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Abstract: Canonical Correlation Analysis (CCA) infers a pairwise linear relationship between two
groups of random variables, X and Y . In this paper, we present a new procedure based on Rényi’s
pseudodistances (RP) aiming to detect linear and non-linear relationships between the two groups.
RP canonical analysis (RPCCA) finds canonical coefficient vectors, a and b, by maximizing an RP-
based measure. This new family includes the Information Canonical Correlation Analysis (ICCA)
as a particular case and extends the method for distances inherently robust against outliers. We
provide estimating techniques for RPCCA and show the consistency of the proposed estimated
canonical vectors. Further, a permutation test for determining the number of significant pairs of
canonical variables is described. The robustness properties of the RPCCA are examined theoretically
and empirically through a simulation study, concluding that the RPCCA presents a competitive
alternative to ICCA with an added advantage in terms of robustness against outliers and data
contamination.

Keywords: Information Canonical Correlation Analysis; Kullback–Leibler divergence; mutual
information; Renyi’s pseudodistances; robustness; consistency

1. Introduction

Canonical Correlation Analysis (CCA) is a statistical technique used to identify and
measure associations among two sets of variables; in the following, denoted by Xq×1 and
Y p×1 (q ≤ p). It is appropriate in situations where multiple regression would be used
but where there are multiple intercorrelated outcome variables. Hence, it allows us to
summarize relationships into a lesser number of statistics while preserving the main facets
of those relationships. CCA was first considered in [1] and has been widely used in the
statistical literature; for example, to summarize relationships between sets of variables,
to reduce the dimensionality of data or to transform two sets of variables into a new dataset
of uncorrelated variables as a preprocessing step for the multiple linear regression model.
More insight about CCA can be found, e.g., in [2,3].

CCA looks for two direction vectors a, b (canonical vectors) such that the linear
combinations U = aTX and V = bTY , so called canonical variables, are (linearly) correlated
as much as possible. However, if a linear relationship does not exist between the pairs
aTX and bTY , CCA could fail in detecting these pairs of canonical vectors. In other words,
CCA can only detect linear relations between the canonical variables, but other functional
relationships may exist.

The linear restriction is a significant drawback of CCA when analyzing some real
data with highly non-linear relationships. For example, Oulai et al. [4] presented a real
situation with non-linear relationships between variables regarding the representation of a
hydrological process in the delineation of homogeneous regions. In their context, the two
groups of variables under consideration were hydrological variables and meteorological
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and/or graphical characteristics of watersheds, and their non-linear relationship depended
essentially on the physiographic characteristics of the watersheds. Additionally, Ref. [5] pre-
sented a nice application of non-linear CCA to seasonal climate forecasting. In [6], some real
life data with complex non-linear relationships that cannot be properly captivated by classi-
cal CCA are also presented. There is an extensive bibliography addressing non-linear CCA.
Without wishing to cite all the existing literature on the topic, we would like to mention
some interesting works on the subject: [7] (Chapter 6), [8–11] and references therein.

To shed light on this problem, let us consider the following situation described in [12]:
let X = (X1, X2)

T and Y = (Y1, Y2)
T be a pair of random vectors such that

X ∼ N (0, I), Y1 = X2
1 + Z, Y2 = Z,

with Z ∼ χ2
1 and independent from X. In this case, Cov(X, Y) = 02×2, and so the vectors X

and Y are uncorrelated (so they are linearly independent). Consequently, classical CCA
cannot detect that, indeed, Y1 is related (although not linearly) to X1, even if the variables
are not fully independent. On the other hand, as the pair (X, Y) does not follow a normal
distribution (and therefore uncorrelation does not imply independence), a hidden relation-
ship may exist (and indeed it does exist!) that has not been detected by CCA. Of course,
under normality, rejecting any linear correlation using CCA implies independence between
both variables.

It is not surprising that CCA fails in the previous example, as CCA focuses on “linear
trends”, but the true relation underlying it is quadratic. To overcome this drawback, in a
pioneer paper, Yin [12] proposed the use of the Kullback–Leibler divergence and developed
a new procedure called Informational Canonical Correlation Analysis (ICCA), aiming to also
detect non-linear relationships for linear combinations of the components.

Let U = aTX and V = bTY be linear combinations of X and Y defining a pairwise of
canonical variables, with a ∈ Rq and b ∈ Rp. We denote by fUV(u, v) the joint probability
density function (PDF) of (U, V), and, by fU(u) (resp. fV(v)), the marginal unidimensional
PDF of U (resp. V). From a statistical point of view, both canonical variables U and V
would be independent if their joint distribution coincides with the product of the marginal
PDF’s, fUV(u, v) = fU(u)× fV(v), and, conversely, a strong dependence between U and
V would result in a large statistical distance between the joint PDF and the product of
the marginals. A suitable divergence should then be adopted to measure such statistical
closeness of the two PDFs. The Kullback–Leibler divergence is the most commonly used
measure for distinguishing two distributions, and it has a great statistical importance in the
field of information theory.

The Kullback–Leibler divergence between fUV(u, v) and fU(u)× fV(v) is given as

DKL(a, b) := DKL( fUV , fU × fV) =
∫
R2

fUV(u, v) ln
fUV(u, v)

fU(u) fV(v)
dudv. (1)

The above divergence is not symmetric, so it quantifies the expected inaccuracy excess
from using fU × fV as a model when the actual PDF is fUV . That is, the inaccuracy caused
by assuming independence between the pair of canonical variables. Consequently, truly
independent canonical variables should minimize the Kullback–Leibler divergence in
Equation (1); conversely, functionally dependent canonical variables should maximize the
divergence. For more details about the Kullback–Leibler divergence, see [13].

In this vein, ICCA aims to identify q pairwise canonical variables ai ∈ Rq and bi ∈ Rp,
i ≤ q ≤ p such that DKL(ai, bi) = maxa, b DKL(a, b). However, the Kullback–Leibler
divergence is invariant under linear transformations, and so there are infinitely many
ways to define canonical vectors yielding the same objective function. Then, for identi-
fication, we constrain the canonical variables to have unit variance. Moreover, once a
relationship is identified by a pair of canonical variables, we expect to exclude its effect
from the consecutive canonical variables. For such a purpose, we also require that pairs of
canonical variables are uncorrelatated with any other pair. That is, ICCA finds q linearly
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independent pairs of canonical variables with unit variance maximizing (in decreasing or-
der) the corresponding Kullback–Leibler divergence. Mathematically, to compute each pair
of variables, we need to solve the optimization problem DKL(ai, bi) = maxa, b DKL(a, b)
subject to aT

i ΣXai = bT
i ΣYbi = 1 and aT

j ΣXai = bT
j ΣYbi = 0 for j = 1, . . ., i− 1, where ΣX

and ΣY denote the variance–covariance matrices of X and Y , respectively. We apply the
same for RP.

From Yin’s (2004) reinterpretation of the canonical analysis, several procedures based
on divergence and entropy measures have been proposed to reduce the limitations of CCA.
For example, Mandal et al. [14] considered (α, β) divergence measures defined in [15],
and Iaci and Sriram [6] used the density power divergence measures defined in [16] as a
measure of statistical closeness. In [17], canonical dependence based on the squared-loss
mutual information was studied. Other interesting results regarding ICCA can be seen
in [18–23].

Despite its popularity, the Kullback–Leibler divergence association measure is quite
sensitive to outlying observations, as pointed out in [24]. For outliers, we mean data
that behave very differently to expectations according to the law modeling the relation.
The main purpose of this paper is to extend the ICCA procedure to a wider family of
robust methods based on RP divergence, which remains competitive to ICCA in terms of
efficiency but provides a more stable estimation of the canonical vectors in the presence of
contamination in the data.

The RP family, parameterized by a tuning parameter τ controlling the trade-off be-
tween robustness and efficiency, was considered for the first time in Jones et al. [25]. Later,
Broniatowski et al. [26] demonstrated that RP is a proper divergence, positive for any two
densities and for all values of the tuning parameter [26,27], and it is null if (and only if)
both densities are the same. The theory in [26] for independent and identically distributed
random variables was extended to the case of independent but not identically distributed
random variables in [28]. They termed this family of pseudodistances as RP because of their
similarities with Renyi’s divergence measures Rényi (1961) [29]. Rényi’s pseudodistance
has shown promising behavior in other statistical problems, providing robust minimum RP
estimators with good asymptotic and robustness properties, and it includes the Kullback–
Leibler divergence as a particular case at τ = 0. For example, Toma and Leoni-Aubin [30]
considered efficient and robust measures for general parametric models based on RP and,
Toma et al. [31] later developed a new criterion for model selection based on the RP. In [27],
Castilla et al. introduced a family of Wald-type tests for testing the parameters in linear
regression models, and these results were later extended for generalized linear regression
models in [32,33]. Wald-type tests based on minimum RP estimators in bidimensional
normal populations were considered in [34]. Jaenada et al. [35] introduced and studied the
minimum RP estimators under restricted parameter spaces, which are of great statistical
interest in many practical applications such as hypothesis testing. Under the name of
γ-entropy, Fujisawa and Eguchi [36] applied RP to introduce robust estimators of general
parametric families. Motivated for the great performance of the minimum RP estimator on
those different statistical models in terms of robustness, we have adopted the RP divergence
to extend the ICCA procedure.

The rest of the paper is organized as follows. The Rényi’s Pseudodistance Canonical
Correlation Analysis (RPCCA) is introduced in Section 2, and some of its properties are
studied. Next, an estimation design for computing the canonical vectors in practice using
RPCCA is described in Section 3. In Section 4, the robustness of the RPCCA is theoretically
established. Section 5 describes a permutation test to determine the number of significant
canonical variables and thereby provide a dimension reduction method. In Section 6,
a Monte Carlo simulation study is carried out to empirically evaluate the performance
of the RPCCA and compare the proposed method with the ICCA in terms of estimation
accuracy and robustness. An example with real data is studied in Section 6.3. Finally, some
conclusions are drawn in Section 7.
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2. Rényi’s Pseudodistance Canonical Correlation Analysis

Given two multidimensional random variables X and Y, the RPCCA aims to identify two
direction vectors a and b (the canonical vectors), such that the corresponding canonical variables
U = aTX and V = bTY are as dependent as possible. Such dependency is measured in terms
of RP between their joint distribution and the product of their marginal distributions. The RP of
tuning parameter τ between the joint distribution of the bidimensional random variable (U, V)
and the product of their marginals, fU(u)× fV(v), is given for τ > 0 by (cf. [26]).

dτ(a, b) = dτ( fU × fV , fUV)

=
1

τ + 1
ln
∫
R2

f τ+1
U (u) f τ+1

V (v)dudv− 1
τ

ln
∫
R2

f τ
U(u) f τ

V(v) fUV(u, v)dudv

+
1

τ(τ + 1)
ln
∫
R2

f τ+1
UV (u, v)dudv.

Hence, the RP measures the statistical discrepancy between the joint PDF of the
canonical variables, fUV and the marginal PDF’s product fU × 4V , or, in other words,
the loss in accuracy that comes with assuming independence.

For τ = 0, the RP can be defined as the corresponding limit, τ → 0, yielding the
Kullback–Leibler divergence:

d0(a, b) = lim
τ↓0

dτ(a, b) = lim
τ↓0

dτ( fU × fV , fUV) = DKL( fUV , fU × fV). (2)

As earlier discussed, independent canonical variables lead to dτ(a, b) = 0, and, contrarily,
strong dependency should result in large RP distances. Then, the RPCCA procedure aims to
identify pairwise canonical vectors ai ∈ Rq and bi ∈ Rp, i ≤ q ≤ p such that

dτ(ai, bi) = max
a, b

dτ(a, b),

and, as before for identification, the canonical variables should have unit variance and be
uncorrelated with any previous pairwise of canonical variables:

aT
i ΣXai = bT

i ΣYbi = 1, ∀i,

aT
j ΣXai = bT

j ΣYbi = 0, ∀j = 1, . . ., i− 1,

where ΣX and ΣY are the variance–covariance matrices of X and Y , respectively.
Note that, by Equation (2), the ICCA procedure presented in [12] is recovered at τ = 0,

and so the RPCCA generalizes ICCA.

Remark 1. Given the random vectors X and Y , RPCCA finds the vectors a1, b1 such that aT
1 X and

bT
1 Y are maximally related. This maximal relation is measured via dτ(ai, bi), as previously defined.

Once these vectors a1, b1 are obtained, the procedure looks for a new pair of vectors a2, b2 such
that a1 and a2 are incorrelated, and the same applies for b1, b2, and aT

2 X and bT
2 Y are maximally

related. Consequently,
dτ(a1, b1) ≥ dτ(a2, b2).

Next, the procedure looks for a3, b3 being incorrelated to a1, a2 and b1, b2, respectively, and so on.
Hence, it follows that

dτ(ai, bi) ≥ dτ(ai+1, bi+1),

for any i = 1, . . ., q− 1. If dτ(ai, bi) = 0. Then, independence arises and the procedure stops.
In practice, we will have an estimation of dτ(ai, bi), and we will stop the procedure if this value does
not exceed a certain threshold. This will be applied in Section 5 in order to determine the number
of components.

Let us consider, again, the example described in the introduction, where X = (X1, X2)
T

and Y = (Y1, Y2)
T satisfy
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X ∼ N (0, I), Y1 = X2
1 + Z, Y2 ∼ Z, Z ∼ χ2

1.

The true value of the first pair of canonical vectors are then a1 = b1 = (1, 0)T . Under the
described setup, it follows that

fUV(u, v) = fX1,Y1(x, y) =
1
π

1
2

exp
(
−1

2
y
)
(y− x2)−

1
2 , y > 0, x ∈ R,

and

fU(u) = fX1(x) =
1√
2π

exp
(
−1

2
x2
)

, fV(v) = fY1(y) =
1
2

exp
(
−1

2
y
)

, y > 0.

Clearly,
fUV(u, v) 6= fU(u)× fV(v)

and because of the properties of the divergence

dτ(a1, b1) > 0.

The last inequality holds because the RP divergence, dτ(·, ·), only reaches the value
zero if both arguments coincide, as discussed in Section 1 (see [26] for more details). In
this case, RPCCA should identify a pair a1, b1 with a non-zero informational coefficient of
canonical correlation defining the canonical variables aT

1 X and bT
1 Y .

For practical use of RPCCA, it is interesting to note that RPCCA is equivariant under
invertible linear transformations. This equality does not hold for other extensions of ICCA,
but proportionality arises instead.

Proposition 1. Consider two random variables U and V, and take R = cU and S = eV, where c
and e are non-zero real numbers (Indeed, the result also holds if we consider two random vectors
U, V , and consider R = CU and S = DV , where C and D are two invertible matrices. In this case,
RP is computed considering multidimensional integrals.). Then,

dτ( fU × fV , fUV) = dτ( fR × fS, fRS).

Proof. By definition,

dτ( fR × fS, fRS) =
1

τ + 1
ln
∫

f τ+1
R (r) f τ+1

S (s) drds +
1

τ(τ + 1)
ln
∫

f τ+1
RS (r, s) drds

− 1
τ

ln
∫

f τ
R(r) f τ

S (s) fRS(r, s) drd s

=
1

τ + 1
ln
∫

f τ+1
U (u)

(
1
c

)τ+1

f τ+1
V (v)

(
1
e

)τ+1

ce dudv

+
1

τ(τ + 1)
ln
∫

f τ+1
UV (u, v)

(
1
ce

)τ+1

ce dudv

− 1
τ

ln
∫

f τ
U(u)

(
1
c

)τ

f τ
V(s)

(
1
e

)τ

fUV(u, v)
(

1
ce

)
ce dud v

=
1

τ + 1
ln
(

1
|c||e|

)τ ∫
f τ+1
U (u) f τ+1

V (v) dud v

+
1

τ(τ + 1)
ln
(

1
|c||e|

)τ ∫
f τ+1
UV (u, v) dudv

− 1
τ

ln
(

1
|c||e|

)τ ∫
f τ
U(u) f τ

V(v) fUV(u, v) dud v

=

(
1

τ + 1
+

1
τ(τ + 1)

− 1
τ

)
ln
(

1
|c||e|

)τ

+ dτ( fU × fV , fUV)

= dτ( fU × fV , fUV).
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The next result establishes that the RPCCA is reduced to CCA in the case of nor-
mal distributions.

Proposition 2. In the case of normal distributions, RPCCA coincides with CCA.

Proof. Consider normal populations, i.e., assume that the multidimensional random vari-
ables X and Y are jointly normally distributed,(

X
Y

)
≡ N

((
µX
µY

)
,
(

ΣX ΣXY
ΣYX ΣY

))
.

Therefore, the bidimensional random variable (U, V) =
(

aTX, bTY
)

follows a bidimen-
sional normal distribution whose vector mean is

µ = (µ1, µ2)
T = (E

[
aTX

]
, E
[
bTY

]
)T = (aTµX , bTµY )

T ,

and the variance–covariance matrix is given by(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

)
being

σ2
1 = Var

[
aTX

]
= aTΣXa, σ2

2 = Var
[
bTY

]
= bTΣYb and ρ =

Cov(U, V)

σ1σ2
=

aTΣXYb
σ1σ2

.

On the other hand, the marginal densities fµ1,σ1(u) and fµ2,σ2(v) of aTX and bTY ,
respectively, are normal distributions,

fU(u) ≡ N
(

µ1, σ2
1

)
and fV(v) ≡ N

(
µ2, σ2

2

)
.

We first compute the RP between fµ1,σ1(u)× fµ2,σ2(v) and fµ1,µ2,σ1,σ2,ρ(u, v). Consider-
ing the results obtained in Supplementary Materials (Appendix A) in [6], we have∫

R2
fU(u)τ+1 fV(v)τ+1dudv = kτ

1(1 + τ)−1,

being k1 = (2πσ1σ2)
−1 and∫
R2

fUV(u, v)τ+1dudv = kτ
1(1 + τ)−1

(
1− ρ2

)− τ
2 .

On the other hand, it is not difficult to see that∫
R2

f τ
U(u) f τ

V(v) fUV(u, v)dudv = kτ
1 [(1 + τ(1 + ρ))(1 + τ(1− ρ))]−1/2.

Based on the previous quantities, we have

dτ(a, b) =
1

τ + 1
ln kτ

1(1 + τ)−1 − 1
τ

ln kτ
1kτ

1 [(1 + τ(1 + ρ))(1 + τ(1− ρ))]−1/2

+
1

τ(τ + 1)
ln kτ

1(1 + τ)−1(1− ρ2)−τ/2

= ln
((1 + τ(1 + ρ))(1 + τ(1− ρ)))1/2τ

(1 + τ)1/τ(1− ρ2)1/2(τ+1)
.
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For fixed τ, it can be seen from the previous expression that dτ(a, b) depends on ρ.
Moreover, it is not difficult to show that dτ(a, b) is an increasing function on ρ2 for any τ
(see Figure 1 for τ = 0.1, 0.3 and 0.9). To show this, it suffices to see that

fτ(ρ) =
[(1 + τ(1 + ρ))(1 + τ(1− ρ))]1/2τ

(1 + τ)1/τ(1− ρ2)1/2(τ+1)
, ρ ∈ (−1, 1)

is increasing in ρ2, and so it will be its logarithm transform. Now, note that

(1 + τ(1 + ρ))(1 + τ(1− ρ)) = 1 + 2τ + τ2(1− ρ2).

So, it suffices to show that the function(
1 + 2τ + τ2(1− ρ2)

)1/2τ

(1− ρ2)1/2(τ+1)

is increasing in ρ2. Taking derivatives with respect to ρ2, we obtain

f ′(ρ2) =

[
1

2τ

(
1 + 2τ + τ2(1− ρ2)

)1/2τ−1
(−τ2)(1− ρ2)1/2(τ+1)

− 1
2(τ + 1)

(1− ρ2)1/2(τ+1)−1
(

1 + 2τ + τ2(1− ρ2)
)1/2τ

]
1

(1− ρ2)
1

τ+1
.

Figure 1. fτ(ρ) for different values of τ. τ = 0.1 (red), τ = 0.3 (green) and τ = 0.9 (black).

Thus, it suffices to check the non-negativity of[
1

2τ
(−τ2)(1− ρ2) +

1
2(τ + 1)

(
1 + 2τ + τ2(1− ρ2)

)]
.

Finally, [
1

2τ
(−τ2)(1− ρ2) +

1
2(τ + 1)

(
1 + 2τ + τ2(1− ρ2)

)]
=

−τ2(1− ρ2)

2τ(τ + 1)
+

1 + 2τ

2(τ + 1)
=

τ2(ρ2 + 1) + τ

2τ(τ + 1)
> 0.

and the result holds. Thus, RPCCA is equivalent to classical CCA in the case of random
normal variables.

It can be seen that dτ(a; b) is an increasing function on ρ2 for any τ > 0 under normal
distributions; hence, RPCCA also extends CCA with a tuning parameter τ determining the
sharpness of the distance dτ(a, b) (or the function fτ(·) in the proof of Proposition 2).
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3. Consistency

We now focus on the practical side of the RPCCA estimation. In practice, the PDFs fUV ,
fU and fV are unknown; thus, they should be empirically estimated. Likewise, the RPCCA
should be formulated for an empirical setup.

The RP, dτ(a, b), can be expressed in terms of expected values as

dτ(a, b) =
1

τ(τ + 1)
ln E fUV [ fU,V(U, V)τ ]− 1

τ
ln E fUV [ f τ

U(U) f τ
V(V)]

+
1

τ + 1
ln E fU [ fU(U)τ ]E fV [ fV(V)].

(3)

This interpretation of dτ(a, b) makes the definition of its empirical estimator easier. Let
(X i, Y i), i = 1, . . ., n be a random sample of size n from the multidimensional random
variables (X, Y). Then, an empirical estimator of dτ(a, b) is given by

d̂n
τ(a, b) =

1
τ(τ + 1)

ln

[
1
n

n

∑
i=1

f̂ n
UV

τ
(ui, vi)

]
− 1

τ
ln

[
1
n

n

∑
i=1

f̂ n
U

τ
(ui) f̂ n

V
τ
(vi)

]
(4)

+
1

τ + 1
ln

[
1
n

n

∑
i=1

f̂ n
U

τ
(ui)

1
n

n

∑
i=1

f̂ n
V

τ
(vi)

]
. (5)

Here, f̂ n
U(u), f̂ n

V(v) and f̂ n
UV(u, v) are kernel density estimators of fU(u), fV(v) and

fUV(u, v), respectively, given by

f̂ n
U(u) =

1
na1

n

n

∑
i=1

K
(

u− ui

a1
n

)
, u ∈ R, (6)

f̂ n
V(v) =

1
na2

n

n

∑
i=1

K
(

v− vi
a2

n

)
, v ∈ R, (7)

and

f̂ n
UV(u, v) =

1
nb1

nb2
n

n

∑
i=1

K
(

u− ui

b1
n

)
K
(

v− vi
b2

n

)
. (8)

For the PDF’s estimators, we will use the univariate Gaussian kernel with aj
n = 1.06n−0.2sj

and bj
n = n−1/6sj for j = 1, 2, and the corresponding sample standard deviations s1 and

s2. This kernel function was proposed in [37] and adopted in many other extensions of
ICCA, but other types of kernels could be considered instead, as long as they satisfy the
conditions of Lemma 1 below (When the distribution is known up to a parameter value fθ,
this information should be taken into account. Hence, the procedure would be the usual
procedure in these situations. First, we estimate the parameter of the distribution θ by
θ̂ and then consider the distribution with the estimated parameters fθ̂. Next, we use fθ̂

instead of f̂ .). Other interesting results about kernel distributions can be found in [38,39].
Then, the estimated canonical vectors, based on the RP with tuning parameter τ can

be computed as (
âτ

n, b̂
τ
n

)
= arg max

a,b
d̂n

τ(a, b),

s.t. (aτ
n)

TΣ̂11aτ
n = 1 and (bτ

n)
TΣ̂22bτ

n = 1,
(9)

where Σ̂11 and Σ̂22 are the empirical estimators of the variance–covariance matrices of X
and Y , respectively.

We next establish the consistency of the estimated canonical vectors under some
regularity conditions. That is, we will prove that the estimated canonical vectors

(
âτ

n, b̂
τ
n

)
converge for large sample sizes to the true canonical vectors defining the underlying
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functional relationship. For such a result, it is necessary to present the following lemma
whose proof can be found in [40].

Lemma 1. Let (X i, Y i), i = 1, . . ., n be i.i.d. replications of the multidimensional random variables
(X, Y). Consider a sequence {an}n∈N such that 0 < an and limn→∞ an = 0. Assume

∞

∑
n=1

e−γna2
n < ∞,

∞

∑
n=1

e−γna4
n < ∞, ∀γ > 0.

Consider a function K of bounded variation (Consider a function g : Rk 7→ R, and let P
be the set of finite partitions of Rk in rectangles p = {[xj, yj), j = 1, . . ., up}. Then, g is said to

be of bounded variation if supp∈P

{
up

∑
j=1

∑
ε1,...,εk∈{0,1}k

(−1)∑k
i=1 εi g(ε1xj1 + (1− ε1)yj1, . . ., εkxjk+

(1 − εk)yjk)

}
< ∞.) and suppose fU(aTx) is uniformly continuous in a and x, fV(bTy) is

uniformly continuous in b and y, and fUV(aTx, bTy) is uniformly continuous in a, x, b and
y. Then,

sup
a,x
| f̂ n

U(aTx)− fU(aTx)| a.s.−→0.

sup
b,y
| f̂ n

V(b
Ty)− fV(bTy)| a.s.−→0.

sup
a,b,x,y

| f̂ n
UV(aTx, bTy)− fUV(aTx, bTy)| a.s.−→0.

Note that the Gaussian kernel functions defined in Equations (6)–(8) satisfy the con-
ditions of Lemma 1. Of course, any other election of the kernel should also satisfy these
regularity conditions. Now, let us define for any real value b > 0 the set of indices such
that the observations aTxi and bTyi, i = 1, . . ., n have positive densities

χb = {i : f τ
UV(aTxi, bTyi) ≥ b, f τ

U(aTxi) ≥ b, f τ
V(b

Tyi) ≥ b}

and denote by nb the number of data outside this set. The next result establishes the
consistency of the RPCCA.

Proposition 3. Suppose the conditions of Lemma 1 hold. Assume b→ 0 such that

nb
n

P−→
n→∞

0,

and consider the estimated and true pairs of canonical vectors,(
ân, b̂n

)
= arg max

a,b
d̂n

τ(a, b) and (a∗, b∗) = arg max
a,b

dτ(a, b).

Further, assume that the maximum (a∗, b∗) is unique. Then,

(ân, b̂n)
P−→

n→∞
(a∗, b∗).

Proof. Take 0 < ε, 0 < b such that ε−→
n→∞

0, b−→
n→∞

0 and εb−1−→
n→∞

0.

By identification, we can assume âT
n Σ11ân = b̂

T
n Σ22b̂n = 1. Let us suppose that

(ân, b̂n)
P9

n→∞
(a∗, b∗).
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Hence, there exists a subsequence of {(ân, b̂n)} (that will be denoted by (ân, b̂n) to
avoid hard notation) and (a0, b0) such that aT

0 Σ11a0 = bT
0 Σ22b0 = 1, (a0, b0) 6= (a∗, b∗) and

(ân, b̂n) −→ (a0, b0).

Now, applying Lemma 1, we know that

sup | f̂ n
U(âT

n xi)− fU(âT
n xi)|

a.s.−→
n→∞

0.

sup | f̂ n
V(b̂

T
n yi)− fV(b̂

T
n yi)|

a.s.−→
n→∞

0.

sup | f̂ n
UV(âT

n xi, b̂
T
n yi)− fUV(âT

n xi, b̂
T
n yi)|

a.s.−→
n→∞

0.

Thus, for τ > 0,

sup | f̂ n
U

τ
(âT

n xi)− f τ
U(âT

n xi)|
a.s.−→

n→∞
0.

sup | f̂ n
V

τ
(b̂

T
n yi)− f τ

V(b̂
T
n yi)|

a.s.−→
n→∞

0.

sup | f̂ n
UV

τ
(âT

n xi, b̂
T
n yi)− f τ

UV(âT
n xi, b̂

T
n yi)|

a.s.−→
n→∞

0.

Hence, for an n large enough,

f̂ n
U

τ
(âT

n xi) = f τ
U(âT

n xi) + ∆1i = f τ
U(aT

0 xi) + δ1i,

f̂ n
V

τ
(b̂

T
n yi) = f τ

V(b̂
T
n yi) + ∆2i = f τ

V(b
T
0 yi) + δ2i,

f̂ n
UV

τ
(âT

n xi, b̂
T
n yi) = f τ

UV(âT
n xi, b̂

T
n yi) + ∆3i = f τ

UV(aT
0 xi, bT

0 yi) + δ3i. (10)

Here, |δ1i|, |δ2i|, |δ3i| < ε. Remark that ln
(

1
n ∑n

i=1 f̂ n
UV

τ
(âT

n xi, b̂
T
n yi)

)
can be written as

ln

(
1
n

n

∑
i=1

f̂ n
UV

τ
(âT

n xi, b̂
T
n yi)

1
n ∑n

i=1 f τ
UV(aT

0 xi, bT
0 yi)

1
n ∑n

i=1 f τ
UV(aT

0 xi, bT
0 yi)

)

= ln

(
1
n

n

∑
i=1

f τ
UV(aT

0 xi, bT
0 yi)

)
+ ln

 1
n ∑n

i=1 f̂ n
UV

τ
(âT

n xi, b̂
T
n yi)

1
n ∑n

i=1 f τ
UV(aT

0 xi, bT
0 yi)

.

Now, applying Equation (10), we obtain

1
n ∑n

i=1 f̂ n
UV

τ
(âT

n xi, b̂
T
n yi)

1
n ∑n

i=1 f τ
UV(aT

0 xi, bT
0 yi)

= 1 +
1
n ∑n

i=1 δ3i
1
n ∑n

i=1 f τ
UV(aT

0 xi, bT
0 yi)

.

The same can be performed for the two other cases. As |δ3i| < ε, it follows that

1
n

n

∑
i=1

δ3i ≤ ε.

On the other hand,

1
n

n

∑
i=1

f τ
UV(aT

0 xi, bT
0 yi) ≥

1
n

n

∑
i=1

I(i ∈ χb) f τ
UV(aT

0 xi, bT
0 yi) ≥

n− nb
n

b.

As εb−1 → 0 and nb
n → 0, we conclude that
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1
n ∑n

i=1 δ3i
1
n ∑n

i=1 f τ
UV(aT

0 xi, bT
0 yi)

→ 0.

The same can be performed for the two other cases. Hence,

d̂n
τ

(
ân, b̂n

)
=

1
τ + 1

ln(
1
n2

n

∑
i=1

f τ
U(aT

0 xi)
n

∑
i=1

f τ
V(b

T
0 yi)) +

1
τ + 1

o(1)

+
1

τ(τ + 1)
ln(

1
n

n

∑
i=1

f τ
UV(aT

0 xi, bT
0 yi)) +

1
τ(τ + 1)

o(1)

− 1
τ

ln(
1
n

n

∑
i=1

f τ
U(aT

0 xi) f τ
V(b

T
0 yi))−

1
τ

o(1)

= d
n
τ(a0, b0) + o(1),

with

d
n
τ(a0, b0) =

1
τ + 1

ln(
1
n2

n

∑
i=1

f τ
U(aT

0 xi)
n

∑
i=1

f τ
V(b

T
0 yi))

+
1

τ(τ + 1)
ln(

1
n

n

∑
i=1

f τ
UV(aT

0 xi, bT
0 yi))

− 1
τ

ln(
1
n

n

∑
i=1

f τ
U(aT

0 xi) f τ
V(b

T
0 yi)).

Note that d
n
τ(a0, b0)− dτ(a0, b0) is given by

1
τ(τ + 1)

ln(
1
n

n

∑
i=1

f τ
UV(aT

0 xi, bT
0 yi))−

1
τ(τ + 1)

ln(E fUV ( f τ
UV(aT

0 X, bT
0 Y)))

+
1

(τ + 1)
ln(

1
n2

n

∑
i=1

f τ
U(aT

0 xi)
n

∑
i=1

I(i ∈ χb) f τ
V(b

T
0 yi))−

1
(τ + 1)

ln(E fU f τ
U(aT

0 X)E fV ( f α
V(b

T
0 Y)))

− 1
τ

ln(
1
n

n

∑
i=1

f τ
U(aT

0 xi) f τ
V(b

T
0 yi)) +

1
τ

ln(E fUV ( f τ
U(aT

0 X) f τ
V(b

T
0 Y))).

As ln is continuous and applying the Strong Law of Large Numbers, it follows

ln

(
1
n

n

∑
i=1

f τ
UV(aT

0 xi, bT
0 yi)

)
a.s.−→

n→∞
ln
(

E fUV ( f τ
UV(aT

0 X, bT
0 Y))

)
.

We can perform this similarly for the two other lines. We conclude that d
n
τ(a0, b0)

P−→
n→∞

dτ(a0, b0), and hence d̂n
τ(a0, b0)

P−→
n→∞

dτ(a0, b0). On the other hand, d̂n
τ(ân, b̂n) ≥ d̂n

τ(a∗, b∗)

because (ân, b̂n) is the optimum by definition.
Taking limits,

dτ(a0, b0) = lim
n→∞

d̂n
τ(ân, b̂n) ≥ lim

n→∞
d̂n

τ(a∗, b∗) = dτ(a∗, b∗).

However, dτ(a∗, b∗) ≥ dτ(a0, b0) because (a∗, b∗) is the optimum. Hence, as (a∗, b∗)
is the only maximum, we conclude that

(a∗, b∗) = (a0, b0),

a contradiction.
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4. Robustness

To motivate the inherent robustness property of the RPCCA procedure, we examine
the behavior of the estimated divergence in Equation (4) for small values of the tuning
parameter. The presented heuristic argument was first discussed in [6] for the density
power divergence generalization of ICCA. Consider the estimated RP

d̂n
τ(a, b) :=

1
τ + 1

ln

[(
1
n

n

∑
i=1

f̂ n
U

τ
(ui)

)(
1
n

n

∑
i=1

f̂ n
V

τ
(vi)

)]
− 1

τ
ln

[
1
n

n

∑
i=1

f̂ n
U

τ
(ui) f̂ n

V
τ
(vi)

]

+
1

τ(τ + 1)
ln

[
1
n

n

∑
i=1

f̂ n
UV

τ
(ui, vi)

]
.

and let the tuning parameter be τ ↓ 0. Taking limits in the estimated divergence defined in
Equation (4), the first term vanishes, and therefore

d̂n
τ(a, b) ≈ − 1

τ
ln

[
1
n

n

∑
i=1

f̂ n
U

τ
(ui) f̂ n

V
τ
(vi)

]
+

1
τ(τ + 1)

ln

[
1
n

n

∑
i=1

f̂ n
UV

τ
(ui, vi)

]
.

We first study the limiting behavior of the first term,

lτ := − 1
τ

ln

[
1
n

n

∑
i=1

f̂ n
U

τ
(ui) f̂ n

V
τ
(vi)

]
.

For τ ↓ 0, this term is a limit of indeterminate form (0/0). Applying L’Hôpital’s rule, we
obtain

lτ ≈
1
n

[
∑n

i=1 f̂ n
U

τ
(ui) f̂ n

V
τ
(vi) ln

(
f̂ n
U(ui)

)
+ f̂ n

V
τ
(vi) f̂ n

U
τ
(ui) ln

(
f̂ n
V(vi)

)]
1
n ∑n

i=1 f̂ n
U

τ
(ui) f̂ n

V
τ
(vi)

.

Now, the denominator tends to 1 when τ ↓ 0 so that

lτ ≈ 1
n

[
n

∑
i=1

f̂ n
U

τ
(ui) f̂ n

V
τ
(vi) ln

(
f̂ n
U(ui)

)
+ f̂ n

V
τ
(vi) f̂ n

U
τ
(ui) ln

(
f̂ n
V(vi)

)]
.

Similarly, consider

mτ :=
1

τ(τ + 1)
ln

[
1
n

n

∑
i=1

f̂ n
UV

τ
(ui, vi)

]

and consider its L’Hôpital approximation given by

mτ ≈ 1
2τ + 1

1
n ∑n

i=1 f̂ n
UV

τ
(ui, vi) ln f̂ n

UV(ui, vi)

1
n ∑n

i=1 f̂ n
UV

τ
(ui, vi)

≈ 1
n

n

∑
i=1

f̂ n
UV

τ
(ui, vi) ln f̂ n

UV(ui, vi).

Consequently,

d̂n
τ(a, b) ≈ 1

n

[
n

∑
i=1

f̂ n
UV

τ
(ui, vi) ln f̂ n

UV(ui, vi)−
n

∑
i=1

f̂ n
U

τ
(ui) f̂ n

V
τ
(vi) ln

(
f̂ n
U(ui) f̂ n

V(vi)
)]

.

Note that this approximation is valid for τ closed to 0, but, for τ = 0,

d0(a, b) = lim
τ↓0

d̃τ(a, b) =
1
n

n

∑
i=1

ln

(
f̂ n
UV(ui, vi)

f̂ n
U(ui) f̂ n

V(vi)

)
=

1
n

(
n

∑
i=1

ln f̂ n
UV(ui, vi)−

n

∑
i=1

ln f̂ n
U(ui) f̂ n

V(vi)

)
.
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This implies that d̂n
τ( fU × fV , fUV) can be seen as a weighted value of the empirical

Kullback–Leibler divergence and the weights depend on f̂ n
UV

τ
(ui, vi), f̂ n

U
τ
(ui) and f̂ n

V
τ
(vi).

Therefore, if the observations xi, yi or both are outliers, the corresponding density estima-
tions would decrease, so the corresponding weights would not be considered as important
as other data on the estimated distance, thus making Renyi’s pseudodistance more robust
to outliers than the Kullback–Leibler.

5. Testing to Determine the Number of Pairs

In this section, a dimension reduction algorithm is described for determining the
number of significant pairs of canonical vectors: the non-parametric sequential test [41,42].

In the classical approach of CCA, the maximum number of pairs (ai, bi) is determined
by the greatest index j such that (aj, bj) is the first pair satisfying ρ(aT

j X, bT
j Y) = 0. That is,

the CCA should run until the best estimated pair leads to linear independence. A natural
extension for the RPCCA formulation is then replicated in the CCA dimension reduction
algorithm, but using the RP divergence as a measure of dependence.

Let us denote by di
τ the maximum value achieved at the i-th iteration,

di
τ = max

ai ,bi
dτ(ai, bi), i = 1, . . ., l = min(q, p),

such that aT
i Σ11ai = bT

i Σ22bi = 1 and aT
j Σ11ai = bT

j Σ22bi = 0. The sequence of maximums
is decreasing and lower-bounded by 0, indicating independence between the estimated
canonical variables, d1

τ ≥ d2
τ ≥ . . . ≥ dl

τ ≥ 0. Then, a stopping criterion for the maximum
number of canonical correlations is naturally determined by the testing problem

H0 : di
τ = 0 vs H1 : di

τ > 0, i = 1, . . ., l.

If H0 is not rejected, then all subsequent canonical variables from the i-th onward are
not significantly related. Otherwise, the relation is significant, and the maximum number
of significant canonical correlations is at least i. It is difficult to obtain the exact sample
distribution of di

τ , but a non-parametric permutation test can be applied, as proposed
in [24], for estimating the p-value of the test. Let us explain this procedure with some detail.
Suppose there is a relationship between aT

i X and bT
i Y for some vectors ai, bi, i.e., H0 does

not hold. This means that there exists a function f such that

f (aT
i X) ≈ bT

i Y .

Our procedure will estimate vectors ai and bi and will consider some (near!) vectors
âi and b̂i, respectively. Consequently, we expect that for the sample (X1, Y1), . . ., (Xn, Yn),
we will obtain

f (âT
i X j) ≈ b̂

T
i Y j, j = 1, . . ., n.

This will translate in a large value of dn
τ(âi

TX, b̂i
T

Y) and, consequently, the corre-

sponding estimation d̂n
τ(âi

TX, b̂i
T

Y). Now, if we consider a permutation of the data cor-
responding to X but maintaining the order for the data corresponding to Y , any possible
relationship is destroyed because the data corresponding to X i do not correspond to in-
dividual i in the sample, so that they have nothing to do with Y i. In other words, if we
denote the reordered sample for (X1, . . ., Xn) by (X∗1 , . . ., X∗n), it follows that for any c, d,
then d̂n

τ(cTX∗, dTY) ≈ 0 showing independence. Consequently, when the procedure looks
for some vectors â∗i , b̂∗i s.t.

d̂n
τ(â∗i

T
X∗, b̂∗i

T
Y) = max d̂n

τ

(
aTX∗, bTY

)
,
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these values are not expected to model a strong relation (because it does not exist), so that

we expect d̂n
τ(â∗i

T
X∗, b̂∗i

T
Y) ≈ 0. Hence, if H0 does not hold and a relationship between the

canonical variables exists, we expect that for (almost) any permutation

d̂n
τ(âi

TX, b̂i
T

Y) > d̂n
τ(â∗i

T
X∗, b̂∗i

T
Y).

On the other hand, if H0 holds, then there is independence between cTX and dTY for
any c, d. Consequently, for the best possible estimated vectors âi, b̂i, we will obtain

d̂n
τ(âi

TX, b̂i
T

Y) ≈ 0.

When considering a permutation of the values corresponding to X, independence will
arise again, and hence, in this case, we expect

d̂n
τ(âi

TX, b̂i
T

Y) ≈ d̂n
τ(â∗i

T
X∗, b̂∗i

T
Y).

Of course, the number of possible permutations is n!, and this is not affordable for large
values of n. Hence, we are going to consider just a subset of randomly chosen permutations.
Then, if d̂i,w

τ denotes the value of the index corresponding to the w-th randomly permuted
sample, the estimated p-value of the test is given by

1
R

R

∑
w=1

I[
d̂i,w

τ >d̂i
τ

],
where R denotes the number of permutations considered. Yin [12] used R = 1000 for a
permutation test for ICCA. If the p-value is smaller than a certain significance level, then
the null hypothesis di

τ = 0 should be rejected implying a significant relationship for the
i-th canonical variables, and the process should be repeated for i + 1. Conversely, if the
null hypothesis is not rejected, then we should assume that the canonical variables are
independent and conclude that there are only i estimated canonical variables exhibiting
significant relationships. More details about this dimension reduction method can be seen
in [24].

6. Simulation Study
6.1. Computational Methods

Consider X = (x1, . . ., xn) and Y = (y1, . . ., yn) as p× n and q× n matrices with n
observations of the random variables X and Y , respectively. The estimation of the i-th pair
of canonical vectors âτ

i , b̂
τ
i based on the RP with tuning parameter τ is computed through

the constrained maximization problem(
âτ

n, b̂
τ
n

)
= arg max

a,b
d̂i

τ(a, b),

s.t. (aτ
i )

TΣ̂Xaτ
i = 1 and (bτ

i )
TΣ̂Ybτ

n = 1,

(aτ
i )

TΣ̂Xbτ
j = 0 and (bτ

i )
TΣ̂Ybτ

j = 0, j = 1, . . ., i− 1

(11)

where Σ̂X and Σ̂Y are the empirical estimators of the variance–covariance matrices of the
multidimensional random variables X and Y , respectively.

The optimization problem constraints can be simplified by scaling the sample matrices
to have zero mean and unit variance as follows:

X̃ = Σ̂
−1/2
X (X−X)

Ỹ = Σ̂
−1/2
22 (Y−Y),

(12)
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where X and Y denote the corresponding sample mean vectors. From Proposition 1,
the RPCCA is invariant under such linear transformations, and, consequently, the problem
constraints are transformed into

(aτ
i )

Taτ
i = 1 and (bτ

i )
Tbτ

n = 1,

(aτ
i )

Tbτ
j = 0 and (bτ

i )
Tbτ

j = 0, j = 1, . . ., i− 1.
(13)

For empirical covariance matrices, it may appear as disease degeneration resulting
in uninvertible matrices. In those cases, we can skip the scaling transform and apply the
estimation algorithm under the original restrictions.

From the transformed canonical vectors, ãi and b̃i, the estimated canonical vectors in
the original space can be easily recovered as âi = Σ̂

−1/2
X ãi and b̂i = Σ̂

−1/2
Y b̃i.

Here, the constrained optimization is carried out iteratively using the non-linear
constrained optimizer optimize from the scipy package in Python, which implements a
Sequential Quadratic Programming (SQP) method. The source code for the implementation
is publicly available on https://github.com/MariaJaenada/Robust-Canonical-Correlations
(Github) (accessed on 29 January 2023).

6.2. Monte Carlo Simulation

We empirically examine the robustness of the RPCCA method through a Monte Carlo
simulation. We consider a pair of random vectors, X = (X1, . . ., X8) and Y = (Y1, Y2, Y3),
whose components satisfy a linear and a non-linear relationship of the form:

Y1 = (2X1 + X2 + X3)
2 and Y2 = X2 − X3. (14)

The rest of the variables are independent and they are defined as follows: X1, X2, X6, X7
and X8. They are standard normal variables. X3 comes from a chi-square distribution with
7 degrees of freedom, X4 follows a t-Student distribution with 5 degrees of freedom and X5
comes from a Fisher–Snedecor distribution with 3 and 12 degrees of freedom, respectively.
Finally, Y3 comes from a t-Student with 9 degrees of freedom.

The true underlying canonical vectors are then a1 = (0, 1,−1, 0, 0, 0, 0, 0),
b1 = (0, 1, 0) and a2 = (2, 1, 1, 0, 0, 0, 0, 0), b2 = (1, 0, 0). Note that they are orthog-
onal, and so are the related variables Y1 and Y2. Although in the procedure we compute
unit-norm vectors, we have considered the description vectors with natural coefficients
as they look easier to understand. We named the first canonical vector a1 because we
empirically detected that the linear relationship is first captured.

We generate a random sample of the pairs X and Y of size n = 100, and we estimate the
pairs of canonical vectors âi and b̂i, i = 1, 2, such that the random variables Ui = aT

i X and
Vi = bT

i Y are functionally interrelated. To examine the performance of the RPCCA method
under contamination, we randomly switch the functional relationships in Equation (14) for
an ε% of the observations, with ε = 5, 10, 15 and 20 denoting the contamination proportion.
That is, for a random ε% of the observations, the values of Y1 and Y2 are exchanged,
generating orthogonal outliers; the functions defining the Y2 and Y1 are orthogonal to
each other. Therefore, this contamination will worsen both relationships at the same
time in orthogonal directions. We repeat the simulations over R = 500 replications and
compute averages of the following performance measures: We quantify the accuracy of the
estimates with the absolute correlations between the estimated and true canonical variables,
|ρ(ai, âi)| = |ρ(aT

i X, âT
i X)| and |ρ(bi, b̂i)| = |ρ(bT

i Y , b̂
T
i Y)|. Additionally, to evaluate the

robustness of the method, we compute the L2-norm between the canonical vectors fitted
under uncontaminated and contaminated data, â and âc,

L2(â, âc) = ||â− âc||2

as well as the projection of âc into the orthogonal subspace spanned by the uncontaminated
estimate, â,

https://github.com/MariaJaenada/Robust-Canonical-Correlations
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P2(â, âc) = ||(I − ââT)âT
c ||2.

The distance measures L2(â, âc) and P2(â, âc) are smaller the more stable the estimate
is, implying that the estimates are not largely affected by the contamination; hence the
corresponding method is more robust. Summarizing, the correlations between true and es-
timated canonical variables ρ(·, ·) aim to represent the accuracy of the method, whereas the
distance measures between estimated canonical vectors for pure data and for contaminated
data, L2 and P2, aim to represent the robustness of the method.

Tables 1 and 2 present all performance measures for the RPCCA method over a
grid of tuning parameters ranging from 0 (corresponding to ICCA) to 0.8. All methods
perform suitably well in terms of accuracy, achieving high absolute correlations between
true and estimated canonical variables, even under contaminated scenarios. However,
the linear relationship in the first component is captured worse by the ICCA in the presence
of contamination, as shown by the lower absolute correlations between the canonical
variables, ρ(âc

1, b̂
c
1). Moreover, the RPCCA method with positive values of the tuning

parameter produces more stable estimations of the canonical vectors, having smaller P2 and
L2 distances between the uncontaminated and contaminated estimated canonical vectors
in both components, (b̂1, b̂

c
1) and (b̂2, b̂

c
2), thus demonstrating the advantage in terms

of robustness. Although the differences in performance are not impressive, the gain in
robustness with very little loss of accuracy with respect to the ICCA makes the RPCCA
very attractive.

On the other hand, if the underlying relationship is easily identified, the proposed
robust RPCCA performs as good as the ICCA under pure data and outperforms the ICCA
in the presence of contamination (Table 1). However, for τ > 0, the loss in accuracy in
the relationship identification under pure data would be unavoidable (although not very
significant); hence, the tuning parameter should be chosen sufficiently close to zero (from
the literature, less than 1) to provide an adequate compromise between efficiency loss
and robustness gain. Moderate values of the tuning parameter, around 0.3, offer the best
compromise producing canonical estimators that are robust against data contamination
with a small loss of efficiency with respect to the ICCA in the absence of contamination.

6.3. Real Data Application

We finally illustrate the applicability of our method with real-life data on the heredity
of head shape in men. For such a purpose, we use a well-known dataset from Frets [43] that
collects the head length and head breadth for the first and second sons for n = 25 families.
Then, the first and second set of variables, X and Y , respectively, have the dimension 2 and
represent the head length and head breadth of the corresponding son. From the dataset,
we want to analyze whether there is a relationship between the head shape among male
offspring. The data have been widely used in the literature, and Mardia et al. [2] and Yin [12]
analyzed the canonical correlations between the first and second sons’ head shapes using
CCA and ICCA, respectively. In their analyses, they found one significant pair of canonical
variables with a strong linear relationship. Figure 2 shows the plots of the first (left) and
second (right) pair of canonical variables for the head data estimated by RPCCA with τ = 0
(top) and τ = 0.5 (bottom). As shown, both methods coincide on the first pair of canonical
variables (estimate the same observations for the first pair of canonical variables), x1 and
y1, having linear correlation coefficients of ρ = 78.67% (τ = 0) and ρ = 76.86% (τ = 0.5)
as illustrated on the corresponding plots. For the second pair of canonical variables, none
of the methods find any clear functional relationship between linear combinations of the
variables, and the two procedures considered estimate very different canonical variables
without a clear functional relationship between them (as shown in Figure 2). Thus, we also
conclude that there is only one pair of canonical variables.
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Table 1. RPCCA error measures for the first canonical vector under different values of the tuning
parameter τ.

τ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pure data

ρ(â1, b̂1) 0.92878 0.96111 0.95505 0.97044 0.97099 0.98082 0.97090 0.98256 0.98606
ρ(a1, â1) 0.99908 0.99907 0.99893 0.99877 0.99856 0.99831 0.99799 0.99767 0.99728
ρ(b1, b̂1) 0.99946 0.99951 0.99933 0.99938 0.99936 0.99931 0.99906 0.99916 0.99899

5% contamination

ρ(âc
1, b̂

c
1) 0.65796 0.68689 0.71486 0.75556 0.76384 0.80646 0.80876 0.81990 0.81201

ρ(a1, âc
1) 0.99801 0.99815 0.99805 0.99786 0.99749 0.99645 0.99353 0.98368 0.96927

ρ(b1, b̂
c
1) 0.99548 0.99571 0.99531 0.99538 0.99461 0.99345 0.99084 0.97936 0.96222

P2(â1, âc
1) 0.41125 0.38246 0.36111 0.31247 0.30856 0.25109 0.25272 0.22822 0.23050

P2(b̂1, b̂
c
1) 0.35685 0.32477 0.31442 0.27277 0.26949 0.22345 0.22962 0.20914 0.21654

L2(â1, âc
1) 0.56677 0.52712 0.49669 0.42880 0.42197 0.33991 0.34109 0.30249 0.30241

L2(b̂1, b̂
c
1) 0.41496 0.37628 0.36696 0.31681 0.31561 0.26241 0.27298 0.24999 0.26391

10% contamination

ρ(âc
1, b̂

c
1) 0.41963 0.43878 0.46604 0.49193 0.53443 0.56155 0.57944 0.59613 0.60565

ρ(a1, âc
1) 0.99698 0.99714 0.99712 0.99686 0.99563 0.99225 0.98450 0.96631 0.95789

ρ(b1, b̂
c
1) 0.99054 0.99018 0.98974 0.98968 0.98719 0.98401 0.97274 0.95167 0.93961

P2(â1, âc
1) 0.68137 0.65989 0.63978 0.60585 0.57014 0.53623 0.51301 0.48214 0.47437

P2(b̂1, b̂
c
1) 0.56499 0.54370 0.53006 0.51765 0.48283 0.46007 0.44608 0.43238 0.43151

L2(â1, âc
1) 0.94237 0.91248 0.88343 0.83560 0.78292 0.73427 0.69877 0.64896 0.63289

L2(b̂1, b̂
c
1) 0.63783 0.61685 0.60406 0.59298 0.55556 0.53199 0.52065 0.51211 0.51843

15% contamination

ρ(âc
1, b̂

c
1) 0.26726 0.29776 0.32650 0.34987 0.40472 0.42547 0.43099 0.43524 0.45246

ρ(â1, âc
1) 0.99662 0.99682 0.99670 0.99631 0.99405 0.98763 0.97539 0.95782 0.93472

ρ(b̂1, b̂
c
1) 0.98740 0.98702 0.98627 0.98541 0.98364 0.97541 0.95686 0.93536 0.91078

P2(â1, âc
1) 0.83673 0.81093 0.78650 0.75948 0.70320 0.68752 0.68190 0.67188 0.64529

P2(b̂1, b̂
c
1) 0.67519 0.65622 0.64107 0.62355 0.58194 0.57677 0.58054 0.58166 0.57108

L2(â1, âc
1) 1.16074 1.12367 1.08848 1.04925 0.96766 0.94157 0.92937 0.90983 0.86243

L2(b̂1, b̂
c
1) 0.75424 0.73561 0.72109 0.70581 0.66064 0.66160 0.67484 0.68431 0.68025

20% contamination

ρ(âc
1, b̂

c
1) 0.19852 0.21736 0.22524 0.23800 0.27663 0.28001 0.30514 0.32119 0.31858

ρ(â1, âc
1) 0.99661 0.99683 0.99652 0.99593 0.99429 0.99003 0.96500 0.94362 0.90237

ρ(b̂1, b̂
c
1) 0.98527 0.98503 0.98336 0.98251 0.97950 0.97282 0.94210 0.91641 0.86912

P2(â1, âc
1) 0.90198 0.90524 0.89112 0.89756 0.85384 0.85092 0.82023 0.80367 0.79283

P2(b̂1, b̂
c
1) 0.72434 0.71723 0.71807 0.72166 0.69817 0.70049 0.69510 0.69435 0.70935

L2(â1, âc
1) 0.45211 0.45326 0.44686 0.45094 0.42851 0.42746 0.41497 0.41101 0.41076

L2(b̂1, b̂
c
1) 0.61339 0.61723 0.60407 0.60759 0.59650 0.59591 0.58441 0.59536 0.59885

Additionally, to illustrate the advantage of our method in terms of robustness (with a
small loss of deficiency), we contaminate a single observation (obs. 24) in both vector vari-
ables, generating an outlying observation. Then, we apply RPCCA at τ = 0 (corresponding
to ICCA) and τ = 0.5 with the uncontaminated and the contaminated data. Table 3 presents
P2 and N2 distances between the first pair of canonical vectors (identifying the linear rela-
tionship) estimated under uncontaminated and contaminated data, with only one outlying
observation. Because the sample size is small, an outlying observation heavily influences
the ICCA estimation, whereas the RPCCA method with τ = 0.5 shows a great stability in
the canonical vector estimation. These results illustrate the advantage of the RPCCA in
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real-life applications, producing robust estimates of the canonical variables with a small
loss of efficiency with respect to the ICCA estimation in the absence of data contamination.

Table 2. RPCCA error measures for the second canonical vector under different values of the tuning
parameter τ.

τ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pure data

ρ(â2, b̂2) 0.22829 0.19656 0.20033 0.18556 0.18386 0.17334 0.17650 0.16407 0.15426
ρ(a2, â2) 0.99687 0.99704 0.99514 0.99387 0.98976 0.96917 0.94815 0.93493 0.88471
ρ(b2, b̂2) 0.99464 0.99490 0.99122 0.98980 0.98375 0.96336 0.93706 0.91885 0.85931

5% contamination

ρ(âc
2, b̂

c
2) 0.30303 0.29521 0.27510 0.24815 0.24522 0.21903 0.22096 0.19770 0.20928

ρ(a2, âc
2) 0.91167 0.92137 0.91977 0.91112 0.91556 0.90693 0.88127 0.84600 0.82650

ρ(b2, b̂
c
2) 0.88049 0.89166 0.88662 0.88904 0.89241 0.88801 0.87192 0.83197 0.80588

P2(â2, âc
2) 0.41815 0.38347 0.36114 0.32231 0.31958 0.29261 0.33041 0.32611 0.36974

P2(b̂2, b̂
c
2) 0.44509 0.41272 0.40340 0.36543 0.36662 0.33627 0.36107 0.34812 0.36182

L2(â2, âc
2) 0.56221 0.51686 0.48609 0.43221 0.42597 0.38524 0.42792 0.41586 0.46555

L2(b̂2, b̂
c
2) 0.54952 0.50631 0.48727 0.43321 0.43065 0.38858 0.41934 0.39996 0.41901

10% contamination

ρ(âc
2, b̂

c
2) 0.31085 0.29651 0.28563 0.28324 0.25836 0.24660 0.25507 0.23689 0.22360

ρ(a2, âc
2) 0.76633 0.76784 0.77030 0.77828 0.75962 0.77061 0.78303 0.75727 0.71201

ρ(b2, âc
2) 0.77035 0.75135 0.75242 0.75593 0.74394 0.75508 0.74693 0.74538 0.70453

P2(â2, âc
2) 0.69844 0.67264 0.64760 0.62480 0.58957 0.56764 0.57146 0.56234 0.60946

P2(b̂2, b̂
c
2) 0.70333 0.68232 0.65851 0.63732 0.60797 0.57351 0.55445 0.54736 0.53981

L2(â2, âc
2) 0.94522 0.91180 0.87884 0.84254 0.79453 0.76052 0.75866 0.73627 0.79154

L2(b̂2, b̂
c
2) 0.87344 0.84137 0.80061 0.76733 0.72179 0.67148 0.64907 0.64158 0.63347

15% contamination

ρ(âc
2, b̂

c
2) 0.29041 0.26604 0.25341 0.24867 0.22370 0.22678 0.22668 0.21698 0.20791

ρ(â2, b̂
c
2) 0.62670 0.62511 0.62775 0.63798 0.63931 0.67347 0.66306 0.63881 0.61437

ρ(b̂2, b̂
c
2) 0.67113 0.65281 0.63298 0.64345 0.64183 0.66804 0.66294 0.66655 0.64393

P2(â2, âc
2) 0.86840 0.83480 0.80722 0.78144 0.73384 0.71580 0.71970 0.73208 0.73667

P2(b̂2, b̂
c
2) 0.83973 0.81076 0.78283 0.74695 0.69787 0.68081 0.65889 0.63941 0.61576

L2(â2, âc
2) 1.17901 1.13476 1.09703 1.06197 0.99294 0.96654 0.96359 0.97065 0.96509

L2(b̂2, b̂
c
2) 1.04721 1.00181 0.95442 0.89936 0.83020 0.80219 0.77413 0.74676 0.72249

20% contamination

ρ(âc
2, b̂

c
2) 0.23981 0.23457 0.22347 0.22122 0.21361 0.20732 0.20959 0.19139 0.20603

ρ(â2, b̂
c
2) 0.51483 0.51794 0.52276 0.53520 0.54956 0.53813 0.56693 0.54726 0.56153

ρ(b̂2, b̂
c
2) 0.62369 0.59115 0.56066 0.56134 0.58636 0.58110 0.60681 0.61363 0.63613

P2(â2, âc
2) 0.94170 0.92377 0.91740 0.90923 0.86834 0.86758 0.83873 0.82330 0.83708

P2(b̂2, b̂
c
2) 0.89672 0.87587 0.85688 0.82781 0.78143 0.75837 0.72490 0.70158 0.69711

L2(â2, âc
2) 0.47541 0.46413 0.46168 0.45820 0.43798 0.43988 0.43203 0.42330 0.43539

L2(b̂2, b̂
c
2) 0.76644 0.73624 0.72641 0.69977 0.67411 0.63579 0.61011 0.61020 0.59094
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Figure 2. Pairs of canonical variables obtained from RPCCA with τ = 0 (top) and τ = 0.5 (bottom)
for the head dataset.

Table 3. P2 and N2 distances between the estimated canonical vectors under uncontaminated and
contaminated data.

τ 0 0.5

P2(â1, âc
1) 0.222 0.064

P2(b̂1, b̂
c
1) 0.131 0.059

L2(â1, âc
1) 0.224 0.064

L2(b̂1, b̂
c
1) 1.995 0.059

7. Conclusions

We have presented a robust generalization of the ICCA based on RP for identifying
linear and non-linear relationships between two sets of variables. We have derived sample
versions for estimating the canonical vectors in practice, and we have demonstrated the
consistency of such estimators. Further, the robustness advantage of the RPCCA has been
examined theoretically and empirically, concluding that the proposed RPCCA offers an
appealing alternative to ICCA, competitive in terms of estimation accuracy and more robust
against data contamination. The method manages to detect hidden functional relationships
between linear combinations of the variables and suitably approximates the true underly-
ing relationships, even under contaminated scenarios. Moreover, a permutation test for
determining the number of significant pairs of canonical vectors is presented. Since the
RPCCA is a parametric family, a data-driven algorithm for determining optimal values of
the tuning parameter is a worthwhile pursuit for future research. Also, the methodology
presented here can be extended in future works for identifying relationships between more
than two sets of variables. The idea is to consider not only two random vectors but k
random vectors as considered in [24] and to look for the linear combinations in all of them
so that the RP between the marginal distributions and the whole distribution is as large
as possible.
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