860 0.58 0.71

2010 2381 16,605 0.50 0.68

Table 8. Average citation share of papers published from 1980 to 2010 by different universi-
ties/institutions and in journals [26].

Inst./Univ./Journ Papers (%) Citations (%) Comments

Harvard (Univ) 22 78 About 23% of the papers

MIT (Univ) 22 78 published by leading

IISC (Inst) 25 75 universities/institutions received 77%

TIFR (Inst) 23 77 of the citations.

About 19% of the papers

Nature (Journ) 18 82 published in leading

Science (Journ) 19 81 journals received 81% of

the citations.

Here, we compare the growth pattern of income inequality in the IRS data (USA) with
citation inequality for papers published by established universities (see Tables 5 and 6) pub-
lished in established journals (see Table 7) and by individual Nobel laureate scientists (see
Table 9). The data for these comparisons were taken from other publications (Refs. [26–28]).
Figure 10 displays the results, which show that the k and g inequality indices of all these
categories drift linearly toward a universal value of k = g ' 0.87 under unrestricted
competition. This suggests that approximately 87% of the wealth, citations, or votes are
possessed, earned, or won by 13% of people, papers, or election candidates, respectively.

Table 9. Statistical analysis of research papers and their citations for 20 Nobel laureates in economics
(Econ), physics (Phys), chemistry (Chem), and biology/physiology/medicine (Bio). The data were
collected from their individual Google Scholar pages with a verifiable email site during the first week
of January 2021. To be included in the analysis, the Laureates had to have at least 100 entries (papers
or documents), with the latest not before 2018. These Nobel laureates have published a range of
papers, from 111 to 3000, with Np denoting the number of papers. The laureates’ names appear in the
same form as they do on their respective Google Scholar pages (adopted from Ghosh et al. [28]).

Award Name of Recipient

Google Scholar Citation Data

Np Nc
Index Values

g k

NOBEL
Prize

(Econ.)

Joseph E. Stiglitz 3000 323,473 0.90 0.88

William Nordhaus 783 74,369 0.87 0.86

Abhijit Banerjee 578 59,704 0.89 0.88

Esther Duflo 565 69,843 0.91 0.89

Paul Milgrom 365 102,043 0.90 0.89

Paul Romer 255 95,402 0.96 0.93
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Table 9. Cont.

Award Name of Recipient

Google Scholar Citation Data

Np Nc
Index Values

g k

NOBEL
Prize

(Phys.)

Hiroshi Amano 1300 44,329 0.80 0.81

David Wineland 720 63,922 0.88 0.87

Gérard Mourou 700 49,759 0.82 0.83

Serge Haroche 533 40,034 0.87 0.86

A. B. McDonald 492 20,346 0.91 0.88

David-Thouless 273 47,452 0.89 0.87

F.D.M. Haldane 244 41,591 0.87 0.86

Donna Strickland 111 10,370 0.95 0.92

NOBEL
Prize

(Chem.)

Joachim Frank 853 48,077 0.80 0.81

Frances Arnold 682 56,101 0.75 0.79

Jean Pierre Sauvage 713 57,439 0.73 0.77

Richard henderson 245 27,558 0.84 0.84

NOBEL
Prize
(Bio.)

Gregg L. Semenza 712 156,236 0.81 0.82

Michael Houghton 493 49,368 0.83 0.83

Figure 10. Comparison of the Gini index (g) and Kolkata index (k) obtained from the analysis of IRS
(US) data on income, income tax, and income from movies from 1983 to 2018 (see inset in the figure)
and citations of papers published by scientists from universities or institutes; published in journals;
and by Nobel laureates in physics, chemistry, medicine, and economics (data taken from Refs. [27,28]).
The initial variation of k against g for both income and income tax and for citations by universities,
journals, and individual scientists is remarkably similar, showing quantitative agreement. The main
figure illustrates this comparison (adopted from [15]).

5.5. A Study of Inequality in Citations: An Analysis of Individual Authors and Award Recipients

In this section, we present two tables with statistical analysis of research papers and
their citations for 20 distinguished scientists who have won Nobel Prizes in economics,
physics, chemistry, and biology/physiology/medicine, as well as for several international
prize winners in mathematics and physics. Table 9 shows the analysis for Nobel laureates,
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while Table 10 presents the results for the international prize winners. The data were
collected from Google Scholar during the first week of January 2021, and the names of
the scientists are reported in the same format as they appear on their respective Google
Scholar pages.

Table 10. Citation data analysis for selected prize winners in Physics, mathematics, and social sciences.
The selected prize winners are recipients of the Dirac Medal, Boltzmann Medal, Fields Medal, and
John von Neumann Award. The analysis includes only those prize winners who have verified email
addresses and an updated Google Scholar page after 2018. The data were collected in the first week
of April 2021. For each individual scientist, the table reports the total number of papers (Np), total
citations (Nc), Gini index (g), and Kolkata index (k).

Award Name of Recipient

Google Scholar Citation Data

Np Nc
Index Values

g k

FIELDS
Medal
(Math.)

Terence Tao 604 80,354 0.88 0.86

Edward Witten 402 314,377 0.74 0.79

Alessio Figalli 228 5338 0.67 0.75

Vladimir Voevodsky 189 8554 0.83 0.85

Martin Hairer 181 7585 0.74 0.78

Andrei Okounkov 134 10,686 0.69 0.76

Stanislav Smirnov 79 4144 0.76 0.79

Richard E. Borcherds 61 5096 0.81 0.83

Ngo Bao Chau 44 1214 0.71 0.76

Maryam Mirzakhani 25 1769 0.57 0.74

ASICTP
DIRAC
Medal
(Phys.)

Rashid Sunyaev 1789 103,493 0.91 0.88

Peter Zoller 838 100,956 0.81 0.82

Mikhail Shifman 784 52,572 0.85 0.84

Subir Sachdev 725 58,692 0.83 0.82

Xiao Gang Wen 432 46,294 0.8 0.82

Alexei Starobinsky 328 47,359 0.81 0.82

Pierre Ramond 318 23,610 0.89 0.87

Charles H. Bennett 236 89,798 0.9 0.88

V. Mukhanov 208 27,777 0.85 0.84

M A Virasoro 150 12,886 0.9 0.87

BOLTZMANN
Award

(Stat. Phys.)

Elliott Lieb 755 76,188 0.86 0.85

Daan Frenkel 736 66,522 0.8 0.81

Harry Swinney 577 46,523 0.86 0.84

Herbert Spohn 446 25,188 0.79 0.8

Giovanni Gallavotti 446 15,583 0.86 0.84
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Table 10. Cont.

Award Name of Recipient
Google Scholar Citation Data

Np Nc
Index Values

g k

JHON Von
NEUMANN

Award
(Social Sc.)

Daron Acemoglu 1175 172,495 0.91 0.89

Olivier Blanchard 1150 113,607 0.91 0.89

Dani Rodrik 1118 136,897 0.9 0.89

Jon Elster 885 79,869 0.89 0.87

Jean Tirole 717 201,410 0.91 0.88

Timothy Besley 632 57,178 0.89 0.88

Maurice Obstfeld 586 73,483 0.9 0.88

Alvin E. Roth 566 54,104 0.87 0.86

Avinash Dixit 557 82,536 0.93 0.9

Philippe Aghion 490 119,430 0.85 0.85

Matthew O. Jackson 397 39,070 0.86 0.84

Emmanuel Saez 310 48,136 0.86 0.86

Mariana Mazzucato 236 12,123 0.87 0.86

Glenn Loury 226 13,352 0.92 0.9

Susan Athey 203 18,866 0.8 0.82

Figures 11 and 12 illustrate the inequality analysis for the 20 Nobel laureates and prize
winners. These figures demonstrate an ideal example of the dynamics of wealth inequality
without any external interventions or fine tuning. Furthermore, the Gini index (g) and the
Kolkata index (k) approach each other at a value of approximately 0.87 in both cases. This
indicates that the results are consistent and robust across groups of distinguished scientists.

Figure 11. Plot of the values of the Kolkata (k) index versus the corresponding Gini (g) index for
the citation statistics of publications by 20 selected Nobel laureates, as shown in Table 9. The plot
suggests a coincidence value of k = g = 0.86± 0.06, as adapted from a previous study [27].
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Figure 12. Plot of the Kolkata (k) index versus the Gini (g) index for the citation inequalities in papers
published by individual prize winners. The data were extracted from the corresponding Lorenz
function (L(p)) for each scientist and are presented in Table 10 (adopted from [15]).

In Figures 11 and 12, we see that an average 15% of the papers published by successful
individual authors received about 85% of his/her total citations. The Gini and k indices
coincide around '0.87.

5.6. Similarity in the Behavior of the Gini and Kolkata Indices across Multiple Domains: A
Universality Study

In this section, we aim to consolidate the findings on the Gini (g) and Kolkata (k)
indices from previous subsections. We gathered estimates of g and k from various sources,
including IRS (US) data [19,20] on household income and income tax spanning 1983–2018;
the citation data from papers published by 40 international prize winners (Fields medalists,
ASICTP Dirac medalists, Boltzmann medalists, and von Neumann awardees), as shown in
Table 10; and the vote share data from the Indian parliamentary elections in 2014 and 2019,
displayed in Table 4. We present the compiled results in Figure 13. The collective analysis
of all these results reveals a universal trend of inequality growth across various social
institutions, markets (income and wealth), academic institutions (citations), and elections
(vote shares among the candidates). Furthermore, the analysis shows that the measures of
inequality converge to k = g = 0.87± 0.02.

5.7. Inequality Analysis for Manmade Conflicts and Natural Disasters

With respect to manmade conflicts such as war, battle, armed conflict, terrorism,
murder, etc., an average of 85% of human deaths are caused by 15% of social conflicts,
including war (see Table 11).

Table 11. Estimated Gini (g) and Kolkata (k) index values applied to manmade conflicts such as wars
and acts of terrorism. Data were adapted from a previous study [29] and represent death counts as a
measure of inequality.

Type of Conflict g Index k Index

War 0.83 ± 0.02 0.85 ± 0.02

Battle 0.82 ± 0.02 0.85 ± 0.02

Armed conflict 0.85 ± 0.02 0.87 ± 0.02

Terrorism 0.80 ± 0.03 0.83 ± 0.02

Murder 0.66 ± 0.02 0.75 ± 0.02
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Figure 13. A compiled plot of the Kolkata index (k) values versus corresponding Gini index (g) values
for several cases analyzed in previous subsections, including household income and income tax
data (Figures 5 and 6), movie income (Figure 7), citation inequalities among individual prize winners
(Table 10, Figure 12), and vote share inequalities among election contestants (Table 4). The results
suggest that there may be universal inequality measures across social institutions, as the data points
in the plot converge towards a common value of k = g = 0.87± 0.02. This observation has important
implications for understanding the nature and extent of wealth inequality across different domains
of society (adopted from [15]).

We also show that for natural disasters such as earthquakes, floods, tsunamis, etc.,
almost 95% of human deaths are caused by 5% of disasters (see Table 12).

Table 12. Estimated values of the Gini index (g) and Kolkata index (k) as measures of inequality in
death counts resulting from natural disasters such as earthquakes and tsunamis (adapted from [29]).
The data presented here provide valuable insights into the distribution of fatalities resulting from nat-
ural disasters and the effectiveness of these inequality indices in capturing the severity of such events.

Type of Disaster g Index k Index

Earthquake 0.94± 0.02 0.95± 0.02

Flood 0.98± 0.02 0.98± 0.02

Tsunami 0.93± 0.02 0.94± 0.02

5.8. Inequality Analysis in Computing Systems

The field of computer science has long recognized the adage that “20% of the code
contains 80% of the errors”, as noted in [30]. Consequently, software developers have a
vested interest in identifying and rectifying this critical 20% of the codebase in order to
enhance the quality of the software. In a related finding, researchers have also observed
that approximately 80% of the functionality of a given software program can typically
be implemented in just 20% of the total development time. Conversely, the remaining
20% of the software’s features, which represent the most challenging and time-consuming
aspects of the coding process, often require the remaining 80% of the total development
time. This factor is commonly taken into account when estimating the cost and timeline for
software development using the constructive cost model (COCOMO) approach. Therefore,
in computing, we see that 20% of the code contains 80% of the errors.

5.9. Inequality Analysis for Sports: Olympic Medal Share

In recent discussions, scholars have posited that the concept of inequality also applies
to the field of sports, where a few top performers often dominate the majority of victories.
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This phenomenon is exemplified in the sport of baseball, where wins above replacement
(WAR) is used as a composite metric to gauge a player’s overall importance to a team.
Recent statistical analyses have revealed that a mere 15% of baseball players accounted for
85% of the total wins, while the remaining 85% of players were responsible for generating
only 15% of the wins [31]. These findings provide compelling evidence for the existence of
significant inequality within the sport, indicating that a small minority of players drive the
majority of team successes. The inequality statistics (reflected in the Gini and Kolkta index
values) for the country-wise inequalities in Olympic medal wins are shown in Table 13.
Typically, 13 to 16 percent of countries win 84 to 87 percent of Olympic medals (gold, silver,
or bronze) in the Summer Olympics (see Table 13; statistics for the last four Olympics from
ref. [32]).

Table 13. Inequality statistics of Olympic medals and winning countries (2008–2020). Typically, the
number of medals (gold, silver, or bronze) for each year is about 300, with around 200 contesting
countries. When the cumulative fraction of medals is plotted against the fraction of countries winning
them (ordered from the fewest to most medals won), the result is the Lorenz curve, based on which
we estimate the Gini (g) and Kolkata (k) indices for each year. As the level of competition is extremely
high in the Olympics (with no welfare support for equality in achievements among contestants),
typically, we find 13 to 16 percent of countries win 84–87 percent of medals (gold, silver, or bronze) in
any Olympics.

Year Medal g k

2020

Gold 0.87 0.85

Silver 0.86 0.85

Bronze 0.84 0.84

Total 0.84 0.83

2016

Gold 0.88 0.87

Silver 0.86 0.85

Bronze 0.85 0.85

Total 0.85 0.84

2012

Gold 0.89 0.87

Silver 0.87 0.85

Bronze 0.84 0.84

Total 0.85 0.85

2008

Gold 0.89 0.87

Silver 0.85 0.84

Bronze 0.86 0.85

Total 0.85 0.84

6. Growing Avalanche Size Inequalities in Sand Pile Models: Universality near the
SOC Point

All the observations reported so far indicate that the k index reaches a critical value
of k = g before the inequality falls again. Such an observation implies that the k = g
point can be characterized as a critical point for society. Further observations of physical
self-organized critical systems indicate the same kind of behavioral pattern [16]. As all of
the above observations were made for unrestricted competitive scenarios in which only the
winners obtain all the facilities, we can expect that in a real society, such a point exists and
that inequality can never exceed that point because of government subsidies that aid the
poor population.
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According to the self-organized criticality (SOC) framework, the critical point is an
attractor; we found that (see, for example, [16]) immediately preceding the SOC point,
the avalanche size inequality attains a value approximately equal to 0.86. This observation
is consistent with our observations discussed in the previous sections.

Here, we present the results of a comparison of the k and g indices for two differ-
ent sand pile models, namely the Bak–Tang–Wiesenseld (BTW) model and the Manna
model [16]. Figure 14 illustrates the k versus g relationship for these models, with panel
(a) showing the results for the BTW model and panel (b) showing the results for the Manna
model. The plots depict a linear relationship between k and g for the initial part of the
curve. For the BTW model, the slope of the linear fit is 0.3876, while for the Manna model,
the slope is slightly lower, at 0.3815. The intersection of the plots with the line of equality
(k = g) occurs at 0.8628 and 0.8556 for the BTW and Manna models, respectively. It is
important to note that these results were obtained for a system size of L× L = 512× 512.

Figure 14. The relationship of the k index versus the Gini index (g) for two sand pile models: (a) the
BTW model and (b) the Manna model. In both cases, the initial portions of the curves follow a straight
line with slightly different slopes, as demonstrated in the figures. The crossing points of the curves
with the line g = k are 0.8628 and 0.8556 for the BTW and Manna models, respectively. This figure
was adapted from [16].

The relationship between the Kolkata index (k) and the Gini index (g) is also analyzed
here for two other SOC models, namely the Edwards–Wilkinson (EW) model and the fiber
bundle model (FBM) [16]. In Figure 15a, the k values are plotted against their corresponding
g values for the EW model. A linear relationship is observed in the initial section of the plot,
with a slope of 0.40. Similarly, in Figure 15b, the k versus g plot is shown for the centrally
loaded fiber bundle model. In this case, the initial linear slope is measured to be 0.42. These
results suggest that the k index and Gini index are linearly related in the early stages of
both models, with slightly different slopes.

In the several SOC models considered here, we observe a remarkably consistent
coincidence of the avalanche size inequality indices (g and k) at around g = k ' 0.86
immediately preceding the arrival of the SOC point. This is also consistent our previous
observations in the inequality measures in various socioeconomic contexts. We consider
this to be noteworthy.
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Figure 15. The relationships between the k index and Gini index (g) for the EW and centrally loaded
fiber bundle models. Figure (a) shows the k versus g plot for the EW model, with an initial slope of
0.40. Figure (b) displays the same plot for the centrally loaded fiber bundle model, with an initial
slope of 0.42. The figure is adapted from [16].

7. Summary and Discussion

Disparities between social classes are constantly present (see, e.g., [33,34] for some
recent discussions), which has been proposed that it is an emergent trait of complex
socioeconomic systems [35] with many interacting parts. It may be mentioned at this point
that allowing for a higher probability of exchange for the poor in conservative kinetic
exchange models induces (see, e.g., [36–38]), in a novel, self-organized way, a minimum
“poverty level”, thereby reducing inequality. Herein, we attempted to show that the
extreme social inequality we find in society is the result of built-in self-organized critical
dynamics. A self-organized criticality [11,39] framework has been proposed to explain the
evolutionary behavior of diverse systems, such as wealth distributions, financial markets,
cryptocurrencies, citation dynamics, etc. However, a major unresolved issue concerns
the appropriate quantification of the observed disparities and their potential universality
across systems. Pareto’s 80/20 law, which implies that 80% of the wealth ends up in the
hands of 20% of the richest (k = 0.80) members of society, has traditionally been used
as a benchmark for measuring the degree of extreme social inequality. Moreover, we
attempted to determine the amount of social and economic inequality in a number of very
competitive systems without any outside interventions to stop halt inequality among the
agents. This self-tuning feature of competitive dynamics in various social sectors suggests
similar inequality behavior in the SOC system. Herein, we studied a significant number
of socioeconomic systems through the framework of SOC architecture. This approach
has been used to analyze a range of systems, including financial markets [40], citation
evolution [39,41], cryptocurrencies [42], and political behavior [43], among others. Despite
the diversity of these systems, our analysis reveals that the behavior of inequality indices,
particularly the Gini (g) and Kolkata (k) indices, demonstrates near-universal characteristics
across socioeconomic systems. Specifically, we observe that these indices tend to converge
towards a value of approximately 0.87. This finding is particularly noteworthy, given that
similar behavior has been observed in SOC models of physical systems [16,44]. A recent
research publication [45] presented findings that highlight the high level of inequality in
group size distribution. The authors reported a g index value of 0.90 for both the theoretical
and empirical observations of group size distribution. We note the consistency of such a
high value of the g index with our observations.

In Section 2, we presented a chronological account of the development of social
inequality measures since 1896 and demonstrated their similarity to those in sand pile
models immediately prior to their respective self-organized critical (SOC) points. In
Section 3, we discussed the Lorenz curve, the Gini (g) index, and the Kolkata (k) index
in detail and presented proofs of their properties, as well as exemplary calculations. In
Section 4 of our review, we conducted an investigation into several analytical characteristics
of the Lorenz function (L(p)). Our analysis, supported by Tables 1 and 2, led us to the
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conclusion that for a wide range of plausible analytic forms of L(p), the values of the Gini
(g) and Kolkata (k) indices that correspond to coincidence points fall within the range
of 4/5 (equivalent to 0.80) to 8/9 (equivalent to 0.88 . . . ). This finding suggests that the
values of g and k are tightly constrained and are influenced by the analytic properties of
the Lorenz function (L(p)). In particular, in Section 5, we considered datasets accounting
for factors such as earnings from different sectors, Bitcoin price fluctuations, citations of
selected prize-winning scientists, and votes received by various candidates in elections. We
conducted an analysis of income data from multiple sources. Specifically, we examined
data from the Internal Revenue Service (IRS) in the United States, as well as income tax
data, over a period of 36 years spanning 1983 to 2018. The IRS data were obtained from
previous research [19,20]. Additionally, we investigated income data from the Hollywood
movie industry in the United States, which was sourced from a prior study [21], and data
from the Bollywood movie industry in India [22] for the time period ranging from 2011 to
2019. These data sources were analyzed in detail in Section 5.1 of our study. In Section 5.2,
we showed data for Bitcoin price fluctuations [23], and in Section 5.3, we examined
the vote share data pertaining to candidates who ran in parliamentary elections in
India during in 2014 and 2019. We conducted an analysis of this data with the aim
of exploring inequalities in the vote share among candidates [24,25]. In this research,
we present data on the citations of published papers from several prominent universities
and institutions, as well as leading journals, which can be found in Section 5.4 and are
cited in [7]. We also conducted an analysis of citation data from Google Scholar for
20 selected individuals who have been awarded Nobel Prizes in the fields of economics,
physics, chemistry, and biology/physiology/medicine, as well as individuals who have
been awarded the Fields Medal (mathematics), the Boltzmann Medal (physics),the ASICTP
Dirac Medal (physics), or the John von Neumann Award (social science) in various years.
We focused on individuals who have their own Google Scholar pages with “verified
email” addresses; the results of our analysis are presented in Section 5.5. We utilized
these data sources to investigate sectoral inequality and computed the associated Gini (g)
and Kolkata (k) indices. The results of our analysis are presented in Figures 5, 7 and 9–12
and summarized in Tables 3–10. We also compiled these findings into a single figure, shown
in Section 5.6 as Figure 13. Our analysis revealed a universal value of approximately 0.87
for the coinciding g and k indices, indicating an emerging trend of increasing disparities
under conditions of competition. Moreover, in Section 5.7, we investigated a similar trend
for manmade conflicts such as war, terrorism, etc., as well as for natural disasters such as
earthquakes, tsunamis, etc. (see Tables 11 and 12). In Sections 5.8 and 5.9, we discussed the
universality of the k index for computing systems and sports, respectively. The results of our
empirical investigation reveal a consistent pattern in the dynamical behavior of the Kolkata
index (k) and the Gini index (g) across various scenarios. Specifically, our findings indicate
that these inequality measures converge towards a universal value of k = g = 0.87± 0.02
in situations in which competitions are not subject to any restrictions. This trend was
observed consistently across all socioeconomic systems, highlighting the robustness and
universality of this phenomenon. When we talk about dynamics, we are referring to the
long-term changes and eventual saturation brought about in the aforementioned systems.
We presented a graphical representation of the g and k indices for the daily price fluctuations
of Bitcoin over the period of a decade from 2010 to 2021. As shown in Figure 9, our
findings suggest that the g and k indices tend to stabilize at a value of approximately 0.87,
which lends further support to our conclusions. This pattern suggests that without the
intervention of a central bank, such as in the case of national currencies, the inequality
indices for cryptocurrencies converge. Specifically, both g and k approach a value of
0.87 before decreasing. Our results indicate that the daily swings in the price of Bitcoin,
on average, do not exceed this limiting value (g = k ' 0.87). Table 13 (Section 5.9 on
Inequality Analysis for sports: Olympic medal share) shows that the k index value typically
ranges from 0.84 to 0.87, implying that 13 to 16 percent of countries win 84 to 87 percent of
Olympic medals.



Entropy 2023, 25, 735 34 of 36

We investigated the behavior of inequality indices over time and found that they have
not yet converged to the predicted attractor value of 0.87 that results from a self-organized
critical (SOC) state. However, our analysis presented in Figure 6 in Section 5.1 reveals that
both the Gini index (g) and the Kolkata index (k) have exhibited a steady increase over
time. This trend is likely attributable to the gradual reduction in public welfare programs
in the United States. Interestingly, our results demonstrate that the Pareto value of k = 0.80
has already been surpassed. It is possible to estimate that it will reach 0.87 if all of the
aforementioned public assistance programs are eliminated, thereby allowing participants
to enter a state of unrestricted competition. In Section 6, we discussed the SOC state of
different physical systems (such as the BTW model and Manna model) and calculated
their inequality indices (g and k) in terms of their growing avalanche sizes, showing the
universality trend, i.e., g = k ' 0.86 (Figures 14 and 15).

The social dynamics of competition take the index values of g = k ' 0.87, indicating
that roughly 87% of wealth, citations, votes, or Olympic medals are possessed, earned,
or won by 13% of the population, papers, election candidates, or (Olympic participant)
countries, respectively in cases of unrestricted competition in which no welfare support
towards equality is available. This may be a quantitative and universal (across all social
sectors) version of the 80/20 law (k = 0.80) observed by Pareto more than a century ago.
This property of the inequality indices is intrinsic to the SOC character of the underlying
dynamics, and it has been demonstrated to be present in a wide variety of SOC models in
physical science [16,44].

Previous studies [17,46] established that the Gini index (g) can be considered to
represent the information entropy of social systems, while the Kolkata index (k) can be
thought of as a representation of the inverse of the effective temperature of such systems.
An increase in k corresponds to a decrease in the average wealth of a society in circulation,
resulting in a decrease in temperature. In this study, we observed that the ratio of g/k, which
is equivalent to free energy, displays an identical value at multiple points (g = k ' 0.87 and
g = k = 1). These findings suggest the existence of a first-order-like phase transition [28]
at the point at which g = k ' 0.87. This reinforces the idea that the relationship between
the Gini and Kolkata indices can be analyzed from a thermodynamic perspective. This
inequality growth is entropy-driven, as conjectured in the context of self-organized sand
pile systems (see, e.g., [47,48]), similar to those explored herein.
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