
Citation: Wang, K.; Chen, W.; Xiao,

S.; Chen, J.; Hu, W. Pattern Formation

under Deep Supercooling by

Classical Density Functional-Based

Approach. Entropy 2023, 25, 708.

https://doi.org/10.3390/e25050708

Academic Editor: Santi Prestipino

Received: 5 March 2023

Revised: 13 April 2023

Accepted: 19 April 2023

Published: 24 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Pattern Formation under Deep Supercooling by Classical
Density Functional-Based Approach
Kun Wang 1,*, Wenjin Chen 1, Shifang Xiao 2, Jun Chen 3 and Wangyu Hu 1

1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2 Department of Applied Physics, Hunan University, Changsha 410082, China
3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
* Correspondence: kwang_hnu@163.com

Abstract: Solidification patterns during nonequilibrium crystallization are among the most important
microstructures in the natural and technical realms. In this work, we investigate the crystal growth in
deeply supercooled liquid using the classical density functional-based approaches. Our result shows
that the complex amplitude expanded phase-field crystal (APFC) model containing the vacancy
nonequilibrium effects proposed by us could naturally reproduce the growth front nucleation (GFN)
and various nonequilibrium patterns, including the faceted growth, spherulite, symmetric and
nonsymmetric dendrites among others, at the atom level. Moreover, an extraordinary microscopic
columnar-to-equiaxed transition is uncovered, which is found to depend on the seed spacing and
distribution. Such a phenomenon could be attributed to the combined effects of the long-wave and
short-wave elastic interactions. Particularly, the columnar growth could also be predicted by an APFC
model containing inertia effects, but the lattice defect type in the growing crystal is different due to
the different types of short-wave interactions. Two stages are identified during the crystal growth
under different undercooling, corresponding to diffusion-controlled growth and GFN-dominated
growth, respectively. However, compared with the second stage, the first stage becomes too short
to be noticed under the high undercooling. The distinct feature of the second stage is the dramatic
increments of lattice defects, which explains the amorphous nucleation precursor in the supercooled
liquid. The transition time between the two stages at different undercooling is investigated. Crystal
growth of BCC structure further confirms our conclusions.

Keywords: phase field crystal; classical density functional theory; crystalization; supercooling

1. Introduction

Nonequilibrium crystallization in supercooled liquid is frequently encountered in the
natural (e.g., snowflakes and minerals) and technical realms, for example, the dendrites
in traditional as-cast materials or additively manufactured parts [1] and spherulites in
Se [2], polymers [3] and so on. In many cases, supercooling arises from a sudden change in
environmental variations, such as in temperature or pressure, for example, quick quench-
ing under liquid nitrogen and solidification under strong shock compressions. Spatially
heterogeneous dynamics in the supercooled liquid have been well established experimen-
tally [4,5], which have numerous consequences on the transport properties. The most
important transport properties relevant to the crystallization are the shear viscosity and
the molecular mobilities determined by the translational and rotational diffusion coef-
ficients [6]. The latter ones directly control detailed manners of how molecules attach
and align with the growing crystal. Particularly, the spherulitic growth patterns are the
results of competition between the translational and rotational motions, which have ever
puzzled researchers in the related field for a long time [3,7] and later were clarified by
Gránásy et al. [8,9] using the phase-field model extended via allowing for evolutions of
local crystal orientations, termed the orientation field-based phase-field (OFPF) model. A
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key result of the competition is the emergence of growth front nucleation (GFN), which is a
new formation mechanism for polycrystalline formations in contrast to the traditional one
through impinging among growing single crystals [10]. Despite the great achievements
in the understanding of nonequilibrium crystallization, present knowledge based on the
OFPF model relies on the assumption that crystals are free to change their local orientation
to lower the free energy, which is not entirely true for crystals and sometimes results
in predictions that are qualitatively wrong. For example, the rotation and shrinking of
circular grain embedded into an infinite crystal cannot be correctly predicted by the OFPF
model due to geometrical constraints on the dislocations (See the review paper [10]). This
indicates that microstructures at the atom level are important. Indeed, Tegze et al. [11]
found that the diffusion-controlled (or slow) growth mode and the diffusionless (or fast)
steady growth mode during equilibrium crystallizations have distinctly different interface
structures. The interface for the former is fairly thin and faceted, while the latter extends
several atomic layers towards the liquid, leaves a so-called crystalline state in the liquid
and shows rounded corners. As a result, different growth morphology emerges. Actually,
the evolution of the local crystal orientation, the interface energy and its anisotropy are
governed by atomic structures and the latter is affected by external conditions, such as
the undercooling of the solidification system, among others. Thereby, a complete under-
standing of nonequilibrium crystallization requires us to treat the crystal growth at a more
fundamental level, i.e., in terms of the atomic structures, as well as its kinetics. However,
simulation of the crystallization process by present atomic simulation methods, such as
classical molecular dynamics, remains a great challenge at present due to the limitation of
spatial and temporal scale.

The classical density functional theory-based phase-field crystal (PFC) model, first
proposed by Elder et al. [12], is a promising candidate and has been used to predict the
symbiosis of faceting with growth mode selection via appending a colored Gaussian noise
term in the equation of motion for evolutions of the reduced atom density [11]. Further,
the morphological transition of nonequilibrium crystal growth is studied in depth by oth-
ers [11,13–15]. Moreover, the amorphous nucleation precursor in the supercooled liquid
is successfully caught by the PFC model [16]. Despite these progresses made by the PFC
model, the crystallization behaviors are only discussed in the solid–liquid coexistence
region of the PFC phase diagram, corresponding to the small supercooling. The crystal-
lization pattern under deep supercooling is not studied at present. It is known that the
vacancy concentration in crystals under deep supercooling deviates much farther from
its equilibrium state than the one under small supercooling. As a result, the solidification
microstructures at the atom level, such as dislocation density in the growing grains, may
be considerably altered due to the nonequilibrium vacancy concentration (NEVC) effects.
In addition, the elastic interactions, including both long-wave and short-wave components,
are important for nonequilibrium crystallization under deep supercooling. However, the
original PFC model only describes the long-wave elastic interactions or the slow dynamics
(low-frequency events) [17] and the microstructure evolutions near the thermodynamic
equilibrium states. Phenomenologically, fast dynamics carrying the short-wave interaction
have been described using a memory kernel [18]. In particular, when the memory kernel
takes the form of the exponential relaxation, i.e., Maxwell memory function, the motion
equation for the PFC model becomes a hyperbolic partial differential equation, which coin-
cides with the modified PFC model proposed by Stefanovic et al. [17] and could describe
the elastic interactions that are missing in the original PFC model. Recently, Podmaniczky
et al. [19] successfully grasped the GFN as well as the spherulite in the undercooled sys-
tem using a hydrodynamics-coupled phase-field crystal (HPFC) model. Although not all
the nonequilibrium phenomena during the crystallizations, such as the dendritic growth
among others, are shown in their results, it implies that the fast dynamics or the short-wave
interaction contained in the hydrodynamics, but absent in the PFC model, is crucial for
describing the nonequilibrium phenomenon during crystallization. As a faster version of
the PFC model, the amplitude-expanded PFC (APFC) model first derived by Goldenfeld
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et al. [20,21] should be more suitable for the nonequilibrium crystallizations since the
simulated system could be much larger and thus allow the morphology of a growing grain
to develop for sufficient time. Additionally, the elastic interactions missing in the APFC
model has been incorporated by coarse-graining the hyperbolic PFC model, which results
in a hyperbolic APFC model [22]. However, it is peculiar that such model is not applied
to simulate the frequently encountered nonequilibrium crystallization patterns, such as
dendrite, spherulite and so on, albeit with a few theoretical analyses [22–24].

In this work, the crystallization behaviors of a model crystal, i.e., the hexagonal crystal,
under deep supercooling are explored using a modified APFC model containing the NEVC
effects recently proposed by us [25] and the hyperbolic APFC model, respectively. Through
comparative investigations, the roles of the short-wave interactions due to the inertia effects
and the NEVC effects on the nonequilibrium crystallization behaviors are examined. In
particular, the seed spacing and distribution on the pattern formation are investigated using
the modified APFC model, which receives little attention in literatures. Our results uncover
that the seed spacing and distribution have a significant influence on the solidification
patterns, as well as the atomic structures under deep supercooling. This paper is organized
as follows. This part introduces the background and motivations of this work. Then, in
Section 2, three simulation methods based on the classical density functional theory are
introduced. Next, in Section 3, the nonequilibrium solidifications of hexagonal crystals
are investigated by the aforementioned simulation methods. Further, in Section 4, the
results obtained from the hexagonal crystals are examined in other crystals, taking the BCC
crystal as an example. Finally, the conclusion is arrived at in Section 5. In this work, if not
specified, we use bold letters to denote vector or tensor and the corresponding italicized
letter with certain subscripts (represented by Greek letters, such as α, β, . . .) to denote its
Cartesian component.

2. Classical Density Functional Theory-Based APFC Model and Its
Phenomenological Corrections
2.1. Original APFC Model

In classical density functional theory [26,27], Helmholtz free energy (F ) of the solid–
liquid coexistent system could be expressed as a summation of the noninteractive part (Fid),
excess free energy (Fex) and the contribution from external fields, which is a functional of
one-particle density (ρ(r)). Particularly, Fid is, in essence, the free energy of ideal gas, i.e.,

Fid = kBT
∫

ρ
[
ln
(

Λdρ
)
− 1
]
dr, (1)

where kB is the Boltzmann constant, T is temperature, d is the dimension of the system
and Λ is the thermal de Broglie wavelength. The exact expression for Fex depends on
the detailed interactions of the system, which is usually unknown a priori. Under the
Ramakrishnan–Yussouff approximation [27], the excess free energy for pure elements can
be expressed by

Fex(T, [ρ(r)]) = −1
2

kBT
∫ ∫

dr1dr2∆ρ(r1)C(2)(r1, r2)∆ρ(r2), (2)

where C(2) is a direct pair correlation function and ∆ρ
(
rj
)
= ρ(r)− ρl , ρl is the number

density of the liquid phase. The PFC model further estimates C(2) by gradient expansions
to the fourth order [26], i.e.,

C(2) ≈ C(2)
0 − C(2)

2 ∇
2
r + C(2)

4 ∇
4
r , (3)

where C(2)
k (k = 0, 2, 4) are expansion coefficients, and the gradients of odd order vanish

due to C(2)(r) = C(2)(−r). The dimensionless reduced density is defined as follows:

ψ(r) = (ρ(r)− ρ)/ρ, (4)
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where ρ is the average number density. Through expanding the integrand of Fid around
ψ = 0 and combining with Equations (2) and (3), the free energy as a function of ψ(r)
is obtained. Various variants can be formulated, but they differ only in the coefficients
preceding each power term of ψ(r). The Swift–Hohenberg model [12,28] is one of the
variants, whose dimensionless free energy functional reads

F =
∫

dx
{

ψ

2

[
−ε +

(
1 +∇2

)2
]

ψ +
ψ4

4

}
, (5)

where ε is a small quantity proportional to the undercooling extent of the system. Fourier ex-
pansion of ψ, to the principal reciprocal lattice vectors (RLVs) of the considered structure, gives

ψ(x) = ψ +
N

∑
j=1

ηj exp
(

iK(j)·x
)
+ c.c., (6)

where c.c. denotes the complex conjugate of the summation term, ψ is average reduced
density and ηj is the j-th complex amplitude corresponding to the reciprocal lattice vector
(RLV) K(j). The summation runs over all (totally N) principal RLVs. Hereafter, we will
take 2D hexagonal lattices and 3D BCC lattices as an example. For hexagonal lattices, the
RLVs are

K(1) = k0

(
−
√

3/2,−1/2
)

, K(2) = k0(0, 1), K(3) = k0

(√
3/2,−1/2

)
, (7)

where k0 = 1 at equilibrium (reference) states. They satisfy a triadic resonance condition of
3
∑

j=1
K(j) = 0. For BCC lattices, the RLVs are

K(1) = k0(1, 1, 0), K(2) = k0(1, 0, 1), K(3) = k0(0, 1, 1),

K(4) = k0(0, 1,−1), K(5) = k0(1,−1, 0), K(6) = k0(−1, 0, 1).
(8)

where k0 =
√

2/2. Note that the following triadic and quartic resonances are satisfied, i.e.,

K(1) −K(4) −K(2) = 0, K(1) + K(6) −K(3) = 0,

K(4) + K(5) + K(6) = 0, K(2) −K(5) −K(3) = 0,
(9)

and

K(1) −K(3) −K(4) −K(5) = 0, K(1) −K(2) + K(5) + K(6) = 0, K(2) −K(3) + K(4) + K(6) = 0. (10)

We proceed by following the variational approach [29,30] to derive the coarse-grained
model. By substituting Equations (6) and (7) into the integrand of Equation (5), integrating
the result over a unit cell and applying the corresponding resonance conditions, the coarse-
grained free energy density can be obtained by dividing the result by the cell volume.
Because the average density and amplitudes vary slowly in space in comparison with the
density wave itself, ψ and ηj can be viewed as functions of a slowly varying spatial variable
and thus remain constant during cell integration. After long but straightforward algebra
calculations, the resulting coarse-grained free energy functional is

F cg =
∫

dx

1
2
(−ε + 1)ψ2 − g

ψ
3

6
+ λ

ψ
4

12
−
(

ε + gψ− λψ
2
)

A2 + λA4 − 1
2

λ
N

∑
j=1

∣∣∣ηj

∣∣∣4 + fs

(
ψ, ηj, η∗j

)
+

N

∑
j=1

∣∣∣Gjηj

∣∣∣2
 (11)

where Gj = ∇2 + 2iK(j)·∇, A2 =
N
∑

j=1

∣∣ηj
∣∣2 and fs is a structure-dependent function. In

addition, the higher-order derivative terms of ψ have been dropped since these terms
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would lead to numerical instabilities [29] and can be self-consistently eliminated through a
convolution operator [31]. The structure-dependent functions for hexagonal lattices and
BCC lattices are

f s
(

ψ, ηj, η∗j

)
= −

(
g− 2λψ

)( N

∏
j=1

ηj +
N

∏
j=1

η∗j

)
(12)

and

f s
(

ψ, η̂j, η̂∗j

)
= −

(
g− 2λψ

)(
η∗1 η2η4 + η∗3 η1η6 + η4η5η6 + η∗2 η3η5 + c.c.

)
+2λ

(
η∗1 η3η4η5 + η∗2 η1η5η6 + η∗3 η2η4η6 + c.c.

)
,

(13)

respectively.
The complex amplitudes obey nonconserved dissipative dynamics, while the average

density follows conserved dissipative dynamics, i.e.,

∂ηj

∂t
= −Mηj

δF cg

δη∗j
+ ςηj , (j = 1, 2, 3) (14)

∂ψ

∂t
= ∇·∇

(
Mψ

δF cg

δψ

)
+∇·ςψ, (15)

where Mηj and Mψ represent mobility parameters of the amplitude ηj and ψ, respectively,
and are taken to be a unit in the present work. In addition, coarse-grained thermal fluc-
tuations for ηj and ψ can be considered by appending the stochastic variables ςηj or ςψ to
the right hand of Equation (14) or (15), which are not the concern in this work. It is known
that the motion equations given by Equations (14) and (15) only describe the overdamped
dynamics and the elastic interactions are missing.

2.2. Hyperbolic APFC Model

According to the idea of Galenko et al. [18,22], the fast time scale due to the elastic
interactions could be introduced into the APFC model by coarse-graining the hyperbolic
PFC model [18] or the modified PFC model [17], which gives

τ
∂2ηj

∂t2 +
∂ηj

∂t
= −Mηj

δF cg

δη∗j
, (j = 1, 2, . . . , N) (16)

To accelerate our calculations, we use Gj ≈ 2iKj·∇, which has been widely applied
during theoretical analyses of the solid–liquid interface, for example, in the studies [22,23].
By inserting Equation (11) into the above equation and rearranging the resulting terms
according to the degree of ηj’s, we get

τ
∂2ηj
∂t2 +

∂ηj
∂t = −Mηj

[
−
(

ε + gψ− λψ
2
)

ηj + 2λ
N
∑

k=1
c̃jkηj|ηk|2 + f

′
s,η∗j
−
(

2K(j)·∇
)2

ηj

]
(j = 1, 2, . . . , N)

(17)

where

c̃jk =

{
1, (j 6= k)
1
2 , (j = k)

(18)

In the above equation, we used (·)
′
,X to represent the first derivative of the function

(·) with respect to X in this work, for example, f
′
s,η∗j
≡ ∂ fs/∂η∗j . Through Floquet stability

analysis [17], it is found that the effective vacancy diffusion coefficient is proportional
to Mηj and the elastic interaction length is proportional to

√
τMηj . Thereby, the elastic

interaction length can be tuned by τ so as to adapt elastic wave modes typically on time
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scales many orders of magnitude slower than phonon vibrations but still much faster than
diffusive time scales. This facilitates us to investigate the influence of different short-wave
interactions on the nonequilibrium solidification behaviors in this work.

2.3. Modified APFC Model Containing the NEVC Effects

Dislocation is the most fundamental lattice defect that the APFC model can describe.
For 2D systems, only edge dislocations can be caught. The osmotic force due to the NEVC
tends to make the dislocation climb. Namely, the direction of the osmotic force is vertical to
the slip plane, i.e., parallel to K(j). To describe the NEVC effects, an extra force acting on
the lattice defects can be introduced to mimic the osmotic force. Unfortunately, the APFC
model cannot handle the lattice defects directly. Thereby, the osmotic force formulated
based on the classical dislocation theory is inapplicable to the APFC model. To solve this
problem, we reinterpret the APFC system as the one consisting of the local lattice elements
defined in each mesh node. For a given lattice structure, the state of the local lattice element
is uniquely defined by the complex amplitudes and the average density. The latter ones
evolve according to Equations (14) and (15). Note that all potential rotations of the local
lattice elements are automatically incorporated in the complex amplitudes. This facilitates
our analyses below. For solids, the average density evolution is not important and has
been omitted in many APFC models, for example, the ones in the studies [20,21,32], while
the complex amplitude evolution governs the motion of lattice defects in crystals. It is
known that Equation (14) only describes the slow diffusion process. To incorporate the
contributions of the osmotic force into the complex amplitude evolution, an extra term can
be appended to the right hand of Equation (14), i.e.,

∂ηj
∂t = −Mηj

{
−
(

ε + gψ− λψ
2
)

ηj + 2λ ∑N
k=1 c̃jkηj|ηk|2 + f

′
s,η∗j

+ Gj
2ηj

}
+ Λ0ηjςpj ,

(j = 1, 2, . . . , N)

(19)

where Λ0 is a model parameter and

ςpj = exp
(
−iδϕ(j)

)
− 1. (20)

The argument change δϕ(j) for each complex amplitude is caused by the potential
osmotic force. Because the osmotic force only acts on the lattice defects, ςpj or δϕ(j) should
be zero everywhere other than the position around the lattice defects. This is the basic
requirement that must be satisfied by δϕ(j). It is known that the APFC model always
evolves the system towards the minimum-energy state. The presence of the extra term in
Equation (19) acts as a determinative noise which gives the system a certain possibility of
deviating from the minimum-energy path during the evolutions. In this way, the “rare
events” associated with the interactions between the vacancies and the lattice defects,
typically not energetically preferred, can be incorporated into the APFC model. This
makes the APFC model behave like a Monte Carlo method but operate at the continuum
level. Below, we provide an approach to determine δϕ(j) and thus ςpj . For presentation
convenience, we refer to such a model as the phase-relaxed APFC (PAPFC) model.

Assuming that the local lattice element is characterized by ψ,
{

ηj
}

and
{

K(j)
}

, the

crystal has an attempt to relieve the local elastic stresses through adjusting strains or K(j)

of the local lattice elements. The minimal model to describe the relaxation of K(j) within a
virtual time interval (δt) is

δK(j)

δt
= −MK(j)

δF cg

δK(j)
, (j = 1, 2, . . . , N) (21)
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where K(j)
α is the α-th component of K(j) and MK(j) is the corresponding mobility parameter.

Because of the symmetry of K(j) (j = 1, 2, 3), we take MK(j) to be MK for all K(j) (j = 1, 2, 3) in
the present work. By inserting Equation (11) into Equation (21), performing the variational
derivative, and rearranging the results terms according to the derivatives of ηj, we obtain
the following compact form:

δK(j)/δt = −2MK∇·K(j)∇
∣∣ηj
∣∣2 + MK

~
p
(j)

, → (j = 1, 2, . . . , N) (22)

where
~
p
(j)

=
(

η∗j Gjηj + ηjGj
∗η∗j

)
K(j) − iη∗j

[
∇Gjηj +

(
1− K2

j

)
∇ηj

]
+ c.c., (23)

Previously, we proved that
~
p
(j)

relates to the Cauchy stress (σ) by reference [25]

σ = f cgI + ∑
j

~
p
(j)
⊗K(j), (24)

where f cg is the coarse-grained free energy density and δαβ is the Kronecker delta. To the
zero-th approximation, Equation (22) reduces to

δK(j)/δt = MK
~
p
(j)

, (j = 1, 2, . . . , N) (25)

Note that the first term is small compared with the second term in Equation (24)
when the initial pressure is zero. Then, it is easy to find that the variation of K(j) given by
Equation (25) is caused by the elastic relaxation due to the force acting on the local lattice

element along K(j), i.e., a climb force
~
p
(j)

. Under the elastic equilibrium state, such climb
force should be equal to the osmotic force. Thereby, Equation (25) naturally describes the
influence of the osmotic force associated with the slip plane normal to K(j).

Next, we should convert the virtual variation of K(j) into the argument change. Sup-

posing that the extra displacement due to the relaxation of K(j) is denoted by
~
u
(j)

, the
argument change in ηj can be expressed as

δϕ(j) = 0K(j)·~u
(j)

, (j = 1, 2, . . . , N) (26)

where 0K(j) represents the j-th unstrained RLV and relates to the deformed one by K(j) =
0K(j) + δK(j). The compatibility condition of the deformed local lattice elements requires

K(j)·a(j) = 0K(j)·
(

a(j) +
~
u
(j)
)

or 0K(j)·~u
(j)

= K(j)·a(j) − 2π. (27)

where a(j) is the ideal lattice vector satisfying 0K(j)·a(j) = 2π. With Equations (25) and (27),
Equation (26) can be rewritten as

δϕ(j) = MKδt
~
p
(j)
·a(j) (28)

According to Equation (23), it is not hard to find that
~
p
(j)

is zero everywhere other than
the positions around the lattice defects. This meets the requirement for δϕ(j) mentioned at
the beginning of Section 2.3. If not mentioned, δt coincides with the timestep used in the

simulations. When the lattice vector is taken to be a(j) = 2π0K(j)/‖0K(j)‖2
, Equation (28)

can be further rewritten as

δϕ(j) = 2πMK(j)δtp(j), (j = 1, . . . , N) (29)
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where p(j) is given by

p(j) =
~
p
(j)
·0K(j). (30)

With Equations (23), (29) and (30), δϕ(j) can be determined at each timestep after the
complex amplitudes are solved.

Before ending this part, it is necessary to emphasize that the modified APFC model
proposed by us has been extensively examined in crystals under various NEVCs in our
recent work [25]. It is found that the modified APFC model can describe the climb behaviors
of dislocations under different NEVCs. Particularly, MK(j) can be interpreted as a measure
of the relative NEVC. Although the original idea of such a model is inspired by the influence
of vacancies on the edge dislocations in the 2D systems, the resulting model exhibits a
strong prediction ability for microstructure evolutions at the atom level, not only in the 2D
crystals but also in the 3D crystals. For example, such a model can naturally predict various
point defect-mediated behaviors of dislocation loops in radiated BCC crystals known in
experiments, such as the shrinking, 1D diffusive motion and changing habit plane of
dislocation loops. In this work, we will further apply such a model to explore the role of the
NEVC effects during the crystallization under deep supercooling. In fact, the determinative
noise is determined by the system temperature implicitly. For example, near the equilibrium
melting point, the elastic stiffness of the solid approaches zero, corresponding to a very
small equilibrium amplitude. According to the idea of our model (See Equations (23) and
(29)), it can be inferred that the extra term introduced is also very small. When the system
is under supercooling, the elastic stiffness of the solid is large, corresponding to a large
equilibrium amplitude. Then, the extra term is also large. The character enables us the
explore the solidification behaviors under various supercooling in a natural way.

3. Nonequilibrium Solidifications of Hexagonal Crystals
3.1. Method and Simulations

Numerical simulations are performed by solving the motion equations for the complex
amplitudes as well as that for the average density, i.e., Equation (15). Note that detailed
motion equations for the complex amplitudes depend on the detailed model, as described
separately in Section 2. A finite element code with adaptive mesh techniques is imple-
mented for the model with a C++ library deal.II [33]. Particularly, the extra term introduced
in the PAPFC model is evaluated using a special explicit algorithm [25] during the time
integration of the complex amplitudes. Below, we will adopt the PAPFC model to explore
the nonequilibrium crystallization behaviors and compare the results with that of the
hyperbolic APFC model where necessary.

Considering the thermodynamic equilibrium condition of ε = 37ψ
2/15, we fix the

initial ψ at −0.2 and explore different ε changing within the range of [0.1, 0.2] to check
the role the undercooling played on the crystal growth of the hexagonal phase. Four
hexagonal samples with periodic conditions applied along X and Y directions are adopted
to investigate the effects of seed distribution and its initial rotation angle (θ). To this end,
nine seeds with different rotation angles uniformly distribute over the first sample (I), the
center of the second sample (II) is placed with a seed of θ = 0◦, the center as well as the four
corners of the third sample (III) is placed with a seed of θ = 0◦, and the positions of (Lx/4,
Ly/2) and (3Lx/4, Ly/2) in the fourth sample (IV) are placed with two seeds whose θ is
0◦ and 15◦, respectively. Lx (Ly) represents the size of the corresponding sample along the
X (Y) direction. In our simulations, the seeds are generated by placing a small circular grain
with a radius of about 1.5ahex and the corresponding rotation angle at the aforementioned
positions for each sample. It is found that the seeds may not sustain their original states
during the simulations without additional constraints. In this case, the seeds of different
rotation angles, in essence, provide nucleation sites with different initial states. This can
mimic heterogeneous nucleation processes of pure liquid phase with various potential
nucleation sites. We mainly focus on such a case, while the results of the seeds with a
fixed radius are provided in the Supplementary Materials. We will adopt this scheme to
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generate the seeds in the four samples. The influences of the seed spacing are examined by
adjusting the dimension (Lx × Ly) of the samples. For the first three samples, the explored
dimensions range from 1024ahex × 512

√
3ahex to 4096ahex × 2048

√
3ahex. The dimension of

sample IV is 4096ahex × 1024
√

3ahex, where the seed distribution is comparable to the one
of sample II (See Figure 1). The lattice parameter ahex is 4π/

√
3 in a dimensionless unit.

Without losing generality, initial unrotated amplitudes are assumed to be real and equal

in magnitude, whose value is obtained to be η0 =

(
−3ψ±

√
15ε− 36ψ

2
)

/15 through

minimizing the free energy. The minimal grid size is ahex, and the timestep (∆t) ranges from
0.1 to 0.25 in the dimensionless unit, depending on the value of ε. Λ0 has a dimension of
the time inverse and is taken to be 1/∆t. MK(j) is taken to be 1.0 × 10−3. Larger MK(j) will
make the GFN take place in advance and thus affect the atomic structures of the growing
crystal. This is because MK(j) controls the amplitude of the determinative noise (a kind of
short-wave interaction), which is crucial for the formation of the spherulites. However, the
solidification pattern is qualitatively the same (See Supplementary Materials).
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actual domain simulated because of the periodic boundary conditions. The white (gray) circle denotes
seed with θ = 0◦ (15◦), and the blue grid shows the background lattice symmetry, i.e., hexagon (Only
two edges are shown for concision). Note that the distribution of samples I and IV are the same
except for the seed types. Overall, the seeds in samples II and IV are rectangle-distributed (due to the
constraints of the lattice symmetry and the periodic boundary conditions), while the seeds in sample
III are hexagon-distributed.

3.2. Crystallization of the Polycrystal under Deep Supercooling

Figure 2 shows the polycrystal growth morphology in sample I at relatively moderate
undercooling, but still deep supercooling. The distortion degree of the local lattice in the
growing crystals can be observed from the shear stress field (See Figure 2a). It is known
that each spherulite contains multiple subgrains with different orientations [3]. The lattice
distortion near the boundary between the adjacent subgrains should be distinctly different
from the subgrain interior. As shown in Figure 2a, the part of a grain with a relatively
uniform color represents a subgrain. Because the orientation of each subgrain within
a grain is different, the stripe spacing in the Re(η1) field should be different for these
subgrains due to the different rotations, which agrees with the results shown in Figure 2b.
The formation of the spherulite arises from incoherent local lattice rotations caused by the
NEVC effects during the crystallization. Depending on the relative rotation angle between
adjacent grains separated by a grain boundary, the separation distance between adjacent
boundary dislocations may be larger than the grain size so that the boundary dislocations
may not be observed in our results because of the limited grain size, for example, in the
upper three grains in Figure 2a,b. In other cases, boundary dislocations emerge in the grain
interior. Thereby, it can be concluded that the growing grains in Figure 2b or Figure 2c are
spherulites, which are extremely similar to experimental ones [3].
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The whole formation process of the polycrystal under moderate undercooling is
shown in Figure 3. Morphologies of the growing grains and dislocations in the grains
are visualized using A2, which is nearly zero at the dislocation cores, is precisely zero in
the liquid and is nonzero in crystals. The dislocation, as well as the Burgers vector, can

be identified by the pressure (P = −
N
∑

j=1
p(j)/d, d is the dimension of the system) field in

the growing grains (See Figure 3d–f). Each dislocation core is surrounded by a pair of
pressure extremes, i.e., the local maximum (denoted by bright yellow) and minimum value
(denoted by black), in the pressure field. The Burgers vector of the dislocation is vertical to
the direction pointing from the black side to the yellow side. It will be further examined in
the next paragraph. The results shown in Figure 3 indicate that the dislocations can form in
the interior of the grains during grain growth. From Figure 3f, it is found that the Burgers
vectors of the dislocations belonging to the same straight grain boundary are the same.
This means that a row of dislocations with the same Burgers vector actually forms a grain
boundary. Thereby, the dislocations in the grain interior are, in fact, the grain boundary
dislocations that divide a grain into several subgrains, for example, the grain with a white
square in Figure 3a. This further confirms that the growing grains are actually spherulites.

At the elevated undercooling, patterns of the growing grains become extremely com-
plex, which depends on several factors, such as seed spacing and seed distribution, among
others. More details will be discussed in details later in Section 3.3. Below, we focus
our attention on the microstructures of the polycrystal formed under high undercooling.
Figure 4 shows the final crystallization morphology of sample I with ε = 0.2 after the
solidification finishes. The dislocation distribution can be identified using the field of
A2 or the pressure. The result shown in Figure 4 suggests that the dislocation density is
extremely high, and the grains are so small that they are nearly indistinguishable. It can
be inferred that an amorphous phase will be formed when the undercooling (and thus
the dislocation density) is sufficiently high (large). This obeys present understandings of
the nonequilibrium solidifications. The core structures of dislocations are examined from
the atom density field reconstructed using Equation (6). Figure 5 shows the reconstructed
atom density field for the case of ε = 0.125 and 0.2. From Figure 5a,b, it is found that the
dislocation core can be well identified from the pressure field, and the dislocation, in fact,
consists of two edge components whose half-planes of atoms are depicted with the cyan
lines. This result indicates the resulting Burgers vector is indeed vertical to the direction
pointing from the local minimum to the local maximum pressure. The results shown in
Figure 5c,d indicate that the crystallization under the high undercooling result in quantities
of small grains.
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cooling (𝜖 = 0.125), a microscopic columnar-to-equiaxial transition takes place when the 
seed distribution changes from rectangle symmetry (Figure 6a) to hexagonal symmetry 
(Figure 6b). This can be attributed to the combined effects of the long-wave and the short-
wave interactions. The long-wave effect described by the APFC model result in the crys-
talline state invading deeply into the metastable liquid under the supercooling [24] so that 
the adjacent growing grains or growth fronts interact with each other before they actually 
impinge. The effective interaction distance grows with the increment of the undercooling 
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3.3. Nonequilibrium Patterns during the Growth of a Single Seed in the Presence of Other
Potential Seeds

To make the pattern formation mechanism clear, we resort to the growth kinetics
of a “single” seed. Actually, the seed is still in a polycrystal but with much larger seed
spacing because of the periodic boundary conditions. The results are shown in Figure 6.
In particular, Figure 6a–f are visualized using the corresponding shear stress field, which
can not only distinguish the shape of the growing grain (having nonzero shear stress),
but also highlight the subgrain boundaries (having a larger positive or negative value
corresponding to the bright yellow or black color in the figures). Surprisingly, at moderate
undercooling (ε = 0.125), a microscopic columnar-to-equiaxial transition takes place when
the seed distribution changes from rectangle symmetry (Figure 6a) to hexagonal symme-
try (Figure 6b). This can be attributed to the combined effects of the long-wave and the
short-wave interactions. The long-wave effect described by the APFC model result in the
crystalline state invading deeply into the metastable liquid under the supercooling [24]
so that the adjacent growing grains or growth fronts interact with each other before they
actually impinge. The effective interaction distance grows with the increment of the un-
dercooling and can well cover the seed spacing explored in this work. As a result, the
crystallization patterns are sensitive to the initial positions of the seeds. Our result indicates
that the interaction between different seeds slows down the growth speed. Thereby, it
can be inferred that the pattern spreads more slowly along the direction along which the
seed spacing is smaller, which explains the microscopic columnar-to-equiaxial transition.
The role of the short-wave interaction, i.e., the determinative noise introduced by the
PAPFC model, is critical for the GFN, which is the major growth mechanism under deep
supercooling. They will be further discussed in Sections 3.4 and 3.5. Below, we focus on
the characteristics of the nonequilibrium patterns during the crystallization. The columnar
dendrite is prone to growing along the X axis of sample I due to the relatively large seed
spacing, while the equiaxial dendrite grows simultaneously along the X and Y axes of
sample II. Keeping the rectangular symmetry but rotating the right (as well as the left)
seed by 15◦, the columnar dendrite becomes more of a nonsymmetric equiaxial dendrite
with distinctly different primary arms. Except for the four primary arms growing along X
and Y directions (See Figure 6c,d), multiple side arms are observed in the nonsymmetric
equiaxial dendrite. The influence of the initial rotation angle of the seed on the pattern is
due to the anisotropic surface energy, which affects the major growth direction at the early
stage. Consequently, the interaction between adjacent grains happening at the later stage is
modified, which eventually influences the crystallization pattern. Further increasing the
undercooling, the dendrite turns out to be even slenderer (See Figure 6e,f). Interestingly,
the growth tip of the left (or right) primary arm is split (See Figure 6c,d,g,h), resembling
the tip splitting of dendrites arising from anisotropic interface energy [34,35]. It is found
that the tip splitting is formed through the GFNs. In the present work, such a phenomenon
can be explained by the interactions between the invading crystalline states among the
major growth fronts, which create the preferred nucleation sites for the GFNs with the aid
of determinative noise. Dislocation density is much larger in regions between the primary
arms (See Figure 6g,h) due to the impinging of small grains formed by the frequent occur-
rence of the GFN. This coincides with that of the polycrystal under high undercooling. The
envelope of the nonsymmetric equiaxial dendrite is rectangular (or ellipsoid). Considering
the rectangle-distributed seeds (See Figure 1), such a result can be well interpreted by the
aforementioned long-wave interactions.
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Figure 6. Morphology of crystal growth in the different samples with various undercoolings. (a) is
columnar dendrite in sample II with ε = 0.125. (b) is equiaxial dendrite in sample III with ε = 0.125.
(c,d) are equiaxial dendrites in sample IV with ε = 0.125 and (e,f) are the same but with ε = 0.15.
The field plotted in (a–f) is the shear stress. Lattice defects (mainly dislocations) in (e) and (f) can
be observed more clearly from the A2 field plots, i.e., (g) and (h), where five regions, marked by the
white squares, have a size of 500 × 500 for each.

Typical local microstructures of the nonsymmetric equiaxial dendrites at the atom level
are reconstructed, and the results are shown in Figure 7. Dislocation configurations at the
atom level can be clearly identified from the results (Figure 7a,c). Interestingly, dislocations
mainly emerge outside a circular region centered at the seed (such as the region “1” and “3”
in Figure 6g,h). After a sufficient relaxation time, these dislocations would partly annihilate,
accompanied by rotation and shrinking of the small grains. The relaxation rate relies on the
competition between the diffusion and elastic relaxation processes, which exceeds the scope
of the present work. In addition, the GFN at the growth tip and the dendric growth with
side arms are observed (See Figure 7b,d,e). The reason for such behaviors is, in essence,
the same as that of the microscopic columnar-to-equiaxial transition, i.e., the invading
crystalline states in the liquid phase. In this case, the invading crystalline states mainly
come from the different growth fronts of the same grain. The reason is as follows. There
are several major growth fronts for a grain, which is initially because of the anisotropic
surface energy. The invading crystalline states generated by the adjacent major growth
fronts interact with each other. As a result, the determinative noise due to the NEVC effects
is much stronger in the liquid where the interaction begins, which stimulates the nucleation
of new crystallites with different orientations. The mechanism for such a process will be
further discussed in the next part.
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Figure 7. Reconstructed atom density field of the five regions in Figure 6g,h. (a–e) correspond to the
region numbered from “1” to “5”, respectively. The inset in (a) or (c) is the magnified view of the
corresponding region marked by the yellow square, where the core structures of the dislocations are
clearly seen.

According above discussions, we reproduced many typical nonequilibrium patterns,
including spherulites, columnar dendrites and equiaxial dendrites, during crystal growth
by the PAPFC model. Moreover, our results uncover a microscopic columnar-to-equiaxial
transition, which was not well understood previously, depending on the undercooling,
lattice symmetry and seed distributions. Dislocation density notably increases only after a
certain period of crystal growth and becomes larger with the promotion of undercooling.

3.4. The Crystal Growth under the Deep Supercooling

The kinetics of the right (upper) growth front for sample II is shown in Figure 8a,b.
Two growth stages can be identified. In the first growth stage, corresponding to growth
stage I in Figure 8a, the crystal grows mainly through diffusive transport of mass, i.e., slow
mode, whose interface velocity (v) vs. growth time (τ = t − t0, t0 is the nucleation time)
characterized by the relation of v ∝ τ−1/2. This result agrees with the one [36] predicted
by the diffusive PFC model, except for a larger velocity coefficient because of the higher
undercooling. The density of lattice defects characterized mainly by dislocations is small
in this stage. As a result, a relatively “clean” region at the center of the growing crystal
is observed (See Figure 9a,b). With the growth of the clean region, the local low-density
layer appears at the growth front due to the increasing depletion layer. The emergence of
the low-density layer arises from the increment of the average density in the solid at the
“clean” region, where the color representing the density is slightly brighter than the liquid
in Figure 9. In contrast to the solidifications near the thermodynamic equilibrium state,
the following growth can proceed in the unstable liquid without apparently increasing
its density. This can be found in Figure 9d–i, where the color representing the density
within the growth front is almost the same as that in the liquid. This is reasonable because
the liquid under deep supercooling is less energetically stable than the corresponding
solid phase, even with the same density. As the crystal continues to grow, the higher
density region spreads from the center to its surroundings, but at a speed much slower than
that of the crystal growth. In addition, the interactions between the invading crystalline
states generated by the major adjacent growth fronts can be identified from the inset of
Figure 9b,c. The GFN is prone to occur in the interaction region. The determinative noises
due to the NEVC effects are of key importance for the occurrence of the GFN with a
different orientation. The newly formed grain seed grow and, in turn, generate the new
invading crystalline state interacting with the old ones. The new interaction promotes the
next GFN. Such a process repeats again and again during the second growth stage. This
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accounts for the GFN-dominated growth processes, i.e., growth stage II shown in Figure 8a.
A notable feature in this stage is that the growth front moves forward through a combined
mechanism of diffusion-controlled anisotropic growth and GFN-controlled growth, which
leads to the step-growth style of the front (See Figure 8a). Within each “step”, the crystal
grows still through the diffusion-controlled mechanism. In contrast to the steady growth
speed observed in solid–liquid coexistence regime from both PFC simulations [11] and
experiments on colloidal hard sphere crystallization [37], the interface velocity vs. growth
time asymptotically approaches to a relation of v ∝ τn−1 at sufficient growth time, where
n ∼ 2 in the present work (See Figure 8). We further investigate the crystal growth in
sample II under different undercooling. The two stages are also observed at the lower or
higher undercooling (See Supplementary Materials).
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Figure 8. (a) Right-growth front position versus time for sample II with ε = 0.125, where the gray solid
line (or blue dot–dash line) for growth stage I in the inset is a fit to relation [36]: Z = Z0 + C

√
t− t0,

Z0 = 14858.64, t0 = 20.00 and C = 6.59 (or Z0 = 14861.66, t0 = 102.06 and C = 6.60), and the
pink solid line for growth stage II (Mη/Mψ = 0.5) is a fit to Z = Z0 + C(t− t0)

n + Ae−(t−t0)/τ0 ,
Z0 = 14262.90, C = 5.15 × 10−5, n = 2.36, t0 = 638.72, A = 828.90 and τ0 = 2.92 × 103.
(b) Upper-growth front position versus time for the sample II with ε = 0.125, where the pink
solid line (or blue dot–dash line) is a fit to the same relation satisfied by stage II for the case of
Mη/Mψ = 1 (or Mη/Mψ = 0.5), and the fitting parameters are Z0 = 12997.78, C = 3.78× 10−5,
n = 2.30, t0 = 539.89, A = 0.16 and τ0 = 1.70× 102 (or Z0 = 12747.83, C = 6.58× 10−5, n = 2.17,
t0 = 11.37, A = 4.88 and τ0 = 1.41× 102). The inset is the magnified view of the first growth stage.

In particular, to examine the role of the ratio of Mη/Mψ on the crystal growth, we
modify the ratio of Mη/Mψ by setting Mψ = 2.0. Results for the kinetics of the right
(upper) growth front are shown in Figure 8. The two growth stages also emerge, but are
slightly different quantitatively. Larger diffusion mobility of the average density slows
down the growth speed along the X direction in the first stage as well as the growth along
the Y direction in the second stage, while it has a tiny influence on the growth along
the X direction in the second stage and that along the Y direction in the first stage. The
smaller growth speed caused by the large diffusion mobility of the average density is due
to the comparable mass transportation speed with that of the crystal growth (such as the
growth along X during the first stage). As a result, a relatively large low-density region
appears in the front of the solid–liquid interface. According to the PFC phase diagram, the
undercooling of the low-density region is relatively low compared with that of a smaller
Mψ, as well as the initial undercooling of the system. Then, the growth speed is slower
than the later ones. However, if the growth speed of the crystal is much faster than that
of the mass transportation (Such as the growth along X during the second stage) or much
slower than the latter (such as the growth along Y during the first stage), the influence
of Mψ is tiny (as observed in Figure 8a). The influence of Mψ on the growth along the
Y direction at the second growth stage is caused by the interactions of the density field
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from the adjacent seeds, since the seed spacing along this dimension is relatively small.
Moreover, the influence is not obvious at the beginning of the second stage (See Figure 8b)
when the adjacent seeds still separate far enough from each other. This further supports
the above assertion. The transition time between the two growth stages relates to the
undercooling by a power law (See Figure 10). Such a result suggests that the second
growth stage emerges in the crystallization system with either large seed spacing and low
undercooling or smaller seed spacing and high undercooling. By controlling the transition
time in terms of adjusting the undercooling and the seed spacing (related to the system size
and impurity content, among others), polycrystals with different grain sizes, grain shapes
and dislocation densities can be acquired.
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Figure 9. Enlarged contour plots at different moments showing the columnar growth processes
of the hexagonal phase at ε = 0.125. In (a–i), the upper panel plotted is field A2, while the lower
is ψ. Reconstructed atom density fields of the region marked by the white rectangles in (a–f) are
given in the inset of (a–c) and in (j–l) for (d–f), respectively. Although initial simulated system
is centrosymmetric, dislocations generated during the crystal growth slightly deviate from the
centrosymmetric distribution. This is because the initial seed may not be strictly centrosymmetric
after the numerical discretization.

3.5. The Role of the Short-Wave Interaction on the Nonequilibrium Crystallization

To examine the role of the short-wave interaction on the crystallization behaviors, we
conduct a similar simulation using the hyperbolic APFC model, which contains
the short-wave interaction. We select sample II, but with a relatively small size,
i.e., 1024ahex × 512

√
3ahex, as the research object. Considering the influence of the seed spac-

ing or the system size, such a sample is also used for the corresponding PAPFC simulations,
and the results are provided in the Supplementary Materials. For the numerical simulations
using the hyperbolic APFC model, the minimum grid size is 0.5ahex, and the timestep is 0.1
in the dimensionless time unit. Two elastic interaction lengths are explored by setting τ to
1.0 and 1000.0. The simulation results for τ = 1.0 is shown in Figures 11 and 12. It is found
that the envelope of the growing grain is similar to that predicted by the PAPFC model,
especially at the early stage (t ≤ 3000), but different in the defect type inside the grain. For
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example, both of the models predict columnar growth at the early stage. However, at the
late stage, when the distance between the growing grains becomes very small, such as the
time at t = 3900 in Figure 11d, the growth speed of the GFN increases obviously for the
hyperbolic APFC model. Because of the large sample used for the PAPFC simulations, such
a stage is not reached within our simulation time. However, this behavior can emerge in the
PAPFC simulation for the small sample. The columnar growth is, in essence, arising from
the same reason, i.e., the interactions of the invading crystalline state in the unstable liquid
ahead of the growth front, which can be well described by the APFC model. However, the
GFN cannot occur in the APFC model because of the lack of suitable short-wave elastic
interactions. In comparison, the hyperbolic APFC model incorporates a short-wave elastic
interaction by introducing the extra inertia term, and the PAPFC model contains the extra
determinative noise, which is, in fact, a special kind of short-wave elastic interaction. Differ-
ent from the dislocations as the major lattice defects present in the PAPFC simulation results,
the lattice defects in the growing grain are mainly stacking faults (See Figure 12). With the
increment of the interaction length, the growing speed of the grain becomes apparently
slower, and the directional growth is less obvious (See Figure 13). In addition, the average
grain size is smaller. Considering that large interaction length corresponds to the small
critical undercooling [24], i.e., large relative undercooling, this result, in fact, coincides
with the result of PAPFC simulations under the high undercooling. Thereby, it could be
concluded that, except for the seed spacing and distributions, the elastic interaction length
is the key factor that determines the nonequilibrium crystallization patterns as well as
the grain size under the different undercooling, while the short-wave elastic interaction
plays a key role for the GFN and the major defect types in the final crystals depends on the
detailed short-wave elastic interaction type. Interestingly, when multiple grains are present,
dislocations may also emerge in the interior of the growing grain for the hyperbolic APFC
model (See Figure 14). However, the dislocation density is much lower than that predicted
by the PAPFC model.
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Figure 14. Nonequilibrium crystallization process of the sample I simulated using the hyperbolic
APFC model under the undercooling of ε = 0.125. The field plotted is A2. (a–c) corresponds to the
moments of t = 1400, 1800 and 3300, respectively. (d,e) are the reconstructed atom density fields of
the regions marked by the white rectangle in (c). Particularly, (e) shows the dislocation in the grain
interior, which is generated during the growth.

4. Faceted and Dendritic Growth of BCC Crystals

To further confirm our results obtained from the 2D lattice, large-scale simulations are
also conducted to investigate the crystal growth in the BCC lattice using the PAPFC model.
A small BCC seed with [100], [010] and [111] aligning along the X, Y and Z axis, respectively,
is placed at the center of a simulation box initially filled with an equilibrium liquid phase.
The size of the simulation system is 80abcc × 80abcc × 80abcc, where the dimensionless
lattice parameter abcc is 2

√
2π. Periodic boundary conditions are applied along X and

Y directions. Model parameters
(
ε, ψ
)

are selected to be (0.35, −0.35) and (0.40, −0.35),
corresponding to low and high undercooling in the phase diagram [38]. Assuming that
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the initial amplitudes are real and equal in magnitudes (represented by η0), we obtain

η0 =

(
−2ψ±

√
5ε− ψ

2
)

/15 after minimizing the free energy functional. The minimal

grid size is 1.25abcc. The dimensionless timestep is 0.2 for the case of ε = 0.35 and 0.1 for
the case of ε = 0.40.

The results are shown in Figure 15, where faceting morphology and equiaxial dendrite
are observed. The growth fronts for the two cases (corresponding to the two growth stages)
are featured by clean and smearing solid–liquid interfaces, respectively (See Figure 15b,c,e,f).
Notably, the crystalline state around the smearing solid–liquid interface invades deeply
into the liquid. At the low undercooling, the diffusion-controlled growth stage covers
the whole simulated crystallization process. When the simulation time (as well as the
seed spacing) is sufficiently long (large), the second growth stage emerges, according to
the results in Section 3. Alternatively, we can observe such a growth stage by elevating
the undercooling with less computational effort. The results at the high undercooling are
shown in Figures 15d–f and 16. It is found that the GFN-dominated growth quickly takes
over the crystallization process controlled by the mass diffusion and results in formations
of the complex nonequilibrium pattern, i.e., the equiaxial dendrite, which confirms our
assertions above. In the real crystallization system, the seed spacing is usually much larger
than the one explored in the present work. This will lower the undercooling condition
required to observe the second growth stage.
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in the solid phase. This is because the cyan line we chose to draw the profile with is not exactly 
passing through the center of the atoms in the solid phase. 

Figure 15. Faceting morphology and equiaxial dendrite in the BCC sample (a–c) at t = 670 with
ε = 0.35 and (d–f) at t = 215 with ε = 0.4, respectively. The contour surfaces in (a) and (d) correspond
to A2 = 0.02. The cross section, i.e., Z = 40abcc plane, of the system at the corresponding time is shown
to the left of (b) for ε = 0.35 and (c) for ε = 0.4, respectively, where the field plotted is A2. To the right
of (b) or (e), the enlarged reconstructed-density view corresponds to the region marked by the yellow
square in the left figure, which shows the atomic microstructure of the liquid–solid interface at the
right growing tip. (c) or (f) are the profiles of atom density (ψ) and A2 along the cyan line drawn in
(b) or (e). It is found in (c) that the average density in the liquid phase is larger than that in the solid
phase. This is because the cyan line we chose to draw the profile with is not exactly passing through
the center of the atoms in the solid phase.
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5. Summary and Conclusions

In summary, nonequilibrium crystallizations are investigated using the PAPFC model
and the hyperbolic APFC model. Particularly, the PAPFC model provides a way to explore
the solidification behaviors under various supercooling in a natural way due to the implicit
dependence of the extra determinative noise on the system temperature. Nonequilibrium
patterns, including the faceted growth, spherulite, symmetric and nonsymmetric dendrites,
among others at the atom level, are revealed under deep supercooling. Except for the
undercooling, it is found that the nonequilibrium pattern during the crystallization depends
on the lattice symmetry, undercooling, seed type and interaction among the growing
crystallites. Particularly, roles of the interactions arising from seed distributions as well
as seed types (characterized by initial rotation angular) are investigated. Our results
show that the combined effect of the long-wave and the short-wave elastic interaction
is responsible for the pattern formations. The long-wave interactions inhabited in the
APFC model result in the crystalline state invading deeply into the metastable liquid under
the supercooling so that the growing grains, as well as the growth fronts, interact with
each other before directly impinging. At the same time, the short-wave interaction plays
a key role in the GFN. Particularly, the major defect types in the final crystals depend
on the detailed type of the short-wave elastic interaction. The short-wave interaction
due to the inertia effects tends to generate stacking faults in the growing crystals, while
the one due to the NEVC effects is prone to generate dislocations. Overall, two growth
stages, i.e., diffusion-controlled anisotropic growth and GFN-dominated growth, could be
identified. In contrast to the solidification near the thermodynamic equilibrium states, the
crystal is found to grow in the unstable liquid without apparently increasing its density
at the second growth stage. At the large undercooling, the diffusion-controlled growth
stage becomes so short that it is difficult to be aware of its existence compared with the
second stage. Dislocations are dramatically generated in the second stage, mainly through
impinging of small crystallites formed via the GFN mechanism. This may be the source of
the precursor of amorphous nucleation. Nonequilibrium solidifications of BCC crystals are
also investigated, which supports the two growth stages. The result of the present work
provides clues for designing the polycrystals containing grains with various shapes and
sizes, as well as different initial dislocation densities, through controlling the undercooling,
seed density, container shape, and so on, to meet the various requirements of application
realms. Finally, it should be pointed out that the APFC-based model, either the PAPFC
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model in this work or the hyperbolic APFC model, could serve as an important atomic
simulation method for predicting solidification behaviors under various supercooling, but
the typical system size simulated is still limited within about ~1µm at present. Nevertheless,
such a method could serve as an ideal bridge between the mesoscopic method (such as the
OFPF) and the classical atomic method (such as the classical molecular dynamics).
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https://www.mdpi.com/article/10.3390/e25050708/s1, Figure S1: Pattern evolution during the
nonequilibrium crystallization of sample II under ε = 0.125 using PAPFC with Mk = 1.0 × 10−3;
Figure S2: Pattern evolution during the nonequilibrium crystallization of sample II under ε = 0.125
using PAPFC; Figure S3: Right tip position versus time for sample II with ε = 0.1; Figure S4: Dendrite
tip position versus time for sample II with different undercoolings; Figure S5: Enlarged contour plots
showing the growth processes of the equiaxial dendrite in the main text; Figure S6: Pattern evolution
during the nonequilibrium crystallization of sample II under ε = 0.125 using PAPFC with Mk = 0.5;
Figure S7: Pattern evolution during the nonequilibrium crystallization of the same sample as that in
S6 under ε = 0.125 using PAPFC with Mk = 2.0 × 10−3.
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